1
|
Kavanaugh LG, Hinrichsen ME, Dunham CM, Conn GL. Regulation, structure, and activity of the Pseudomonas aeruginosa MexXY efflux system. Antimicrob Agents Chemother 2025; 69:e0182524. [PMID: 40192483 PMCID: PMC12057347 DOI: 10.1128/aac.01825-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025] Open
Abstract
The current crisis in bacterial antibiotic resistance can be attributed to the overuse (or misuse) of these essential medicines in healthcare and agriculture, coupled with the slowed progression of new drug development. In the versatile, opportunistic pathogen Pseudomonas aeruginosa, the Resistance-Nodulation-Division (RND) efflux pump MexXY plays critical roles in both cell physiology and the acquisition of multidrug resistance. The mexXY operon is not constitutively expressed, but this process is instead controlled by a complex network of multiple interconnected regulatory mechanisms. These include induction by several of the pump's ribosome-targeting antibiotic substrates and transcriptional repression and anti-repression processes that are themselves influenced by various cellular factors, processes, or stresses. Although extensive studies of the MexXY complex are currently lacking as compared to other RND efflux pumps such as Escherichia coli AcrAB-TolC, recent studies have provided valuable insights into the MexXY architecture and substrate profiles, including its contribution to clinical resistance. Furthermore, while MexXY primarily associates with the outer membrane protein OprM, emerging evidence suggests that this transporter-periplasmic adaptor pair may also partner with other outer membrane proteins, potentially to alter the efflux substrate profile and activity under specific environmental conditions. In this minireview, we summarize current understanding of MexXY regulation, structure, and substrate selectivity within the context of clinical resistance and as a framework for future efflux pump inhibitor development.
Collapse
Affiliation(s)
- Logan G. Kavanaugh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
| | - Megan E. Hinrichsen
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia, USA
| | - Christine M. Dunham
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Graeme L. Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Kavanaugh LG, Hariharan SM, Conn GL. Determination of Pseudomonas aeruginosa MexXY-OprM substrate profile in a major efflux knockout system reveals distinct antibiotic substrate classes. Microbiol Spectr 2025; 13:e0290324. [PMID: 39912696 PMCID: PMC11878066 DOI: 10.1128/spectrum.02903-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/23/2025] [Indexed: 02/07/2025] Open
Abstract
Defining the substrates of resistance-nodulation-division systems is often complicated by the presence of multiple systems in a single bacterial species. Using a major efflux knockout strain, we developed a Pseudomonas aeruginosa system that enables controlled expression of MexXY-OprM in the absence of background efflux complexes with overlapping substrate profiles. This system identified three groups of potential substrates: substrates, partial substrates, and nonsubstrates, and defined trimethoprim as a new substrate for MexXY-OprM.IMPORTANCEIncreasing antibiotic resistance in pathogenic bacteria is a major public health concern. One way bacteria can sustain growth in the presence of antibiotics is through active removal of these molecules via efflux pumps. In Pseudomonas aeruginosa, expression of the MexXY-OprM efflux pump is induced by treatment with certain antibiotics, resulting in the efflux of a diverse set of antimicrobials. Here, we designed an inducible system that allows for the determination of preferred antibiotic substrates for efflux by MexXY-OprM in a major efflux knockout strain. We show there are three distinct substrate classes-substrates, partial substrates, and nonsubstrates-and, for the first time, that the clinically important antibiotic trimethoprim is a substrate for MexXY-OprM. Our system's flexible design will enable future studies of other P. aeruginosa efflux systems that can tease apart the overlapping substrate profiles of multidrug efflux pumps that can contribute to treatment failures.
Collapse
Affiliation(s)
- Logan G. Kavanaugh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics Graduate Program, Emory University, Atlanta, Georgia, USA
| | - Shraddha M. Hariharan
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Graeme L. Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics Graduate Program, Emory University, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Yu Y, Zhang R, Pan W, Sheng X, Chen S, Wang J, Lu J, Bao Q, Hu Y, Jiang P, Huang D. Identification and characterization of a novel chromosome-encoded aminoglycoside O-nucleotidyltransferase gene, ant(9)-Id, in Providencia sp. TYF-12 isolated from the marine fish intestine. Front Microbiol 2024; 15:1475172. [PMID: 39726966 PMCID: PMC11669914 DOI: 10.3389/fmicb.2024.1475172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Background The mechanisms underlying the resistance of the genus Providencia to aminoglycosides are complex, which poses a challenge for the efficient treatment of infectious diseases caused by these pathogens. To help clinicians treat infections more effectively, a more comprehensive understanding of antibiotic resistance mechanisms is urgently needed. Methods Plates were streaked to isolate bacteria from the intestinal contents of fish. The standard agar dilution method was used to determine the minimum inhibitory concentrations (MICs) of the antimicrobial agents. Molecular cloning was carried out to study the function of the novel antibiotic inactivation gene ant(9)-Id. The kinetic parameters of ANT(9)-Id were measured by a SpectraMax multifunctional microplate reader. Whole-genome sequencing and bioinformatic analysis were conducted to elucidate the sequence structure and evolutionary relationships of similar genes. Results The novel aminoglycoside O-nucleotidyltransferase gene ant(9)-Id was encoded on the chromosome of a species-unclassified isolate designated Providencia sp. TYF-12, which was isolated from the intestine of a marine fish. Among the 11 aminoglycosides tested, ant(9)-Id was resistant to only spectinomycin. The MIC of spectinomycin for the recombinant strain carrying ant(9)-Id (pUCP20-ant(9)-Id/DH5α) increased 64-fold compared with that of the control strain (pUCP20/DH5ɑ). ANT(9)-Id shares the highest amino acid (aa) identity of 46.70% with the known drug resistance enzyme ANT(9)-Ic. Consistent with the MIC results, ANT(9)-Id showed high affinity and catalytic efficiency for spectinomycin, with a K m of 8.94 ± 2.50 μM and a k cat/K m of 26.15 μM-1·s-1. This novel resistance gene and its close homologs are conserved in Providencia strains from various sources, including some of clinical significance. No mobile genetic elements (MGEs) surrounding the ant(9)-Id(-like) genes were identified. Conclusion This work revealed and characterized a novel spectinomycin resistance gene, ant(9)-Id, along with its biological features. Identifying novel resistance genes in pathogens can assist in rational medication use and the identification of additional antimicrobial resistance mechanisms in microbial populations.
Collapse
Affiliation(s)
- Yan Yu
- Institute of Biomedical Informatics/School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Runzhi Zhang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wei Pan
- Department of Laboratory Sciences, The People’s Hospital of Yuhuan, Yuhuan, China
| | - Xinyi Sheng
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Susu Chen
- Department of Laboratory Sciences, Pingyang Hospital of Wenzhou Medical University, Pingyang, China
| | - Junjun Wang
- Department of Laboratory Sciences, Pingyang Hospital of Wenzhou Medical University, Pingyang, China
| | - Junwan Lu
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua University of Vocational Technology, Jinhua, China
| | - Qiyu Bao
- Institute of Biomedical Informatics/School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Laboratory Sciences, Pingyang Hospital of Wenzhou Medical University, Pingyang, China
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua University of Vocational Technology, Jinhua, China
| | - Yunliang Hu
- Institute of Biomedical Informatics/School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Pengfei Jiang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dawei Huang
- Department of Laboratory Sciences, The People’s Hospital of Yuhuan, Yuhuan, China
| |
Collapse
|
4
|
Kavanaugh LG, Hariharan SM, Conn GL. Determination of Pseudomonas aeruginosa MexXY-OprM substrate profile in a major efflux knockout system reveals distinct antibiotic substrate classes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619101. [PMID: 39605423 PMCID: PMC11601363 DOI: 10.1101/2024.10.18.619101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Defining the substrates of Resistance-Nodulation-Division (RND) systems is often complicated by the presence of multiple systems in a single bacterial species. Using a major efflux knockout strain, we developed a Pseudomonas aeruginosa system that enables controlled expression of MexXY-OprM in the absence of background efflux complexes with overlapping substrate profiles. This system identified three groups of potential substrates: substrates, partial substrates, and nonsubstrates, and defined trimethoprim as a new substrate for MexXY-OprM.
Collapse
Affiliation(s)
- Logan G Kavanaugh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA
- Microbiology and Molecular Genetics Graduate Program, Emory University, Atlanta, GA
| | | | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA
- Microbiology and Molecular Genetics Graduate Program, Emory University, Atlanta, GA
- Emory Antibiotic Resistance Center, Emory University, Atlanta, GA
| |
Collapse
|
5
|
Kavanaugh LG, Dey D, Shafer WM, Conn GL. Structural and functional diversity of Resistance-Nodulation-Division (RND) efflux pump transporters with implications for antimicrobial resistance. Microbiol Mol Biol Rev 2024; 88:e0008923. [PMID: 39235227 PMCID: PMC11426026 DOI: 10.1128/mmbr.00089-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
SUMMARYThe discovery of bacterial efflux pumps significantly advanced our understanding of how bacteria can resist cytotoxic compounds that they encounter. Within the structurally and functionally distinct families of efflux pumps, those of the Resistance-Nodulation-Division (RND) superfamily are noteworthy for their ability to reduce the intracellular concentration of structurally diverse antimicrobials. RND systems are possessed by many Gram-negative bacteria, including those causing serious human disease, and frequently contribute to resistance to multiple antibiotics. Herein, we review the current literature on the structure-function relationships of representative transporter proteins of tripartite RND efflux pumps of clinically important pathogens. We emphasize their contribution to bacterial resistance to clinically used antibiotics, host defense antimicrobials and other biocides, as well as highlighting structural similarities and differences among efflux transporters that help bacteria survive in the face of antimicrobials. Furthermore, we discuss technical advances that have facilitated and advanced efflux pump research and suggest future areas of investigation that will advance antimicrobial development efforts.
Collapse
Affiliation(s)
- Logan G Kavanaugh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - William M Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratories of Microbial Pathogenesis, VA Medical Research Service, Veterans Affairs Medical Center, Decatur, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Yano H, Hayashi W, Kawakami S, Aoki S, Anzai E, Zuo H, Kitamura N, Hirabayashi A, Kajihara T, Kayama S, Sugawara Y, Yahara K, Sugai M. Nationwide genome surveillance of carbapenem-resistant Pseudomonas aeruginosa in Japan. Antimicrob Agents Chemother 2024; 68:e0166923. [PMID: 38564665 PMCID: PMC11064530 DOI: 10.1128/aac.01669-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Japan is a country with an approximate 10% prevalence rate of carbapenem-resistant Pseudomonas aeruginosa (CRPA). Currently, a comprehensive overview of the genotype and phenotype patterns of CRPA in Japan is lacking. Herein, we conducted genome sequencing and quantitative antimicrobial susceptibility testing for 382 meropenem-resistant CRPA isolates that were collected from 78 hospitals across Japan from 2019 to 2020. CRPA exhibited susceptibility rates of 52.9%, 26.4%, and 88.0% against piperacillin-tazobactam, ciprofloxacin, and amikacin, respectively, whereas 27.7% of CRPA isolates was classified as difficult-to-treat resistance P. aeruginosa. Of the 148 sequence types detected, ST274 (9.7%) was predominant, followed by ST235 (7.6%). The proportion of urine isolates in ST235 was higher than that in other STs (P = 0.0056, χ2 test). Only 4.1% of CRPA isolates carried the carbapenemase genes: blaGES (2) and blaIMP (13). One ST235 isolate carried the novel blaIMP variant blaIMP-98 in the chromosome. Regarding chromosomal mutations, 87.1% of CRPA isolates possessed inactivating or other resistance mutations in oprD, and 28.8% showed mutations in the regulatory genes (mexR, nalC, and nalD) for the MexAB-OprM efflux pump. Additionally, 4.7% of CRPA isolates carried a resistance mutation in the PBP3-encoding gene ftsI. The findings from this study and other surveillance studies collectively demonstrate that CRPA exhibits marked genetic diversity and that its multidrug resistance in Japan is less prevailed than in other regions. This study contributes a valuable data set that addresses a gap in genotype/phenotype information regarding CRPA in the Asia-Pacific region, where the epidemiological background markedly differs between regions.
Collapse
Affiliation(s)
- Hirokazu Yano
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Wataru Hayashi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Sayoko Kawakami
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Sadao Aoki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Eiko Anzai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Hui Zuo
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Norikazu Kitamura
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Aki Hirabayashi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Toshiki Kajihara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Shizuo Kayama
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Yo Sugawara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| |
Collapse
|
7
|
Wu W, Huang J, Xu Z. Antibiotic influx and efflux in Pseudomonas aeruginosa: Regulation and therapeutic implications. Microb Biotechnol 2024; 17:e14487. [PMID: 38801351 PMCID: PMC11129675 DOI: 10.1111/1751-7915.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Pseudomonas aeruginosa is a notorious multidrug-resistant pathogen that poses a serious and growing threat to the worldwide public health. The expression of resistance determinants is exquisitely modulated by the abundant regulatory proteins and the intricate signal sensing and transduction systems in this pathogen. Downregulation of antibiotic influx porin proteins and upregulation of antibiotic efflux pump systems owing to mutational changes in their regulators or the presence of distinct inducing molecular signals represent two of the most efficient mechanisms that restrict intracellular antibiotic accumulation and enable P. aeruginosa to resist multiple antibiotics. Treatment of P. aeruginosa infections is extremely challenging due to the highly inducible mechanism of antibiotic resistance. This review comprehensively summarizes the regulatory networks of the major porin proteins (OprD and OprH) and efflux pumps (MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY) that play critical roles in antibiotic influx and efflux in P. aeruginosa. It also discusses promising therapeutic approaches using safe and efficient adjuvants to enhance the efficacy of conventional antibiotics to combat multidrug-resistant P. aeruginosa by controlling the expression levels of porins and efflux pumps. This review not only highlights the complexity of the regulatory network that induces antibiotic resistance in P. aeruginosa but also provides important therapeutic implications in targeting the inducible mechanism of resistance.
Collapse
Affiliation(s)
- Weiyan Wu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Jiahui Huang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Zeling Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
8
|
Hussin A, Nathan S, Shahidan MA, Nor Rahim MY, Zainun MY, Khairuddin NAN, Ibrahim N. Identification and mechanism determination of the efflux pump subunit amrB gene mutations linked to gentamicin susceptibility in clinical Burkholderia pseudomallei from Malaysian Borneo. Mol Genet Genomics 2024; 299:12. [PMID: 38381232 DOI: 10.1007/s00438-024-02105-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/29/2023] [Indexed: 02/22/2024]
Abstract
The bacterium Burkholderia pseudomallei is typically resistant to gentamicin but rare susceptible strains have been isolated in certain regions, such as Thailand and Sarawak, Malaysia. Recently, several amino acid substitutions have been reported in the amrB gene (a subunit of the amrAB-oprA efflux pump gene) that confer gentamicin susceptibility. However, information regarding the mechanism of the substitutions conferring the susceptibility is lacking. To understand the mechanism of amino acid substitution that confers susceptibility, this study identifies the corresponding mutations in clinical gentamicin-susceptible B. pseudomallei isolates from the Malaysian Borneo (n = 46; Sarawak: 5; Sabah: 41). Three phenotypically confirmed gentamicin-susceptible (GENs) strains from Sarawak, Malaysia, were screened for mutations in the amrB gene using gene sequences of gentamicin-resistant (GENr) strains (QEH 56, QEH 57, QEH20, and QEH26) and publicly available sequences (AF072887.1 and BX571965.1) as the comparator. The effect of missense mutations on the stability of the AmrB protein was determined by calculating the average energy change value (ΔΔG). Mutagenesis analysis identified a polymorphism-associated mutation, g.1056 T > G, a possible susceptible-associated in-frame deletion, Delta V412, and a previously confirmed susceptible-associated amino acid substitution, T368R, in each of the three GENs isolates. The contribution of Delta V412 needs further confirmation by experimental mutagenesis analysis. The mechanism by which T368R confers susceptibility, as elucidated by in silico mutagenesis analysis using AmrB-modeled protein structures, is proposed to be due to the location of T368R in a highly conserved region, rather than destabilization of the AmrB protein structure.
Collapse
Affiliation(s)
- Ainulkhir Hussin
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Department of Pathology, Queen Elizabeth Hospital, Ministry of Health Malaysia, Kota Kinabalu, Sabah, Malaysia
| | - Sheila Nathan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Muhammad Ashraf Shahidan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Mohd Yusof Nor Rahim
- Department of Pathology, Queen Elizabeth Hospital, Ministry of Health Malaysia, Kota Kinabalu, Sabah, Malaysia
| | - Mohamad Yusof Zainun
- Department of Pathology, Queen Elizabeth Hospital, Ministry of Health Malaysia, Kota Kinabalu, Sabah, Malaysia
| | | | - Nazlina Ibrahim
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia.
| |
Collapse
|
9
|
Avakh A, Grant GD, Cheesman MJ, Kalkundri T, Hall S. The Art of War with Pseudomonas aeruginosa: Targeting Mex Efflux Pumps Directly to Strategically Enhance Antipseudomonal Drug Efficacy. Antibiotics (Basel) 2023; 12:1304. [PMID: 37627724 PMCID: PMC10451789 DOI: 10.3390/antibiotics12081304] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) poses a grave clinical challenge due to its multidrug resistance (MDR) phenotype, leading to severe and life-threatening infections. This bacterium exhibits both intrinsic resistance to various antipseudomonal agents and acquired resistance against nearly all available antibiotics, contributing to its MDR phenotype. Multiple mechanisms, including enzyme production, loss of outer membrane proteins, target mutations, and multidrug efflux systems, contribute to its antimicrobial resistance. The clinical importance of addressing MDR in P. aeruginosa is paramount, and one pivotal determinant is the resistance-nodulation-division (RND) family of drug/proton antiporters, notably the Mex efflux pumps. These pumps function as crucial defenders, reinforcing the emergence of extensively drug-resistant (XDR) and pandrug-resistant (PDR) strains, which underscores the urgency of the situation. Overcoming this challenge necessitates the exploration and development of potent efflux pump inhibitors (EPIs) to restore the efficacy of existing antipseudomonal drugs. By effectively countering or bypassing efflux activities, EPIs hold tremendous potential for restoring the antibacterial activity against P. aeruginosa and other Gram-negative pathogens. This review focuses on concurrent MDR, highlighting the clinical significance of efflux pumps, particularly the Mex efflux pumps, in driving MDR. It explores promising EPIs and delves into the structural characteristics of the MexB subunit and its substrate binding sites.
Collapse
Affiliation(s)
| | | | | | | | - Susan Hall
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia; (A.A.); (G.D.G.); (M.J.C.); (T.K.)
| |
Collapse
|
10
|
Lorusso AB, Carrara JA, Barroso CDN, Tuon FF, Faoro H. Role of Efflux Pumps on Antimicrobial Resistance in Pseudomonas aeruginosa. Int J Mol Sci 2022; 23:15779. [PMID: 36555423 PMCID: PMC9779380 DOI: 10.3390/ijms232415779] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial resistance is an old and silent pandemic. Resistant organisms emerge in parallel with new antibiotics, leading to a major global public health crisis over time. Antibiotic resistance may be due to different mechanisms and against different classes of drugs. These mechanisms are usually found in the same organism, giving rise to multidrug-resistant (MDR) and extensively drug-resistant (XDR) bacteria. One resistance mechanism that is closely associated with the emergence of MDR and XDR bacteria is the efflux of drugs since the same pump can transport different classes of drugs. In Gram-negative bacteria, efflux pumps are present in two configurations: a transmembrane protein anchored in the inner membrane and a complex formed by three proteins. The tripartite complex has a transmembrane protein present in the inner membrane, a periplasmic protein, and a porin associated with the outer membrane. In Pseudomonas aeruginosa, one of the main pathogens associated with respiratory tract infections, four main sets of efflux pumps have been associated with antibiotic resistance: MexAB-OprM, MexXY, MexCD-OprJ, and MexEF-OprN. In this review, the function, structure, and regulation of these efflux pumps in P. aeruginosa and their actions as resistance mechanisms are discussed. Finally, a brief discussion on the potential of efflux pumps in P. aeruginosa as a target for new drugs is presented.
Collapse
Affiliation(s)
- Andre Bittencourt Lorusso
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, Brazil
- School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - João Antônio Carrara
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, Brazil
| | | | - Felipe Francisco Tuon
- Laboratory of Emerging Infectious Diseases, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Helisson Faoro
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, Brazil
- CHU de Quebec Research Center, Department of Microbiology, Infectious Disease and Immunology, University Laval, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
11
|
A Single Amino Acid Substitution in Elongation Factor G Can Confer Low-Level Gentamicin Resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother 2022; 66:e0025122. [PMID: 35465683 PMCID: PMC9112995 DOI: 10.1128/aac.00251-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The continued emergence of Neisseria gonorrhoeae isolates which are resistant to first-line antibiotics has reinvigorated interest in alternative therapies such as expanded use of gentamicin (Gen). We hypothesized that expanded use of Gen promotes emergence of gonococci with clinical resistance to this aminoglycoside. To understand how decreased susceptibility of gonococci to Gen might develop, we selected spontaneous low-level Gen-resistant (GenR) mutants (Gen MIC = 32 μg/mL) of the Gen-susceptible strain FA19. Consequently, we identified a novel missense mutation in fusA, which encodes elongation factor G (EF-G), causing an alanine (A) to valine (V) substitution at amino acid position 563 in domain IV of EF-G; the mutant allele was termed fusA2. Transformation analysis showed that fusA2 could increase the Gen MIC by 4-fold. While possession of fusA2 did not impair either in vitro gonococcal growth or protein synthesis, it did result in a fitness defect during experimental infection of the lower genital tract in female mice. Through bioinformatic analysis of whole-genome sequences of 10,634 international gonococcal clinical isolates, other fusA alleles were frequently detected, but genetic studies revealed that they could not decrease Gen susceptibility in a similar manner to fusA2. In contrast to these diverse international fusA alleles, the fusA2-encoded A563V substitution was detected in only a single gonococcal clinical isolate. We hypothesize that the rare occurrence of fusA2 in N. gonorrhoeae clinical isolates is likely due to a fitness cost during infection, but compensatory mutations which alleviate this fitness cost could emerge and promote GenR in global strains.
Collapse
|
12
|
Pseudomonas aeruginosa Pangenome: Core and Accessory Genes of a Highly Resourceful Opportunistic Pathogen. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:3-28. [DOI: 10.1007/978-3-031-08491-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Irum S, Naz K, Ullah N, Mustafa Z, Ali A, Arslan M, Khalid K, Andleeb S. Antimicrobial Resistance and Genomic Characterization of Six New Sequence Types in Multidrug-Resistant Pseudomonas aeruginosa Clinical Isolates from Pakistan. Antibiotics (Basel) 2021; 10:antibiotics10111386. [PMID: 34827324 PMCID: PMC8615273 DOI: 10.3390/antibiotics10111386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 01/13/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a major bacterial pathogen associated with a variety of infections with high mortality rates. Most of the clinical P. aeruginosa isolates belong to a limited number of genetic subgroups characterized by multiple housekeeping genes’ sequences (usually 5–7) through the Multi-Locus Sequence Typing (MLST) scheme. The emergence and dissemination of novel multidrug-resistant (MDR) sequence types (ST) in P. aeruginosa pose serious clinical concerns. We performed whole-genome sequencing on a cohort (n = 160) of MDR P. aeruginosa isolates collected from a tertiary care hospital lab in Pakistan and found six isolates belonging to six unique MLST allelic profiles. The genomes were submitted to the PubMLST database and new ST numbers (ST3493, ST3494, ST3472, ST3489, ST3491, and ST3492) were assigned to the respective allele combinations. MLST and core-genome-based phylogenetic analysis confirmed the divergence of these isolates and positioned them in separate branches. Analysis of the resistome of the new STs isolates revealed the presence of genes blaOXA-50, blaPAO, blaPDC, blaVIM-2, aph(3′)-IIb, aac(6′)-II, aac(3)-Id, fosA, catB7, dfrB2, crpP, merP and a number of missense and frame-shift mutations in chromosomal genes conferring resistance to various antipseudomonal antibiotics. The exoS, exoT, pvdE, rhlI, rhlR, lasA, lasB, lasI, and lasR genes were the most prevalent virulence-related genes among the new ST isolates. The different genotypic features revealed the adaptation of these new clones to a variety of infections by various mutations in genes affecting antimicrobial resistance, quorum sensing and biofilm formation. Close monitoring of these antibiotic-resistant pathogens and surveillance mechanisms needs to be adopted to reduce their spread to the healthcare facilities of Pakistan. We believe that these strains can be used as reference strains for future comparative analysis of isolates belonging to the same STs.
Collapse
Affiliation(s)
- Sidra Irum
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Islamabad 44000, Pakistan; (S.I.); (K.N.); (N.U.); (Z.M.); (A.A.); (K.K.)
| | - Kanwal Naz
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Islamabad 44000, Pakistan; (S.I.); (K.N.); (N.U.); (Z.M.); (A.A.); (K.K.)
| | - Nimat Ullah
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Islamabad 44000, Pakistan; (S.I.); (K.N.); (N.U.); (Z.M.); (A.A.); (K.K.)
| | - Zeeshan Mustafa
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Islamabad 44000, Pakistan; (S.I.); (K.N.); (N.U.); (Z.M.); (A.A.); (K.K.)
| | - Amjad Ali
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Islamabad 44000, Pakistan; (S.I.); (K.N.); (N.U.); (Z.M.); (A.A.); (K.K.)
| | - Muhammad Arslan
- Pakistan Institute of Medical Sciences (PIMS), Islamabad 44000, Pakistan;
| | - Kashaf Khalid
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Islamabad 44000, Pakistan; (S.I.); (K.N.); (N.U.); (Z.M.); (A.A.); (K.K.)
| | - Saadia Andleeb
- Department of Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Islamabad 44000, Pakistan; (S.I.); (K.N.); (N.U.); (Z.M.); (A.A.); (K.K.)
- Correspondence: or
| |
Collapse
|
14
|
Scoffone VC, Trespidi G, Barbieri G, Irudal S, Perrin E, Buroni S. Role of RND Efflux Pumps in Drug Resistance of Cystic Fibrosis Pathogens. Antibiotics (Basel) 2021; 10:863. [PMID: 34356783 PMCID: PMC8300704 DOI: 10.3390/antibiotics10070863] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 01/21/2023] Open
Abstract
Drug resistance represents a great concern among people with cystic fibrosis (CF), due to the recurrent and prolonged antibiotic therapy they should often undergo. Among Multi Drug Resistance (MDR) determinants, Resistance-Nodulation-cell Division (RND) efflux pumps have been reported as the main contributors, due to their ability to extrude a wide variety of molecules out of the bacterial cell. In this review, we summarize the principal RND efflux pump families described in CF pathogens, focusing on the main Gram-negative bacterial species (Pseudomonas aeruginosa, Burkholderia cenocepacia, Achromobacter xylosoxidans, Stenotrophomonas maltophilia) for which a predominant role of RND pumps has been associated to MDR phenotypes.
Collapse
Affiliation(s)
- Viola Camilla Scoffone
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| | - Gabriele Trespidi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| | - Giulia Barbieri
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| | - Samuele Irudal
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| | - Elena Perrin
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Silvia Buroni
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.C.S.); (G.T.); (G.B.); (S.I.)
| |
Collapse
|
15
|
Overexpression of the MexXY Multidrug Efflux System Correlates with Deficient Pyoverdine Production in Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:antibiotics10060658. [PMID: 34073068 PMCID: PMC8226967 DOI: 10.3390/antibiotics10060658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/02/2022] Open
Abstract
Multidrug-resistant Pseudomonas aeruginosa poses a serious problem due to hospital- and healthcare-associated infections. A major drug resistance mechanism of P. aeruginosa involves active efflux via resistance nodulation cell division (RND)-type multidrug efflux pumps of which MexXY is increasingly recognized as a primary determinant of aminoglycoside resistance in P. aeruginosa. MexXY overexpression is often observed in drug-resistant P. aeruginosa clinical isolates. MexXY deficiency increased pyoverdine production in all four P. aeruginosa strains we tested. MexXY-overproducing multidrug-resistant P. aeruginosa PA7 exhibited the greatest effect among the strains. Complementation with a MexXY-expressing plasmid restored low-level pyoverdine production in a MexXY-deficient P. aeruginosa mutant from PA7, indicating that MexXY expression decreases pyoverdine production. Because P. aeruginosa produces pyoverdine to acquire iron, MexXY-deficient mutants might be more susceptible to iron deficiency than MexXY-producing strains or might require extra iron. High-risk clones of multidrug-resistant P. aeruginosa reportedly tend to be MexXY overproducers but defective pyoverdine producers. This study suggests that P. aeruginosa reduces production of a virulence factor after acquiring a drug resistance factor.
Collapse
|
16
|
Xu C, Liu H, Pan X, Ma Z, Wang D, Zhang X, Zhu G, Bai F, Cheng Z, Wu W, Jin Y. Mechanisms for Development of Ciprofloxacin Resistance in a Clinical Isolate of Pseudomonas aeruginosa. Front Microbiol 2021; 11:598291. [PMID: 33488544 PMCID: PMC7819972 DOI: 10.3389/fmicb.2020.598291] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022] Open
Abstract
Treatment of infections by Pseudomonas aeruginosa is difficult due to its high intrinsic and acquired antibiotic resistance. Upon colonization in the human hosts, P. aeruginosa accumulates genetic mutations that confer the bacterium antibiotic resistance and ability to better live in the host environment. Characterizing the evolutionary traits would provide important insights into the development of effective combinatory antibiotic therapies to cure P. aeruginosa infections. In this work, we performed a detailed analysis of the molecular mechanisms by which a clinical isolate (CSP18) yields a ciprofloxacin-resistant derivative (CRP42). Genomic DNA re-sequencing and RNAseq were carried out to compare the genomic mutational signature and transcriptional profiles between the two isolates. The results indicated that D87G mutation in GyrA, together with MexEF-OprN hyper-expression caused by F7S mutation in MexS, was responsible for the increased resistance to ciprofloxacin in the isolate CRP42. Further simulation of CRP42 by gene editing in CSP18 demonstrated that D87G mutation in GyrA rendered CSP18 a fourfold increase in minimum inhibitory concentration against ciprofloxacin, while F7S mutation in MexS conferred an additional eightfold increase. Our experimental results demonstrate for the first time that the clinically relevant F7S point mutation in MexS results in hyper-expression of the mexEF-oprN and thus confers P. aeruginosa resistance to ciprofloxacin.
Collapse
Affiliation(s)
- Congjuan Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Huimin Liu
- Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhenzhen Ma
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dan Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xinxin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Guangbo Zhu
- Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
17
|
Parsa P, Amirmozafari N, Nowruzi B, Bahar MA. Molecular characterization of polymorphisms among Pseudomonas aeruginosa strains isolated from burn patients' wounds. Heliyon 2020; 6:e05041. [PMID: 33376816 PMCID: PMC7758517 DOI: 10.1016/j.heliyon.2020.e05041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/30/2020] [Accepted: 09/21/2020] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most common reasons for nosocomial infections. Given the high morbidity and mortality, as well as the cost of management, particularly in developing countries, burn injuries are considered important health concerns. Owing to the increased rate of resistance against antibiotics, this study aimed to isolate Pseudomonas aeruginosa strains from burn patient's wounds by analyzing antibiotic susceptibility and genetic profiling. In this regard, we explored the relationship between the nucleotide sequence and antibiotic susceptibility. In this cross-sectional study, 107 isolates of P. aeruginosa were collected from a major burn center in Tehran, Iran. The isolates were characterized with standard biochemical tests and examined by applying the Disk Diffusion method to find the patterns of sensitivity, and their genetic relationship was revealed by RAPD-PCR method. According to the antibiogram results, most of the isolates were resistant to 3 or more antibiotics tested and the most sensitivity was related to the Colistin antibiotic. RAPD-PCR method revealed a high polymorphism among P. aeruginosa isolates in Tehran. There was no significant association between the genotype groups and antibiotic susceptibility profiles. We evaluated the pattern of resistance to pathogenic organisms and identified multi-drug resistant organisms. Currently, Colistin antibiotic is the most suitable treatment option for burned patients. RAPD-PCR is a genotyping method with high efficiency for typing and categorizing different isolates of MDR-P. aeruginosa.
Collapse
Affiliation(s)
- Parastoo Parsa
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nour Amirmozafari
- Microbiology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahareh Nowruzi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Ali Bahar
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
- Corresponding author.
| |
Collapse
|
18
|
Singh M, Sykes EME, Li Y, Kumar A. MexXY RND pump of Pseudomonas aeruginosa PA7 effluxes bi-anionic β-lactams carbenicillin and sulbenicillin when it partners with the outer membrane factor OprA but not with OprM. MICROBIOLOGY-SGM 2020; 166:1095-1106. [PMID: 32909933 DOI: 10.1099/mic.0.000971] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Antibiotic resistance in Pseudomonas aeruginosa is a serious concern in healthcare systems. Among the determinants of antibiotic resistance in P. aeruginosa, efflux pumps belonging to the resistance-nodulation-division (RND) family confer resistance to a broad range of antibacterial compounds. The MexXY efflux system is widely overexpressed in P. aeruginosa isolates from cystic fibrosis (CF) patients. MexXY can form functional complexes with two different outer membrane factors (OMFs), OprA and OprM. In this study, using state-of-the-art genetic tools, the substrate specificities of MexXY-OprA and MexXY-OprM complexes were determined. Our results show, for the first time, that the substrate profile of the MexXY system from P. aeruginosa PA7 can vary depending on which OM factor (OprM or OprA) it complexes with. While both MexXY-OprA and MexXY-OprM complexes are capable of effluxing aminoglycosides, the bi-anionic β-lactam molecules carbenicillin and sulbenicillin were found to only be the substrate of MexXY-OprA. Our study therefore shows that by partnering with different OMF proteins MexY can expand its substrate profile.
Collapse
Affiliation(s)
- Manu Singh
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Ellen M E Sykes
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Yanqi Li
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
19
|
M Campos JC, Antunes LCM, Ferreira RBR. Global priority pathogens: virulence, antimicrobial resistance and prospective treatment options. Future Microbiol 2020; 15:649-677. [DOI: 10.2217/fmb-2019-0333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Salmonella spp. are part of a group of pathogens that pose a major threat to human health due to the emergence of multidrug-resistant strains. Moreover, these bacteria have several virulence factors that allow them to successfully colonize their hosts, such as toxins and the ability to produce biofilms, resulting in an urgent need to develop new strategies to fight these pathogens. In this review, we compile the most up-to-date information on the epidemiology, virulence and resistance of these clinically important microorganisms. Additionally, we address new therapeutic alternatives, with a focus on molecules with antivirulence activity, which are considered promising to combat multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Juliana C de M Campos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis CM Antunes
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rosana BR Ferreira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Alternative strategies for the application of aminoglycoside antibiotics against the biofilm-forming human pathogenic bacteria. Appl Microbiol Biotechnol 2020; 104:1955-1976. [DOI: 10.1007/s00253-020-10360-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/29/2019] [Accepted: 01/05/2020] [Indexed: 12/17/2022]
|
21
|
Kotani K, Matsumura M, Morita Y, Tomida J, Kutsuna R, Nishino K, Yasuike S, Kawamura Y. 13-(2-Methylbenzyl) Berberine Is a More Potent Inhibitor of MexXY-Dependent Aminoglycoside Resistance than Berberine. Antibiotics (Basel) 2019; 8:antibiotics8040212. [PMID: 31698691 PMCID: PMC6963850 DOI: 10.3390/antibiotics8040212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/30/2019] [Accepted: 11/02/2019] [Indexed: 12/18/2022] Open
Abstract
We previously showed that berberine attenuates MexXY efflux-dependent aminoglycoside resistance in Pseudomonas aeruginosa. Here, we aimed to synthesize berberine derivatives with higher MexXY inhibitory activities. We synthesized 11 berberine derivatives, of which 13-(2-methylbenzyl) berberine (13-o-MBB) but not its regiomers showed the most promising MexXY inhibitory activity. 13-o-MBB reduced the minimum inhibitory concentrations (MICs) of various aminoglycosides 4- to 128 fold for a highly multidrug resistant P. aeruginosa strain. Moreover, 13-o-MBB significantly reduced the MICs of gentamicin and amikacin in Achromobacter xylosoxidans and Burkholderia cepacia. The fractional inhibitory concentration indices indicated that 13-o-MBB acted synergistically with aminoglycosides in only MexXY-positive P. aeruginosa strains. Time-kill curves showed that 13-o-MBB or higher concentrations of berberine increased the bactericidal activity of gentamicin by inhibiting MexXY in P. aeruginosa. Our findings indicate that 13-o-MBB inhibits MexXY-dependent aminoglycoside drug resistance more strongly than berberine and that 13-o-MBB is a useful inhibitor of aminoglycoside drug resistance due to MexXY.
Collapse
Affiliation(s)
- Kenta Kotani
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, Nagoya 560-0043, Japan; (K.K.); (J.T.); (R.K.)
| | - Mio Matsumura
- Department of Organic and Medicinal Chemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 560-0043, Japan; (M.M.); (S.Y.)
| | - Yuji Morita
- Department of Microbial Science and Host Defense, Meiji Pharmaceutical University, Noshio, Kiyose, Tokyo 560-0043, Japan;
| | - Junko Tomida
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, Nagoya 560-0043, Japan; (K.K.); (J.T.); (R.K.)
| | - Ryo Kutsuna
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, Nagoya 560-0043, Japan; (K.K.); (J.T.); (R.K.)
| | - Kunihiko Nishino
- Department of Biomolecular Science and Regulation, Institute of Scientific and Industrial Research, Osaka University, Osaka 560-0043, Japan;
| | - Shuji Yasuike
- Department of Organic and Medicinal Chemistry, School of Pharmacy, Aichi Gakuin University, Nagoya 560-0043, Japan; (M.M.); (S.Y.)
| | - Yoshiaki Kawamura
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, Nagoya 560-0043, Japan; (K.K.); (J.T.); (R.K.)
- Correspondence:
| |
Collapse
|
22
|
Kawalek A, Modrzejewska M, Zieniuk B, Bartosik AA, Jagura-Burdzy G. Interaction of ArmZ with the DNA-binding domain of MexZ induces expression of mexXY multidrug efflux pump genes and antimicrobial resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2019; 63:AAC.01199-19. [PMID: 31527038 PMCID: PMC6879243 DOI: 10.1128/aac.01199-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022] Open
Abstract
Multidrug efflux pumps play an important role in antibiotic resistance in bacteria. In Pseudomonas aeruginosa, MexXY pump provides intrinsic resistance to many antimicrobials, including aminoglycosides. The expression of mexXY operon is negatively regulated by MexZ repressor. The repression is alleviated in response to the antibiotic-induced ribosome stress, which results in increased synthesis of anti-repressor ArmZ, interacting with MexZ. The molecular mechanism of MexZ inactivation by ArmZ is not known. Here, we showed that the N-terminal part of MexZ, encompassing the DNA-binding domain, is required for interaction with ArmZ. Using the bacterial two hybrid system based mutant screening and pull-down analyses we identified substitutions in MexZ that diminished (R3S, K6E, R13H) or completely impaired (K53E) the interaction with ArmZ without blocking MexZ activity as a transcriptional repressor. Introduction of corresponding mexZ missense mutations into P aeruginosa PAO1161 chromosome impaired (mexZ K6E, mexZ R13H) or blocked (mexZ K53E) tetracycline mediated induction of mexY expression. Concomitantly, PAO1161 mexZ K53E strain was more susceptible to aminoglycosides. The identified residues are highly conserved in MexZ-like transcriptional regulators found in bacterial genomes encoding both MexX/MexY/MexZ and ArmZ/PA5470 orthologs, suggesting that a similar mechanism may contribute to induction of efflux mediated resistance in other bacterial species. Overall, our data shed light on the molecular mechanism of ArmZ mediated induction of intrinsic antimicrobial resistance in P. aeruginosa.
Collapse
Affiliation(s)
- Adam Kawalek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Warsaw, Poland
| | - Magdalena Modrzejewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Warsaw, Poland
| | - Bartlomiej Zieniuk
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | - Aneta Agnieszka Bartosik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Warsaw, Poland
| | - Grazyna Jagura-Burdzy
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Microbial Biochemistry, Warsaw, Poland
| |
Collapse
|
23
|
Yu Y, Zhao X, Guo Y, Zhang X, Bai P, Zhang B, Wang J, Liu C. Identification of potential tobramycin-resistant mutagenesis of Escherichia coli strains after spaceflight. Future Microbiol 2019; 14:315-330. [PMID: 30854896 DOI: 10.2217/fmb-2018-0273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aim: This study aimed to explore potential tobramycin-resistant mutagenesis of Escherichia coli strains after spaceflight. Materials & methods: A spaceflight-induced mutagenesis of multidrug resistant E. coli strain (T1_13) on the outer space for 64 days (ST5), and a ground laboratory with the same conditions (GT5) were conducted. Both whole-genome sequencing and RNA-sequencing were performed. Results: A total of 75 single nucleotide polymorphisms and 20 InDels were found to be associated with the resistance mechanism. Compared with T1_13, 1242 genes were differentially expressed in more than 20 of 38 tobramycin-resistant E. coli isolates while not in GT5. Function annotation of these single nucleotide polymorphisms/InDels related genes and differentially expressed genes was performed. Conclusion: This study provided clues for potential tobramycin-resistant spaceflight-induced mutagenesis of E. coli.
Collapse
Affiliation(s)
- Yi Yu
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Xian Zhao
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Yinghua Guo
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Xuelin Zhang
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Po Bai
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Bin Zhang
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Junfeng Wang
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Changting Liu
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
24
|
Freschi L, Vincent AT, Jeukens J, Emond-Rheault JG, Kukavica-Ibrulj I, Dupont MJ, Charette SJ, Boyle B, Levesque RC. The Pseudomonas aeruginosa Pan-Genome Provides New Insights on Its Population Structure, Horizontal Gene Transfer, and Pathogenicity. Genome Biol Evol 2019; 11:109-120. [PMID: 30496396 PMCID: PMC6328365 DOI: 10.1093/gbe/evy259] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2018] [Indexed: 12/25/2022] Open
Abstract
The huge increase in the availability of bacterial genomes led us to a point in which we can investigate and query pan-genomes, for example, the full set of genes of a given bacterial species or clade. Here, we used a data set of 1,311 high-quality genomes from the human pathogen Pseudomonas aeruginosa, 619 of which were newly sequenced, to show that a pan-genomic approach can greatly refine the population structure of bacterial species, provide new insights to define species boundaries, and generate hypotheses on the evolution of pathogenicity. The 665-gene P. aeruginosa core genome presented here, which constitutes only 1% of the entire pan-genome, is the first to be in the same order of magnitude as the minimal bacterial genome and represents a conservative estimate of the actual core genome. Moreover, the phylogeny based on this core genome provides strong evidence for a five-group population structure that includes two previously undescribed groups of isolates. Comparative genomics focusing on antimicrobial resistance and virulence genes showed that variation among isolates was partly linked to this population structure. Finally, we hypothesized that horizontal gene transfer had an important role in this respect, and found a total of 3,010 putative complete and fragmented plasmids, 5% and 12% of which contained resistance or virulence genes, respectively. This work provides data and strategies to study the evolutionary trajectories of resistance and virulence in P. aeruginosa.
Collapse
Affiliation(s)
- Luca Freschi
- Département de microbiologie-infectiologie et immunologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Antony T Vincent
- Département de microbiologie-infectiologie et immunologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec City, Quebec, Canada.,Département de Biochimie, De Microbiologie et de Bio-informatique, Université Laval, Québec City, Quebec, Canada
| | - Julie Jeukens
- Département de microbiologie-infectiologie et immunologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Jean-Guillaume Emond-Rheault
- Département de microbiologie-infectiologie et immunologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Irena Kukavica-Ibrulj
- Département de microbiologie-infectiologie et immunologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Marie-Josée Dupont
- Département de microbiologie-infectiologie et immunologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Steve J Charette
- Département de microbiologie-infectiologie et immunologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec City, Quebec, Canada.,Département de Biochimie, De Microbiologie et de Bio-informatique, Université Laval, Québec City, Quebec, Canada
| | - Brian Boyle
- Département de microbiologie-infectiologie et immunologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Roger C Levesque
- Département de microbiologie-infectiologie et immunologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| |
Collapse
|
25
|
Ravithej Singh L, Tripathi VC, Raj S, Kumar A, Gupta S, Horam S, Upadhyay A, Kushwaha P, Arockiaraj J, Sashidhara KV, Pasupuleti M. In-house chemical library repurposing: A case example for Pseudomonas aeruginosa antibiofilm activity and quorum sensing inhibition. Drug Dev Res 2018; 79:383-390. [PMID: 30291767 DOI: 10.1002/ddr.21458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 02/01/2023]
Abstract
Hit, Lead & Candidate Discovery Drug repurposing has become a recent trend in drug development programs, where previously developed drugs are explored for hit and redeveloped into potential therapeutic agents for new diseases. Globally, in any drug development program, a series of molecules are synthesized and evaluated for the hypothesized activity. Hits are developed into lead molecules or drugs, whereas the negative ones are shelved in the lab with no immediate use. We in this project took the previously sidelined small chemical molecules to the next level of utility, where previously developed in-house small molecules library are tested for the unexplored biological relevant activity. As biofilm formation and quorum sensing play a vital role in bacterial pathogenesis, we believe that they could be one of the most effective targets for antimicrobial agents. In this study, we report the evaluation of 50 different compounds for anti-biofilm and anti-quorum sensing activity against Pseudomonas aeruginosa. Out of the screened compounds, three hydrazine-carboxamide hybrid derivatives showed promising anti-biofilm property and inhibition of pyocyanin production without any direct antimicrobial activity and cytotoxicity issues. Hydrazine-carboxamide hybrids can be a new class and promising leads for further anti-biofilm and anti-virulence development against microbial infections.
Collapse
Affiliation(s)
- L Ravithej Singh
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Vikash C Tripathi
- Microbiology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sneha Raj
- Microbiology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Anoop Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sampa Gupta
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Soyar Horam
- Microbiology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Akanksha Upadhyay
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Pragati Kushwaha
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mukesh Pasupuleti
- Microbiology Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
26
|
Narayanaswamy VP, Keagy LL, Duris K, Wiesmann W, Loughran AJ, Townsend SM, Baker S. Novel Glycopolymer Eradicates Antibiotic- and CCCP-Induced Persister Cells in Pseudomonas aeruginosa. Front Microbiol 2018; 9:1724. [PMID: 30123191 PMCID: PMC6085434 DOI: 10.3389/fmicb.2018.01724] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/11/2018] [Indexed: 11/13/2022] Open
Abstract
Antibiotic treatments often fail to completely eradicate a bacterial infection, leaving behind an antibiotic-tolerant subpopulation of intact bacterial cells called persisters. Persisters are considered a major cause for treatment failure and are thought to greatly contribute to the recalcitrance of chronic infections. Pseudomonas aeruginosa infections are commonly associated with elevated levels of drug-tolerant persister cells, posing a serious threat to human health. This study represents the first time a novel large molecule polycationic glycopolymer, poly (acetyl, arginyl) glucosamine (PAAG), has been evaluated against antibiotic and carbonyl cyanide m-chlorophenylhydrazone induced P. aeruginosa persisters. PAAG eliminated eliminated persisters at concentrations that show no significant cytotoxicity on human lung epithelial cells. PAAG demonstrated rapid bactericidal activity against both forms of induced P. aeruginosa persister cells resulting in complete eradication of the in vitro persister cells within 24 h of treatment. PAAG demonstrated greater efficacy against persisters in vitro than antibiotics currently being used to treat persistent chronic infections such as tobramycin, colistin, azithromycin, aztreonam, and clarithromycin. PAAG caused rapid permeabilization of the cell membrane and caused significant membrane depolarization in persister cells. PAAG efficacy against these bacterial subpopulations suggests it may have substantial therapeutic potential for eliminating recurrent P. aeruginosa infections.
Collapse
|
27
|
Role of AxyZ Transcriptional Regulator in Overproduction of AxyXY-OprZ Multidrug Efflux System in Achromobacter Species Mutants Selected by Tobramycin. Antimicrob Agents Chemother 2017; 61:AAC.00290-17. [PMID: 28584156 DOI: 10.1128/aac.00290-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/31/2017] [Indexed: 11/20/2022] Open
Abstract
AxyXY-OprZ is an RND-type efflux system that confers innate aminoglycoside resistance to Achromobacter spp. We investigated here a putative TetR family transcriptional regulator encoded by the axyZ gene located upstream of axyXY-oprZ An in-frame axyZ gene deletion assay led to increased MICs of antibiotic substrates of the efflux system, including aminoglycosides, cefepime, fluoroquinolones, tetracyclines, and erythromycin, indicating that the product of axyZ negatively regulates expression of axyXY-oprZ Moreover, we identified an amino acid substitution at position 29 of AxyZ (V29G) in a clinical Achromobacter strain that occurred during the course of chronic respiratory tract colonization in a cystic fibrosis (CF) patient. This substitution, also detected in three other strains exposed in vitro to tobramycin, led to an increase in the axyY transcription level (5- to 17-fold) together with an increase in antibiotic resistance level. This overproduction of AxyXY-OprZ is the first description of antibiotic resistance acquisition due to modification of a chromosomally encoded mechanism in Achromobacter and might have an impact on the management of infected CF patients. Indeed, tobramycin is widely used for aerosol therapy within this population, and we have demonstrated that it easily selects mutants with increased MICs of not only aminoglycosides but also fluoroquinolones, cefepime, and tetracyclines.
Collapse
|
28
|
Pan X, Dong Y, Fan Z, Liu C, Xia B, Shi J, Bai F, Jin Y, Cheng Z, Jin S, Wu W. In vivo Host Environment Alters Pseudomonas aeruginosa Susceptibility to Aminoglycoside Antibiotics. Front Cell Infect Microbiol 2017; 7:83. [PMID: 28352614 PMCID: PMC5348532 DOI: 10.3389/fcimb.2017.00083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/02/2017] [Indexed: 01/06/2023] Open
Abstract
During host infection, Pseudomonas aeruginosa coordinately regulates the expression of numerous genes to adapt to the host environment while counteracting host clearance mechanisms. As infected patients take antibiotics, the invading bacteria encounter antibiotics in the host milieu. P. aeruginosa is highly resistant to antibiotics due to multiple chromosomally encoded resistant determinants. And numerous in vitro studies have demonstrated the regulatory mechanisms of antibiotic resistance related genes in response to antibiotics. However, it is not well-known how host environment affects bacterial response to antibiotics. In this study, we found that P. aeruginosa cells directly isolated from mice lungs displayed higher susceptibility to tobramycin than in vitro cultured bacteria. In vitro experiments demonstrated that incubation with A549 and differentiated HL60 (dHL60) cells sensitized P. aeruginosa to tobramycin. Further studies revealed that reactive oxygen species produced by the host cells contributed to the increased bacterial susceptibility. At the same concentration of tobramycin, presence of A549 and dHL60 cells resulted in higher expression of heat shock proteins, which are known inducible by tobramycin. Further analyses revealed decreased membrane potential upon incubation with the host cells and modification of lipopolysaccharide, which contributed to the increased susceptibility to tobramycin. Therefore, our results demonstrate that contact with host cells increased bacterial susceptibility to tobramycin.
Collapse
Affiliation(s)
- Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Yuanyuan Dong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Zheng Fan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Chang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Bin Xia
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Jing Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy and Life Sciences, Nankai University Tianjin, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| | - Shouguang Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China; Department of Molecular Genetics and Microbiology, College of Medicine, University of FloridaGainesville, FL, USA
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University Tianjin, China
| |
Collapse
|
29
|
Sheikhalizadeh V, Hasani A, Ahangarzadeh Rezaee M, Rahmati-yamchi M, Hasani A, Ghotaslou R, Goli HR. Comprehensive study to investigate the role of various aminoglycoside resistance mechanisms in clinical isolates of Acinetobacter baumannii. J Infect Chemother 2017; 23:74-79. [DOI: 10.1016/j.jiac.2016.09.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/21/2016] [Accepted: 09/29/2016] [Indexed: 11/24/2022]
|
30
|
Huber P, Basso P, Reboud E, Attrée I. Pseudomonas aeruginosa renews its virulence factors. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:564-571. [PMID: 27428387 DOI: 10.1111/1758-2229.12443] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
Highly divergent strains of the major human opportunistic pathogen Pseudomonas aeruginosa have been isolated around the world by different research laboratories. They came from patients with various types of infectious diseases or from the environment. These strains are devoid of the major virulence factor used by classical strains, the Type III secretion system, but possess additional putative virulence factors, including a novel two-partner secretion system, ExlBA, responsible for the hypervirulent behavior of some clinical isolates. Here, we review the genetic and phenotypic characteristics of these recently-discovered P. aeruginosa outliers.
Collapse
Affiliation(s)
- Philippe Huber
- University of Grenoble Alpes, Grenoble 38000, France
- CNRS, ERL5261, Grenoble 38000, France
- CEA, BIG-BCI, Grenoble, 38000, France
- INSERM, U1036, Grenoble, 38000, France
| | - Pauline Basso
- University of Grenoble Alpes, Grenoble 38000, France
- CNRS, ERL5261, Grenoble 38000, France
- CEA, BIG-BCI, Grenoble, 38000, France
- INSERM, U1036, Grenoble, 38000, France
| | - Emeline Reboud
- University of Grenoble Alpes, Grenoble 38000, France
- CNRS, ERL5261, Grenoble 38000, France
- CEA, BIG-BCI, Grenoble, 38000, France
- INSERM, U1036, Grenoble, 38000, France
| | - Ina Attrée
- University of Grenoble Alpes, Grenoble 38000, France
- CNRS, ERL5261, Grenoble 38000, France
- CEA, BIG-BCI, Grenoble, 38000, France
- INSERM, U1036, Grenoble, 38000, France
| |
Collapse
|
31
|
Goli HR, Nahaei MR, Rezaee MA, Hasani A, Samadi Kafil H, Aghazadeh M, Sheikhalizadeh V. Contribution of mexAB-oprM and mexXY (-oprA) efflux operons in antibiotic resistance of clinical Pseudomonas aeruginosa isolates in Tabriz, Iran. INFECTION GENETICS AND EVOLUTION 2016; 45:75-82. [PMID: 27562333 DOI: 10.1016/j.meegid.2016.08.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 08/20/2016] [Accepted: 08/20/2016] [Indexed: 10/21/2022]
Abstract
Overexpression of efflux pumps is one of the most important mechanisms that contributes to intrinsic and acquired resistance to antibiotics in Pseudomonas aeruginosa. The present study evaluated the role of MexAB-OprM and MexXY (-OprA) efflux pump overexpression in antibiotics resistance of P. aeruginosa clinical isolates. One-hundred clinical isolates of P. aeruginosa were obtained from four hospitals of Tabriz city in Northwest Iran. Isolates were identified and evaluated by the disk diffusion method and agar dilution in order to determine antibiotic resistance. Effect of Phenylalanine Arginine beta-Naphthylamide (PAβN) on susceptibility to various anti-Pseudomonas antimicrobials and expression levels of mexB and mexY using quantitative real-time PCR were determined in the clinical isolates. Random Amplified Polymorphic DNA Typing (RAPD-PCR) was used for genotyping of the isolates. The most and least effective antibiotics tested were colistin and ofloxacin, respectively. Seventy-one percent of the isolates were found as multidrug resistant (resistant to at least three different classes of antibiotics). Among ciprofloxacin and levofloxacin resistant isolates, 39.6% and 28.5% of them showed four-fold reduction in MIC with PAβN, respectively. Sixty-two percent and 65% of isolates overexpressed mexB and mexY, respectively. Sixty six isolates showed overexpression of both mexB and mexY efflux genes. Moreover, 76% and 88.7% of MDR isolates were mexB and mexY overexpressed, respectively. There were 30 different RAPD types in this study which were clustered into 6 clones. The study indicated that there is a significant correlation between the expression of efflux pumps and the resistance to most anti-pseudomonal antibiotics.
Collapse
Affiliation(s)
- Hamid Reza Goli
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran; Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Mohammad Reza Nahaei
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran; Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Mohammad Ahangarzadeh Rezaee
- Infectious Diseases and Tropical Medicine Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran; Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Alka Hasani
- Infectious Diseases and Tropical Medicine Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran; Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran; Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Mohammad Aghazadeh
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran; Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.
| | - Vajihe Sheikhalizadeh
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| |
Collapse
|
32
|
Morita Y, Nakashima KI, Nishino K, Kotani K, Tomida J, Inoue M, Kawamura Y. Berberine Is a Novel Type Efflux Inhibitor Which Attenuates the MexXY-Mediated Aminoglycoside Resistance in Pseudomonas aeruginosa. Front Microbiol 2016; 7:1223. [PMID: 27547203 PMCID: PMC4975076 DOI: 10.3389/fmicb.2016.01223] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 07/22/2016] [Indexed: 01/10/2023] Open
Abstract
The emergence and spread of multidrug-resistant P. aeruginosa infections is of great concern, as very few agents are effective against strains of this species. Methanolic extracts from the Coptidis Rhizoma (the rhizomes of Coptis japonica var. major Satake) or Phellodendri Cortex (the bark of Phellodendron chinense Schneider) markedly reduced resistance to anti-pseudomonal aminoglycosides (e.g., amikacin) in multidrug-resistant P. aeruginosa strains. Berberine, the most abundant benzylisoquinoline alkaloid in the two extracts, reduced aminoglycoside resistance of P. aeruginosa via a mechanism that required the MexXY multidrug efflux system; berberine also reduced aminoglycoside MICs in Achromobacter xylosoxidans and Burkholderia cepacia, two species that harbor intrinsic multidrug efflux systems very similar to the MexXY. Furthermore this compound inhibited MexXY-dependent antibiotic resistance of other classes including cephalosporins (cefepime), macrolides (erythromycin), and lincosamides (lincomycin) demonstrated using a pseudomonad lacking the four other major Mex pumps. Although phenylalanine-arginine beta-naphthylamide (PAβN), a well-known efflux inhibitor, antagonized aminoglycoside in a MexXY-dependent manner, a lower concentration of berberine was sufficient to reduce amikacin resistance of P. aeruginosa in the presence of PAβN. Moreover, berberine enhanced the synergistic effects of amikacin and piperacillin (and vice versa) in multidrug-resistant P. aeruginosa strains. Thus, berberine appears to be a novel type inhibitor of the MexXY-dependent aminoglycoside efflux in P. aeruginosa. As aminoglycosides are molecules of choice to treat severe infections the clinical impact is potentially important.
Collapse
Affiliation(s)
- Yuji Morita
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University Nagoya, Japan
| | - Ken-Ichi Nakashima
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University Nagoya, Japan
| | - Kunihiko Nishino
- Department of Biomolecular Science and Regulation, Institute of Scientific and Industrial Research, Osaka University Osaka, Japan
| | - Kenta Kotani
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University Nagoya, Japan
| | - Junko Tomida
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University Nagoya, Japan
| | - Makoto Inoue
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University Nagoya, Japan
| | - Yoshiaki Kawamura
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University Nagoya, Japan
| |
Collapse
|
33
|
Draft Genome Sequences of Five Pseudomonas aeruginosa Clinical Strains Isolated from Sputum Samples from Cystic Fibrosis Patients. GENOME ANNOUNCEMENTS 2016; 4:4/1/e01528-15. [PMID: 26823574 PMCID: PMC4732327 DOI: 10.1128/genomea.01528-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here the draft genome sequences of five Pseudomonas aeruginosa isolates obtained from sputum samples from two cystic fibrosis patients with chronic colonization. These closely related strains harbor 225 to 493 genes absent from the P. aeruginosa POA1 genome and contain 178 to 179 virulence factors and 29 to 31 antibiotic resistance genes.
Collapse
|
34
|
Riou M, Avrain L, Carbonnelle S, El Garch F, Pirnay JP, De Vos D, Plésiat P, Tulkens PM, Van Bambeke F. Increase of efflux-mediated resistance in Pseudomonas aeruginosa during antibiotic treatment in patients suffering from nosocomial pneumonia. Int J Antimicrob Agents 2015; 47:77-83. [PMID: 26691019 DOI: 10.1016/j.ijantimicag.2015.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 11/17/2022]
Abstract
Increases in antibiotic minimum inhibitory concentrations (MICs) for Pseudomonas aeruginosa during treatment are commonly observed but their relationship to efflux overexpression remains poorly documented. In this study, pairs of first [at time of diagnosis (D0)] and last [during treatment (DL)] P. aeruginosa isolates were obtained from patients treated for suspicion of nosocomial pneumonia. Pair clonality was determined by repetitive extragenic palindromic PCR. Overexpression of mexA and mexX was assessed by real-time PCR, and expression of mexC and mexE was assessed by PCR. Antibiotics received by patients before and during treatment were determined from clinical charts. For D0 isolates, 24% were from patients without antibiotics for 1 month and 64% were negative for mexA/mexX overexpression and mexC/mexE expression. For DL isolates, approximately one-half of the patients had received piperacillin/tazobactam, amikacin, meropenem and/or cefepime, and 17% had received ciprofloxacin (alone or in combination); 38% did not show changes in expression of the four genes, whereas 38% showed increased expression for one gene (mainly mexA or mexX), 19% for two genes (mainly mexA and mexX) and 5% for three or four genes. Isolates overexpressing mexA or mexX had median MICs above EUCAST clinical resistance breakpoints for ciprofloxacin, cefepime and meropenem, or for ciprofloxacin, amikacin, cefepime and meropenem, respectively. mexA or mexX overexpression was statistically significantly associated with patients' exposure to ciprofloxacin and meropenem or cefepime and meropenem, respectively. Overexpression of genes encoding antibiotic transporters in P. aeruginosa during treatment is frequent and is associated with increases in MICs above EUCAST clinical susceptibility breakpoints.
Collapse
Affiliation(s)
- Mickaël Riou
- Pharmacologie cellulaire et moléculaire & Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | | | - Sylviane Carbonnelle
- Pharmacologie cellulaire et moléculaire & Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Farid El Garch
- Pharmacologie cellulaire et moléculaire & Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium; Laboratoire de microbiologie, CHU Dinant-Godinne UCL Namur, Yvoir, Belgium
| | - Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Neder-over-Heembeek, Brussels, Belgium
| | - Daniel De Vos
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Neder-over-Heembeek, Brussels, Belgium
| | - Patrick Plésiat
- Laboratoire de bactériologie, Faculté de médecine, Université de Franche-Comté, Besançon, France
| | - Paul M Tulkens
- Pharmacologie cellulaire et moléculaire & Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Françoise Van Bambeke
- Pharmacologie cellulaire et moléculaire & Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
35
|
Shi J, Jin Y, Bian T, Li K, Sun Z, Cheng Z, Jin S, Wu W. SuhB is a novel ribosome associated protein that regulates expression of MexXY by modulating ribosome stalling inPseudomonas aeruginosa. Mol Microbiol 2015; 98:370-83. [DOI: 10.1111/mmi.13126] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Jing Shi
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education; Department of Microbiology; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education; Department of Microbiology; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Ting Bian
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education; Department of Microbiology; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Kewei Li
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education; Department of Microbiology; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Ziyu Sun
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education; Department of Microbiology; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education; Department of Microbiology; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Shouguang Jin
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education; Department of Microbiology; College of Life Sciences; Nankai University; Tianjin 300071 China
- Department of Molecular Genetics and Microbiology; College of Medicine; University of Florida; Gainesville FL 32610 USA
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education; Department of Microbiology; College of Life Sciences; Nankai University; Tianjin 300071 China
| |
Collapse
|
36
|
Li H, Zhang DF, Lin XM, Peng XX. Outer membrane proteomics of kanamycin-resistant Escherichia coli identified MipA as a novel antibiotic resistance-related protein. FEMS Microbiol Lett 2015; 362:fnv074. [PMID: 25940639 DOI: 10.1093/femsle/fnv074] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2015] [Indexed: 12/11/2022] Open
Abstract
Antibiotic-resistant bacteria are a great threat to human health and food safety and there is an urgent need to understand the mechanisms of resistance for combating these bacteria. In the current study, comparative proteomic methodologies were applied to identify Escherichia coli K-12 outer membrane (OM) proteins related to kanamycin resistance. Mass spectrometry and western blotting results revealed that OM proteins TolC, Tsx and OstA were up-regulated, whereas MipA, OmpA, FadL and OmpW were down-regulated in kanamycin-resistant E. coli K-12 strain. Genetic deletion of tolC (ΔtolC-Km) led to a 2-fold decrease in the minimum inhibitory concentration (MIC) of kanamycin and deletion of mipA (ΔmipA-Km) resulted in a 4-fold increase in the MIC of kanamycin. Changes in the MICs for genetically modified strains could be completely recovered by gene complementation. Compared with the wild-type strain, the survival capability of ΔompA-Km was significantly increased and that of Δtsx-Km was significantly decreased. We further evaluated the role and expression of MipA in response to four other antibiotics including nalidixic acid, streptomycin, chloramphenicol and aureomycin, which suggested that MipA was a novel OM protein related to antibiotic resistance.
Collapse
Affiliation(s)
- Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, MOE Key Lab Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| | - Dan-feng Zhang
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, People's Republic of China
| | - Xiang-min Lin
- Agroecological Institute, Fujian Agricultural and Forestry University, Fuzhou 350002, People's Republic of China
| | - Xuan-xian Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, MOE Key Lab Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| |
Collapse
|
37
|
Shigemura K, Osawa K, Kato A, Tokimatsu I, Arakawa S, Shirakawa T, Fujisawa M. Association of overexpression of efflux pump genes with antibiotic resistance in Pseudomonas aeruginosa strains clinically isolated from urinary tract infection patients. J Antibiot (Tokyo) 2015; 68:568-72. [DOI: 10.1038/ja.2015.34] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/26/2015] [Accepted: 03/10/2015] [Indexed: 11/09/2022]
|
38
|
Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28:337-418. [PMID: 25788514 PMCID: PMC4402952 DOI: 10.1128/cmr.00117-14] [Citation(s) in RCA: 1016] [Impact Index Per Article: 101.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Patrick Plésiat
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
39
|
Morita Y, Tomida J, Kawamura Y. Efflux-mediated fluoroquinolone resistance in the multidrug-resistant Pseudomonas aeruginosa clinical isolate PA7: identification of a novel MexS variant involved in upregulation of the mexEF-oprN multidrug efflux operon. Front Microbiol 2015; 6:8. [PMID: 25653649 PMCID: PMC4301020 DOI: 10.3389/fmicb.2015.00008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/05/2015] [Indexed: 11/24/2022] Open
Abstract
The emergence of multidrug-resistant Pseudomonas aeruginosa has become a serious problem in medical settings. P. aeruginosa clinical isolate PA7 is resistant to fluoroquinolones, aminoglycosides, and most β-lactams but not imipenem. In this study, enhanced efflux-mediated fluoroquinolone resistance of PA7 was shown to reflect increased expression of two resistance nodulation cell division (RND) -type multidrug efflux operons, mexEF-oprN and mexXY-oprA. Such a clinical isolate has rarely been reported because MexEF-OprN-overproducing mutants often increase susceptibility to aminoglycosides apparently owing to impairment of the MexXY system. A mutant of PA7 lacking three RND-type multidrug efflux operons (mexAB-oprM, mexEF-oprN, and mexXY-oprA) was susceptible to all anti-pseudomonas agents we tested, supporting an idea that these RND-type multidrug efflux transporters are molecular targets to overcome multidrug resistance in P. aeruginosa. mexEF-oprN-upregulation in P. aeruginosa PA7 was shown due to a MexS variant harboring the Valine-155 amino acid residue. This is the first genetic evidence shown that a MexS variant causes mexEF-oprN-upregulation in P. aeruginosa clinical isolates.
Collapse
Affiliation(s)
- Yuji Morita
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University Nagoya, Japan
| | - Junko Tomida
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University Nagoya, Japan
| | - Yoshiaki Kawamura
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University Nagoya, Japan
| |
Collapse
|
40
|
Cadoret F, Ball G, Douzi B, Voulhoux R. Txc, a new type II secretion system of Pseudomonas aeruginosa strain PA7, is regulated by the TtsS/TtsR two-component system and directs specific secretion of the CbpE chitin-binding protein. J Bacteriol 2014; 196:2376-86. [PMID: 24748613 PMCID: PMC4054165 DOI: 10.1128/jb.01563-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/11/2014] [Indexed: 01/20/2023] Open
Abstract
We present here the functional characterization of a third complete type II secretion system (T2SS) found in newly sequenced Pseudomonas aeruginosa strain PA7. We call this system Txc (third Xcp homolog). This system is encoded by the RGP69 region of genome plasticity found uniquely in strain PA7. In addition to the 11 txc genes, RGP69 contains two additional genes encoding a possible T2SS substrate and a predicted unorthodox sensor protein, TtsS (type II secretion sensor). We also identified a gene encoding a two-component response regulator called TtsR (type II secretion regulator), which is located upstream of the ttsS gene and just outside RGP69. We show that TtsS and TtsR constitute a new and functional two-component system that controls the production and secretion of the RGP69-encoded T2SS substrate in a Txc-dependent manner. Finally, we demonstrate that this Txc-secreted substrate binds chitin, and we therefore name it CbpE (chitin-binding protein E).
Collapse
Affiliation(s)
- Frédéric Cadoret
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM-UMR7255), CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Geneviève Ball
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM-UMR7255), CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Badreddine Douzi
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM-UMR7255), CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Romé Voulhoux
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM-UMR7255), CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, Marseille, France
| |
Collapse
|
41
|
Role of efflux pumps: MexAB-OprM and MexXY(-OprA), AmpC cephalosporinase and OprD porin in non-metallo-β-lactamase producing Pseudomonas aeruginosa isolated from cystic fibrosis and burn patients. INFECTION GENETICS AND EVOLUTION 2014; 24:187-92. [DOI: 10.1016/j.meegid.2014.03.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 03/09/2014] [Accepted: 03/19/2014] [Indexed: 11/21/2022]
|
42
|
Abstract
The most common prokaryotic signal transduction mechanisms are the one-component systems in which a single polypeptide contains both a sensory domain and a DNA-binding domain. Among the >20 classes of one-component systems, the TetR family of regulators (TFRs) are widely associated with antibiotic resistance and the regulation of genes encoding small-molecule exporters. However, TFRs play a much broader role, controlling genes involved in metabolism, antibiotic production, quorum sensing, and many other aspects of prokaryotic physiology. There are several well-established model systems for understanding these important proteins, and structural studies have begun to unveil the mechanisms by which they bind DNA and recognize small-molecule ligands. The sequences for more than 200,000 TFRs are available in the public databases, and genomics studies are identifying their target genes. Three-dimensional structures have been solved for close to 200 TFRs. Comparison of these structures reveals a common overall architecture of nine conserved α helices. The most important open question concerning TFR biology is the nature and diversity of their ligands and how these relate to the biochemical processes under their control.
Collapse
|
43
|
Matthijs S, Ye L, Stijlemans B, Cornelis P, Bossuyt F, Roelants K. Low structural variation in the host-defense peptide repertoire of the dwarf clawed frog Hymenochirus boettgeri (Pipidae). PLoS One 2014; 9:e86339. [PMID: 24466037 PMCID: PMC3899252 DOI: 10.1371/journal.pone.0086339] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/06/2013] [Indexed: 02/05/2023] Open
Abstract
THE skin secretion of many amphibians contains peptides that are able to kill a broad range of microorganisms (antimicrobial peptides: AMPs) and potentially play a role in innate immune defense. Similar to the toxin arsenals of various animals, amphibian AMP repertoires typically show major structural variation, and previous studies have suggested that this may be the result of diversifying selection in adaptation to a diverse spectrum of pathogens. Here we report on transcriptome analyses that indicate a very different pattern in the dwarf clawed frog H. boettgeri. Our analyses reveal a diverse set of transcripts containing two to six tandem repeats, together encoding 14 distinct peptides. Five of these have recently been identified as AMPs, while three more are shown here to potently inhibit the growth of gram-negative bacteria, including multi-drug resistant strains of the medically important Pseudomonas aeruginosa. Although the number of predicted peptides is similar to the numbers of related AMPs in Xenopus and Silurana frog species, they show significantly lower structural variation. Selection analyses confirm that, in contrast to the AMPs of other amphibians, the H. boettgeri peptides did not evolve under diversifying selection. Instead, the low sequence variation among tandem repeats resulted from purifying selection, recent duplication and/or concerted gene evolution. Our study demonstrates that defense peptide repertoires of closely related taxa, after diverging from each other, may evolve under differential selective regimes, leading to contrasting patterns of structural diversity.
Collapse
Affiliation(s)
- Severine Matthijs
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lumeng Ye
- Department of Bioengineering Sciences, Research Group of Microbiology and Vlaams Instituut voor Biotechnologie, Vrije Universiteit Brussel, Brussels, Belgium
| | - Benoit Stijlemans
- Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory of Myeloid Cell Immunology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Pierre Cornelis
- Department of Bioengineering Sciences, Research Group of Microbiology and Vlaams Instituut voor Biotechnologie, Vrije Universiteit Brussel, Brussels, Belgium
| | - Franky Bossuyt
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kim Roelants
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
- * E-mail:
| |
Collapse
|
44
|
Morita Y, Tomida J, Kawamura Y. Responses of Pseudomonas aeruginosa to antimicrobials. Front Microbiol 2014; 4:422. [PMID: 24409175 PMCID: PMC3884212 DOI: 10.3389/fmicb.2013.00422] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/24/2013] [Indexed: 11/29/2022] Open
Abstract
Infections caused by Pseudomonas aeruginosa often are hard to treat; inappropriate chemotherapy readily selects multidrug-resistant P. aeruginosa. This organism can be exposed to a wide range of concentrations of antimicrobials during treatment; learning more about the responses of P. aeruginosa to antimicrobials is therefore important. We review here responses of the bacterium P. aeruginosa upon exposure to antimicrobials at levels below the inhibitory concentration. Carbapenems (e.g., imipenem) have been shown to induce the formation of thicker and more robust biofilms, while fluoroquinolones (e.g., ciprofloxacin) and aminoglycosides (e.g., tobramycin) have been shown to induce biofilm formation. Ciprofloxacin also has been demonstrated to enhance the frequency of mutation to carbapenem resistance. Conversely, although macrolides (e.g., azithromycin) typically are not effective against P. aeruginosa because of the pseudomonal outer-membrane impermeability and efflux, macrolides do lead to a reduction in virulence factor production. Similarly, tetracycline is not very effective against this organism, but is known to induce the type-III secretion system and consequently enhance cytotoxicity of P. aeruginosain vivo. Of special note are the effects of antibacterials and disinfectants on pseudomonal efflux systems. Sub-inhibitory concentrations of protein synthesis inhibitors (aminoglycosides, tetracycline, chloramphenicol, etc.) induce the MexXY multidrug efflux system. This response is known to be mediated by interference with the translation of the leader peptide PA5471.1, with consequent effects on expression of the PA5471 gene product. Additionally, induction of the MexCD-OprJ multidrug efflux system is observed upon exposure to sub-inhibitory concentrations of disinfectants such as chlorhexidine and benzalkonium. This response is known to be dependent upon the AlgU stress response factor. Altogether, these biological responses of P. aeruginosa provide useful clues for the improvement and optimization of chemotherapy in order to appropriately treat pseudomonal infections while minimizing the emergence of resistance.
Collapse
Affiliation(s)
- Yuji Morita
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, Nagoya Japan
| | - Junko Tomida
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, Nagoya Japan
| | - Yoshiaki Kawamura
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University, Nagoya Japan
| |
Collapse
|
45
|
Poonsuk K, Tribuddharat C, Chuanchuen R. Aminoglycoside resistance mechanisms in Pseudomonas aeruginosa isolates from non-cystic fibrosis patients in Thailand. Can J Microbiol 2013; 59:51-6. [DOI: 10.1139/cjm-2012-0465] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to examine aminoglycosides (AMGs) resistance mechanisms, including the AMG-modifying enzyme genes, mexXY, rplY, nuoG, and galU, in the Pseudomonas aeruginosa non-cystic fibrosis (CF) isolates in Thailand. One hundred P. aeruginosa isolates from non-CF patients were examined for susceptibility to AMGs and for the presence of 10 AMG-modifying enzyme genes. Thirty randomly selected isolates were tested for transcription of mexXY and nuoG and mutations in rplY and galU. All the P. aeruginosa isolates exhibited simultaneous resistance to at least 4 AMGs. High resistance rates to amikacin (92%), gentamicin (95%), streptomycin (99%), and tobramycin (96%) were observed, and all isolates were resistant to kanamycin, neomycin, and spectinomycin. Nine AMG-modifying enzyme genes were detected, including aadA1 (84%), aadB (84%), aadA2 (67%), ant(2″)-Ia (72%), strA-strB (70%), aph(3′)-IIb (57%), aac(3′)-Ia (40%), and aac(6′)-IIa (27%). None of the isolates harbored aac(6′)-IIb. Of 30 isolates tested, all but 1 isolate expressed MexXY. Two isolates did not express nuoG. Six isolates carried an amino acid change in RplY, but none of the isolates harbored mutation in galU. The results indicated that the AMG-modifying enzyme genes were widespread among the P. aeruginosa non-CF isolates. The MexXY efflux pump and inactivation for rplY played a role in AMG resistance but disruption of nuoG or galU did not.
Collapse
Affiliation(s)
- Kanchana Poonsuk
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Chanwit Tribuddharat
- Department of Microbiology, Faculty of Medicine, Mahidol University, Bangkok, Thailand
| | - Rungtip Chuanchuen
- Department of Veterinary Public Health; Center for Antimicrobial Resistance Monitoring in Foodborne Pathogens (in cooperation with WHO); Global Foodborne Infections Network: South-East Asia and Western Pacific Region, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
46
|
Shigemura K, Tanaka K, Yamamichi F, Shirakawa T, Miyake H, Fujisawa M. Does mutation in gyrA and/or parC or efflux pump expression play the main role in fluoroquinolone resistance in Escherichia coli urinary tract infections?: A statistical analysis study. Int J Antimicrob Agents 2012; 40:516-20. [DOI: 10.1016/j.ijantimicag.2012.07.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/14/2012] [Accepted: 07/30/2012] [Indexed: 10/27/2022]
|
47
|
Morita Y, Tomida J, Kawamura Y. MexXY multidrug efflux system of Pseudomonas aeruginosa. Front Microbiol 2012; 3:408. [PMID: 23233851 PMCID: PMC3516279 DOI: 10.3389/fmicb.2012.00408] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/13/2012] [Indexed: 01/01/2023] Open
Abstract
Anti-pseudomonas aminoglycosides, such as amikacin and tobramycin, are used in the treatment of Pseudomonas aeruginosa infections. However, their use is linked to the development of resistance. During the last decade, the MexXY multidrug efflux system has been comprehensively studied, and numerous reports of laboratory and clinical isolates have been published. This system has been increasingly recognized as one of the primary determinants of aminoglycoside resistance in P. aeruginosa. In P. aeruginosa cystic fibrosis isolates, upregulation of the pump is considered the most common mechanism of aminoglycoside resistance. Non-fermentative Gram-negative pathogens possessing very close MexXY orthologs such as Achromobacter xylosoxidans and various Burkholderia species (e.g., Burkholderia pseudomallei and B. cepacia complexes), but not B. gladioli, are intrinsically resistant to aminoglycosides. Here, we summarize the properties (e.g., discovery, mechanism, gene expression, clinical significance) of the P. aeruginosa MexXY pump and other aminoglycoside efflux pumps such as AcrD of Escherichia coli, AmrAB-OprA of B. pseudomallei, and AdeABC of Acinetobacter baumannii. MexXY inducibility of the PA5471 gene product, which is dependent on ribosome inhibition or oxidative stress, is noteworthy. Moreover, the discovery of the cognate outer membrane component (OprA) of MexXY in the multidrug-resistant clinical isolate PA7, serotype O12 deserves special attention.
Collapse
Affiliation(s)
- Yuji Morita
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University Nagoya, Japan
| | | | | |
Collapse
|
48
|
Morita Y, Tomida J, Kawamura Y. Multidrug Efflux Systems in Helicobacter cinaedi. Antibiotics (Basel) 2012; 1:29-43. [PMID: 27029418 PMCID: PMC4790245 DOI: 10.3390/antibiotics1010029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 11/16/2012] [Accepted: 11/16/2012] [Indexed: 12/30/2022] Open
Abstract
Helicobacter cinaedi causes infections, such as bacteremia, diarrhea and cellulitis in mainly immunocompromised patients. This pathogen is often problematic to analyze, and insufficient information is available, because it grows slowly and poorly in subculture under a microaerobic atmosphere. The first-choice therapy to eradicate H. cinaedi is antimicrobial chemotherapy; however, its use is linked to the development of resistance. Although we need to understand the antimicrobial resistance mechanisms of H. cinaedi, unfortunately, sufficient genetic tools for H. cinaedi have not yet been developed. In July 2012, the complete sequence of H. cinaedi strain PAGU 611, isolated from a case of human bacteremia, was announced. This strain possesses multidrug efflux systems, intrinsic antimicrobial resistance mechanisms and typical mutations in gyrA and the 23S rRNA gene, which are involved in acquired resistance to fluoroquinolones and macrolides, respectively. Here, we compare the organization and properties of the efflux systems of H. cinaedi with the multidrug efflux systems identified in other bacteria.
Collapse
Affiliation(s)
- Yuji Morita
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University/ 1-100 Kusumoto, Chikusa, Nagoya, Aichi 464-8650, Japan.
| | - Junko Tomida
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University/ 1-100 Kusumoto, Chikusa, Nagoya, Aichi 464-8650, Japan.
| | - Yoshiaki Kawamura
- Department of Microbiology, School of Pharmacy, Aichi Gakuin University/ 1-100 Kusumoto, Chikusa, Nagoya, Aichi 464-8650, Japan.
| |
Collapse
|
49
|
Innate aminoglycoside resistance of Achromobacter xylosoxidans is due to AxyXY-OprZ, an RND-type multidrug efflux pump. Antimicrob Agents Chemother 2012; 57:603-5. [PMID: 23089757 DOI: 10.1128/aac.01243-12] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Achromobacter xylosoxidans is an innately multidrug-resistant pathogen which is emerging in cystic fibrosis (CF) patients. We characterized a new resistance-nodulation-cell division (RND)-type multidrug efflux pump, AxyXY-OprZ. This system is responsible for the intrinsic high-level resistance of A. xylosoxidans to aminoglycosides (tobramycin, amikacin, and gentamicin). Furthermore, it can extrude cefepime, carbapenems, some fluoroquinolones, tetracyclines, and erythromycin. Some of the AxyXY-OprZ substrates are major components widely used to treat pulmonary infections in CF patients.
Collapse
|
50
|
Gabani P, Prakash D, Singh OV. Emergence of antibiotic-resistant extremophiles (AREs). Extremophiles 2012; 16:697-713. [PMID: 22907125 DOI: 10.1007/s00792-012-0475-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/02/2012] [Indexed: 12/14/2022]
Abstract
Excessive use of antibiotics in recent years has produced bacteria that are resistant to a wide array of antibiotics. Several genetic and non-genetic elements allow microorganisms to adapt and thrive under harsh environmental conditions such as lethal doses of antibiotics. We attempt to classify these microorganisms as antibiotic-resistant extremophiles (AREs). AREs develop strategies to gain greater resistance to antibiotics via accumulation of multiple genes or plasmids that harbor genes for multiple drug resistance (MDR). In addition to their altered expression of multiple genes, AREs also survive by producing enzymes such as penicillinase that inactivate antibiotics. It is of interest to identify the underlying molecular mechanisms by which the AREs are able to survive in the presence of wide arrays of high-dosage antibiotics. Technologically, "omics"-based approaches such as genomics have revealed a wide array of genes differentially expressed in AREs. Proteomics studies with 2DE, MALDI-TOF, and MS/MS have identified specific proteins, enzymes, and pumps that function in the adaptation mechanisms of AREs. This article discusses the molecular mechanisms by which microorganisms develop into AREs and how "omics" approaches can identify the genetic elements of these adaptation mechanisms. These objectives will assist the development of strategies and potential therapeutics to treat outbreaks of pathogenic microorganisms in the future.
Collapse
Affiliation(s)
- Prashant Gabani
- Division of Biological and Health Sciences, University of Pittsburgh, 300 Campus Drive, Bradford, PA 16701, USA
| | | | | |
Collapse
|