1
|
Čuljak N, Bendelja K, Leboš Pavunc A, Butorac K, Banić M, Savić Mlakar A, Cvetić Ž, Hrsan J, Novak J, Šušković J, Kos B. In Vitro Analysis of Probiotic Properties Related to the Adaptation of Levilactobacillus brevis to Intestinal Microenvironment and Involvement of S-Layer Proteins. Int J Mol Sci 2025; 26:2425. [PMID: 40141069 PMCID: PMC11942123 DOI: 10.3390/ijms26062425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Although rare, the ability to produce surface S-layer proteins is beneficially associated with particular Lactobacillus strains being investigated as probiotics. Therefore, this work aimed to study specific probiotic functionalities of selected Levilactobacillus brevis strains MB1, MB2, MB13 and MB20, isolated from human milk microbiota, and to assess the contribution of S-proteins. Firstly, Rapid Annotation using Subsystem Technology revealed that cell wall-related genes were abundant in analysed L. brevis genomes. Furthermore, the results demonstrated that S-proteins mediate aggregation capacity and competitive exclusion of selected pathogens by L. brevis strains. The improvement of Caco-2 epithelial monolayer barrier function was demonstrated by the increase in JAM-A and occludin expressions when L. brevis strains or S-proteins were added, with the effect being most pronounced after treatment with MB2 and S-proteins of MB1. L. brevis strains, especially MB20, exerted the potential to adhere to recombinant human ZG16. Strain MB2 and MB20-S-proteins improved the barrier function of HT29 epithelial monolayer, as evidenced by increased ZG16 expression. Analysed L. brevis strains and S-proteins differentially affected the protein expression of IL-1β, IL-6 and IL-8, and IL-10 cytokines. The most prominent effect was observed by S-proteins of MB20, since IL-1β production was decreased while IL-10 production was significantly increased.
Collapse
Affiliation(s)
- Nina Čuljak
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.Č.); (A.L.P.); (K.B.); (M.B.); (J.H.); (J.Š.); (B.K.)
| | - Krešo Bendelja
- Center for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, 10000 Zagreb, Croatia; (K.B.); (A.S.M.); (Ž.C.)
| | - Andreja Leboš Pavunc
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.Č.); (A.L.P.); (K.B.); (M.B.); (J.H.); (J.Š.); (B.K.)
| | - Katarina Butorac
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.Č.); (A.L.P.); (K.B.); (M.B.); (J.H.); (J.Š.); (B.K.)
| | - Martina Banić
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.Č.); (A.L.P.); (K.B.); (M.B.); (J.H.); (J.Š.); (B.K.)
| | - Ana Savić Mlakar
- Center for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, 10000 Zagreb, Croatia; (K.B.); (A.S.M.); (Ž.C.)
| | - Željko Cvetić
- Center for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, 10000 Zagreb, Croatia; (K.B.); (A.S.M.); (Ž.C.)
| | - Jana Hrsan
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.Č.); (A.L.P.); (K.B.); (M.B.); (J.H.); (J.Š.); (B.K.)
| | - Jasna Novak
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.Č.); (A.L.P.); (K.B.); (M.B.); (J.H.); (J.Š.); (B.K.)
| | - Jagoda Šušković
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.Č.); (A.L.P.); (K.B.); (M.B.); (J.H.); (J.Š.); (B.K.)
| | - Blaženka Kos
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (N.Č.); (A.L.P.); (K.B.); (M.B.); (J.H.); (J.Š.); (B.K.)
| |
Collapse
|
2
|
Liu Y, Fang B, Wuri G, Lan H, Wang R, Sun Y, Zhao W, Hung WL, Zhang M. From Biofilm to Breath: The Role of Lacticaseibacillus paracasei ET-22 Postbiotics in Combating Oral Malodor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27203-27214. [PMID: 39589428 DOI: 10.1021/acs.jafc.4c07381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Previous studies demonstrated that sufferers with halitosis can be significantly improved with Lacticaseibacillus paracasei ET-22 (ET-22) postbiotics intervention. The objectives of this investigation were to identify the primary components responsible for inhibiting oral malodor. This study demonstrated that cell-free supernatants (CFSs) were more effective in inhibiting production of volatile sulfur compounds (VSCs). Untargeted metabolomics identified CFSs as primarily consisting of organic acids, lipids, peptides, and nucleotides. Among the potential active components, phenyllactic acid (PLA) and peptide GP(Hyp)GAG significantly inhibited microbial-induced VSCs production, with VSC concentrations reduced by 42.7% and 44.6%, respectively. Given the correlation between biofilms and halitosis, microstructural changes in biofilms were examined. PLA suppressed the biomass of the biofilm by 41.7%, while the biofilm thickness was reduced from 202.3 to 70.0 μm. GP(Hyp)GAG intervention reduced the abundance of Fusobacterium nucleatum and Streptococcus mutans within the biofilm, and the expression of biofilm-forming genes FadA and Gtfb were also suppressed by 41.8% and 59.4%. Additionally, the VSC production capacities were reduced due to the decrease in VSC producing bacteria (F. nucleatum, Prevotella intermedia, and Solobacterium moorei) and down-regulation of Cdl and Mgl genes. Collectively, the current study proved that PLA and GP(Hyp)GAG may be the main contributors to halitosis inhibition by ET-22 postbiotics.
Collapse
Affiliation(s)
- Yue Liu
- School of Food and Health, Beijing Technology and Business University, Beijing 100084, China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Guna Wuri
- School of Food and Health, Beijing Technology and Business University, Beijing 100084, China
| | - Hanglian Lan
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010100, China
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Yuhang Sun
- School of Food and Health, Beijing Technology and Business University, Beijing 100084, China
| | - Wen Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Wei-Lian Hung
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010100, China
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010100, China
| | - Ming Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100084, China
| |
Collapse
|
3
|
Nicola T, Wenger N, Xu X, Evans M, Qiao L, Rezonzew G, Yang Y, Jilling T, Margaroli C, Genschmer K, Willis K, Ambalavanan N, Blalock JE, Gaggar A, Lal CV. A lactobacilli-based inhaled live biotherapeutic product attenuates pulmonary neutrophilic inflammation. Nat Commun 2024; 15:7113. [PMID: 39160214 PMCID: PMC11333600 DOI: 10.1038/s41467-024-51169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease of prematurity. Exposure to noxious stimuli such as hyperoxia, volutrauma, and infection in infancy can have long-reaching impacts on lung health and predispose towards the development of conditions such as chronic obstructive pulmonary disease (COPD) in adulthood. BPD and COPD are both marked by lung tissue degradation, neutrophil influx, and decreased lung function. Both diseases also express a change in microbial signature characterized by firmicute depletion. However, the relationship between pulmonary bacteria and the mechanisms of downstream disease development has yet to be elucidated. We hypothesized that murine models of BPD would show heightened acetylated proline-glycine-proline (Ac-PGP) pathway and neutrophil activity, and through gain- and loss-of-function studies we show that Ac-PGP plays a critical role in driving BPD development. We further test a inhaled live biotherapeutic (LBP) using active Lactobacillus strains in in vitro and in vivo models of BPD and COPD. The Lactobacillus-based LBP is effective in improving lung structure and function, mitigating neutrophil influx, and reducing a broad swath of pro-inflammatory markers in these models of chronic pulmonary disease via the MMP-9/PGP (matrix metalloproteinase/proline-glycine-proline) pathway. Inhaled LBPs show promise in addressing common pathways of disease progression that in the future can be targeted in a variety of chronic lung diseases.
Collapse
Grants
- R01HL156275 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R35HL166433 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R35HL135710 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- K08 HL141652 NHLBI NIH HHS
- R44HL164156 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL156275 NHLBI NIH HHS
- R35 HL135710 NHLBI NIH HHS
- R35 HL166433 NHLBI NIH HHS
- R44 HL164156 NHLBI NIH HHS
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Teodora Nicola
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nancy Wenger
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xin Xu
- Division of Pulmonary, Allergy and Critical Care Medicine, Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Lung Health Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael Evans
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Luhua Qiao
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gabriel Rezonzew
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Youfeng Yang
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tamas Jilling
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Camilla Margaroli
- Division of Pulmonary, Allergy and Critical Care Medicine, Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Lung Health Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kristopher Genschmer
- Division of Pulmonary, Allergy and Critical Care Medicine, Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Lung Health Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kent Willis
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Namasivayam Ambalavanan
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Edwin Blalock
- Division of Pulmonary, Allergy and Critical Care Medicine, Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Lung Health Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amit Gaggar
- Division of Pulmonary, Allergy and Critical Care Medicine, Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Lung Health Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Birmingham VA Medical Center, Birmingham, AL, USA
| | - Charitharth Vivek Lal
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA.
- Lung Health Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Marnix Heersink Institute of Biomedical Innovation, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
4
|
Sagmeister T, Gubensäk N, Buhlheller C, Grininger C, Eder M, Ðordić A, Millán C, Medina A, Murcia PAS, Berni F, Hynönen U, Vejzović D, Damisch E, Kulminskaya N, Petrowitsch L, Oberer M, Palva A, Malanović N, Codée J, Keller W, Usón I, Pavkov-Keller T. The molecular architecture of Lactobacillus S-layer: Assembly and attachment to teichoic acids. Proc Natl Acad Sci U S A 2024; 121:e2401686121. [PMID: 38838019 PMCID: PMC11181022 DOI: 10.1073/pnas.2401686121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/26/2024] [Indexed: 06/07/2024] Open
Abstract
S-layers are crystalline arrays found on bacterial and archaeal cells. Lactobacillus is a diverse family of bacteria known especially for potential gut health benefits. This study focuses on the S-layer proteins from Lactobacillus acidophilus and Lactobacillus amylovorus common in the mammalian gut. Atomic resolution structures of Lactobacillus S-layer proteins SlpA and SlpX exhibit domain swapping, and the obtained assembly model of the main S-layer protein SlpA aligns well with prior electron microscopy and mutagenesis data. The S-layer's pore size suggests a protective role, with charged areas aiding adhesion. A highly similar domain organization and interaction network are observed across the Lactobacillus genus. Interaction studies revealed conserved binding areas specific for attachment to teichoic acids. The structure of the SlpA S-layer and the suggested incorporation of SlpX as well as its interaction with teichoic acids lay the foundation for deciphering its role in immune responses and for developing effective treatments for a variety of infectious and bacteria-mediated inflammation processes, opening opportunities for targeted engineering of the S-layer or lactobacilli bacteria in general.
Collapse
Affiliation(s)
- Theo Sagmeister
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
| | - Nina Gubensäk
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
| | | | | | - Markus Eder
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
| | - Anđela Ðordić
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
| | - Claudia Millán
- Structural Biology Unit, Institute of Molecular Biology of Barcelona, Spanish National Research Council, Barcelona08028, Spain
| | - Ana Medina
- Structural Biology Unit, Institute of Molecular Biology of Barcelona, Spanish National Research Council, Barcelona08028, Spain
| | - Pedro Alejandro Sánchez Murcia
- Laboratory of Computer-Aided Molecular Design, Division of Medicinal Chemistry, Otto-Loewi Research Center, Medical University of Graz, Graz, Austria8010
| | - Francesca Berni
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden2333, The Netherlands
| | - Ulla Hynönen
- Department of Basic Veterinary Sciences, Division of Microbiology and Epidemiology, University of Helsinki, Helsinki00100, Finland
| | - Djenana Vejzović
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
| | - Elisabeth Damisch
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
| | | | - Lukas Petrowitsch
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
| | - Monika Oberer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
- Field of Excellence BioHealth, University of Graz, Graz8010, Austria
- BioTechMed-Graz, University of Graz, Graz8010, Austria
| | - Airi Palva
- Department of Basic Veterinary Sciences, Division of Microbiology and Epidemiology, University of Helsinki, Helsinki00100, Finland
| | - Nermina Malanović
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
- Field of Excellence BioHealth, University of Graz, Graz8010, Austria
- BioTechMed-Graz, University of Graz, Graz8010, Austria
| | - Jeroen Codée
- Department of Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden2333, The Netherlands
| | - Walter Keller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
- Field of Excellence BioHealth, University of Graz, Graz8010, Austria
- BioTechMed-Graz, University of Graz, Graz8010, Austria
| | - Isabel Usón
- Structural Biology Unit, Institute of Molecular Biology of Barcelona, Spanish National Research Council, Barcelona08028, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona08003, Spain
| | - Tea Pavkov-Keller
- Institute of Molecular Biosciences, University of Graz, Graz, Austria8010
- Field of Excellence BioHealth, University of Graz, Graz8010, Austria
- BioTechMed-Graz, University of Graz, Graz8010, Austria
| |
Collapse
|
5
|
Luongo D, De Sena V, Maurano F, Rossi M. Modulation of Mouse Dendritic Cells In Vitro by Lactobacillus gasseri Postbiotic Proteins. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10292-6. [PMID: 38836988 DOI: 10.1007/s12602-024-10292-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/06/2024]
Abstract
Different lactobacilli are probiotics for their beneficial effects that confer to the host. Recently, some of these effects were associated with released metabolic products/constituents (postbiotics). In the present study, the potential immunomodulatory capacity of the probiotic Lactobacillus gasseri OLL2809 cell-free supernatant (sup) was investigated in murine bone marrow-derived dendritic cells (DCs). Bacteria induced significantly higher expression of all examined cytokines than those induced by the stimulatory lipopolysaccharide (LPS) itself. On the contrary, sup only induced the anti-inflammatory IL-10 similarly to LPS, whereas IL-12 and IL-6 secretions were stimulated at a lower level. Moreover, sup reduced the surface expression of the analyzed co-stimulatory markers CD40, CD80, and CD86. Treatments of sup with different digestive enzymes indicated the proteinaceous nature of these immunomodulatory metabolites. Western blot and immunoadsorption analyzes revealed cross-reactivity of sup with the surface-layer proteins (SLPs) isolated from OLL2809. Therefore, we directly tested the ability of OLL2809 SLPs to stimulate specifically cytokine expression in iDCs. Interestingly, we found that all tested cytokines were induced by SLPs and in a dose-dependent manner. In conclusion, our results highlighted distinct immune properties between L. gasseri OLL2809 and its metabolites, supporting the concept that bacterial viability is not an essential prerequisite to exert immunomodulatory effects.
Collapse
Affiliation(s)
- Diomira Luongo
- Institute of Food Sciences, National Research Council, Avellino, Italy.
| | - Vincenzo De Sena
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Francesco Maurano
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Mauro Rossi
- Institute of Food Sciences, National Research Council, Avellino, Italy
| |
Collapse
|
6
|
Lau LYJ, Quek SY. Probiotics: Health benefits, food application, and colonization in the human gastrointestinal tract. FOOD BIOENGINEERING 2024; 3:41-64. [DOI: 10.1002/fbe2.12078] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/29/2024] [Indexed: 01/04/2025]
Abstract
AbstractProbiotics have become increasingly popular over the past two decades due to the continuously expanding scientific evidence indicating their beneficial effects on human health. Therefore, they have been applied in the food industry to produce functional food, which plays a significant role in human health and reduces disease risk. However, maintaining the viability of probiotics and targeting the successful delivery to the gastrointestinal tract remain two challenging tasks in food applications. Specifically, this paper reviews the potentially beneficial properties of probiotics, highlighting the use and challenges of probiotics in food application and the associated health benefits. Of foremost importance, this paper also explores the potential underlying molecular mechanisms of the enhanced effect of probiotics on gastrointestinal epithelial cells, including a discussion on various surface adhesion‐related proteins on the probiotic cell surface that facilitate colonization.
Collapse
Affiliation(s)
- Li Ying Jessie Lau
- Food Science, School of Chemical Sciences The University of Auckland Auckland New Zealand
| | - Siew Young Quek
- Food Science, School of Chemical Sciences The University of Auckland Auckland New Zealand
| |
Collapse
|
7
|
Das A, Behera RN, Kapoor A, Ambatipudi K. The Potential of Meta-Proteomics and Artificial Intelligence to Establish the Next Generation of Probiotics for Personalized Healthcare. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17528-17542. [PMID: 37955263 DOI: 10.1021/acs.jafc.3c03834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The symbiosis of probiotic bacteria with humans has rendered various health benefits while providing nutrition and a suitable environment for their survival. However, the probiotics must survive unfavorable gut conditions to exert beneficial effects. The intrinsic resistance of probiotics to survive harsh conditions results from a myriad of proteins. Interaction of microbial proteins with the host is indispensable for modulating the gut microbiome, such as interaction with cell receptors and protective action against pathogens. The complex interplay of proteins should be unraveled by utilizing metaproteomic strategies. The contribution of probiotics to health is now widely accepted. However, due to the inconsistency of generalized probiotics, contemporary research toward precision probiotics has gained momentum for customized treatment. This review explores the application of metaproteomics and AI/ML algorithms in resolving multiomics data analysis and in silico prediction of microbial features for screening specific beneficial probiotic organisms. Implementing these integrative strategies could augment the potential of precision probiotics for personalized healthcare.
Collapse
Affiliation(s)
- Arpita Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Rama N Behera
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ayushi Kapoor
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Kiran Ambatipudi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
8
|
An M, Lim YH. Surface-exposed chaperonin 60 derived from Propionibacterium freudenreichii MJ2 inhibits adipogenesis by decreasing the expression of C/EBPα/PPARγ. Sci Rep 2023; 13:19251. [PMID: 37935755 PMCID: PMC10630399 DOI: 10.1038/s41598-023-46436-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023] Open
Abstract
Recent studies have shown that the health benefits of probiotics are not limited to those offered by living bacteria. It was reported that both live and killed cells of Propionibacterium freudenreichii MJ2 (MJ2) isolated from raw milk showed antiobesity activity in 3T3-L1 cells and high-fat diet-induced obese mice. This study was aimed at identifying the active component(s) responsible for the antiadipogenic activity of MJ2. Cell wall, surface protein, and cytoplasmic fractions of MJ2 were investigated for their inhibitory effects on adipogenesis in 3T3-L1 cells. Adipocytes treated with the surface protein fraction showed significantly lower lipid accumulation. Using the MASCOT algorithm following LC-MS/MS analysis, 131 surface proteins were identified and they were principally classified into three categories (network clusters related to ribosomes, carbon metabolism, and chaperones). Among them, chaperonin 60 (Cpn60) was selected as a potential candidate protein. Cpn60 inhibited lipid accumulation and adipogenesis during the early period of differentiation (days 0-2) and decreased expression of genes related to adipogenesis (Pparg and Cebpa) and lipogenesis (Fas and Scd1). The expression of Gata2/3, which suppresses adipogenesis, significantly increased in Cpn60-treated cells. Moreover, the nuclear translocation of C/EBPβ was inhibited by Cpn60 treatment. In conclusion, Cpn60, a surface protein in MJ2, shows antiadipogenic activity by reducing the expression of C/EBPβ through the upregulation of Gata2/3 expression followed by downregulation of Pparg and Cebpa expression.
Collapse
Affiliation(s)
- Mirae An
- Department of Healthcare Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Young-Hee Lim
- Department of Healthcare Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea.
- School of Biosystems and Biomedical Sciences, Korea University, Seoul, 02841, Republic of Korea.
- Department of Laboratory Medicine, Korea University Guro Hospital, Seoul, 08308, Republic of Korea.
| |
Collapse
|
9
|
Choudhary R, Singh KS, Bisht S, Kumar S, Mohanty AK, Grover S, Kaushik JK. Host-microbe interaction and pathogen exclusion mediated by an aggregation-prone surface layer protein of Lactobacillus helveticus. Int J Biol Macromol 2023:125146. [PMID: 37271267 DOI: 10.1016/j.ijbiomac.2023.125146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/12/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023]
Abstract
Probiotic surface layer proteins (Slps) have multiple functions and bacterial adhesion to host cells is one of them. The precise role of Slps in cellular adhesion is not well understood due to its low native protein yield and self-aggregative nature. Here, we report the recombinant expression and purification of biologically active Slp of Lactobacillus helveticus NCDC 288 (SlpH) in high yield. SlpH is a highly basic protein (pI = 9.4), having a molecular weight of 45 kDa. Circular Dichroism showed a prevalence of beta-strands in SlpH structure and resistance to low pH. SlpH showed binding to human intestinal tissue, enteric Caco-2 cell line, and porcine gastric mucin, but not with fibronectin, collagen type IV and laminin. SlpH inhibited the binding of the enterotoxigenic E. coli by 70 % and 76 % and that of Salmonella Typhimurium SL1344 by 71 % and 75 % to enteric Caco-2 cell line in the exclusion and competition assays, respectively. The pathogen exclusion and competition activity and tolerance to harsh gastrointestinal conditions show the potential for developing SlpH as a prophylactic or therapeutic agent against enteric pathogens.
Collapse
Affiliation(s)
- Ritu Choudhary
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, (India)
| | - Kumar Siddharth Singh
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, (India)
| | - Sonu Bisht
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, (India)
| | - Sudarshan Kumar
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, (India)
| | - Ashok Kumar Mohanty
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, (India)
| | - Sunita Grover
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, (India)
| | - Jai Kumar Kaushik
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal 132001, (India).
| |
Collapse
|
10
|
Assandri MH, Malamud M, Trejo FM, Serradell MDLA. S-layer proteins as immune players: tales from pathogenic and non-pathogenic bacteria. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 4:100187. [PMID: 37064268 PMCID: PMC10102220 DOI: 10.1016/j.crmicr.2023.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
In bacteria, as in other microorganisms, surface compounds interact with different pattern recognition receptors expressed by host cells, which usually triggers a variety of cellular responses that result in immunomodulation. The S-layer is a two-dimensional macromolecular crystalline structure formed by (glyco)-protein subunits that covers the surface of many species of Bacteria and almost all Archaea. In Bacteria, the presence of S-layer has been described in both pathogenic and non-pathogenic strains. As surface components, special attention deserves the role that S-layer proteins (SLPs) play in the interaction of bacterial cells with humoral and cellular components of the immune system. In this sense, some differences can be predicted between pathogenic and non-pathogenic bacteria. In the first group, the S-layer constitutes an important virulence factor, which in turn makes it a potential therapeutic target. For the other group, the growing interest to understand the mechanisms of action of commensal microbiota and probiotic strains has prompted the studies of the role of the S-layer in the interaction between the host immune cells and bacteria bearing this surface structure. In this review, we aim to summarize the main latest reports and the perspectives of bacterial SLPs as immune players, focusing on those from pathogenic and commensal/probiotic most studied species.
Collapse
|
11
|
Surface Layer Protein Pattern of Levilactobacillus brevis Strains Investigated by Proteomics. Nutrients 2022; 14:nu14183679. [PMID: 36145058 PMCID: PMC9504196 DOI: 10.3390/nu14183679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
The outermost constituent of many bacterial cells is represented by an S-layer, i.e., a semiporous lattice-like layer composed of self-assembling protein subunits called S-layer proteins (Slps). These proteins are involved in several processes, such as protecting against environmental stresses, mediating bacterial adhesion to host cells, and modulating gut immune response. Slps may also act as a scaffold for the external display of additional cell surface proteins also named S-layer associated proteins (SLAPs). Levilactobacillus brevis is an S-layer forming lactic acid bacterium present in many different environments, such as sourdough, milk, cheese, and the intestinal tract of humans and animals. This microorganism exhibits probiotic features including the inhibition of bacterial infection and the improvement of human immune function. The potential role of Slps in its probiotic and biotechnological features was documented. A shotgun proteomic approach was applied to identify in a single experiment both the Slps and the SLAPs pattern of five different L. brevis strains isolated from traditional sourdoughs of the Southern Italian region. This study reveals that these closely related strains expressed a specific pattern of surface proteins, possibly affecting their peculiar properties.
Collapse
|
12
|
Sanozky-Dawes R, Barrangou R. Lactobacillus, glycans and drivers of health in the vaginal microbiome. MICROBIOME RESEARCH REPORTS 2022; 1:18. [PMID: 38046360 PMCID: PMC10688826 DOI: 10.20517/mrr.2022.03] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/08/2022] [Accepted: 04/29/2022] [Indexed: 12/05/2023]
Abstract
A microbiome consists of microbes and their genomes, encompassing bacteria, viruses, fungi, protozoa, archaea, and eukaryotes. These elements interact dynamically in the specific environment in which they reside and evolve. In the past decade, studies of various microbiomes have been prevalent in the scientific literature, accounting for the shift from culture-dependent to culture-independent identification of microbes using new high-throughput sequencing technologies that decipher their composition and sometimes provide insights into their functions. Despite tremendous advances in understanding the gut microbiome, relatively little attention has been devoted to the vaginal environment, notably regarding the ubiquity and diversity of glycans which denote the significant role they play in the maintenance of homeostasis. Hopefully, emerging technologies will aid in the determination of what is a healthy vaginal microbiome, and provide insights into the roles of Lactobacillus, glycans and microbiome-related drivers of health and disease.
Collapse
Affiliation(s)
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
13
|
Spatiotemporal bio-shielding of bacteria through consolidated geometrical structuring. NPJ Biofilms Microbiomes 2022; 8:37. [PMID: 35534500 PMCID: PMC9085766 DOI: 10.1038/s41522-022-00302-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
The probiotic bacterium Lactobacillus plantarum is often reckoned as a ‘generalist’ for its ability to adapt and survive in diverse ecological niches. The genomic signatures of L. plantarum have shown its intricate evolutionary ancestry and dynamic lifestyles. Here, we report on a unique geometrical arrangement of the multicellular population of L. plantarum cells. Prominently, a phenomenon of the cone-shaped colony formation and V-shaped cell chaining are discovered in response to the acidic-pH environment. Moreover, subsequent cold stress response triggers an unusual cellular arrangement of consolidated bundles, which appeared to be independently governed by a small heat shock protein (HSP 1). We further report that the V-shaped L. plantarum chaining demonstrates potent antagonistic activity against Candida albicans, a pathogenic yeast, both in vitro and in a Caenorhabditis elegans co-infection model. Finally, we deduce that the multifaceted traits manifested by this probiotic bacterium is an outcome of its dynamic flexibility and cellular heterogeneity.
Collapse
|
14
|
Kawahara T, Shimizu I, Tanaka Y, Tobita K, Tomokiyo M, Watanabe I. Lactobacillus crispatus Strain KT-11 S-Layer Protein Inhibits Rotavirus Infection. Front Microbiol 2022; 13:783879. [PMID: 35273580 PMCID: PMC8902352 DOI: 10.3389/fmicb.2022.783879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
S-layer proteins (SLPs), which are present in the external layer of certain strains of lactic acid bacteria isolated from the intestinal tract, are known to recognize and bind to specific proteins and glycan structures and contribute to adsorption to the host intestinal mucosa. The binding properties of certain SLPs are considered to exert a competitive inhibitory effect on infection because similar properties are involved in the infection mechanisms of several viruses. However, little is known regarding whether SLPs directly inhibit viral infection. In the present study, we investigated the effect of an SLP of the Lactobacillus crispatus KT-11 strain, a probiotic strain isolated from a healthy human infant, on human rotavirus infection. The impact of KT-11 lithium chloride extract (KT-11 LE), which contains SLP, on the infection of the P[4] genotype human rotavirus strain DS-1 was evaluated by monitoring the amplification of viral protein 6 (VP6) expression in human intestinal epithelial Caco-2 cells by quantitative reverse transcription-polymerase chain reaction assay after infection. KT-11 LE showed a significant suppressive effect on DS-1 infection in a dose-dependent manner with pre-infection treatment, whereas post-infection treatment was not effective. A 45 KDa protein isolated from KT-11 LE was investigated for homology using the BLAST database and was found to be a novel SLP. KT-11 SLP concentrate (KT-11 SLP) significantly inhibited the proliferative process of the DS-1 strain but not that of the P[8] genotype human rotavirus strain Wa. KT-11 SLP exerted significant inhibitory effect on DS-1 infection by pre-infection treatment even after digestion with gastric juice up to 2 h. Our results provided crucial evidence that SLPs from certain Lactobacillus strains can inhibit human rotavirus infection of intestinal epithelial cells.
Collapse
Affiliation(s)
| | - Issei Shimizu
- Faculty of Agriculture, Shinshu University, Nagano, Japan
| | - Yuuki Tanaka
- Faculty of Agriculture, Shinshu University, Nagano, Japan
| | | | | | | |
Collapse
|
15
|
Fu M, Mao K, Gao J, Wang X, Sadiq FA, Li J, Sang Y. Characteristics of surface layer protein from Lactobacillus kefiri HBA20 and the role in mediating interactions with Saccharomyces cerevisiae Y8. Int J Biol Macromol 2021; 201:254-261. [PMID: 34952095 DOI: 10.1016/j.ijbiomac.2021.12.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 11/18/2022]
Abstract
In this study, the surface layer protein (SLP) from Lactobacillus kefiri HBA20 was characterized. The SLP was extracted by 5 M LiCl. The molecular mass of the SLP was approximately 64 kDa as analyzed via SDS-PAGE. The surface morphology and the adhesion potential of L. kefiri HBA20 in the absence and presence of SLP were measured by AFM. Moreover, the protein secondary structure was evaluated by using circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR), respectively. SLP had high β-sheet contents and low content of α-helix. Thermal analysis of SLP of Lactobacillus kefiri HBA20 exhibited one transition peak at 129.64 °C. Furthermore, SEM measurements were showed that after the SLP were removed from the cell surface, the coaggregation ability with Saccharomyces cerevisiae Y8 of the strain was significantly reduced. In conclusion, the SLP of Lactobacillus kefiri HBA20 has a stable structure and the ability of adhesion to yeast. Molecular docking study revealed that mannan bind with the hydrophobic residues of SLP. Our results will help further understanding of the new surface layer protein and the interaction between L. kefiri and S. cerevisiae.
Collapse
Affiliation(s)
- Mengqi Fu
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Kemin Mao
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jie Gao
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xianghong Wang
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | | | - Jiale Li
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yaxin Sang
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
16
|
Jastrząb R, Graczyk D, Siedlecki P. Molecular and Cellular Mechanisms Influenced by Postbiotics. Int J Mol Sci 2021; 22:ijms222413475. [PMID: 34948270 PMCID: PMC8707144 DOI: 10.3390/ijms222413475] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, commensal bacteria colonizing the human body have been recognized as important determinants of health and multiple pathologic conditions. Among the most extensively studied commensal bacteria are the gut microbiota, which perform a plethora of functions, including the synthesis of bioactive products, metabolism of dietary compounds, and immunomodulation, both through attenuation and immunostimulation. An imbalance in the microbiota population, i.e., dysbiosis, has been linked to many human pathologies, including various cancer types and neurodegenerative diseases. Targeting gut microbiota and microbiome-host interactions resulting from probiotics, prebiotics, and postbiotics is a growing opportunity for the effective treatment of various diseases. As more research is being conducted, the microbiome field is shifting from simple descriptive analysis of commensal compositions to more molecular, cellular, and functional studies. Insight into these mechanisms is of paramount importance for understanding and modulating the effects that microbiota, probiotics, and their derivatives exert on host health.
Collapse
|
17
|
Braschi G, D’Alessandro M, Gottardi D, Siroli L, Patrignani F, Lanciotti R. Effects of Sub-Lethal High Pressure Homogenization Treatment on the Adhesion Mechanisms and Stress Response Genes in Lactobacillus acidophilus 08. Front Microbiol 2021; 12:651711. [PMID: 34122365 PMCID: PMC8193580 DOI: 10.3389/fmicb.2021.651711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/22/2021] [Indexed: 11/20/2022] Open
Abstract
Cell surface hydrophobicity (CSH) and adhesion are very important phenotypical traits for probiotics that confer them a competitive advantage for the resilience in the human gastrointestinal tract. This study was aimed to understand the effects over time of a 50 MPa hyperbaric treatment on the surface properties of Lactobacillus acidophilus 08 including CSH, autoaggregation, and in vitro adhesion (mucin layer and Caco-2 cells). Moreover, a link between the hurdle applied and the expression of genes involved in the general stress response (groEL and clpP) and adhesion processes (efTu and slpA) was evaluated. High pressure homogenization (HPH) at 50 MPa significantly increased the CSH percentage (H%), autoaggregation and in vitro adhesion on mucin of L. acidophilus 08 cells compared with the untreated cells. Moreover, the hyperbaric hurdle induced an upregulation of the stress response genes groEL and ef-TU together with a down regulation of the clpP and S-layer slpA genes. Looking at the protein profile, HPH-treatment showed an increase in the number or intensity of protein bands at high and low molecular weights.
Collapse
Affiliation(s)
- Giacomo Braschi
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | | | - Davide Gottardi
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Lorenzo Siroli
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena, Italy
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena, Italy
| |
Collapse
|
18
|
Probiotics in Fish Nutrition—Long-Standing Household Remedy or Native Nutraceuticals? WATER 2021. [DOI: 10.3390/w13101348] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the last decades, aquaculture production increased rapidly. The future development of the industry highly relies on the sustainable utilization of natural resources. The need for improving disease resistance, growth performance, food conversion, and product safety for human consumption has stimulated the application of probiotics in aquaculture. Probiotics increase growth and feed conversion, improve health status, raise disease resistance, decrease stress susceptibility, and improve general vigor. Currently, most probiotics still originate from terrestrial sources rather than fish. However, host-associated (autochthonous) probiotics are likely more persistent in the gastrointestinal tract of fish and may, therefore, exhibit longer-lasting effects on the host. Probiotic candidates are commonly screened in in vitro assays, but the transfer to in vivo assessment is often problematic. In conclusion, modulation of the host-associated microbiome by the use of complex probiotics is promising, but a solid understanding of the interactions involved is only in its infancy and requires further research. Probiotics could be used to explore novel ingredients such as chitin-rich insect meal, which cannot be digested by the fish host alone. Most importantly, probiotics offer the opportunity to improve stress and disease resistance, which is among the most pressing problems in aquaculture.
Collapse
|
19
|
Shubha JR, Tripathi P, Somashekar BS, Kurrey N, Bhatt P. Woodfordia fruticosa extract supplementation stimulates the growth of Lacticaseibacillus casei and Lacticaseibacillus rhamnosus with adapted intracellular and extracellular metabolite pool. J Appl Microbiol 2021; 131:2994-3007. [PMID: 33973306 DOI: 10.1111/jam.15132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/15/2021] [Accepted: 04/30/2021] [Indexed: 01/24/2023]
Abstract
AIM To investigate the effect of Woodfordia fruticosa extract (WfE) on two probiotic bacteria: Lacticaseibacillus casei and Lacticaseibacillus rhamnosus. METHODS AND RESULTS WfE supplementation at 0·5 and 1 mg ml-1 stimulated probiotic growth (P < 0·05), enhanced adhesion to CaCO2 cells (P < 0·05) while inhibiting foodborne pathogens Escherichia coli and Staphylococcus aureus (P < 0·05). 1 H-NMR based metabolomic studies indicated higher glucose : lactate and glucose : acetate in the extracellular matrix with significant variation (P < 0·05) in intracellular concentrations of lactate, acetate, glutamate, dimethylamine, phenylalanine, branched-chain amino acids and total cellular lipid composition. Fatty acid methyl ester analysis showed a chemical shift from saturated to unsaturated lipids with WfE supplementation. PCA plots indicated clear discrimination between test groups, highlighting variation in metabolite pool in response to WfE supplementation. CONCLUSION Phytonutrient-rich WfE exhibited prebiotic-like attributes, and probiotic bacteria showed altered metabolite pools as an adaptive mechanism. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report providing insights into the prebiotic-like activity of WfE on gut representative probiotics. The extended metabolomic studies shed light on the positive interaction between phytonutrients and beneficial bacteria that possibly help them to adapt to a phytonutrient-rich WfE environment. WfE with potential prebiotic attributes can be used in the development of novel synbiotic functional products targeting gut microbial modulation to improve health.
Collapse
Affiliation(s)
- J R Shubha
- Microbiology and Fermentation Technology Department, CSIR-CFTRI, Mysuru, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - P Tripathi
- Spices and Flavor Science Department, CSIR-CFTRI, Mysuru, India
| | | | - N Kurrey
- Department of Biochemistry, CSIR-CFTRI, Mysuru, India
| | - P Bhatt
- Microbiology and Fermentation Technology Department, CSIR-CFTRI, Mysuru, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
20
|
Król-Górniak A, Pomastowski P, Railean-Plugaru V, Žuvela P, Wong MW, Pauter K, Szultka-Młyńska M, Buszewski B. The study of the molecular mechanism of Lactobacillus paracasei clumping via divalent metal ions by electrophoretic separation. J Chromatogr A 2021; 1652:462127. [PMID: 34214833 DOI: 10.1016/j.chroma.2021.462127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 11/18/2022]
Abstract
In this work, the molecular mechanism of Lactobacillus paracasei bio-colloid clumping under divalent metal ions treatment such as zinc, copper and magnesium at constant concentrations was studied. The work involved experimental (electrophoretic - capillary electrophoresis in pseudo-isotachophoresis mode, spectroscopic and spectrometric - FT-IR and MALDI-TOF-MS, microscopic - fluorescent microscopy, and flow cytometry) and theoretical (DFT calculations of model complex systems) characterization. Electrophoretic results have pointed out the formation of aggregates under the Zn2+ and Cu2+ modification, whereas the use of the Mg2+ allowed focusing the zone of L. paracasei biocolloid. According to the FT-IR analysis, the major functional groups involved in the aggregation are deprotonated carboxyl and amide groups derived from the bacterial surface structure. Nature of the divalent metal ions was shown to be one of the key factors influencing the bacterial aggregation process. Proteomic analysis showed that surface modification had a considerable impact on bacteria molecular profiles and protein expression, mainly linked to the activation of carbohydrate and nucleotides metabolism as well with the transcription regulation and membrane transport. Density-functional theory (DFT) calculations of modeled Cu2+, Mg2+ and Zn2+ coordination complexes support the interaction between the divalent metal ions and bacterial proteins. Consequently, the possible mechanism of the aggregation phenomenon was proposed. Therefore, this comprehensive study could be further applied in evaluation of biocolloid aggregation under different types of metal ions.
Collapse
Affiliation(s)
- Anna Król-Górniak
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 7 Gagarina Str., 87-100 Torun, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 7 Gagarina Str., 87-100 Torun, Poland
| | - Viorica Railean-Plugaru
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 7 Gagarina Str., 87-100 Torun, Poland
| | - Petar Žuvela
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Ming Wah Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Katarzyna Pauter
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 7 Gagarina Str., 87-100 Torun, Poland
| | - Małgorzata Szultka-Młyńska
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 7 Gagarina Str., 87-100 Torun, Poland
| | - Bogusław Buszewski
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 7 Gagarina Str., 87-100 Torun, Poland.
| |
Collapse
|
21
|
Han S, Lu Y, Xie J, Fei Y, Zheng G, Wang Z, Liu J, Lv L, Ling Z, Berglund B, Yao M, Li L. Probiotic Gastrointestinal Transit and Colonization After Oral Administration: A Long Journey. Front Cell Infect Microbiol 2021; 11:609722. [PMID: 33791234 PMCID: PMC8006270 DOI: 10.3389/fcimb.2021.609722] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Orally administered probiotics encounter various challenges on their journey through the mouth, stomach, intestine and colon. The health benefits of probiotics are diminished mainly due to the substantial reduction of viable probiotic bacteria under the harsh conditions in the gastrointestinal tract and the colonization resistance caused by commensal bacteria. In this review, we illustrate the factors affecting probiotic viability and their mucoadhesive properties through their journey in the gastrointestinal tract, including a discussion on various mucosadhesion-related proteins on the probiotic cell surface which facilitate colonization.
Collapse
Affiliation(s)
- Shengyi Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanmeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaojiao Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqiu Fei
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziyuan Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing, China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongxin Ling
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Björn Berglund
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Mingfei Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
22
|
Wakai T, Kano C, Karsens H, Kok J, Yamamoto N. Functional role of surface layer proteins of Lactobacillus acidophilus L-92 in stress tolerance and binding to host cell proteins. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2021; 40:33-42. [PMID: 33520567 PMCID: PMC7817507 DOI: 10.12938/bmfh.2020-005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/08/2020] [Indexed: 02/02/2023]
Abstract
Lactobacillus acidophilus surface layer proteins (SLPs) self-assemble
into a monolayer that is non-covalently bound to the outer surface of the cells. There
they are in direct contact with the environment, environmental stressors and gut
components of the host in which the organism resides. The role of L.
acidophilus SLPs is not entirely understood, although SLPs seem to be essential
for bacterial growth. We constructed three L. acidophilus L-92 strains,
each expressing a mutant of the most abundant SLP, SlpA. Each carried a 12-amino acid
c-myc epitope substitution at a different position in the protein. A strain was also
obtained that expressed the SlpA paralog SlpB from an originally silent
slpB gene. All four strains behaved differently with respect to growth
under various stress conditions, such as the presence of salt, ox gall or ethanol,
suggesting that SlpA affects stress tolerance in L. acidophilus L-92.
Also, the four mutants showed differential in vitro binding ability to
human host cell proteins such as uromodulin or dendritic cell (DC)-specific intercellular
adhesion molecule-3 grabbing non-integrin (DC-SIGN). Furthermore, co-culture of murine
immature DCs with a mutant strain expressing one of the recombinant SlpA proteins changed
the concentrations of the cytokines IL-10 and IL-12. Our data suggest that SlpA and SlpB
of L. acidophilus participate in bacterial stress tolerance and binding
to uromodulin or DC-SIGN, possibly leading to effective immune-modification.
Collapse
Affiliation(s)
- Taketo Wakai
- Core Technology Laboratories, Asahi Quality and Innovations, Ltd., 5-11-10 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa, Japan
| | - Chie Kano
- Core Technology Laboratories, Asahi Quality and Innovations, Ltd., 5-11-10 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa, Japan
| | - Harma Karsens
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Linnaeusborg, Nijenborgh 7, Groningen, The Netherlands
| | - Jan Kok
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Linnaeusborg, Nijenborgh 7, Groningen, The Netherlands
| | - Naoyuki Yamamoto
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa, Japan
| |
Collapse
|
23
|
In Vivo Transcriptome of Lactobacillus acidophilus and Colonization Impact on Murine Host Intestinal Gene Expression. mBio 2021; 12:mBio.03399-20. [PMID: 33500337 PMCID: PMC7858073 DOI: 10.1128/mbio.03399-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lactobacillus acidophilus NCFM is a probiotic strain commonly used in dairy products and dietary supplements. Postgenome in vitro studies of NCFM thus far have linked potential key genotypes to its probiotic-relevant attributes, including gut survival, prebiotic utilization, host interactions, and immunomodulatory activities. To corroborate and extend beyond previous in vivo and in vitro functional studies, we employed a dual RNA sequencing (RNA-seq) transcriptomic approach to identify genes potentially driving the gut fitness and activities of L. acidophilus NCFM in vivo, and in parallel, examine the ileal transcriptional response of its murine hosts during monocolonization. Spatial expression profiling of NCFM from the ileum through the colon revealed a set of 134 core genes that were consistently overexpressed during gut transit. These in vivo core genes are predominantly involved in the metabolism of carbohydrates, amino acids, and nucleotides, along with mucus-binding proteins and adhesion factors, confirming their functionally important roles in nutrient acquisition and gut retention. Functional characterization of the highly expressed major S-layer-encoding gene established its indispensable role as a cell shape determinant and maintenance of cell surface integrity, essential for viability and probiotic attributes. Host colonization by L. acidophilus resulted in significant downregulation of several proinflammatory cytokines and tight junction proteins. Genes related to redox signaling, mucin glycosylation, and circadian rhythm modulation were induced, suggesting impacts on intestinal development and immune functions. Metagenomic analysis of NCFM populations postcolonization demonstrated the genomic stability of L. acidophilus as a gut transient and further established its safety as a probiotic and biotherapeutic delivery platform.IMPORTANCE To date, our basis for comprehending the probiotic mechanisms of Lactobacillus acidophilus, one of the most widely consumed probiotic microbes, was largely limited to in vitro functional genomic studies. Using a germfree murine colonization model, in vivo-based transcriptional studies provided the first view of how L. acidophilus survives in the mammalian gut environment, including gene expression patterns linked to survival, efficient nutrient acquisition, stress adaptation, and host interactions. Examination of the host ileal transcriptional response, the primary effector site of L. acidophilus, has also shed light into the mechanistic roles of this probiotic microbe in promoting anti-inflammatory responses, maintaining intestinal epithelial homeostasis and modulation of the circadian-metabolic axis in its host.
Collapse
|
24
|
Marcos-Fernández R, Ruiz L, Blanco-Míguez A, Margolles A, Sánchez B. Precision modification of the human gut microbiota targeting surface-associated proteins. Sci Rep 2021; 11:1270. [PMID: 33446697 PMCID: PMC7809461 DOI: 10.1038/s41598-020-80187-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023] Open
Abstract
This work describes a new procedure that allows the targeted modification of the human gut microbiota by using antibodies raised against bacterial surface-associated proteins specific to the microorganism of interest. To this end, a polyclonal antibody recognising the surface-associated protein Surface Layer Protein A of Lactobacillus acidophilus DSM20079T was developed. By conjugating this antibody with fluorescent probes and magnetic particles, we were able to specifically identify this bacterium both in a synthetic, and in real gut microbiotas by means of a flow cytometry approach. Further, we demonstrated the applicability of this antibody to deplete complex human gut microbiotas from L. acidophilus in a single step. L. acidophilus was found to interact with other bacteria both in synthetic and in real microbiotas, as reflected by its concomitant depletion together with other species. Further optimization of the procedure including a trypsin step enabled to achieve the selective and complete isolation of this species. Depleting a single species from a gut microbiota, using antibodies recognizing specific cell surface elements of the target organism, will open up novel ways to tackle research on the specific immunomodulatory and metabolic contributions of a bacterium of interest in the context of a complex human gut microbiota, including the investigation into therapeutic applications by adding/depleting a key bacterium. This represents the first work in which an antibody/flow-cytometry based application enabled the targeted edition of human gut microbiotas, and represents the basis for the design of precision microbiome-based therapies.
Collapse
Affiliation(s)
- Raquel Marcos-Fernández
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Aitor Blanco-Míguez
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain.
| | - Borja Sánchez
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain.
| |
Collapse
|
25
|
Zuo F, Marcotte H. Advancing mechanistic understanding and bioengineering of probiotic lactobacilli and bifidobacteria by genome editing. Curr Opin Biotechnol 2021; 70:75-82. [PMID: 33445135 DOI: 10.1016/j.copbio.2020.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 12/01/2022]
Abstract
Typical traditional probiotics lactobacilli and bifidobacteria are gaining great interest to be developed as living diagnostics and therapeutics for improving human health. However, the mechanistic basis underlying their inherent health beneficial property remain incompletely understood which can slow down the translational pipeline in the functional food and pharmaceutical field. Efficient genome editing will advance the understanding of the molecular mechanism of the probiotics' physiological properties and their interaction with the host and the host microbiota, thereby further promote the development of next-generation designer probiotics with improved robustness and tailored functionalities. With the expansion of genome editing strategies such as CRISPR-Cas-based tools and IPSD assisted genome engineering as well as other synthetic biology technologies, the research and application of these health-promoting bacteria for the food and pharmaceutical industry will be further enhanced.
Collapse
Affiliation(s)
- Fanglei Zuo
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm SE-141 86, Sweden; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm SE-106 91, Sweden.
| | - Harold Marcotte
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm SE-141 86, Sweden
| |
Collapse
|
26
|
Tobita K, Hoshi F, Ohki T, Watanabe I. Protein denature extracts of Lactobacillus crispatus KT-11 strain promote interleukin 12p40 production via Toll-like receptor 2 in J774.1 cell culture. J Food Biochem 2020; 45:e13599. [PMID: 33368417 DOI: 10.1111/jfbc.13599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/28/2020] [Accepted: 12/12/2020] [Indexed: 12/13/2022]
Abstract
The objective of the present study is to investigate the mechanism and the cell components of Lactobacillus crispatus KT-11 strain (KT-11) that induce interleukin (IL)-12p40 production. IL-12p40 production induced by KT-11 was decreased in the presence of inhibitors of extracellular signal-regulated kinase or nuclear factor kappa B. Guanidine hydrochloride, urea or lithium chloride extract of KT-11 induced IL-12p40 production, but production was suppressed in the presence of Toll-like receptor 2-specific neutralizing antibody. These findings suggest that the protein denature extracts of KT-11 promote IL-12p40 production via Toll-like receptor 2 in J774.1 cells. PRACTICAL APPLICATIONS: Heat-treated lactic acid bacteria are added to some foods because it is easier to store and transport, and have less interference with other food ingredients compared with living lactic acid bacteria. Heat-treated Lactobacillus crispatus KT-11 strain (KT-11) is included in some foods because of good handling characteristics and good dispersibility in the food product. We have previously reported that the administration of KT-11 led to beneficial health effects through the regulation of the immune system in mice, but the mechanism is not clear. We found that protein denature extracts, which may include proteins such as SLP and SLAPs, of KT-11 cells promoted IL-12p40 production via TLR2 in the J774.1 cell culture. This result will contribute to providing more effective lactic acid bacteria functional food.
Collapse
|
27
|
Uriza PJ, Trautman C, Palomino MM, Fina Martin J, Ruzal SM, Roset MS, Briones G. Development of an Antigen Delivery Platform Using Lactobacillus acidophilus Decorated With Heterologous Proteins: A Sheep in Wolf's Clothing Story. Front Microbiol 2020; 11:509380. [PMID: 33193117 PMCID: PMC7652789 DOI: 10.3389/fmicb.2020.509380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 10/01/2020] [Indexed: 01/18/2023] Open
Abstract
S-layers are bacterial structures present on the surface of several Gram-positive and Gram-negative bacteria that play a role in bacterial protection. In Lactobacillus acidophilus (L. acidophilus ATCC 4356), the S-layer is mainly composed of the protein SlpA. A tandem of two copies of the protein domain SLP-A (pfam: 03217) was identified at the C-terminal of SlpA, being this double SLP-A protein domain (in short dSLP-A) necessary and sufficient for the association of the protein to the L. acidophilus cell wall. A variety of proteins fused to the dSLP-A domain were able to spontaneously associate with high affinity to the cell wall of L. acidophilus and Bacillus subtilis var. natto, in a process that we termed decoration. Binding of dSLP-A-containing-proteins to L. acidophilus was stable at conditions that mimic the gastrointestinal transit in terms of pH, proteases, and bile salts. To evaluate if protein decoration of L. acidophilus can be adapted to generate an oral vaccine platform, a chimeric antigen derived from the bacterial pathogen Shiga-toxin-producing Escherichia coli (STEC) was constructed by fusing the sequences encoding the polypeptides EspA36–192, Intimin653–953, Tir240–378, and H7 flagellin352–374 (EITH7) to the dSLP-A domain (EITH7-dSLP-A). Recombinantly expressed EITH7-dSLP-A protein was affinity purified and combined with L. acidophilus cultures to allow the association of the chimeric antigen to the bacterial surface. EITH7-decorated L. acidophilus was orally administered to BALB/c mice and the induction of anti-EITH7 specific antibodies in sera and feces determined by ELISA. Mice presenting significantly higher anti-EITH7 antibodies titers were able to control more efficiently an experimental STEC infection than mice that received the non-decorated L. acidophilus carrier, indicating that antigen-decorated L. acidophilus can be adapted as a mucosal immunization delivery platform to elicit a protective immune response for vaccine purposes.
Collapse
Affiliation(s)
- Paula J Uriza
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, IIB-UNSAM (IIBIO-CONICET), Buenos Aires, Argentina
| | - Cynthia Trautman
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, IIB-UNSAM (IIBIO-CONICET), Buenos Aires, Argentina
| | - María M Palomino
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Joaquina Fina Martin
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Sandra M Ruzal
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina.,CONICET - Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Mara S Roset
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, IIB-UNSAM (IIBIO-CONICET), Buenos Aires, Argentina
| | - Gabriel Briones
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, IIB-UNSAM (IIBIO-CONICET), Buenos Aires, Argentina
| |
Collapse
|
28
|
Characterization of two extracellular arabinanases in Lactobacillus crispatus. Appl Microbiol Biotechnol 2020; 104:10091-10103. [DOI: 10.1007/s00253-020-10979-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/11/2020] [Accepted: 10/25/2020] [Indexed: 12/17/2022]
|
29
|
Klotz C, Goh YJ, O'Flaherty S, Barrangou R. S-layer associated proteins contribute to the adhesive and immunomodulatory properties of Lactobacillus acidophilus NCFM. BMC Microbiol 2020; 20:248. [PMID: 32787778 PMCID: PMC7425073 DOI: 10.1186/s12866-020-01908-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Surface layers (S-layers) are two-dimensional crystalline arrays of repeating proteinaceous subunits that form the outermost layer of many bacterial cell envelopes. Within the Lactobacillus genus, S-layer presence is frequently associated with probiotic-relevant properties such as improved adherence to host epithelial cells and modulation of the immune response. However, recent studies have demonstrated that certain S-layer functions may be supplemented by a novel subset of proteins embedded within its lattice, termed S-layer associated proteins (SLAPs). In the following study, four Lactobacillus acidophilus NCFM SLAPs (LBA0046, LBA0864, LBA1426, and LBA1539) were selected for in silico and phenotypic assessment. RESULTS Despite lacking any sequence similarity or catalytic domains that may indicate function, the genes encoding the four proteins of interest were shown to be unique to S-layer-forming, host-adapted lactobacilli species. Likewise, their corresponding deletion mutants exhibited broad, host-relevant phenotypes including decreased inflammatory profiles and reduced adherence to Caco-2 intestinal cells, extracellular matrices, and mucin in vitro. CONCLUSIONS Overall, the data presented in this study collectively links several previously uncharacterized extracellular proteins to roles in the underlying host adaptive mechanisms of L. acidophilus.
Collapse
Affiliation(s)
- Courtney Klotz
- Genomic Sciences Graduate Program North Carolina State University, Raleigh, NC, USA.,Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Yong Jun Goh
- Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Sarah O'Flaherty
- Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Rodolphe Barrangou
- Genomic Sciences Graduate Program North Carolina State University, Raleigh, NC, USA. .,Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
30
|
Li Q, Loponen J, Gänzle MG. Characterization of the Extracellular Fructanase FruA in Lactobacillus crispatus and Its Contribution to Fructan Hydrolysis in Breadmaking. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8637-8647. [PMID: 32687341 DOI: 10.1021/acs.jafc.0c02313] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs) trigger symptoms of irritable bowel syndrome (IBS). Fructan degradation during bread making reduces FODMAPs in bread while maintaining the content of dietary fiber. This study explored the presence of the fructanases FruA in lactobacilli and characterized its use in bread making. FruA was exclusively present in vertebrate-adapted lactobacilli. In Lactobacillus crispatus DSM29598, FruA was located in cell wall fractions and includes a SLAP domain. FruA hydrolyzed levan or inulin; expression of fruA was not subject to catabolite repression. Fructans in bread were reduced by less than 50% in a straight dough process; conventional sourdough fermentation reduced fructans in bread by 65-70%. Sourdough fermentation with L. crispatus reduced fructans in bread by more than 90%. In conclusion, reduction of FODMAP by sourdough fermentation may improve tolerance in many IBS patients. Fermentation with FruA-expressing L. crispatus DSM29598 produces a low FODMAP bread.
Collapse
Affiliation(s)
- Qing Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | | | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
31
|
Alp D, Kuleaşan H, Korkut Altıntaş A. The importance of the S-layer on the adhesion and aggregation ability of Lactic acid bacteria. Mol Biol Rep 2020; 47:3449-3457. [PMID: 32279212 DOI: 10.1007/s11033-020-05430-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/03/2020] [Indexed: 12/22/2022]
Abstract
S-layer proteins in Lactic acid bacteria are not the only cell surface structures used for aggregation, but also plays significant role for intestinal tissue adhesion along with some other functional elements. In addition, it was determined that the properties of S-layer proteins differs not only between species but also the strains which belong to same species. In this work, presence and some functions of S-layer in lactic acid bacteria were determined, its effect on resistance to gastrointestinal enzymes, aggregation and adhesion ability were investigated as well. For this purpose S-layers of microorganisms were removed by 5 M LiCl treatment and size of the proteins were determined by SDS-PAGE analysis. The removal of S-layer proteins caused a change in the resistance of microorganisms to GIS enzymes. After the S-layer removal, two strains considerably lost their resistance to GIS enzymes. The strains mostly lost their aggregation ability in the absence of S-layer. The results showed that S-layer proteins are not the only structures involved in aggregation processes but, is a major mediator in Lactobacilli. Removal of S-layer had no effect on adhesion ability of W. cibaria DA28, the effect on L. casei DA4, L. coryniformis DA263 and L. plantarum DA140 was moderate, but the effect was high on L. plantarum DA100. The study showed that S-layer proteins play limited protection against GIS enzymes. In addition, absence of S-layer adversely affected aggregation and adhesion ability of strains.
Collapse
Affiliation(s)
- Duygu Alp
- Faculty of Engineering, Department of Food Engineering, Suleyman Demirel University, Isparta, Turkey.
| | - Hakan Kuleaşan
- Faculty of Engineering, Department of Food Engineering, Suleyman Demirel University, Isparta, Turkey
| | - Aylin Korkut Altıntaş
- Faculty of Engineering, Department of Food Engineering, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
32
|
Adu KT, Wilson R, Baker AL, Bowman J, Britz ML. Prolonged Heat Stress of Lactobacillus paracasei GCRL163 Improves Binding to Human Colorectal Adenocarcinoma HT-29 Cells and Modulates the Relative Abundance of Secreted and Cell Surface-Located Proteins. J Proteome Res 2020; 19:1824-1846. [PMID: 32108472 DOI: 10.1021/acs.jproteome.0c00107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lactobacillus casei group bacteria improve cheese ripening and may interact with host intestinal cells as probiotics, where surface proteins play a key role. Three complementary methods [trypsin shaving (TS), LiCl-sucrose (LS) extraction, and extracellular culture fluid precipitation] were used to analyze cell surface proteins of Lactobacillus paracasei GCRL163 by label-free quantitative proteomics after culture to the mid-exponential phase in bioreactors at pH 6.5 and temperatures of 30-45 °C. A total of 416 proteins, including 300 with transmembrane, cell wall anchoring, and secretory motifs and 116 cytoplasmic proteins, were quantified as surface proteins. Although LS caused significantly greater cell lysis as growth temperature increased, higher numbers of extracytoplasmic proteins were exclusively obtained by LS treatment. Together with the increased positive surface charge of cells cultured at supra-optimal temperatures, proteins including cell wall hydrolases Msp1/p75 and Msp2/p40, α-fucosidase AlfB, SecA, and a PspC-domain putative adhesin were upregulated in surface or secreted protein fractions, suggesting that cell adhesion may be altered. Prolonged heat stress (PHS) increased binding of L. paracasei GCRL163 to human colorectal adenocarcinoma HT-29 cells, relative to acid-stressed cells. This study demonstrates that PHS influences cell adhesion and relative abundance of proteins located on the surface, which may impact probiotic functionality, and the detected novel surface proteins likely linked to the cell cycle and envelope stress.
Collapse
Affiliation(s)
- Kayode T Adu
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Anthony L Baker
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - John Bowman
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Margaret L Britz
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
33
|
Klotz C, Goh YJ, O'Flaherty S, Johnson B, Barrangou R. Deletion of S-Layer Associated Ig-Like Domain Protein Disrupts the Lactobacillus acidophilus Cell Surface. Front Microbiol 2020; 11:345. [PMID: 32256464 PMCID: PMC7090030 DOI: 10.3389/fmicb.2020.00345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/17/2020] [Indexed: 01/18/2023] Open
Abstract
Bacterial surface-layers (S-layers) are crystalline arrays of repeating proteinaceous subunits that coat the exterior of many cell envelopes. S-layers have demonstrated diverse functions in growth and survival, maintenance of cell integrity, and mediation of host interactions. Additionally, S-layers can act as scaffolds for the outward display of auxiliary proteins and glycoproteins. These non-covalently bound S-layer associated proteins (SLAPs) have characterized roles in cell division, adherence to intestinal cells, and modulation of the host immune response. Recently, IgdA (LBA0695), a Lactobacillus acidophilus SLAP that possesses a Group 3 immunoglobulin (Ig)-like domain and GW (Gly-Tryp) dipeptide surface anchor, was recognized for its high conservation among S-layer-forming lactobacilli, constitutive expression, and surface localization. These findings prompted its selection for examination within the present study. Although IgdA and corresponding orthologs were shown to be unique to host-adapted lactobacilli, the Ig domain itself was specific to vertebrate-adapted species suggesting a role in vertebrate adaptation. Using a counterselective gene replacement system, igdA was deleted from the L. acidophilus NCFM chromosome. The resultant mutant, NCK2532, exhibited a visibly disrupted cell surface which likely contributed to its higher salt sensitivity, severely reduced adhesive capacity, and altered immunogenicity profile. Transcriptomic analyses revealed the induction of several stress response genes and secondary surface proteins. Due to the broad impact of IgdA on the cellular physiology and probiotic attributes of L. acidophilus, identification of similar proteins in alternative bacterial species may help pinpoint next-generation host-adapted probiotic candidates.
Collapse
Affiliation(s)
- Courtney Klotz
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC, United States.,Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Yong Jun Goh
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Sarah O'Flaherty
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Brant Johnson
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States.,Microbiology Graduate Program, North Carolina State University, Raleigh, NC, United States
| | - Rodolphe Barrangou
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC, United States.,Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States.,Microbiology Graduate Program, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
34
|
Pan M, Barrangou R. Combining omics technologies with CRISPR-based genome editing to study food microbes. Curr Opin Biotechnol 2020; 61:198-208. [DOI: 10.1016/j.copbio.2019.12.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 12/22/2022]
|
35
|
Probiotic Propionibacterium freudenreichii requires SlpB protein to mitigate mucositis induced by chemotherapy. Oncotarget 2019; 10:7198-7219. [PMID: 31921383 PMCID: PMC6944450 DOI: 10.18632/oncotarget.27319] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
Propionibacterium freudenreichii CIRM-BIA 129 (P. freudenreichii wild type, WT) is a probiotic bacterium, which exerts immunomodulatory effects. This strain possesses extractable surface proteins, including SlpB, which are involved in anti-inflammatory effect and in adhesion to epithelial cells. We decided to investigate the impact of slpB gene mutation on immunomodulation in vitro and in vivo. In an in vitro assay, P. freudenreichii WT reduced expression of IL-8 (p<0.0001) and TNF-α (p<0.0001) cytokines in LPS-stimulated HT-29 cells. P. freudenreichii ΔslpB, lacking the SlpB protein, failed to do so. Subsequently, both strains were investigated in vivo in a 5-FU-induced mucositis mice model. Mucositis is a common side effect of cytotoxic chemotherapy with 5-FU, characterized by mucosal injury, inflammation, diarrhea, and weight loss. The WT strain prevented weight loss, reduced inflammation and consequently histopathological scores. Furthermore, it regulated key markers, including Claudin-1 (cld1, p<0.0005) and IL-17a (Il17a, p<0.0001) genes, as well as IL-12 (p<0.0001) and IL-1β (p<0.0429) cytokines levels. Mutant strain displayed opposite regulatory effect on cld1 expression and on IL-12 levels. This work emphasizes the importance of SlpB in P. freudenreichii ability to reduce mucositis inflammation. It opens perspectives for the development of probiotic products to decrease side effects of chemotherapy using GRAS bacteria with immunomodulatory surface protein properties.
Collapse
|
36
|
Alp D, Kuleaşan H. Adhesion mechanisms of lactic acid bacteria: conventional and novel approaches for testing. World J Microbiol Biotechnol 2019; 35:156. [DOI: 10.1007/s11274-019-2730-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/17/2019] [Indexed: 12/31/2022]
|
37
|
Fina Martin J, Palomino MM, Cutine AM, Modenutti CP, Fernández Do Porto DA, Allievi MC, Zanini SH, Mariño KV, Barquero AA, Ruzal SM. Exploring lectin-like activity of the S-layer protein of Lactobacillus acidophilus ATCC 4356. Appl Microbiol Biotechnol 2019; 103:4839-4857. [PMID: 31053916 DOI: 10.1007/s00253-019-09795-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 02/06/2023]
Abstract
The surface layer (S-layer) protein of Lactobacillus acidophilus is a crystalline array of self-assembling, proteinaceous subunits non-covalently bound to the outmost bacterial cell wall envelope and is involved in the adherence of bacteria to host cells. We have previously described that the S-layer protein of L. acidophilus possesses anti-viral and anti-bacterial properties. In this work, we extracted and purified S-layer proteins from L. acidophilus ATCC 4356 cells to study their interaction with cell wall components from prokaryotic (i.e., peptidoglycan and lipoteichoic acids) and eukaryotic origin (i.e., mucin and chitin), as well as with viruses, bacteria, yeast, and blood cells. Using chimeric S-layer fused to green fluorescent protein (GFP) from different parts of the protein, we analyzed their binding capacity. Our results show that the C-terminal part of the S-layer protein presents lectin-like activity, interacting with different glycoepitopes. We further demonstrate that lipoteichoic acid (LTA) serves as an anchor for the S-layer protein. Finally, a structure for the C-terminal part of S-layer and possible binding sites were predicted by a homology-based model.
Collapse
Affiliation(s)
- Joaquina Fina Martin
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Pabellón II, 4 piso, Lab QB40, C1428EGA, CABA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria Mercedes Palomino
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Pabellón II, 4 piso, Lab QB40, C1428EGA, CABA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Anabella M Cutine
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina
| | - Carlos P Modenutti
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Pabellón II, 4 piso, Lab QB40, C1428EGA, CABA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Dario A Fernández Do Porto
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Pabellón II, 4 piso, Lab QB40, C1428EGA, CABA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Instituto de Cálculo, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariana C Allievi
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Pabellón II, 4 piso, Lab QB40, C1428EGA, CABA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sofia H Zanini
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Pabellón II, 4 piso, Lab QB40, C1428EGA, CABA, Buenos Aires, Argentina
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Buenos Aires, Argentina
| | - Andrea A Barquero
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Pabellón II, 4 piso, Lab QB40, C1428EGA, CABA, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sandra M Ruzal
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Cdad. Universitaria, Pabellón II, 4 piso, Lab QB40, C1428EGA, CABA, Buenos Aires, Argentina.
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
38
|
Siciliano RA, Lippolis R, Mazzeo MF. Proteomics for the Investigation of Surface-Exposed Proteins in Probiotics. Front Nutr 2019; 6:52. [PMID: 31069232 PMCID: PMC6491629 DOI: 10.3389/fnut.2019.00052] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/05/2019] [Indexed: 01/08/2023] Open
Abstract
Probiotics are commensal microorganisms that are present in the intestinal tract and in many fermented foods and positively affect human health, promoting digestion and uptake of dietary nutrients, strengthening intestinal barrier function, modulating immune response, and enhancing antagonism toward pathogens. The proteosurfaceome, i.e., the complex set of proteins present on the bacterial surface, is directly involved as leading actor in the dynamic communication between bacteria and host. In the last decade, the biological relevance of surface-exposed proteins prompted research activities exploiting the potentiality of proteomics to define the complex network of proteins that are involved in the molecular mechanisms at the basis of the adaptation to gastrointestinal environment and the probiotic effects. These studies also took advantages of the recent technological improvements in proteomics, mass spectrometry and bioinformatics that triggered the development of ad hoc designed innovative strategies to characterize the bacterial proteosurfaceome. This mini-review is aimed at describing the key role of proteomics in depicting the cell wall protein architecture and the involvement of surface-exposed proteins in the intimate and dynamic molecular dialogue between probiotics and intestinal epithelial and immune cells.
Collapse
Affiliation(s)
- Rosa Anna Siciliano
- Institute of Food Sciences, National Research Council (CNR-ISA), Avellino, Italy
| | - Rosa Lippolis
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (CNR-IBIOM), Bari, Italy
| | | |
Collapse
|
39
|
Abstract
The Klaenhammer group at North Carolina State University pioneered genomic applications in food microbiology and beneficial lactic acid bacteria used as starter cultures and probiotics. Dr. Todd Klaenhammer was honored to be the first food scientist elected to the National Academy of Sciences (2001). The program was recognized with the highest research awards presented by the American Dairy Science Association (Borden Award 1996), the Institute of Food Technologists (Nicholas Appert Medal, 2007), and the International Dairy Federation (Eli Metchnikoff Award in Biotechnology, 2010) as well as with the Outstanding Achievement Award from the University of Minnesota (2001) and the Oliver Max Gardner Award (2009) for outstanding research across the 16-campus University of North Carolina system. Dr. Klaenhammer is a fellow of the American Association for the Advancement of Science, the American Dairy Science Association, and the Institute of Food Technology. Over his career, six of his PhD graduate students were awarded the annual Kenneth Keller award for the outstanding PhD dissertation that year in the College of Agriculture and Life Sciences. He championed the use of basic microbiology and genomic approaches to set a platform for translational applications of beneficial microbes in foods and their use in food preservation and probiotics and as oral delivery vehicles for vaccines and biotherapeutics. Dr. Klaenhammer was also a founding and co-chief editor of the Annual Review of Food Science and Technology.
Collapse
Affiliation(s)
- Todd Robert Klaenhammer
- Department of Food, Bioprocessing & Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA;
| |
Collapse
|
40
|
Complete Genome Sequence of Lactobacillus crispatus CO3MRSI1. Microbiol Resour Announc 2019; 8:MRA01538-18. [PMID: 30714033 PMCID: PMC6357639 DOI: 10.1128/mra.01538-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/07/2019] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus crispatus is a commonly found bacterium in vertebrate microbiota, particularly the human vagina. We report the first complete genome of a strain isolated from a human vagina, L. crispatus CO3MRSI1.
Collapse
|
41
|
Suzuki S, Yokota K, Igimi S, Kajikawa A. Comparative analysis of immunological properties of S-layer proteins isolated from Lactobacillus strains. MICROBIOLOGY-SGM 2019; 165:188-196. [PMID: 30620267 DOI: 10.1099/mic.0.000766] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Previous studies have suggested that some Lactobacillus S-layer proteins could modulate immune responses. Primary structures of the S-layer proteins are variable, and their immunological differences are poorly understood. In this study, we evaluated the immunological properties of eight distinct S-layer proteins from different Lactobacillus species. We found that removal of the S-layer proteins from the cell surface reduced the immunological activities of Lactobacillus cells in THP-1 cells. Furthermore, the purified S-layer proteins induced the production of IL-12 p40, although their immunological activities varied between the different S-layer proteins. The production of IL-12 p40 was notably induced by the S-layer protein SLP(aly) from Lactobacillus amylolyticus NRIC 0558T. Multiple sequence alignment revealed that the percent identity of the S-layer proteins of the eight strains vary from 10 to 90 %. In particular, N-terminal regions showed high levels of diversity. To obtain more information about their structure and the immunogenicity, truncated and chimeric S-layer proteins were constructed in recombinant E. coli. Profiling of cytokine production in THP-1 cells by truncated and chimeric S-layer proteins suggested that the intact conformation of the N-terminal region of SLP(aly) contributes to high immunogenicity.
Collapse
Affiliation(s)
- Shunya Suzuki
- 1Department of Applied Biology and Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Kenji Yokota
- 1Department of Applied Biology and Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Shizunobu Igimi
- 1Department of Applied Biology and Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Akinobu Kajikawa
- 2+810354772327.,1Department of Applied Biology and Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| |
Collapse
|
42
|
Klotz C, Barrangou R. Engineering Components of the Lactobacillus S-Layer for Biotherapeutic Applications. Front Microbiol 2018; 9:2264. [PMID: 30333802 PMCID: PMC6176008 DOI: 10.3389/fmicb.2018.02264] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/05/2018] [Indexed: 02/06/2023] Open
Abstract
Lactic acid bacteria (LAB) are frequently harnessed for the delivery of biomolecules to mucosal tissues. Several species of Lactobacillus are commonly employed for this task, of which a subset are known to possess surface-layers (S-layers). S-layers are two-dimensional crystalline arrays of repeating proteinaceous subunits that form the outermost coating of many prokaryotic cell envelopes. Their periodicity and abundance have made them a target for numerous biotechnological applications. In the following review, we examine the multi-faceted S-layer protein (Slp), and its use in both heterologous protein expression systems and mucosal vaccine delivery frameworks, through its diverse genetic components: the strong native promoter, capable of synthesizing as many as 500 Slp subunits per second; the signal peptide that stimulates robust secretion of recombinant proteins; and the structural domains, which can be harnessed for both cell surface display of foreign peptides or adhesion enhancement of a host bacterium. Although numerous studies have established vaccine platforms based on one or more components of the Lactobacillus S-layer, this area of research still remains largely in its infancy, thus this review is meant to not only highlight past works, but also advocate for the future usage of Slps in biotherapeutic research.
Collapse
Affiliation(s)
- Courtney Klotz
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC, United States
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Rodolphe Barrangou
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC, United States
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
43
|
Dietary Nutrients, Proteomes, and Adhesion of Probiotic Lactobacilli to Mucin and Host Epithelial Cells. Microorganisms 2018; 6:microorganisms6030090. [PMID: 30134518 PMCID: PMC6163540 DOI: 10.3390/microorganisms6030090] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 01/26/2023] Open
Abstract
The key role of diet and environment in human health receives increasing attention. Thus functional foods, probiotics, prebiotics, and synbiotics with beneficial effects on health and ability to prevent diseases are in focus. The efficacy of probiotic bacteria has been connected with their adherence to the host epithelium and residence in the gut. Several in vitro techniques are available for analyzing bacterial interactions with mucin and intestinal cells, simulating adhesion to the host in vivo. Proteomics has monitored and identified proteins of probiotic bacteria showing differential abundance elicited in vitro by exposure to food components, including potential prebiotics (e.g., certain carbohydrates, and plant polyphenols). While adhesion of probiotic bacteria influenced by various environmental factors relevant to the gastrointestinal tract has been measured previously, this was rarely correlated with changes in the bacterial proteome induced by dietary nutrients. The present mini-review deals with effects of selected emerging prebiotics, food components and ingredients on the adhesion of probiotic lactobacilli to mucin and gut epithelial cells and concomitant abundancy changes of specific bacterial proteins. Applying this in vitro synbiotics-like approach enabled identification of moonlighting and other surface-located proteins of Lactobacillus acidophilus NCFM that are possibly associated with the adhesive mechanism.
Collapse
|
44
|
Prevention of necrotizing enterocolitis through surface layer protein of Lactobacillus acidophilus CICC6074 reducing intestinal epithelial apoptosis. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
45
|
A Cell Surface Aggregation-Promoting Factor from Lactobacillus gasseri Contributes to Inhibition of Trichomonas vaginalis Adhesion to Human Vaginal Ectocervical Cells. Infect Immun 2018; 86:IAI.00907-17. [PMID: 29784856 DOI: 10.1128/iai.00907-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 05/12/2018] [Indexed: 01/08/2023] Open
Abstract
Trichomoniasis, a prevalent sexually transmitted infection, is commonly symptomatic in women. The causative agent is Trichomonas vaginalis, an extracellular protozoan parasite. The host-protective mechanisms and molecules of vaginal lactobacilli that counteract this pathogen are largely unknown. This study examines the inhibition promoted by Lactobacillus gasseri against the adhesion of T. vaginalis to host cells, a critical virulence aspect of this pathogen. We observed that the vaginal strain L. gasseri ATCC 9857 is highly inhibitory by various contact-dependent mechanisms and that surface proteins are largely responsible for this inhibitory phenotype. We found that the aggregation-promoting factor APF-2 from these bacteria significantly contributes to inhibition of the adhesion of T. vaginalis to human vaginal ectocervical cells. Understanding the molecules and mechanisms used by lactobacilli to protect the host against T. vaginalis might help in the development of novel and specific therapeutic strategies that take advantage of the natural microbiota.
Collapse
|
46
|
Weimer BC, Chen P, Desai PT, Chen D, Shah J. Whole Cell Cross-Linking to Discover Host-Microbe Protein Cognate Receptor/Ligand Pairs. Front Microbiol 2018; 9:1585. [PMID: 30072965 PMCID: PMC6060266 DOI: 10.3389/fmicb.2018.01585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 06/26/2018] [Indexed: 12/31/2022] Open
Abstract
Bacterial surface ligands mediate interactions with the host cell during association that determines the specific outcome for the host–microbe association. The association begins with receptors on the host cell binding ligands on the microbial cell to form a partnership that initiates responses in both cells. Methods to determine the specific cognate partnerships are lacking. Determining these molecular interactions between the host and microbial surfaces are difficult, yet crucial in defining biologically important events that are triggered during association of the microbiome, and critical in defining the initiating signal from the host membrane that results in pathology or commensal association. In this study, we designed an approach to discover cognate host–microbe receptor/ligand pairs using a covalent cross-linking strategy with whole cells. Protein/protein cross-linking occurred when the interacting molecules were within 9–12 Å, allowing for identification of specific pairs of proteins from the host and microbe that define the molecular interaction during association. To validate the method three different bacteria with three previously known protein/protein partnerships were examined. The exact interactions were confirmed and led to discovery of additional partnerships that were not recognized as cognate partners, but were previously reported to be involved in bacterial interactions. Additionally, three unknown receptor/ligand partners were discovered and validated with in vitro infection assays by blocking the putative host receptor and deleting the bacterial ligand. Subsequently, Salmonella enterica sv. Typhimurium was cross-linked to differentiated colonic epithelial cells (caco-2) to discover four previously unknown host receptors bound to three previously undefined host ligands for Salmonella. This approach resulted in a priori discovery of previously unknown and biologically important molecules for host/microbe association that were casually reported to mediate bacterial invasion. The whole cell cross-linking approach promises to enable discovery of possible targets to modulate interaction of the microbiome with the host that are important in infection and commensalism, both of with initiate a host response.
Collapse
Affiliation(s)
- Bart C Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Poyin Chen
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Prerak T Desai
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.,Department of Dietetics, Nutrition and Food Sciences, Utah State University, Logan, UT, United States
| | - Dong Chen
- Department of Biology, Utah State University, Logan, UT, United States
| | - Jigna Shah
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.,Department of Dietetics, Nutrition and Food Sciences, Utah State University, Logan, UT, United States
| |
Collapse
|
47
|
Bagon BB, Valeriano VDV, Oh JK, Pajarillo EAB, Cho CS, Kang DK. Comparative exoproteome analyses of Lactobacillus spp. reveals species- and strain-specific proteins involved in their extracellular interaction and probiotic potential. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Guo Y, Li X, Yang Y, Wu Z, Zeng X, Nadari F, Pan D. Molecular cloning, expression and adhesion analysis of silent slpB of Lactobacillus acidophilus NCFM. AMB Express 2018; 8:103. [PMID: 29936673 PMCID: PMC6015585 DOI: 10.1186/s13568-018-0631-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/14/2018] [Indexed: 11/10/2022] Open
Abstract
The slpB gene of Lactobacillus acidophilus NCFM, which differs from the slpA gene and is silent under normal conditions, was successfully amplified and ligated to the corresponding available sites on a recombinant pET-28a vector. Then the pET-28a-slpB vector was transformed into Escherichia coli DH (DE3) and the fusion His-slpB protein was expressed by induction with 1 mM IPTG for 14 h at 37 °C. The resulting His-slpB protein (SB) had a relative molecular weight of 48 kDa. It was purified using a Ni-NTA column and was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot contrastive analysis. The slpA protein (SA) from L. acidophilus NCFM was extracted and purified. It had a relative molecular weight of 46 kDa. Circular dichroism measurements suggested that the two S-layer proteins had a high β-sheet content and a low α-helix structure content. In an adhesion experiment, SA displayed higher adhesive capability towards Caco-2 cells than did SB. The results suggest that these two S-layer proteins could have biotechnological applications.
Collapse
|
49
|
do Carmo FLR, Rabah H, De Oliveira Carvalho RD, Gaucher F, Cordeiro BF, da Silva SH, Le Loir Y, Azevedo V, Jan G. Extractable Bacterial Surface Proteins in Probiotic-Host Interaction. Front Microbiol 2018; 9:645. [PMID: 29670603 PMCID: PMC5893755 DOI: 10.3389/fmicb.2018.00645] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/19/2018] [Indexed: 01/09/2023] Open
Abstract
Some Gram-positive bacteria, including probiotic ones, are covered with an external proteinaceous layer called a surface-layer. Described as a paracrystalline layer and formed by the self-assembly of a surface-layer-protein (Slp), this optional structure is peculiar. The surface layer per se is conserved and encountered in many prokaryotes. However, the sequence of the corresponding Slp protein is highly variable among bacterial species, or even among strains of the same species. Other proteins, including surface layer associated proteins (SLAPs), and other non-covalently surface-bound proteins may also be extracted with this surface structure. They can be involved a various functions. In probiotic Gram-positives, they were shown by different authors and experimental approaches to play a role in key interactions with the host. Depending on the species, and sometime on the strain, they can be involved in stress tolerance, in survival within the host digestive tract, in adhesion to host cells or mucus, or in the modulation of intestinal inflammation. Future trends include the valorization of their properties in the formation of nanoparticles, coating and encapsulation, and in the development of new vaccines.
Collapse
Affiliation(s)
- Fillipe L R do Carmo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.,STLO, Agrocampus Ouest, INRA, Rennes, France
| | - Houem Rabah
- STLO, Agrocampus Ouest, INRA, Rennes, France.,Pôle Agronomique Ouest, Rennes, France
| | | | - Floriane Gaucher
- STLO, Agrocampus Ouest, INRA, Rennes, France.,Bioprox, Levallois-Perret, France
| | - Barbara F Cordeiro
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Sara H da Silva
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Vasco Azevedo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gwénaël Jan
- STLO, Agrocampus Ouest, INRA, Rennes, France
| |
Collapse
|
50
|
Identification and analysis of the function of surface layer proteins from three Lactobacillus strains. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1335-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|