1
|
Villanova V, Andreolli M, Lampis S, Panighel A, Flamini R, Forte V, Zapparoli G. Enhancing the volatile organic compound and biomass production by three biocontrol potential bacteria in corn steep liquor growth medium and development of cell freeze-drying process. J Appl Microbiol 2024; 135:lxae270. [PMID: 39444062 DOI: 10.1093/jambio/lxae270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/12/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
AIMS This study investigates the traits of three plant growth-promoting (PGP) and antagonistic bacteria, Pseudomonas protegens MP12, Bacillus sp. 3R4, and Bacillus sp. T22, to assess their potential application as biocontrol agents by using the ecofriendly and low-cost substrate Corn Steep Liquor (CSL) medium. Analyses of antagonism through volatile organic compounds (VOCs) production, biofilm formation, and growth performance were carried out. METHODS AND RESULTS Dual antagonism assay showed that all strains displayed significant antagonistic activity against Botrytis cinerea through VOCs. Gas chromatography demonstrated that strains in the CSL exhibited higher VOCs production than nutrient medium. Moreover, enhanced biofilm formation analysed by Calgary Biofilm Device, growth, and biomass were noted in CSL cultures. Pseudomonas protegens MP12, which showed higher cell concentration and biomass yield, was selected for freeze-drying treatments. Storage cell viability assays evidenced that it can be effectively preserved for nearly 7 months at 4°C. CONCLUSION The results here obtained showed that CLS medium enhanced VOCs production, biofilm formation, growth, and biomass of the antagonistic bacteria of the three strains. Eventually, the more effective strain P. protegens MP12 can be stored for nearly 7 months at 4°C.
Collapse
Affiliation(s)
- Valeria Villanova
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze edificio 16, 90128, Palermo, Italy
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, Verona 37134, Italy
| | - Marco Andreolli
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, Verona 37134, Italy
- VUCC-DBT Verona University Culture Collection, Department of Biotechnology, University of Verona, Strada Le Grazie, 15, Verona 37134, Italy
| | - Silvia Lampis
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, Verona 37134, Italy
- VUCC-DBT Verona University Culture Collection, Department of Biotechnology, University of Verona, Strada Le Grazie, 15, Verona 37134, Italy
| | - Annarita Panighel
- Council for Agricultural Research and Economics, Research Center for Viticulture & Enology CREA-VE, Viale XXVIII Aprile 26, 31015 Conegliano (TV), Italy
| | - Riccardo Flamini
- Council for Agricultural Research and Economics, Research Center for Viticulture & Enology CREA-VE, Viale XXVIII Aprile 26, 31015 Conegliano (TV), Italy
| | - Vally Forte
- Council for Agricultural Research and Economics, Research Center for Viticulture & Enology CREA-VE, Viale XXVIII Aprile 26, 31015 Conegliano (TV), Italy
| | - Giacomo Zapparoli
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, Verona 37134, Italy
| |
Collapse
|
2
|
Guillén-Navarro K, López-Gutiérrez T, García-Fajardo V, Gómez-Cornelio S, Zarza E, De la Rosa-García S, Chan-Bacab M. Broad-Spectrum Antifungal, Biosurfactants and Bioemulsifier Activity of Bacillus subtilis subsp. spizizenii-A Potential Biocontrol and Bioremediation Agent in Agriculture. PLANTS (BASEL, SWITZERLAND) 2023; 12:1374. [PMID: 36987062 PMCID: PMC10056679 DOI: 10.3390/plants12061374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
In this study, the antifungal, biosurfactant and bioemulsifying activity of the lipopeptides produced by the marine bacterium Bacillus subtilis subsp. spizizenii MC6B-22 is presented. The kinetics showed that at 84 h, the highest yield of lipopeptides (556 mg/mL) with antifungal, biosurfactant, bioemulsifying and hemolytic activity was detected, finding a relationship with the sporulation of the bacteria. Based on the hemolytic activity, bio-guided purification methods were used to obtain the lipopeptide. By TLC, HPLC and MALDI-TOF, the mycosubtilin was identified as the main lipopeptide, and it was further confirmed by NRPS gene clusters prediction based on the strain's genome sequence, in addition to other genes related to antimicrobial activity. The lipopeptide showed a broad-spectrum activity against ten phytopathogens of tropical crops at a minimum inhibitory concentration of 400 to 25 μg/mL and with a fungicidal mode of action. In addition, it exhibited that biosurfactant and bioemulsifying activities remain stable over a wide range of salinity and pH and it can emulsify different hydrophobic substrates. These results demonstrate the potential of the MC6B-22 strain as a biocontrol agent for agriculture and its application in bioremediation and other biotechnological fields.
Collapse
Affiliation(s)
- Karina Guillén-Navarro
- Grupo Académico de Biotecnología Ambiental, Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur Unidad Tapachula, Carretera Antiguo Aeropuerto km 2.5, Tapachula 30700, Chiapas, Mexico; (K.G.-N.); (E.Z.)
| | - Tomás López-Gutiérrez
- Facultad de Ciencias Biologicas, Universidad Autónoma de Campeche, Av. Agustín Melgar s/n, Col. Buenavista, Campeche 24030, Campeche, Mexico
| | - Verónica García-Fajardo
- Grupo Académico de Biotecnología Ambiental, Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur Unidad Tapachula, Carretera Antiguo Aeropuerto km 2.5, Tapachula 30700, Chiapas, Mexico; (K.G.-N.); (E.Z.)
| | - Sergio Gómez-Cornelio
- Ingeniería en Biotecnología, Universidad Politécnica del Centro, Carretera Federal Villahermosa-Teapa km 22.5, Villahermosa 86290, Tabasco, Mexico;
- Laboratorio de Nanotecnología-CICTAT, División Académica de Ingeniería y Arquitectura, Universidad Juárez Autónoma de Tabasco, Carr. Cunduacán-Jalpa de Méndez km 1, Cunduacán 86690, Tabasco, Mexico
| | - Eugenia Zarza
- Grupo Académico de Biotecnología Ambiental, Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur Unidad Tapachula, Carretera Antiguo Aeropuerto km 2.5, Tapachula 30700, Chiapas, Mexico; (K.G.-N.); (E.Z.)
- Investigadora CONACyT—El Colegio de la Frontera Sur. Av. Insurgentes Sur 1582, Col. Crédito Constructor, Benito Juárez, Mexico City 03940, Mexico City, Mexico
| | - Susana De la Rosa-García
- Laboratorio de Microbiología Aplicada, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas km 0.5, Villahermosa 86000, Tabasco, Mexico
| | - Manuel Chan-Bacab
- Departamento de Microbiología Ambiental y Biotecnología, Universidad Autónoma de Campeche, Av. Agustín Melgar s/n, Col. Buenavista, Campeche 24030, Campeche, Mexico
| |
Collapse
|
3
|
Helfrich M, Entian KD, Stein T. Antibiotic profiling of wild-type bacilli led to the discovery of new lanthipeptide subtilin-producing Bacillus spizizenii strains whose 16S rDNA sequences differ from the B. spizizenii typing strain. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2022; 25:839-850. [PMID: 35902452 PMCID: PMC9526687 DOI: 10.1007/s10123-022-00266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/12/2022] [Accepted: 07/06/2022] [Indexed: 11/25/2022]
Abstract
Two dozen field-collected Bacillus and a dozen Bacillus spizizenii wild-type strains from strain collections were selected on the basis of their antagonistic properties against the Gram-positive strain Micrococcus luteus. Based on their genetic and antibiotic profiles, they were characterized (subtilin encoding spaS gene sequences, mass spectrometric, and quantitative-reversed phase liquid chromatographic analyses, as well as the presence of the lanthionine cyclase protein SpaC by western blotting), seven novel producers of the lanthipeptide subtilin. Phylogenetic analyses of the subtilin-producing wild-type strains based on their 16S rRNA sequences showed that all seven strains could be classified as B. spizizenii: The field-collected strains HS and N5, as well as strains DSM 618, 1087, 6395, 6405, and 8439 from the German Collection of Microorganisms and Cell Cultures. To the best of our knowledge, all B. spizizenii strains described so far are characterized by the fact that they can produce a lanthipeptide of the subtilin family. Both the lanthipeptide structures and the organization and sequences of the 16S rRNA-encoding genes suggest a subdivision of B. spizizenii into subspecies: The subtilin-producing B. spizizenii strains are distinctly different from the entianin-producing B. spizizenii typing strain TU-B-10 T (DSM 15029 T).
Collapse
Affiliation(s)
- Markus Helfrich
- Life Sciences, Johann Wolfgang-Goethe-University, Max v. Laue Str. 9, 60439, Frankfurt/Main, Germany
- Jennewein Biotechnologie GmbH, Maarweg 32, 53619, Rheinbreitbach, Germany
| | - Karl-Dieter Entian
- Life Sciences, Johann Wolfgang-Goethe-University, Max v. Laue Str. 9, 60439, Frankfurt/Main, Germany
| | - Torsten Stein
- Life Sciences, Johann Wolfgang-Goethe-University, Max v. Laue Str. 9, 60439, Frankfurt/Main, Germany.
- Chemistry & Molecular Biotechnology, Aalen University, Beethovenstraße 1, 73430, Aalen, Germany.
| |
Collapse
|
4
|
Zhao X, Chen X, Xue Y, Wang X. Development of an efficient iterative genome editing method in Bacillus subtilis using the CRISPR-AsCpf1 system. J Basic Microbiol 2022; 62:824-832. [PMID: 35655368 DOI: 10.1002/jobm.202200134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 12/28/2022]
Abstract
Bacillus subtilis is a useful chassis in the fields of synthetic biology and metabolic engineering for chemical production. Here, we constructed CRISPR-AsCpf1-based expression plasmids with the temperature-sensitive replicon for iterative genome editing in B. subtilis. This method allowed gene insertion and large genomic deletion with an editing efficiency of up 80%-100% and rapid plasmid curing to facilitate the iterative genome editing in B. subtilis 168. Using the customized CRISPR-AsCpf1 system, we successfully and efficiently implemented the related gene editing in B. subtilis 168 for hyaluronic acid (HA) biosynthesis, HA synthase gene (hasA) insertion, UDP-glucose-dehydrogenase gene (tuaD) insertion, and eps gene cluster (epsA-O) deletion. The heterologous production of HA was realized by the engineered strain with a yield of 1.39 g/L. These results support the finding that the CRISPR-AsCpf1 system is highly efficient in bacteria genome editing and provide valuable guidance and essential references for genome engineering in B. subtilis using the CRISPR-AsCpf1 system.
Collapse
Affiliation(s)
- Xingcong Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xi Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yanbing Xue
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xuedong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
5
|
Vasileva D, Streich J, Burdick L, Klingeman D, Chhetri HB, Brelsford C, Ellis JC, Close DM, Jacobson D, Michener J. Protoplast fusion in Bacillus species produces frequent, unbiased, genome-wide homologous recombination. Nucleic Acids Res 2022; 50:6211-6223. [PMID: 35061904 PMCID: PMC9226520 DOI: 10.1093/nar/gkac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 01/09/2023] Open
Abstract
In eukaryotes, fine-scale maps of meiotic recombination events have greatly advanced our understanding of the factors that affect genomic variation patterns and evolution of traits. However, in bacteria that lack natural systems for sexual reproduction, unbiased characterization of recombination landscapes has remained challenging due to variable rates of genetic exchange and influence of natural selection. Here, to overcome these limitations and to gain a genome-wide view on recombination, we crossed Bacillus strains with different genetic distances using protoplast fusion. The offspring displayed complex inheritance patterns with one of the parents consistently contributing the major part of the chromosome backbone and multiple unselected fragments originating from the second parent. Our results demonstrate that this bias was in part due to the action of restriction-modification systems, whereas genome features like GC content and local nucleotide identity did not affect distribution of recombination events around the chromosome. Furthermore, we found that recombination occurred uniformly across the genome without concentration into hotspots. Notably, our results show that species-level genetic distance did not affect genome-wide recombination. This study provides a new insight into the dynamics of recombination in bacteria and a platform for studying recombination patterns in diverse bacterial species.
Collapse
Affiliation(s)
| | | | | | - Dawn M Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Hari B Chhetri
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Christa M Brelsford
- Geospatial Science and Human Security Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - J Christopher Ellis
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Dan M Close
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Daniel A Jacobson
- Correspondence may also be addressed to Daniel A. Jacobson. Tel: +1 865 574 6134; Fax: +1 865 241 2869;
| | - Joshua K Michener
- To whom correspondence should be addressed. Tel: +1 865 576 7957; Fax: +1 865 576 8646;
| |
Collapse
|
6
|
Abstract
Horizontal gene transfer (HGT) is an important factor in bacterial evolution that can act across species boundaries. Yet, we know little about rate and genomic targets of cross-lineage gene transfer and about its effects on the recipient organism's physiology and fitness. Here, we address these questions in a parallel evolution experiment with two Bacillus subtilis lineages of 7% sequence divergence. We observe rapid evolution of hybrid organisms: gene transfer swaps ∼12% of the core genome in just 200 generations, and 60% of core genes are replaced in at least one population. By genomics, transcriptomics, fitness assays, and statistical modeling, we show that transfer generates adaptive evolution and functional alterations in hybrids. Specifically, our experiments reveal a strong, repeatable fitness increase of evolved populations in the stationary growth phase. By genomic analysis of the transfer statistics across replicate populations, we infer that selection on HGT has a broad genetic basis: 40% of the observed transfers are adaptive. At the level of functional gene networks, we find signatures of negative, positive, and epistatic selection, consistent with hybrid incompatibilities and adaptive evolution of network functions. Our results suggest that gene transfer navigates a complex cross-lineage fitness landscape, bridging epistatic barriers along multiple high-fitness paths.
Collapse
|
7
|
Hurtado-Bautista E, Pérez Sánchez LF, Islas-Robles A, Santoyo G, Olmedo-Alvarez G. Phenotypic plasticity and evolution of thermal tolerance in bacteria from temperate and hot spring environments. PeerJ 2021; 9:e11734. [PMID: 34386300 PMCID: PMC8312496 DOI: 10.7717/peerj.11734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 06/16/2021] [Indexed: 01/02/2023] Open
Abstract
Phenotypic plasticity allows individuals to respond to the selective forces of a new environment, followed by adaptive evolution. We do not know to what extent phenotypic plasticity allows thermal tolerance evolution in bacteria at the border of their physiological limits. We analyzed growth and reaction norms to temperature of strains of two bacterial lineages, Bacillus cereus sensu lato and Bacillus subtilis sensu lato, that evolved in two contrasting environments, a temperate lagoon (T) and a hot spring (H). Our results showed that despite the co-occurrence of members of both lineages in the two contrasting environments, norms of reactions to temperature exhibited a similar pattern only in strains within the lineages, suggesting fixed phenotypic plasticity. Additionally, strains from the H environment showed only two to three degrees centigrade more heat tolerance than strains from the T environment. Their viability decreased at temperatures above their optimal for growth, particularly for the B. cereus lineage. However, sporulation occurred at all temperatures, consistent with the known cell population heterogeneity that allows the Bacillus to anticipate adversity. We suggest that these mesophilic strains survive in the hot-spring as spores and complete their life cycle of germination and growth during intermittent opportunities of moderate temperatures. The limited evolutionary changes towards an increase in heat tolerance in bacteria should alert us of the negative impact of climate change on all biological cycles in the planet, which at its most basic level depends on microorganisms.
Collapse
Affiliation(s)
- Enrique Hurtado-Bautista
- Departamento de Ingeniería Genética, Unidad Irapuato, de (Centro de Investigación y de Estudios Avanzados) del IPN, Irapuato, Guanajuato, México
| | - Laura F Pérez Sánchez
- Departamento de Ingeniería Genética, Unidad Irapuato, de (Centro de Investigación y de Estudios Avanzados) del IPN, Irapuato, Guanajuato, México
| | - Africa Islas-Robles
- Departamento de Ingeniería Genética, Unidad Irapuato, de (Centro de Investigación y de Estudios Avanzados) del IPN, Irapuato, Guanajuato, México
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Gabriela Olmedo-Alvarez
- Departamento de Ingeniería Genética, Unidad Irapuato, de (Centro de Investigación y de Estudios Avanzados) del IPN, Irapuato, Guanajuato, México
| |
Collapse
|
8
|
Razim A, Pacyga K, Naporowski P, Martynowski D, Szuba A, Gamian A, Górska S. Identification of linear epitopes on the flagellar proteins of Clostridioides difficile. Sci Rep 2021; 11:9940. [PMID: 33976336 PMCID: PMC8113543 DOI: 10.1038/s41598-021-89488-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/27/2021] [Indexed: 02/08/2023] Open
Abstract
Clostridioides difficile (C. difficile) is an opportunistic anaerobic bacterium that causes severe diseases of the digestive tract of humans and animals. One of the possible methods of preventing C. difficile infection is to develop a vaccine. The most promising candidates for vaccine antigens are the proteins involved in the adhesion phenomena. Among them, the FliC and FliD are considered to be suitable candidates. In this paper, the FliC and FliD protein polypeptide epitopes were mapped in silico and by using PEPSCAN procedure. We identified four promising epitopes: 117QRMRTLS123, 205MSKAG209 of FliC and 226NKVAS230, 306TTKKPKD312 of FliD protein. We showed that 117QRMRTLS123 sequence is not only located in TLR5-binding and activating region, as previously shown, but forms an epitope recognized by C. difficile-infected patients' antibodies. 205MSKAG209 is a C. difficile-unique, immunogenic sequence that forms an exposed epitope on the polymerized flagella structure which makes it a suitable vaccine antigen. 226NKVAS230 and 306TTKKPKD312 are well exposed and possess potential protective properties according to VaxiJen analysis. Our results open the possibility to use these epitopes as suitable anti-C. difficile vaccine antigens.
Collapse
Affiliation(s)
- A Razim
- Laboratory of Immunobiology of Microbiome, Hirszfeld Institute of Immunology and Experimental Therapy, PAS, Wroclaw, Poland.
| | - K Pacyga
- Laboratory of Immunobiology of Microbiome, Hirszfeld Institute of Immunology and Experimental Therapy, PAS, Wroclaw, Poland
| | - P Naporowski
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, PAS, Wroclaw, Poland
| | - D Martynowski
- Laboratory of Genomics and Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, PAS, Wroclaw, Poland
| | - A Szuba
- Division of Angiology, Wroclaw Medical University, Wroclaw, Poland.,Department of Internal Medicine, 4th Military Hospital in Wroclaw, Wroclaw, Poland
| | - A Gamian
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, PAS, Wroclaw, Poland
| | - S Górska
- Laboratory of Immunobiology of Microbiome, Hirszfeld Institute of Immunology and Experimental Therapy, PAS, Wroclaw, Poland
| |
Collapse
|
9
|
Gupta RS, Patel S, Saini N, Chen S. Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. Int J Syst Evol Microbiol 2020; 70:5753-5798. [PMID: 33112222 DOI: 10.1099/ijsem.0.004475] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To clarify the evolutionary relationships and classification of Bacillus species, comprehensive phylogenomic and comparative analyses were performed on >300 Bacillus/Bacillaceae genomes. Multiple genomic-scale phylogenetic trees were initially reconstructed to identify different monophyletic clades of Bacillus species. In parallel, detailed analyses were performed on protein sequences of genomes to identify conserved signature indels (CSIs) that are specific for each of the identified clades. We show that in different reconstructed trees, most of the Bacillus species, in addition to the Subtilis and Cereus clades, consistently formed 17 novel distinct clades. Additionally, some Bacillus species reliably grouped with the genera Alkalicoccus, Caldalkalibacillus, Caldibacillus, Salibacterium and Salisediminibacterium. The distinctness of identified Bacillus species clades is independently strongly supported by 128 identified CSIs which are unique characteristics of these clades, providing reliable means for their demarcation. Based on the strong phylogenetic and molecular evidence, we are proposing that these 17 Bacillus species clades should be recognized as novel genera, with the names Alteribacter gen. nov., Ectobacillus gen. nov., Evansella gen. nov., Ferdinandcohnia gen. nov., Gottfriedia gen. nov., Heyndrickxia gen. nov., Lederbergia gen. nov., Litchfieldia gen. nov., Margalitia gen. nov., Niallia gen. nov., Priestia gen. nov., Robertmurraya gen. nov., Rossellomorea gen. nov., Schinkia gen. nov., Siminovitchia gen. nov., Sutcliffiella gen. nov. and Weizmannia gen. nov. We also propose to transfer 'Bacillus kyonggiensis' to Robertmurraya kyonggiensis sp. nov. (type strain: NB22=JCM 17569T=DSM 26768). Additionally, we report 31 CSIs that are unique characteristics of either the members of the Subtilis clade (containing the type species B. subtilis) or the Cereus clade (containing B. anthracis and B. cereus). As most Bacillus species which are not part of these two clades can now be assigned to other genera, we are proposing an emended description of the genus Bacillus to restrict it to only the members of the Subtilis and Cereus clades.
Collapse
Key Words
- classification of Bacillus species
- conserved signature indels
- emendation of genus Bacillus
- genus Bacillus and the family Bacillaceae
- novel Bacillaceae genera Alteribacter, Ectobacillus, Evansella, Ferdinandcohnia, Gottfriedia, Heyndrickxia, Lederbergia, Litchfieldia, Margalitia, Niallia, Priestia, Robertmurraya, Rossellomorea, Schinkia, Siminovitchia, Sutcliffiella and Weizmannia
- phylogenomic and comparative genomic analyses
Collapse
Affiliation(s)
- Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8N 3Z5, Ontario, Canada
| | - Sudip Patel
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8N 3Z5, Ontario, Canada
| | - Navneet Saini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8N 3Z5, Ontario, Canada
| | - Shu Chen
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8N 3Z5, Ontario, Canada
| |
Collapse
|
10
|
Warmbold B, Ronzheimer S, Freibert SA, Seubert A, Hoffmann T, Bremer E. Two MarR-Type Repressors Balance Precursor Uptake and Glycine Betaine Synthesis in Bacillus subtilis to Provide Cytoprotection Against Sustained Osmotic Stress. Front Microbiol 2020; 11:1700. [PMID: 32849357 PMCID: PMC7396694 DOI: 10.3389/fmicb.2020.01700] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/29/2020] [Indexed: 02/01/2023] Open
Abstract
Bacillus subtilis adjusts to high osmolarity surroundings through the amassing of compatible solutes. It synthesizes the compatible solute glycine betaine from prior imported choline and scavenges many pre-formed osmostress protectants, including glycine betaine, from environmental sources. Choline is imported through the substrate-restricted ABC transporter OpuB and the closely related, but promiscuous, OpuC system, followed by its GbsAB-mediated oxidation to glycine betaine. We have investigated the impact of two MarR-type regulators, GbsR and OpcR, on gbsAB, opuB, and opuC expression. Judging by the position of the previously identified OpcR operator in the regulatory regions of opuB and opuC [Lee et al. (2013) Microbiology 159, 2087−2096], and that of the GbsR operator identified in the current study, we found that the closely related GbsR and OpcR repressors use different molecular mechanisms to control transcription. OpcR functions by sterically hindering access of RNA-polymerase to the opuB and opuC promoters, while GbsR operates through a roadblock mechanism to control gbsAB and opuB transcription. Loss of GbsR or OpcR de-represses opuB and opuC transcription, respectively. With respect to the osmotic control of opuB and opuC expression, we found that this environmental cue operates independently of the OpcR and GbsR regulators. When assessed over a wide range of salinities, opuB and opuC exhibit a surprisingly different transcriptional profile. Expression of opuB increases monotonously in response to incrementally increase in salinity, while opuC transcription levels decrease after an initial up-regulation at moderate salinities. Transcription of the gbsR and opcR regulatory genes is up-regulated in response to salt stress, and is also affected through auto-regulatory processes. The opuB and opuC operons have evolved through a gene duplication event. However, evolution has shaped their mode of genetic regulation, their osmotic-stress dependent transcriptional profile, and the substrate specificity of the OpuB and OpuC ABC transporters in a distinctive fashion.
Collapse
Affiliation(s)
- Bianca Warmbold
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Stefanie Ronzheimer
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Sven-Andreas Freibert
- Department of Medicine, Institute for Cytobiology and Cytopathology, Philipps-University Marburg, Marburg, Germany
| | - Andreas Seubert
- Faculty of Chemistry, Analytical Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Tamara Hoffmann
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany.,Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
11
|
Genome wide underpinning of antagonistic and plant beneficial attributes of Bacillus sp. SBA12. Genomics 2020; 112:2894-2902. [DOI: 10.1016/j.ygeno.2020.03.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/28/2020] [Accepted: 03/30/2020] [Indexed: 01/16/2023]
|
12
|
Errington J, van der Aart LT. Microbe Profile: Bacillus subtilis: model organism for cellular development, and industrial workhorse. MICROBIOLOGY (READING, ENGLAND) 2020; 166:425-427. [PMID: 32391747 PMCID: PMC7376258 DOI: 10.1099/mic.0.000922] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/16/2020] [Indexed: 11/25/2022]
Abstract
Bacillus subtilis is the best studied model organism of the Gram-positive lineage. It is naturally transformable and has an extremely powerful genetic toolbox. It is fast growing and easy to cultivate. It is an important industrial organism, being proficient at secreting proteins and making small fine chemicals, as well as acting as a plant growth promoter. It has been an important model system for studying biofilms. Finally, it makes endospores, which have provided an exceptionally fruitful system for studying various central problems of cellular development, including the generation of asymmetry, cell fate determination and morphogenesis.
Collapse
Affiliation(s)
- Jeffery Errington
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, NE2 4AX, UK
| | - Lizah T van der Aart
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, NE2 4AX, UK
| |
Collapse
|
13
|
Bacillus subtilis EA-CB0575 genome reveals clues for plant growth promotion and potential for sustainable agriculture. Funct Integr Genomics 2020; 20:575-589. [PMID: 32198678 DOI: 10.1007/s10142-020-00736-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/17/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022]
Abstract
Bacillus subtilis is a remarkably diverse bacterial species that displays many ecological functions. Given its genomic diversity, the strain Bacillus subtilis EA-CB0575, isolated from the rhizosphere of a banana plant, was sequenced and assembled to determine the genomic potential associated with its plant growth promotion potential. The genome was sequenced by Illumina technology and assembled using Velvet 1.2.10, resulting in a whole genome of 4.09 Mb with 4332 genes. Genes involved in the production of indoles, siderophores, lipopeptides, volatile compounds, phytase, bacilibactin, and nitrogenase were predicted by gene annotation or by metabolic pathway prediction by RAST. These potential traits were determined using in vitro biochemical tests, finding that B. subtilis EA-CB0575 produces two families of lipopeptides (surfactin and fengycin), solubilizes phosphate, fixes nitrogen, and produces indole and siderophores compounds. Finally, strain EA-CB0575 increased 34.60% the total dry weight (TDW) of tomato plants with respect to non-inoculated plants at greenhouse level. These results suggest that the identification of strain-specific genes and predicted metabolic pathways might explain the strain potential to promote plant growth by several mechanisms of action, accelerating the development of plant biostimulants for sustainable agricultural.
Collapse
|
14
|
Patel S, Gupta RS. A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: Proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. Int J Syst Evol Microbiol 2020; 70:406-438. [PMID: 31617837 DOI: 10.1099/ijsem.0.003775] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus Bacillus, harbouring 293 species/subspecies, constitutes a phylogenetically incoherent group. In the absence of reliable means for grouping known Bacillus species into distinct clades, restricting the placement of new species into this genus has proven difficult. To clarify the evolutionary relationships among Bacillus species, 352 available genome sequences from the family Bacillaceae were used to perform comprehensive phylogenomic and comparative genomic analyses. Four phylogenetic trees were reconstructed based on multiple datasets of proteins including 1172 core Bacillaceae proteins, 87 proteins conserved within the phylum Firmicutes, GyrA-GyrB-RpoB-RpoC proteins, and UvrD-PolA proteins. All trees exhibited nearly identical branching of Bacillus species and consistently displayed six novel monophyletic clades encompassing 5-23 Bacillus species (denoted as the Simplex, Firmus, Jeotgali, Niacini, Fastidiosus and Alcalophilus clades), interspersed with other Bacillaceae species. Species from these clades also generally grouped together in 16S rRNA gene trees. In parallel, our comparative genomic analyses of Bacillus species led to the identification of 36 molecular markers comprising conserved signature indels in protein sequences that are specifically shared by the species from these six observed clades, thus reliably demarcating these clades based on multiple molecular synapomorphies. Based on the strong evidence from multiple lines of investigations supporting the existence of these six distinct 'Bacillus' clades, we propose the transfer of species from these clades into six novel Bacillaceae genera viz. Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. These results represent an important step towards clarifying the phylogeny/taxonomy of the genus Bacillus.
Collapse
Affiliation(s)
- Sudip Patel
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| |
Collapse
|
15
|
Comparative Genome Characterization of a Petroleum-Degrading Bacillus subtilis Strain DM2. Int J Genomics 2019; 2019:7410823. [PMID: 31205931 PMCID: PMC6530121 DOI: 10.1155/2019/7410823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/19/2019] [Accepted: 03/24/2019] [Indexed: 12/12/2022] Open
Abstract
The complete genome sequence of Bacillus subtilis strain DM2 isolated from petroleum-contaminated soil on the Tibetan Plateau was determined. The genome of strain DM2 consists of a circular chromosome of 4,238,631 bp for 4458 protein-coding genes and a plasmid of 84,240 bp coding for 103 genes. Thirty-four genomic islands coding for 330 proteins and 5 prophages are found in the genome. The DDH value shows that strain DM2 belongs to B. subtilis subsp. subtilis subspecies, but significant variations of the genome are also present. Comparative analysis showed that the genome of strain DM2 encodes some strain-specific proteins in comparison with B. subtilis subsp. subtilis str. 168, such as carboxymuconolactone decarboxylase family protein, gfo/Idh/MocA family oxidoreductases, GlsB/YeaQ/YmgE family stress response membrane protein, HlyC/CorC family transporters, LLM class flavin-dependent oxidoreductase, and LPXTG cell wall anchor domain-containing protein. Most of the common strain-specific proteins in DM2 and MJ01 strains, or proteins unique to DM2 strain, are involved in the pathways related to stress response, signaling, and hydrocarbon degradation. Furthermore, the strain DM2 genome contains 122 genes coding for developed two-component systems and 138 genes coding for ABC transporter systems. The prominent features of the strain DM2 genome reflect the evolutionary fitness of this strain to harsh conditions and hydrocarbon utilization.
Collapse
|
16
|
Bóka B, Manczinger L, Kocsubé S, Shine K, Alharbi NS, Khaled JM, Münsterkötter M, Vágvölgyi C, Kredics L. Genome analysis of a Bacillus subtilis strain reveals genetic mutations determining biocontrol properties. World J Microbiol Biotechnol 2019; 35:52. [PMID: 30868269 PMCID: PMC6435635 DOI: 10.1007/s11274-019-2625-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/01/2019] [Indexed: 11/03/2022]
Abstract
Several Bacillus strains are used as biocontrol agents, as they frequently have strong antagonistic effects against microbial plant pathogens. Bacillus strain SZMC 6179J, isolated from tomato rhizosphere, was previously shown to have excellent in vitro antagonistic properties against the most important fungal pathogens of tomato (Alternaria solani, Botrytis cinerea, Phytophthora infestans and Sclerotinia sclerotiorum) as well as several Fusarium species. Taxonomic investigations revealed that it is a member of the B. subtilis subsp. subtilis group and very closely related with the reference type strain B. subtilis subsp. subtilis 168. The sequenced genome of strain SZMC 6179J contains the genes responsible for the synthesis of the extracellular antibiotics surfactin, fengycin and bacilysin. Compared to strain 168, a prophage-like region is missing from the genome of SZMC 6179J, while there are 106 single nucleotide polymorphisms and 23 deletion-insertion polymorphisms. The high biocontrol potential of strain SZMC 6179J may results from a single base deletion in the sfp gene encoding the transcription factor of the surfactin and fengycin operons. Hypermutated regions reflecting short-time evolutionary processes could be detected in SZMC 6179J. The deletion-insertion polymorphism in the sfp gene and the detected hypermutations can be suggested as genetic determinants of biocontrol features in B. subtilis.
Collapse
Affiliation(s)
- Bettina Bóka
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - László Manczinger
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Sándor Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Kadaikunnan Shine
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jamal M Khaled
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Martin Münsterkötter
- Functional Genomics and Bioinformatics Group, Research Center for Forestry and Wood Industry, University of Sopron, Bajcsy-Zsilinszky u. 4, Sopron, 9401, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary.
| |
Collapse
|
17
|
Ostrov I, Sela N, Belausov E, Steinberg D, Shemesh M. Adaptation of Bacillus species to dairy associated environment facilitates their biofilm forming ability. Food Microbiol 2019; 82:316-324. [PMID: 31027789 DOI: 10.1016/j.fm.2019.02.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/17/2019] [Accepted: 02/28/2019] [Indexed: 12/22/2022]
Abstract
Biofilm-forming Bacillus species are often involved in contamination of dairy products and therefore present a major microbiological challenge in the field of food quality and safety. In this study, we sequenced and analyzed the genomes of milk- and non-milk-derived Bacillus strains, and evaluated their biofilm-formation potential in milk. Unlike non-dairy Bacillus isolates, the dairy-associated Bacillus strains were characterized by formation of robust submerged and air-liquid interface biofilm (pellicle) during growth in milk. Moreover, genome comparison analysis revealed notable differences in putative biofilm-associated determinants between the dairy and non-dairy Bacillus isolates, which correlated with biofilm phenotype. These results suggest that biofilm formation by Bacillus species might represent a presumable adaptation strategy to the dairy environment.
Collapse
Affiliation(s)
- Ievgeniia Ostrov
- Department of Food Sciences, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO) the Volcani Center, Rishon LeZion, Israel; Biofilm Research Laboratory, Hebrew University - Hadassah, Jerusalem, Israel.
| | - Noa Sela
- Department of Plant Pathology and Weed Research, ARO, The Volcani Center, Rishon LeZion, Israel.
| | - Eduard Belausov
- Department of Ornamental Plants and Agricultural Biotechnology, ARO, The Volcani Center, Rishon LeZion, Israel.
| | - Doron Steinberg
- Biofilm Research Laboratory, Hebrew University - Hadassah, Jerusalem, Israel.
| | - Moshe Shemesh
- Department of Food Sciences, Institute for Postharvest Technology and Food Sciences, Agricultural Research Organization (ARO) the Volcani Center, Rishon LeZion, Israel.
| |
Collapse
|
18
|
Alkhalili RN, Canbäck B. Identification of Putative Novel Class-I Lanthipeptides in Firmicutes: A Combinatorial In Silico Analysis Approach Performed on Genome Sequenced Bacteria and a Close Inspection of Z-Geobacillin Lanthipeptide Biosynthesis Gene Cluster of the Thermophilic Geobacillus sp. Strain ZGt-1. Int J Mol Sci 2018; 19:E2650. [PMID: 30200662 PMCID: PMC6165006 DOI: 10.3390/ijms19092650] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/23/2018] [Accepted: 09/04/2018] [Indexed: 01/03/2023] Open
Abstract
Lanthipeptides are ribosomally synthesized and post-translationally modified polycyclic peptides. Lanthipeptides that have antimicrobial activity are known as lantibiotics. Accordingly, the discovery of novel lantibiotics constitutes a possible solution for the problem of antibiotic resistance. We utilized the publicly available genome sequences and the bioinformatic tools tailored for the detection of lanthipeptides. We designed our strategy for screening of 252 firmicute genomes and detecting class-I lanthipeptide-coding gene clusters. The designed strategy resulted in identifying 69 class-I lanthipeptide sequences, of which more than 10% were putative novel. The identified putative novel lanthipeptides have not been annotated on the original or the RefSeq genomes, or have been annotated merely as coding for hypothetical proteins. Additionally, we identified bacterial strains that have not been previously recognized as lanthipeptide-producers. Moreover, we suggest corrections for certain firmicute genome annotations, and recommend lanthipeptide records for enriching the bacteriocin genome mining tool (BAGEL) databases. Furthermore, we propose Z-geobacillin, a putative class-I lanthipeptide coded on the genome of the thermophilic strain Geobacillus sp. ZGt-1. We provide lists of putative novel lanthipeptide sequences and of the previously unrecognized lanthipeptide-producing bacterial strains, so they can be prioritized for experimental investigation. Our results are expected to benefit researchers interested in the in vitro production of lanthipeptides.
Collapse
Affiliation(s)
- Rawana N Alkhalili
- Biotechnology, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden.
| | - Björn Canbäck
- Department of Biology, Lund University, SE-221 00 Lund, Sweden.
| |
Collapse
|
19
|
Tasaki S, Nakayama M, Shoji W. Morphologies of Bacillus subtilis communities responding to environmental variation. Dev Growth Differ 2017; 59:369-378. [PMID: 28675458 DOI: 10.1111/dgd.12383] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/24/2017] [Accepted: 06/06/2017] [Indexed: 12/20/2022]
Abstract
Bacterial communities exhibit a variety of growth morphologies in constructing robust systems under different environmental conditions. We review the diverse morphologies of Bacillus subtilis communities and their mechanisms of self-organization. B. subtilis uses different cell types to suit environmental conditions and cell density. The subpopulation of each cell type exhibits various environment-sensitive properties. Furthermore, division of labor among the subpopulations results in flexible development for the community as a whole. We review how B. subtilis community morphologies and growth strategies respond to environmental perturbations.
Collapse
Affiliation(s)
- Sohei Tasaki
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Japan.,Graduate School of Science, Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Japan
| | - Madoka Nakayama
- Sendai National College of Technology, 48 Nodayama, Medeshima-Shiote, Natori, Miyagi, 981-1239, Japan
| | - Wataru Shoji
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aramaki-aza-Aoba, Aoba-ku, Japan.,Institute of Development, Aging and Cancer, Tohoku University, 1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
20
|
Spore Heat Activation Requirements and Germination Responses Correlate with Sequences of Germinant Receptors and with the Presence of a Specific spoVA2mob Operon in Foodborne Strains of Bacillus subtilis. Appl Environ Microbiol 2017; 83:AEM.03122-16. [PMID: 28130296 DOI: 10.1128/aem.03122-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 01/21/2017] [Indexed: 01/19/2023] Open
Abstract
Spore heat resistance, germination, and outgrowth are problematic bacterial properties compromising food safety and quality. Large interstrain variation in these properties makes prediction and control of spore behavior challenging. High-level heat resistance and slow germination of spores of some natural Bacillus subtilis isolates, encountered in foods, have been attributed to the occurrence of the spoVA2mob operon carried on the Tn1546 transposon. In this study, we further investigate the correlation between the presence of this operon in high-level-heat-resistant spores and their germination efficiencies before and after exposure to various sublethal heat treatments (heat activation, or HA), which are known to significantly improve spore responses to nutrient germinants. We show that high-level-heat-resistant spores harboring spoVA2mob required higher HA temperatures for efficient germination than spores lacking spoVA2mob The optimal spore HA requirements additionally depended on the nutrients used to trigger germination, l-alanine (l-Ala), or a mixture of l-asparagine, d-glucose, d-fructose, and K+ (AGFK). The distinct HA requirements of these two spore germination pathways are likely related to differences in properties of specific germinant receptors. Moreover, spores that germinated inefficiently in AGFK contained specific changes in sequences of the GerB and GerK germinant receptors, which are involved in this germination response. In contrast, no relation was found between transcription levels of main germination genes and spore germination phenotypes. The findings presented in this study have great implications for practices in the food industry, where heat treatments are commonly used to inactivate pathogenic and spoilage microbes, including bacterial spore formers.IMPORTANCE This study describes a strong variation in spore germination capacities and requirements for a heat activation treatment, i.e., an exposure to sublethal heat that increases spore responsiveness to nutrient germination triggers, among 17 strains of B. subtilis, including 9 isolates from spoiled food products. Spores of industrial foodborne isolates exhibited, on average, less efficient and slower germination responses and required more severe heat activation than spores from other sources. High heat activation requirements and inefficient, slow germination correlated with elevated resistance of spores to heat and with specific genetic features, indicating a common genetic basis of these three phenotypic traits. Clearly, interstrain variation and numerous factors that shape spore germination behavior challenge standardization of methods to recover highly heat-resistant spores from the environment and have an impact on the efficacy of preservation techniques used by the food industry to control spores.
Collapse
|
21
|
Song WS, Jeon YJ, Namgung B, Hong M, Yoon SI. A conserved TLR5 binding and activation hot spot on flagellin. Sci Rep 2017; 7:40878. [PMID: 28106112 PMCID: PMC5247705 DOI: 10.1038/srep40878] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/12/2016] [Indexed: 11/26/2022] Open
Abstract
Flagellin is a bacterial protein that polymerizes into the flagellar filament and is essential for bacterial motility. When flagellated bacteria invade the host, flagellin is recognized by Toll-like receptor 5 (TLR5) as a pathogen invasion signal and eventually evokes the innate immune response. Here, we provide a conserved structural mechanism by which flagellins from Gram-negative γ-proteobacteria and Gram-positive Firmicutes bacteria bind and activate TLR5. The comparative structural analysis using our crystal structure of a complex between Bacillus subtilis flagellin (bsflagellin) and TLR5 at 2.1 Å resolution, combined with the alanine scanning analysis of the binding interface, reveals a common hot spot in flagellin for TLR5 activation. An arginine residue (bsflagellin R89) of the flagellin D1 domain and its adjacent residues (bsflagellin E114 and L93) constitute a hot spot that provides shape and chemical complementarity to a cavity generated by the loop of leucine-rich repeat 9 in TLR5. In addition to the flagellin D1 domain, the D0 domain also contributes to TLR5 activity through structurally dispersed regions, but not a single focal area. These results establish the groundwork for the future design of flagellin-based therapeutics.
Collapse
Affiliation(s)
- Wan Seok Song
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ye Ji Jeon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Byeol Namgung
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Minsun Hong
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Sung-Il Yoon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea.,Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
22
|
Abstract
Peptidoglycan (PG), an essential stress-bearing component of the bacterial cell wall, is synthesised by penicillin binding proteins (PBPs). PG synthesis at the cell division septum is necessary for constructing new poles of progeny cells, and cells cannot elongate without inserting new PG in the side-wall. The cell division regulator GpsB appears to co-ordinate PG synthesis at the septum during division and at the side-wall during elongation in rod-shaped and ovococcoid Gram-positive bacteria. How the control over PG synthesis is exerted is unknown. In this issue of Molecular Microbiology, Rued et al. show that in pneumococci GpsB forms complexes with PBP2a and PBP2b, and that deletion or depletion of GpsB prevents closure of the septal ring that in itself is PBP2x-dependent. Loss of GpsB can be suppressed by spontaneous mutations, including within the gene encoding the only PP2C Ser/Thr phosphatase in Streptococcus pneumoniae, indicating that GpsB plays a key - but unknown - role in protein phosphorylation in pneumococci. Rued et al. combine phenotypic and genotypic analyses of mutant strains that suggest discrepancies in the literature concerning GpsB might have arisen from accumulation of unidentified suppressors, highlighting the importance and power of strain validation and whole genome sequencing in this context.
Collapse
Affiliation(s)
- Richard J Lewis
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| |
Collapse
|
23
|
Zhang N, Yang D, Kendall JRA, Borriss R, Druzhinina IS, Kubicek CP, Shen Q, Zhang R. Comparative Genomic Analysis of Bacillus amyloliquefaciens and Bacillus subtilis Reveals Evolutional Traits for Adaptation to Plant-Associated Habitats. Front Microbiol 2016; 7:2039. [PMID: 28066362 PMCID: PMC5169363 DOI: 10.3389/fmicb.2016.02039] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/05/2016] [Indexed: 12/22/2022] Open
Abstract
Bacillus subtilis and its sister species B. amyloliquefaciens comprise an evolutionary compact but physiologically versatile group of bacteria that includes strains isolated from diverse habitats. Many of these strains are used as plant growth-promoting rhizobacteria (PGPR) in agriculture and a plant-specialized subspecies of B. amyloliquefaciens-B. amyloliquefaciens subsp. plantarum, has recently been recognized, here we used 31 whole genomes [including two newly sequenced PGPR strains: B. amyloliquefaciens NJN-6 isolated from Musa sp. (banana) and B. subtilis HJ5 from Gossypium sp. (cotton)] to perform comparative analysis and investigate the genomic characteristics and evolution traits of both species in different niches. Phylogenomic analysis indicated that strains isolated from plant-associated (PA) habitats could be distinguished from those from non-plant-associated (nPA) niches in both species. The core genomes of PA strains are more abundant in genes relevant to intermediary metabolism and secondary metabolites biosynthesis as compared with those of nPA strains, and they also possess additional specific genes involved in utilization of plant-derived substrates and synthesis of antibiotics. A further gene gain/loss analysis indicated that only a few of these specific genes (18/192 for B. amyloliquefaciens and 53/688 for B. subtilis) were acquired by PA strains at the initial divergence event, but most were obtained successively by different subgroups of PA stains during the evolutional process. This study demonstrated the genomic differences between PA and nPA B. amyloliquefaciens and B. subtilis from different niches and the involved evolutional traits, and has implications for screening of PGPR strains in agricultural production.
Collapse
Affiliation(s)
- Nan Zhang
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural UniversityNanjing, China
| | - Dongqing Yang
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural UniversityNanjing, China
| | - Joshua R. A. Kendall
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural UniversityNanjing, China
- Department of Science and Technology, Evangel UniversitySpringfield, IL, USA
| | - Rainer Borriss
- Fachgebiet Phytomedizin, Institut für Agrar- und Gartenbauwissenschaften, Humboldt- Universität zu BerlinGermany
| | - Irina S. Druzhinina
- Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of TechnologyVienna, Austria
| | - Christian P. Kubicek
- Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of TechnologyVienna, Austria
| | - Qirong Shen
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural UniversityNanjing, China
| | - Ruifu Zhang
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
24
|
Stepanov VG, Tirumalai MR, Montazari S, Checinska A, Venkateswaran K, Fox GE. Bacillus pumilus SAFR-032 Genome Revisited: Sequence Update and Re-Annotation. PLoS One 2016; 11:e0157331. [PMID: 27351589 PMCID: PMC4924849 DOI: 10.1371/journal.pone.0157331] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/29/2016] [Indexed: 12/12/2022] Open
Abstract
Bacillus pumilus strain SAFR-032 is a non-pathogenic spore-forming bacterium exhibiting an anomalously high persistence in bactericidal environments. In its dormant state, it is capable of withstanding doses of ultraviolet (UV) radiation or hydrogen peroxide, which are lethal for the vast majority of microorganisms. This unusual resistance profile has made SAFR-032 a reference strain for studies of bacterial spore resistance. The complete genome sequence of B. pumilus SAFR-032 was published in 2007 early in the genomics era. Since then, the SAFR-032 strain has frequently been used as a source of genetic/genomic information that was regarded as representative of the entire B. pumilus species group. Recently, our ongoing studies of conservation of gene distribution patterns in the complete genomes of various B. pumilus strains revealed indications of misassembly in the B. pumilus SAFR-032 genome. Synteny-driven local genome resequencing confirmed that the original SAFR-032 sequence contained assembly errors associated with long sequence repeats. The genome sequence was corrected according to the new findings. In addition, a significantly improved annotation is now available. Gene orders were compared and portions of the genome arrangement were found to be similar in a wide spectrum of Bacillus strains.
Collapse
Affiliation(s)
- Victor G. Stepanov
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Madhan R. Tirumalai
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Saied Montazari
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Aleksandra Checinska
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, United States of America
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, United States of America
| | - George E. Fox
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
25
|
Krawczyk AO, Berendsen EM, de Jong A, Boekhorst J, Wells-Bennik MHJ, Kuipers OP, Eijlander RT. A transposon present in specific strains ofBacillus subtilisnegatively affects nutrient- and dodecylamine-induced spore germination. Environ Microbiol 2016; 18:4830-4846. [DOI: 10.1111/1462-2920.13386] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Antonina O. Krawczyk
- Laboratory of Molecular Genetics; University of Groningen; Nijenborgh 7 9747 AG Groningen the Netherlands
- Top Institute Food and Nutrition (TIFN); Nieuwe Kanaal 9A 6709 PA Wageningen the Netherlands
| | - Erwin M. Berendsen
- Laboratory of Molecular Genetics; University of Groningen; Nijenborgh 7 9747 AG Groningen the Netherlands
- Top Institute Food and Nutrition (TIFN); Nieuwe Kanaal 9A 6709 PA Wageningen the Netherlands
- NIZO Food Research B.V; Kernhemseweg 2 6718 ZB Ede the Netherlands
| | - Anne de Jong
- Laboratory of Molecular Genetics; University of Groningen; Nijenborgh 7 9747 AG Groningen the Netherlands
- Top Institute Food and Nutrition (TIFN); Nieuwe Kanaal 9A 6709 PA Wageningen the Netherlands
| | - Jos Boekhorst
- Top Institute Food and Nutrition (TIFN); Nieuwe Kanaal 9A 6709 PA Wageningen the Netherlands
- NIZO Food Research B.V; Kernhemseweg 2 6718 ZB Ede the Netherlands
| | - Marjon H. J. Wells-Bennik
- Top Institute Food and Nutrition (TIFN); Nieuwe Kanaal 9A 6709 PA Wageningen the Netherlands
- NIZO Food Research B.V; Kernhemseweg 2 6718 ZB Ede the Netherlands
| | - Oscar P. Kuipers
- Laboratory of Molecular Genetics; University of Groningen; Nijenborgh 7 9747 AG Groningen the Netherlands
- Top Institute Food and Nutrition (TIFN); Nieuwe Kanaal 9A 6709 PA Wageningen the Netherlands
| | - Robyn T. Eijlander
- Laboratory of Molecular Genetics; University of Groningen; Nijenborgh 7 9747 AG Groningen the Netherlands
- Top Institute Food and Nutrition (TIFN); Nieuwe Kanaal 9A 6709 PA Wageningen the Netherlands
- NIZO Food Research B.V; Kernhemseweg 2 6718 ZB Ede the Netherlands
| |
Collapse
|
26
|
Lyons NA, Kraigher B, Stefanic P, Mandic-Mulec I, Kolter R. A Combinatorial Kin Discrimination System in Bacillus subtilis. Curr Biol 2016; 26:733-42. [PMID: 26923784 PMCID: PMC4803606 DOI: 10.1016/j.cub.2016.01.032] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/03/2015] [Accepted: 01/13/2016] [Indexed: 12/31/2022]
Abstract
Multicellularity inherently involves a number of cooperative behaviors that are potentially susceptible to exploitation but can be protected by mechanisms such as kin discrimination. Discrimination of kin from non-kin has been observed in swarms of the bacterium Bacillus subtilis, but the underlying molecular mechanism has been unknown. We used genetic, transcriptomic, and bioinformatic analyses to uncover kin recognition factors in this organism. Our results identified many molecules involved in cell-surface modification and antimicrobial production and response. These genes varied significantly in expression level and mutation phenotype among B. subtilis strains, suggesting interstrain variation in the exact kin discrimination mechanism used. Genome analyses revealed a substantial diversity of antimicrobial genes present in unique combinations in different strains, with many likely acquired by horizontal gene transfer. The dynamic combinatorial effect derived from this plethora of kin discrimination genes creates a tight relatedness cutoff for cooperation that has likely led to rapid diversification within the species. Our data suggest that genes likely originally selected for competitive purposes also generate preferential interactions among kin, thus stabilizing multicellular lifestyles.
Collapse
Affiliation(s)
- Nicholas A Lyons
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Barbara Kraigher
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Polonca Stefanic
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Ines Mandic-Mulec
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Roberto Kolter
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Kamada M, Hase S, Fujii K, Miyake M, Sato K, Kimura K, Sakakibara Y. Whole-Genome Sequencing and Comparative Genome Analysis of Bacillus subtilis Strains Isolated from Non-Salted Fermented Soybean Foods. PLoS One 2015; 10:e0141369. [PMID: 26505996 PMCID: PMC4624242 DOI: 10.1371/journal.pone.0141369] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/06/2015] [Indexed: 12/22/2022] Open
Abstract
Bacillus subtilis is the main component in the fermentation of soybeans. To investigate the genetics of the soybean-fermenting B. subtilis strains and its relationship with the productivity of extracellular poly-γ-glutamic acid (γPGA), we sequenced the whole genome of eight B. subtilis stains isolated from non-salted fermented soybean foods in Southeast Asia. Assembled nucleotide sequences were compared with those of a natto (fermented soybean food) starter strain B. subtilis BEST195 and the laboratory standard strain B. subtilis 168 that is incapable of γPGA production. Detected variants were investigated in terms of insertion sequences, biotin synthesis, production of subtilisin NAT, and regulatory genes for γPGA synthesis, which were related to fermentation process. Comparing genome sequences, we found that the strains that produce γPGA have a deletion in a protein that constitutes the flagellar basal body, and this deletion was not found in the non-producing strains. We further identified diversity in variants of the bio operon, which is responsible for the biotin auxotrophism of the natto starter strains. Phylogenetic analysis using multilocus sequencing typing revealed that the B. subtilis strains isolated from the non-salted fermented soybeans were not clustered together, while the natto-fermenting strains were tightly clustered; this analysis also suggested that the strain isolated from "Tua Nao" of Thailand traces a different evolutionary process from other strains.
Collapse
Affiliation(s)
- Mayumi Kamada
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Sumitaka Hase
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Kazushi Fujii
- Department of Biological Sciences, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masato Miyake
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Kengo Sato
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Keitarou Kimura
- Division of Applied Microbiology, National Food Research Institute, 2-1-12 12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Yasubumi Sakakibara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
28
|
Abstract
Fifty complete Bacillus genome sequences and associated plasmids were compared using the “feature frequency profile” (FFP) method. The resulting whole-genome phylogeny supports the placement of three Bacillus species (B. thuringiensis, B. anthracis and B. cereus) as a single clade. The monophyletic status of B. anthracis was strongly supported by the analysis. FFP proved to be more effective in inferring the phylogeny of Bacillus than methods based on single gene sequences [16s rRNA gene, GryB (gyrase subunit B) and AroE (shikimate-5-dehydrogenase)] analyses. The findings of FFP analysis were verified using kSNP v2 (alignment-free sequence analysis method) and Harvest suite (core genome sequence alignment method).
Collapse
|
29
|
Abstract
The complete genome sequence of Bacillus subtilis T30 was determined by SMRT sequencing. The entire genome contains 4,138 predicted genes. The genome carries one intact prophage sequence (37.4 kb) similar to Bacillus phage SPBc2 and one incomplete prophage genome of 39.9 kb similar to Bacillus phage phi105.
Collapse
|
30
|
Mousa WK, Raizada MN. Biodiversity of genes encoding anti-microbial traits within plant associated microbes. FRONTIERS IN PLANT SCIENCE 2015; 6:231. [PMID: 25914708 PMCID: PMC4392301 DOI: 10.3389/fpls.2015.00231] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/23/2015] [Indexed: 05/10/2023]
Abstract
The plant is an attractive versatile home for diverse associated microbes. A subset of these microbes produces a diversity of anti-microbial natural products including polyketides, non-ribosomal peptides, terpenoids, heterocylic nitrogenous compounds, volatile compounds, bacteriocins, and lytic enzymes. In recent years, detailed molecular analysis has led to a better understanding of the underlying genetic mechanisms. New genomic and bioinformatic tools have permitted comparisons of orthologous genes between species, leading to predictions of the associated evolutionary mechanisms responsible for diversification at the genetic and corresponding biochemical levels. The purpose of this review is to describe the biodiversity of biosynthetic genes of plant-associated bacteria and fungi that encode selected examples of antimicrobial natural products. For each compound, the target pathogen and biochemical mode of action are described, in order to draw attention to the complexity of these phenomena. We review recent information of the underlying molecular diversity and draw lessons through comparative genomic analysis of the orthologous coding sequences (CDS). We conclude by discussing emerging themes and gaps, discuss the metabolic pathways in the context of the phylogeny and ecology of their microbial hosts, and discuss potential evolutionary mechanisms that led to the diversification of biosynthetic gene clusters.
Collapse
Affiliation(s)
- Walaa K. Mousa
- Department of Plant Agriculture, University of GuelphGuelph, ON, Canada
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura UniversityMansoura, Egypt
| | - Manish N. Raizada
- Department of Plant Agriculture, University of GuelphGuelph, ON, Canada
| |
Collapse
|
31
|
Zhang A, Zhang T, Hall EA, Hutchinson S, Cryle MJ, Wong LL, Zhou W, Bell SG. The crystal structure of the versatile cytochrome P450 enzyme CYP109B1 from Bacillus subtilis. MOLECULAR BIOSYSTEMS 2015; 11:869-81. [PMID: 25587700 DOI: 10.1039/c4mb00665h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The crystal structure of the versatile CYP109B1 enzyme from Bacillus subtilis has been solved at 1.8 Å resolution. This is the first structure of an enzyme from this CYP family, whose members are prevalent across diverse species of bacteria. In the crystal structure the enzyme has an open conformation with an access channel leading from the heme to the surface. The substrate-free structure reveals the location of the key residues in the active site that are responsible for binding the substrate in the correct orientation for regioselective oxidation. Importantly, there are significant differences among these residues in members of the CYP109 and closely related CYP106 families and these likely account for the variations in substrate binding and oxidation profiles observed with these enzymes. A whole-cell oxidation biosystem was developed, which contains CYP109B1 and a phthalate family oxygenase reductase (PFOR), from Pseudomonas putida KT24440, as the electron transfer partner. This electron transfer system is able to support CYP109B1 activity resulting in the regioselective hydroxylation of both α- and β-ionone in vivo and in vitro. The PFOR is therefore a versatile electron transfer partner that is able to support the activity of CYP enzymes from other bacterium. The crystal structure of CYP109B1 has a positively charged proximal face and this explains why it can interact with PFOR and adrenodoxin which are predominantly negatively charged around their [2Fe-2S] clusters.
Collapse
Affiliation(s)
- Aili Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Chiu KC, Lin CJ, Shaw GC. Transcriptional regulation of the l-lactate permease gene lutP by the LutR repressor of Bacillus subtilis RO-NN-1. Microbiology (Reading) 2014; 160:2178-2189. [DOI: 10.1099/mic.0.079806-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Bacillus subtilis lutABC operon encodes three iron–sulfur-containing proteins required for l-lactate utilization and involved in biofilm formation. The transcriptional regulator LutR of the GntR family negatively controls lutABC expression. The lutP gene, which is situated immediately upstream of lutR, encodes an l-lactate permease. Here, we show that lutP expression can be strongly induced by l-lactate and is subject to partial catabolite repression by glucose. Disruption of the lutR gene led to a strong derepression of lutP and no further induction by l-lactate, suggesting that the LutR repressor can also negatively control lutP expression. Electrophoretic mobility shift assay revealed a LutR-binding site located downstream of the promoter of lutA or lutP and containing a consensus inverted repeat sequence 5′-TCATC-N1-GATGA-3′. Reporter gene analysis showed that deletion of each LutR-binding site caused a strong derepression of lutA or lutP. These results indicated that these two LutR-binding sites can function as operators in vivo. Moreover, deletion analysis identified a DNA segment upstream of the lutP promoter to be important for lutP expression. In contrast to the truncated LutR of laboratory strains 168 and PY79, the full-length LutR of the undomesticated strain RO-NN-1, and probably many other B. subtilis strains, can directly and negatively regulate lutP transcription. The absence or presence of the N-terminal 21 aa of the full-length LutR, which encompass a small part of the predicted winged helix–turn–helix DNA-binding motif, may probably alter the DNA-binding specificity or affinity of LutR.
Collapse
Affiliation(s)
- Kuo-Chin Chiu
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Chen-Jyun Lin
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Gwo-Chyuan Shaw
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei, Taiwan, Republic of China
| |
Collapse
|
33
|
Kopac S, Wang Z, Wiedenbeck J, Sherry J, Wu M, Cohan FM. Genomic heterogeneity and ecological speciation within one subspecies of Bacillus subtilis. Appl Environ Microbiol 2014; 80:4842-53. [PMID: 24907327 PMCID: PMC4135754 DOI: 10.1128/aem.00576-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/23/2014] [Indexed: 02/06/2023] Open
Abstract
Closely related bacterial genomes usually differ in gene content, suggesting that nearly every strain in nature may be ecologically unique. We have tested this hypothesis by sequencing the genomes of extremely close relatives within a recognized taxon and analyzing the genomes for evidence of ecological distinctness. We compared the genomes of four Death Valley isolates plus the laboratory strain W23, all previously classified as Bacillus subtilis subsp. spizizenii and hypothesized through multilocus analysis to be members of the same ecotype (an ecologically homogeneous population), named putative ecotype 15 (PE15). These strains showed a history of positive selection on amino acid sequences in 38 genes. Each of the strains was under a different regimen of positive selection, suggesting that each strain is ecologically unique and represents a distinct ecological speciation event. The rate of speciation appears to be much faster than can be resolved with multilocus sequencing. Each PE15 strain contained unique genes known to confer a function for bacteria. Remarkably, no unique gene conferred a metabolic system or subsystem function that was not already present in all the PE15 strains sampled. Thus, the origin of ecotypes within this clade shows no evidence of qualitative divergence in the set of resources utilized. Ecotype formation within this clade is consistent with the nanoniche model of bacterial speciation, in which ecotypes use the same set of resources but in different proportions, and genetic cohesion extends beyond a single ecotype to the set of ecotypes utilizing the same resources.
Collapse
Affiliation(s)
- Sarah Kopac
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA
| | - Zhang Wang
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Jane Wiedenbeck
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA
| | - Jessica Sherry
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA
| | - Martin Wu
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Frederick M Cohan
- Department of Biology, Wesleyan University, Middletown, Connecticut, USA
| |
Collapse
|
34
|
Cimermancic P, Medema MH, Claesen J, Kurita K, Wieland Brown LC, Mavrommatis K, Pati A, Godfrey PA, Koehrsen M, Clardy J, Birren BW, Takano E, Sali A, Linington RG, Fischbach MA. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 2014; 158:412-421. [PMID: 25036635 PMCID: PMC4123684 DOI: 10.1016/j.cell.2014.06.034] [Citation(s) in RCA: 671] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/05/2014] [Accepted: 06/23/2014] [Indexed: 12/11/2022]
Abstract
Although biosynthetic gene clusters (BGCs) have been discovered for hundreds of bacterial metabolites, our knowledge of their diversity remains limited. Here, we used a novel algorithm to systematically identify BGCs in the extensive extant microbial sequencing data. Network analysis of the predicted BGCs revealed large gene cluster families, the vast majority uncharacterized. We experimentally characterized the most prominent family, consisting of two subfamilies of hundreds of BGCs distributed throughout the Proteobacteria; their products are aryl polyenes, lipids with an aryl head group conjugated to a polyene tail. We identified a distant relationship to a third subfamily of aryl polyene BGCs, and together the three subfamilies represent the largest known family of biosynthetic gene clusters, with more than 1,000 members. Although these clusters are widely divergent in sequence, their small molecule products are remarkably conserved, indicating for the first time the important roles these compounds play in Gram-negative cell biology.
Collapse
Affiliation(s)
- Peter Cimermancic
- Department of Bioengineering and Therapeutic Sciences and the California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Marnix H Medema
- Department of Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands; Groningen Bioinformatics Centre, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Jan Claesen
- Department of Bioengineering and Therapeutic Sciences and the California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kenji Kurita
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | - Amrita Pati
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | | | | | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Eriko Takano
- Department of Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences and the California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Roger G Linington
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Michael A Fischbach
- Department of Bioengineering and Therapeutic Sciences and the California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
35
|
Alzahrani OM, Moir A. Spore germination and germinant receptor genes in wild strains of Bacillus subtilis. J Appl Microbiol 2014; 117:741-9. [PMID: 24916603 DOI: 10.1111/jam.12566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 11/25/2022]
Abstract
AIMS To compare the germination of laboratory and wild strains of Bacillus subtilis. METHODS AND RESULTS The spore germination of B. subtilis 168 (subsp. subtilis) was compared with that of the laboratory strain W23 (subsp. spizizenii) and desert-sourced isolates, including one member of subsp. subtilis (RO-NN-1), strains TU-B-10, RO-E-2, N10 and DV1-B-1, (all subsp. spizizenii), the B. mojavensis strain RO-H-1 and a B. subtilis natto strain. All germinated in L-alanine, although some were slower, and some 10-fold less sensitive to germinant. All germinated in calcium dipicolinate (CaDPA). Germination in asparagine, glucose, fructose + KCl was slow and incomplete in many of the strains, and decoating RO-NN-1 and W23 spores did not restore germination rates. Comparing the sequences of B. subtilis strains 168, RO-NN-1, W23, TU-B-10 and DV1-B-1, the operons encoding GerA, B and K germinant receptors were intact, although the two additional operons yndDEF and yfkQRST had suffered deletions or were absent in several spizizenii strains. CONCLUSIONS Wild strains possess an efficient germination machinery for L-alanine germination. AGFK germination is often less efficient, the gerB genes more diverged, and the two germinant receptor operons of unknown function have been lost from the genome in many subsp. spizizenii strains. SIGNIFICANCE AND IMPACT OF THE STUDY The two major subspecies of B. subtilis have conserved GerA receptor function, confirming its importance, at least in the natural environments of these strains.
Collapse
Affiliation(s)
- O M Alzahrani
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK; Department of Biotechnology, Taif University, Taif, Saudi Arabia
| | | |
Collapse
|
36
|
Bacillus subtilis
Systems Biology: Applications of -Omics Techniques to the Study of Endospore Formation. Microbiol Spectr 2014; 2. [DOI: 10.1128/microbiolspec.tbs-0019-2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
ABSTRACT
Endospore-forming bacteria, with
Bacillus subtilis
being the prevalent model organism, belong to the phylum Firmicutes. Although the last common ancestor of all
Firmicutes
is likely to have been an endospore-forming species, not every lineage in the phylum has maintained the ability to produce endospores (hereafter, spores). In 1997, the release of the full genome sequence for
B. subtilis
strain 168 marked the beginning of the genomic era for the study of spore formation (sporulation). In this original genome sequence, 139 of the 4,100 protein-coding genes were annotated as sporulation genes. By the time a revised genome sequence with updated annotations was published in 2009, that number had increased significantly, especially since transcriptional profiling studies (transcriptomics) led to the identification of several genes expressed under the control of known sporulation transcription factors. Over the past decade, genome sequences for multiple spore-forming species have been released (including several strains in the
Bacillus anthracis
/
Bacillus cereus
group and many
Clostridium
species), and phylogenomic analyses have revealed many conserved sporulation genes. Parallel advances in transcriptomics led to the identification of small untranslated regulatory RNAs (sRNAs), including some that are expressed during sporulation. An extended array of -omics techniques, i.e., techniques designed to probe gene function on a genome-wide scale, such as proteomics, metabolomics, and high-throughput protein localization studies, have been implemented in microbiology. Combined with the use of new computational methods for predicting gene function and inferring regulatory relationships on a global scale, these -omics approaches are uncovering novel information about sporulation and a variety of other bacterial cell processes.
Collapse
|
37
|
Genomic insights into the taxonomic status of the three subspecies of Bacillus subtilis. Syst Appl Microbiol 2013; 37:95-9. [PMID: 24231292 DOI: 10.1016/j.syapm.2013.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 08/14/2013] [Accepted: 09/27/2013] [Indexed: 11/20/2022]
Abstract
Bacillus subtilis contains three subspecies, i.e., subspecies subtilis, spizizenii, and inaquosorum. As these subspecies are phenotypically indistinguishable, their differentiation has relied on phylogenetic analysis of multiple protein-coding gene sequences. B. subtilis subsp. inaquosorum is a recently proposed taxon that encompasses strain KCTC 13429(T) and related strains, which were previously classified as members of subspecies spizizenii. However, DNA-DNA hybridization (DDH) values among the three subspecies raised a question as to their independence. Thus, we evaluated the taxonomic status of subspecies inaquosorum using genome-based comparative analysis. In contrast to the previous experimental values of DDH, the inter-genomic relatedness inferred by average nucleotide identity (ANI) values indicated that subspecies inaquosorum and spizizenii were sufficiently different from subspecies subtilis and hence raised the possibility that the former two could be classified as separate species from B. subtilis. The genome-based tree also supported the separation of the two subspecies from B. subtilis. The exclusive presence of a subtilin synthesis system in subspecies spizizenii was a remarkable genetic characteristic that could even distinguish subspecies spizizenii from subspecies inaquosorum in addition to the low ANI values (<95%). Conclusively, the genome-based data obtained in this study demonstrated that subspecies inaquosorum and spizizenii are clearly distinguished from subspecies subtilis, and raises the possibility that these two subspecies could be classified as separate species from B. subtilis. In addition, the low ANI values between subspecies inaquosorum and spizizenii and the exclusive presence of subtilin synthesis genes in subspecies spizizenii also suggest circumscription of these two subspecies at the species level.
Collapse
|
38
|
Kingston AW, Liao X, Helmann JD. Contributions of the σ(W) , σ(M) and σ(X) regulons to the lantibiotic resistome of Bacillus subtilis. Mol Microbiol 2013; 90:502-18. [PMID: 23980836 PMCID: PMC4067139 DOI: 10.1111/mmi.12380] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2013] [Indexed: 11/28/2022]
Abstract
In Bacillus subtilis, the extracytoplasmic function (ECF) σ factors σ(M) , σ(W) and σ(X) all contribute to resistance against lantibiotics. Nisin, a model lantibiotic, has a dual mode of action: it inhibits cell wall synthesis by binding lipid II, and this complex also forms pores in the cytoplasmic membrane. These activities can be separated in a nisin hinge-region variant (N20P M21P) that binds lipid II, but no longer permeabilizes membranes. The major contribution of σ(M) to nisin resistance is expression of ltaSa, encoding a stress-activated lipoteichoic acid synthase, and σ(X) functions primarily by activation of the dlt operon controlling d-alanylation of teichoic acids. Together, σ(M) and σ(X) regulate cell envelope structure to decrease access of nisin to its lipid II target. In contrast, σ(W) is principally involved in protection against membrane permeabilization as it provides little protection against the nisin hinge region variant. σ(W) contributes to nisin resistance by regulation of a signal peptide peptidase (SppA), phage shock proteins (PspA and YvlC, a PspC homologue) and tellurite resistance related proteins (YceGHI). These defensive mechanisms are also effective against other lantibiotics such as mersacidin, gallidermin and subtilin and comprise an important subset of the intrinsic antibiotic resistome of B. subtilis.
Collapse
Affiliation(s)
| | - Xiaojie Liao
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
39
|
Biological and genomic analysis of a PBSX-like defective phage induced from Bacillus pumilus AB94180. Arch Virol 2013; 159:739-52. [PMID: 24154951 DOI: 10.1007/s00705-013-1898-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022]
Abstract
Defective prophages, which are found in the genomes of many bacteria, are unable to complete a viral replication cycle and propagate in their hosts as healthy prophages. They package random DNA fragments derived from various sites of the host chromosome instead of their own genomes. In this study, we characterized a defective phage, PBP180, which was induced from Bacillus pumilus AB94180 by treatment with mitomycin C. Electron microscopy showed that the PBP180 particle has a head with a hexagonal outline of ~40 nm in diameter and a long tail. The DNA packaged in the PBP180 head consists of 8-kb DNA fragments from random portions of the host chromosome. The head and tail proteins of the PBP180 particle consist of four major proteins of approximately 49, 33, 16 and 14 kDa. The protein profile of PBP180 is different from that of PBSX, a well-known defective phage induced from Bacillus subtilis 168. A killing activity test against two susceptible strains each of B. subtilis and B. pumilus showed that the defective particles of PBP180 killed three strains other than its own host, B. pumilus AB94180, differing from the host-killing ranges of the defective phages PBSX, PBSZ (induced from B. subtilis W23), and PBSX4 (induced from B. pumilus AB94044). The genome of the PBP180 prophage, which is integrated in the B. pumilus AB94180 chromosome, is 28,205 bp in length, with 40 predicted open reading frames (ORFs). Further genomic comparison of prophages PBP180, PBSX, PBSZ and other PBSX-like prophage elements in B. pumilus strains revealed that their overall architectures are similar, but significant low homology exists in ORF29-ORF38, which presumably encode tail fiber proteins involved in recognition and killing of susceptible strains.
Collapse
|
40
|
Potekhina NV, Shashkov AS, Streshinskaya GM, Tul’skaya EM, Kozlova YI, Senchenkova SN, Kudryashova EB, Evtushenko LI. Teichoic acids of three type strains of the Bacillus subtilis group, Bacillus mojavensis VKM B-2650, Bacillus amyloliquefaciens subsp. amyloliquefaciens VKM B-2582, and Bacillus sonorensis VKM B-2652. Microbiology (Reading) 2013. [DOI: 10.1134/s002626171305010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
41
|
Sharma A, Satyanarayana T. Comparative Genomics of Bacillus species and its Relevance in Industrial Microbiology. GENOMICS INSIGHTS 2013. [PMID: 26217108 PMCID: PMC4510601 DOI: 10.4137/gei.s12732] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With the advent of high throughput sequencing platforms and relevant analytical tools, the rate of microbial genome sequencing has accelerated which has in turn led to better understanding of microbial molecular biology and genetics. The complete genome sequences of important industrial organisms provide opportunities for human health, industry, and the environment. Bacillus species are the dominant workhorses in industrial fermentations. Today, genome sequences of several Bacillus species are available, and comparative genomics of this genus helps in understanding their physiology, biochemistry, and genetics. The genomes of these bacterial species are the sources of many industrially important enzymes and antibiotics and, therefore, provide an opportunity to tailor enzymes with desired properties to suit a wide range of applications. A comparative account of strengths and weaknesses of the different sequencing platforms are also highlighted in the review.
Collapse
Affiliation(s)
- Archana Sharma
- Department of Microbiology, University of Delhi, South Campus, Benito Juarez Road, New Delhi, India
| | - T Satyanarayana
- Department of Microbiology, University of Delhi, South Campus, Benito Juarez Road, New Delhi, India
| |
Collapse
|
42
|
Molecular signatures for
Bacillus
species: demarcation of the
Bacillus subtilis
and
Bacillus cereus
clades in molecular terms and proposal to limit the placement of new species into the genus
Bacillus. Int J Syst Evol Microbiol 2013; 63:2712-2726. [DOI: 10.1099/ijs.0.048488-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus
Bacillus
is a phylogenetically incoherent taxon with members of the group lacking a common evolutionary history. Comprising aerobic and anaerobic spore-forming bacteria, no characteristics are known that can distinguish species of this genus from other similar endospore-forming genera. With the availability of complete genomic data from over 30 different species from this group, we have constructed detailed phylogenetic trees to determine the relationships among
Bacillus
and other closely related taxa. Additionally, we have performed comparative genomic analysis for the determination of molecular markers, in the form of conserved signature indels (CSIs), to assist in the understanding of relationships among species of the genus
Bacillus
in molecular terms. Based on the analysis, we report here the identification of 11 and 6 CSIs that clearly differentiate a ‘
Bacillus subtilis
clade’ and a ‘
Bacillus cereus
clade’, respectively, from all other species of the genus
Bacillus
. No molecular markers were identified that supported a larger clade within this genus. The subtilis and the cereus clades were also the largest observed monophyletic groupings among species from the genus
Bacillus
in the phylogenetic trees based on 16S rRNA gene sequences and those based upon concatenated sequences for 20 conserved proteins. Thus, the relationships observed among these groups of species through CSIs are independently well supported by phylogenetic analysis. The molecular markers identified in this study provide a reliable means for the reorganization of the currently polyphyletic genus
Bacillus
into a more evolutionarily consistent set of groups. It is recommended that the genus
Bacillus
sensu stricto should comprise only the monophyletic subtilis clade that is demarcated by the identified CSIs, with
B. subtilis
as its type species. Members of the adjoining cereus clade (referred to as the Cereus clade of bacilli), although they are distinct from the subtilis clade, will also retain the
Bacillus
genus name as they contain several clinically important species, and their transfer into a new genus could have serious consequences. However, all other species that are currently part of the genus
Bacillus
and not part of these two clades should be eventually transferred to other genera. We also propose that all novel species of the genus
Bacillus
must meet minimal requirements, foremost among which is that the branching of the prospective species with the
Bacillus
sensu stricto clade or the Cereus clade of bacilli should be strongly supported by 16S rRNA gene sequence trees or trees based upon concatenated protein sequences. Additionally, the presence of one or more of the CSIs that are specific for these clades may be used to confirm molecularly the placement of the species into these clades. The identified CSIs, in addition to their usefulness for taxonomic and diagnostic purposes, also provide novel probes for genetic and biochemical studies of these bacteria.
Collapse
|
43
|
Genome Sequencing of Bacillus subtilis Strain XF-1 with High Efficiency in the Suppression of Plasmodiophora brassicae. GENOME ANNOUNCEMENTS 2013; 1:e0006613. [PMID: 23558530 PMCID: PMC3622977 DOI: 10.1128/genomea.00066-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The genome of the rhizobacterium Bacillus subtilis XF-1 is 4.06 Mb in size and harbors 3,853 coding sequences (CDS). Giant gene clusters were dedicated to the nonribosomal synthesis of antimicrobial lipopeptides and polyketides. Remarkably, XF-1 possesses a gene cluster involved in the synthesis of chitosanase that is related to the suppression of the pathogen Plasmodiophora brassicae.
Collapse
|
44
|
Genome of a Gut Strain of Bacillus subtilis. GENOME ANNOUNCEMENTS 2013; 1:genomeA00184-12. [PMID: 23409263 PMCID: PMC3569322 DOI: 10.1128/genomea.00184-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 12/18/2012] [Indexed: 11/20/2022]
Abstract
Bacillus subtilis is a Gram-positive, rod-shaped, spore-forming bacterium. We present the genome sequence of an undomesticated strain, BSP1, isolated from poultry. The sequence of the BSP1 genome supports the view that B. subtilis has a biphasic lifestyle, cycling between the soil and the animal gastrointestinal tract, and it provides molecular-level insight into the adaptation of B. subtilis to life under laboratory conditions.
Collapse
|
45
|
Kabisch J, Thürmer A, Hübel T, Popper L, Daniel R, Schweder T. Characterization and optimization of Bacillus subtilis ATCC 6051 as an expression host. J Biotechnol 2013; 163:97-104. [DOI: 10.1016/j.jbiotec.2012.06.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 06/01/2012] [Accepted: 06/06/2012] [Indexed: 11/28/2022]
|
46
|
Abstract
We sequenced four strains of Bacillus subtilis and the type strains for two closely related species, Bacillus vallismortis and Bacillus mojavensis. We report the high-quality Sanger genome sequences of B. subtilis subspecies subtilis RO-NN-1 and AUSI98, B. subtilis subspecies spizizenii TU-B-10(T) and DV1-B-1, Bacillus mojavensis RO-H-1(T), and Bacillus vallismortis DV1-F-3(T).
Collapse
|
47
|
Wang Y, Weng J, Waseem R, Yin X, Zhang R, Shen Q. Bacillus subtilis genome editing using ssDNA with short homology regions. Nucleic Acids Res 2012; 40:e91. [PMID: 22422839 PMCID: PMC3384351 DOI: 10.1093/nar/gks248] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this study, we developed a simple and efficient Bacillus subtilis genome editing method in which targeted gene(s) could be inactivated by single-stranded PCR product(s) flanked by short homology regions and in-frame deletion could be achieved by incubating the transformants at 42°C. In this process, homologous recombination (HR) was promoted by the lambda beta protein synthesized under the control of promoter PRM in the lambda cI857 PRM–PR promoter system on a temperature sensitive plasmid pWY121. Promoter PR drove the expression of the recombinase gene cre at 42°C for excising the floxed (lox sites flanked) disruption cassette that contained a bleomycin resistance marker and a heat inducible counter-selectable marker (hewl, encoding hen egg white lysozyme). Then, we amplified the single-stranded disruption cassette using the primers that carried 70 nt homology extensions corresponding to the regions flanking the target gene. By transforming the respective PCR products into the B. subtilis that harbored pWY121 and incubating the resultant mutants at 42°C, we knocked out multiple genes in the same genetic background with no marker left. This process is simple and efficient and can be widely applied to large-scale genome analysis of recalcitrant Bacillus species.
Collapse
Affiliation(s)
- Yang Wang
- Department of Plant Nutrition, College of Resource and Environmental Sciences, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, Jiangsu Province, PR China
| | | | | | | | | | | |
Collapse
|