1
|
Mundodi V, Choudhary S, Smith AD, Kadosh D. Ribosome profiling reveals differences in global translational vs transcriptional gene expression changes during early Candida albicans biofilm formation. Microbiol Spectr 2025; 13:e0219524. [PMID: 39873514 PMCID: PMC11878023 DOI: 10.1128/spectrum.02195-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025] Open
Abstract
Candida albicans, a major human fungal pathogen, can form biofilms on a variety of inert and biological surfaces. C. albicans biofilms allow for immune evasion, are highly resistant to antifungal therapies, and represent a significant complication for a wide variety of immunocompromised patients in clinical settings. While transcriptional regulators and global transcriptional profiles of C. albicans biofilm formation have been well-characterized, much less is known about translational regulation of this important C. albicans virulence property. Here, using ribosome profiling, we define the first global translational profile of genes that are expressed during early biofilm development in a human fungal pathogen, C. albicans. We show that C. albicans biofilm formation involves altered translational regulation of genes and gene classes associated with protein synthesis, pathogenesis, transport, plasma membrane, polarized growth, cell cycle, secretion, and signal transduction. Interestingly, while similar, but not identical, classes of genes showed transcriptional alterations during early C. albicans biofilm development, we observed very little overlap between specific genes that are upregulated or downregulated at the translational vs transcriptional levels. Our results suggest that distinct translational mechanisms play an important role in regulating early biofilm development of a major human fungal pathogen. These mechanisms, in turn, could serve as potential targets for novel antifungal strategies.IMPORTANCEThe major human fungal pathogen Candida albicans is known to form biofilms or complex aggregated microbial communities encased in an extracellular matrix. These biofilms allow C. albicans to escape detection by the immune system as well as resist a variety of antifungal drugs. In this study, we define the first global profile of genes that show altered translation during C. albicans biofilm formation. These genes are involved in a variety of key cellular processes, including polarized growth, pathogenesis, transport, protein synthesis, cell cycle, plasma membrane, signal transduction, and secretion. Interestingly, while similar classes of genes are induced at both the transcriptional and translational levels during early C. albicans biofilm formation, we observed very little overlap among specific genes with altered transcription and translation. Our results suggest that C. albicans biofilm formation is controlled by distinct translational mechanisms, which could potentially be targeted by novel antifungal drugs.
Collapse
Affiliation(s)
- Vasanthakrishna Mundodi
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Saket Choudhary
- Quantitative and Computational Biology, University of Southern California, Los Angeles, California, USA
| | - Andrew D. Smith
- Quantitative and Computational Biology, University of Southern California, Los Angeles, California, USA
| | - David Kadosh
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
2
|
Bende G, Zsindely N, Laczi K, Kristóffy Z, Papp C, Farkas A, Tóth L, Sáringer S, Bodai L, Rákhely G, Marx F, Galgóczy L. The Neosartorya (Aspergillus) fischeri antifungal protein NFAP2 has low potential to trigger resistance development in Candida albicans in vitro. Microbiol Spectr 2025; 13:e0127324. [PMID: 39560388 PMCID: PMC11705825 DOI: 10.1128/spectrum.01273-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024] Open
Abstract
Due to the increase in the number of drug-resistant Candida albicans strains, new antifungal compounds with limited potential for the development of resistance are urgently needed. NFAP2, an antifungal protein (AFP) secreted by Neosartorya (Aspergillus) fischeri, is a promising candidate. We investigated the ability of C. albicans to develop resistance to NFAP2 in a microevolution experiment compared with generic fluconazole (FLC). C. albicans adapted to only 1× minimum inhibitory concentration (MIC) of NFAP2, which can be considered tolerance rather than resistance, compared with 32× MIC of FLC. Genome analysis revealed non-silent mutations in only two genes in NFAP2-tolerant strains and in several genes in FLC-resistant strains. Tolerance development to NFAP2 did not influence cell morphology. The susceptibility of NFAP2-tolerant strains did not change to FLC, amphotericin B, micafungin, and terbinafine. These strains did not show altered susceptibility to AFPs from Penicillium chrysogenum, except one which had less susceptibility to Penicillium chrysogenum antifungal protein B. FLC-resistant strains had decreased susceptibility to terbinafine and NFAP2, but not to other drugs and AFPs from P. chrysogenum. NFAP2-tolerant and FLC-resistant strains showed decreased and increased NFAP2 binding and uptake, respectively. The development of tolerance to NFAP2 decreased tolerance to cell wall, heat, and UV stresses. The development of FLC resistance increased tolerance to cell wall stress and decreased tolerance to heat and UV stresses. Tolerance to NFAP2 did not have significant metabolic fitness cost and could not increase virulence, compared with resistance to FLC.IMPORTANCEDue to the increasing number of (multi)drug-resistant strains, only a few effective antifungal drugs are available to treat infections caused by opportunistic Candida species. Therefore, the incidence of hard-to-treat candidiasis has increased dramatically in the past decade, and the demand to identify antifungal compounds with minimal potential to trigger resistance is substantial. The features of NFAP2 make it a promising candidate for the topical treatment of Candida infection. Data on the development of resistance to antifungal proteins in Candida albicans are lacking. In this study, we provide evidence that NFAP2 has a low potential to trigger resistance in C. albicans in vitro, and the developed tolerance to NFAP2 is not associated with severe phenotypic changes compared with development of resistance to generic fluconazole. These results suggest the slow emergence of NFAP2-resistant Candida strains, and NFAP2 can reliably be used long-term in the clinic.
Collapse
Affiliation(s)
- Gábor Bende
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Nóra Zsindely
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Krisztián Laczi
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Institute of Plant Biology, HUN-REN Biological Research Center, Szeged, Hungary
| | - Zsolt Kristóffy
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Csaba Papp
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Attila Farkas
- Institute of Plant Biology, HUN-REN Biological Research Center, Szeged, Hungary
| | - Liliána Tóth
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Szabolcs Sáringer
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Institute of Biophysics, HUN-REN Biological Research Center, Szeged, Hungary
| | - Florentine Marx
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - László Galgóczy
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| |
Collapse
|
3
|
Kamali M, Ghaderi A, Tamimi P, Firooz A, Nasiri Kashani M, Ayatollahi A, Valizadeh F, Fattahi M, Fattahi M. Reactive oxygen species-inducing itraconazole and its anti-biofilm activity against resistant Candida parapsilosis sensu lato biofilm cells isolated from patients with recalcitrant onychomycosis. Arch Dermatol Res 2024; 316:642. [PMID: 39325271 DOI: 10.1007/s00403-024-03382-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/31/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
Candida parapsilosis was introduced as the second most responsible for nail involvement. The colonization of biotic and abiotic surfaces by Candida spp. can result in the formation of biofilms, which possess a high level of resistance to typical antifungal agents. Since Candida spp. can produce biofilm mass on the surface of the nails, dermatologists should consider appropriate antifungals to eliminate both the planktonic and biofilm cells. The aim of this research was to determine the antifungal efficacy of itraconazole against C. parapsilosis sensu lato biofilm formations, in addition to its static effects. Ten C. parapsilosis sensu lato isolates were enrolled in this study. The use of itraconazole results in the accumulation of reactive oxygen species (ROS) during treatment. In order to verify the correlation between ROS and itraconazole-induced cell death, the viability of cells was analyzed by administering the ROS scavenger Ascorbic acid. The apoptotic features of itraconazole were analyzed using the Annexin V-FITC method. Based on current data, it was found that the generation of intracellular stresses by itraconazole is not observed in cells upon ROS inhibition, emphasizing the importance of intracellular ROS in the apoptotic mechanism of itraconazole. Targeting the oxidative defense system is a powerful point to use ROS-inducing antifungals as a superior choice for more effective therapies in case of recalcitrant onychomycosis.
Collapse
Affiliation(s)
- Monireh Kamali
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Rafsanjani Hwy, No.1115119969, +982123921, Tehran, Iran
| | - Aliasghar Ghaderi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pegah Tamimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Firooz
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Taleqani Ave. No.415, Tehran, 1416613675, Iran
| | - Mansour Nasiri Kashani
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Taleqani Ave. No.415, Tehran, 1416613675, Iran
| | - Azin Ayatollahi
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Taleqani Ave. No.415, Tehran, 1416613675, Iran
| | - Farnaz Valizadeh
- Department of Cell and Molecular Biology, Kish International Campus, University of Tehran, Keshavarz Blvd No.15, Tehran, +982188962128, Iran
| | | | - Mahsa Fattahi
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Pediatric Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Kendil W, Dergal F, Tefiani I, Mahdad YM, Benladghem Z, Ziani-Cherif C, Seddiki SML. Improvement of a low-cost protocol for a simultaneous comparative evaluation of hydrolytic activity between sessile and planktonic cells: Candida albicans as a study model. BIOFOULING 2024; 40:431-445. [PMID: 38973173 DOI: 10.1080/08927014.2024.2376637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 06/26/2024] [Indexed: 07/09/2024]
Abstract
Candida albicans is often implicated in nosocomial infections with fatal consequences. Its virulence is contributed to hydrolytic enzymes and biofilm formation. Previous research focused on studying these virulence factors individually. Therefore, this study aimed to investigate the impact of biofilm formation on the hydrolytic activity using an adapted low-cost method. Eleven strains of C. albicans were used. The biofilms were formed on pre-treated silicone discs using 24-well plates and then deposited on the appropriate agar to test each enzyme, while the planktonic cells were conventionally seeded. Biofilms were analysed using Raman spectroscopy, fluorescent and scanning electron microscopy. The adapted method provided an evaluation of hydrolytic enzymes activity in C. albicans biofilm and showed that sessile cells had a higher phospholipase and proteinase activities compared with planktonic cells. These findings were supported by spectroscopic and microscopic analyses, which provided valuable insights into the virulence mechanisms of C. albicans during biofilm formation.
Collapse
Affiliation(s)
- Wafaa Kendil
- Antifungal Antibiotic: Physico-Chemical Synthesis and Biological Activity Laboratory (LAPSAB), Biology Department, University of Tlemcen, Tlemcen, Algeria
| | - Fayçal Dergal
- Scientific and Technical Research Center in Physico-Chemical Analysis (CRAPC), Tipaza, Algeria
- Laboratory of Catalysis and Synthesis in Organic Chemistry (LCSCO), Faculty of Sciences, University of Tlemcen, Tlemcen, Algeria
| | - Ikram Tefiani
- Antifungal Antibiotic: Physico-Chemical Synthesis and Biological Activity Laboratory (LAPSAB), Biology Department, University of Tlemcen, Tlemcen, Algeria
| | - Yassine Moustafa Mahdad
- Laboratory for Sustainable Management of Natural Resources in Arid and Semi-Arid Areas, University Center of Naâma, Naâma, Algeria
- Laboratory of Applied Genetic in Agriculture, Ecology and Public Health, University of Tlemcen, Tlemcen, Algeria
| | - Zakaria Benladghem
- Antifungal Antibiotic: Physico-Chemical Synthesis and Biological Activity Laboratory (LAPSAB), Biology Department, University of Tlemcen, Tlemcen, Algeria
- Department of Biology, University of Tamanrasset, Tamanrasset, Algeria
| | - Chewki Ziani-Cherif
- Laboratory of Catalysis and Synthesis in Organic Chemistry (LCSCO), Faculty of Sciences, University of Tlemcen, Tlemcen, Algeria
| | - Sidi Mohammed Lahbib Seddiki
- Antifungal Antibiotic: Physico-Chemical Synthesis and Biological Activity Laboratory (LAPSAB), Biology Department, University of Tlemcen, Tlemcen, Algeria
- Laboratory for Sustainable Management of Natural Resources in Arid and Semi-Arid Areas, University Center of Naâma, Naâma, Algeria
| |
Collapse
|
5
|
Raj K, Paul D, Rishi P, Shukla G, Dhotre D, YogeshSouche. Decoding the role of oxidative stress resistance and alternative carbon substrate assimilation in the mature biofilm growth mode of Candida glabrata. BMC Microbiol 2024; 24:128. [PMID: 38641593 PMCID: PMC11031924 DOI: 10.1186/s12866-024-03274-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/22/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Biofilm formation is viewed as a vital mechanism in C. glabrata pathogenesis. Although, it plays a significant role in virulence but transcriptomic architecture and metabolic pathways governing the biofilm growth mode of C. glabrata remain elusive. The present study intended to investigate the genes implicated in biofilm growth phase of C. glabrata through global transcriptomic approach. RESULTS Functional analysis of Differentially expressed genes (DEGs) using gene ontology and pathways analysis revealed that upregulated genes are involved in the glyoxylate cycle, carbon-carbon lyase activity, pre-autophagosomal structure membrane and vacuolar parts whereas, down- regulated genes appear to be associated with glycolysis, ribonucleoside biosynthetic process, ribosomal and translation process in the biofilm growth condition. The RNA-Seq expression of eight selected DEGs (CgICL1, CgMLS1, CgPEP1, and CgNTH1, CgERG9, CgERG11, CgTEF3, and CgCOF1) was performed with quantitative real-time PCR (RT-qPCR). The gene expression profile of selected DEGs with RT-qPCR displayed a similar pattern of expression as observed in RNA-Seq. Phenotype screening of mutant strains generated for genes CgPCK1 and CgPEP1, showed that Cgpck1∆ failed to grow on alternative carbon substrate (Glycerol, Ethanol, Oleic acid) and similarly, Cgpep1∆ unable to grow on YPD medium supplemented with hydrogen peroxide. Our results suggest that in the absence of glucose, C. glabrata assimilate glycerol, oleic acid and generate acetyl coenzyme-A (acetyl-CoA) which is a central and connecting metabolite between catabolic and anabolic pathways (glyoxylate and gluconeogenesis) to produce glucose and fulfil energy requirements. CONCLUSIONS The study was executed using various approaches (transcriptomics, functional genomics and gene deletion) and it revealed that metabolic plasticity of C. glabrata (NCCPF-100,037) in biofilm stage modulates its virulence and survival ability to counter the stress and may promote its transition from commensal to opportunistic pathogen. The observations deduced from the present study along with future work on characterization of the proteins involved in this intricate process may prove to be beneficial for designing novel antifungal strategies.
Collapse
Affiliation(s)
- Khem Raj
- Department of Microbiology Basic Medical Sciences Block I, South Campus, Panjab University, Sector-25, Chandigarh, 160014, India.
| | - Dhiraj Paul
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Praveen Rishi
- Department of Microbiology Basic Medical Sciences Block I, South Campus, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Geeta Shukla
- Department of Microbiology Basic Medical Sciences Block I, South Campus, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Dhiraj Dhotre
- National Centre for Microbial Resource, National Centre for Cell Sciences (NCCS), Pune, India
| | - YogeshSouche
- National Centre for Microbial Resource, National Centre for Cell Sciences (NCCS), Pune, India
| |
Collapse
|
6
|
Oliveira LT, Marcos CM, Cabral AKLF, Medina-Alarcón KP, Pires RH, Fusco-Almeida AM, Mendes-Giannini MJS. Paracoccidioides spp.: the structural characterization of extracellular matrix, expression of glucan synthesis and associated genes and adhesins during biofilm formation. Front Microbiol 2024; 15:1354140. [PMID: 38516014 PMCID: PMC10955377 DOI: 10.3389/fmicb.2024.1354140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
The genus Paracoccidioides includes Paracoccidioides lutzii and the Paracoccidioides brasiliensis complex, which comprises four phylogenetic species. A key feature distinguishing planktonic growth from biofilm is the presence of a 3D extracellular matrix (ECM). Therefore, in this study, we analyzed biofilm formation in different species of Paracoccidioides yeast phase, characterized the structural elements of the matrix of P. brasiliensis (Pb18), P. lutzii (Pl01 and 8334) and P. restrepiensis (339 and 192) and evaluated the expression of glucan genes, according to the stage of biofilm evolution for P. brasiliensis. The strains were cultivated in planktonic and biofilm form for 24-144 h. The fungi biomass and metabolic activity were determined by crystal violet and tetrazolium salt reduction (XTT) tests and colony-forming unit (CFU) by plating. The biofilm structure was designed using scanning electron microscopy and confocal laser scanning microscopy techniques. The extracellular matrix of P. brasiliensis and P. lutzii biofilms was extracted by sonication, and polysaccharides, proteins, and extracellular DNA (eDNA) were quantified. The RNA was extracted with the Trizol® reagent and quantified; then, the cDNA was synthesized to analyze the enolase expression, 14-3-3, FKS1, AGS1, GEL3, and KRE6 genes by real-time PCR. All strains of Paracoccidioides studied form a biofilm with more significant metabolic activity and biomass values in 144 h. The extracellular matrix of P. brasiliensis and P. lutzii had a higher content of polysaccharides in their composition, followed by proteins and eDNA in smaller quantities. The P. brasiliensis biofilm kinetics of formation showed greater expression of genes related to glucan's synthesis and its delivery to the external environment in addition adhesins during the biofilm's adhesion, initiation, and maturation. The GEL3 and enolase genes increased in expression within 24 h and during the biofilm maturation period, there was an increase in 14-3-3, AGS1, and FKS1. Furthermore, at 144 h, there was a decrease in KRE6 expression and an increase in GEL3. This study highlights the potential for biofilm formation for three species of Paracoccidioides and the main components of the extracellular matrix that can contribute to a better understanding of biofilm organization.
Collapse
Affiliation(s)
- Lariane Teodoro Oliveira
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Caroline Maria Marcos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Ana Karla Lima Freire Cabral
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
- Laboratory of Medical Mycology, School of Pharmaceutical Sciences, Federal University of Amazonas-UFAM, Manaus, Brazil
| | - Kaila Petronila Medina-Alarcón
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Regina Helena Pires
- Laboratory of Mycology and Environmental Diagnosis, University of Franca, Franca, Brazil
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | | |
Collapse
|
7
|
Transcript profiling reveals the role of PDB1, a subunit of the pyruvate dehydrogenase complex, in Candida albicans biofilm formation. Res Microbiol 2023; 174:104014. [PMID: 36535619 DOI: 10.1016/j.resmic.2022.104014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Candida albicans, the most prevalent fungal pathogen in the human microbiota can form biofilms on implanted medical devices. These biofilms are tolerant to conventional antifungal drugs and the host immune system as compared to the free-floating planktonic cells. Several in vitro models of biofilm formation have been used to determine the C. albicans biofilm-forming process, regulatory networks, and their properties. Here, we performed a genome-wide transcript profiling with C. albicans cells grown in YPD medium both in planktonic and biofilm condition. Transcript profiling of YPD-grown biofilms was further compared with published Spider medium-grown biofilm transcriptome data. This comparative analysis highlighted the differentially expressed genes and the pathways altered during biofilm formation. In addition, we demonstrated that overexpression of the PDB1 gene encoding a subunit of the pyruvate dehydrogenase resulted in defective biofilm formation. Altogether, this comparative analysis of transcript profiles from two different studies provides a robust reading on biofilm-altered genes and pathways during C. albicans biofilm development.
Collapse
|
8
|
High throughput bioanalytical techniques for elucidation of Candida albicans biofilm architecture and metabolome. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2022. [DOI: 10.1007/s12210-022-01115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Impaired amino acid uptake leads to global metabolic imbalance of Candida albicans biofilms. NPJ Biofilms Microbiomes 2022; 8:78. [PMID: 36224215 PMCID: PMC9556537 DOI: 10.1038/s41522-022-00341-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/23/2022] [Indexed: 12/01/2022] Open
Abstract
Candida albicans biofilm maturation is accompanied by enhanced expression of amino acid acquisition genes. Three state-of-the-art omics techniques were applied to detail the importance of active amino acid uptake during biofilm development. Comparative analyses of normoxic wild-type biofilms were performed under three metabolically challenging conditions: aging, hypoxia, and disabled amino acid uptake using a strain lacking the regulator of amino acid permeases Stp2. Aging-induced amino acid acquisition and stress responses to withstand the increasingly restricted environment. Hypoxia paralyzed overall energy metabolism with delayed amino acid consumption, but following prolonged adaptation, the metabolic fingerprints aligned with aged normoxic biofilms. The extracellular metabolome of stp2Δ biofilms revealed deficient uptake for 11 amino acids, resulting in extensive transcriptional and metabolic changes including induction of amino acid biosynthesis and carbohydrate and micronutrient uptake. Altogether, this study underscores the critical importance of a balanced amino acid homeostasis for C. albicans biofilm development.
Collapse
|
10
|
Tan LR, Liu JJ, Deewan A, Lee JW, Xia PF, Rao CV, Jin YS, Wang SG. Genome-wide transcriptional regulation in Saccharomyces cerevisiae in response to carbon dioxide. FEMS Yeast Res 2022; 22:6595876. [PMID: 35640892 DOI: 10.1093/femsyr/foac032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/30/2022] [Accepted: 05/26/2022] [Indexed: 11/12/2022] Open
Abstract
Sugar metabolism by Saccharomyces cerevisiae produces ample amounts of CO2 under both aerobic and anaerobic conditions. High solubility of CO2 in fermentation media, contributing to enjoyable sensory properties of sparkling wine and beers by S. cerevisiae, might affect yeast metabolism. To elucidate the overlooked effects of CO2 on yeast metabolism, we examined glucose fermentation by S. cerevisiae under CO2 as compared to N2 and O2 limited conditions. While both CO2 and N2 conditions are considered anaerobic, less glycerol and acetate but more ethanol were produced under CO2 condition. Transcriptomic analysis revealed that significantly decreased mRNA levels of GPP1 coding for glycerol-3-phosphate phosphatase in glycerol synthesis explained the reduced glycerol production under CO2 condition. Besides, transcriptional regulations in signal transduction, carbohydrate synthesis, heme synthesis, membrane and cell wall metabolism, and respiration were detected in response to CO2. Interestingly, signal transduction was uniquely regulated under CO2 condition, where up-regulated genes (STE3, MSB2, WSC3, STE12 and TEC1) in the signal sensors and transcriptional factors suggested that MAPK signaling pathway plays a critical role in CO2 sensing and CO2-induced metabolisms in yeast. Our study identifies CO2 as an external stimulus for modulating metabolic activities in yeast and a transcriptional effector for diverse applications.
Collapse
Affiliation(s)
- Lin-Rui Tan
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Jing-Jing Liu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Anshu Deewan
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Jae Won Lee
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Peng-Fei Xia
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Christopher V Rao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Shu-Guang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China.,Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
11
|
Zhu Y, Fang C, Shi Y, Shan Y, Liu X, Liang Y, Huang L, Liu X, Liu C, Zhao Y, Fan S, Zhang X. Candida albicans Multilocus Sequence Typing Clade I Contributes to the Clinical Phenotype of Vulvovaginal Candidiasis Patients. Front Med (Lausanne) 2022; 9:837536. [PMID: 35433756 PMCID: PMC9010739 DOI: 10.3389/fmed.2022.837536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/18/2022] [Indexed: 01/12/2023] Open
Abstract
Candida albicans is the most frequent fungal species responsible for vulvovaginal candidiasis (VVC), which exhibits distinct genetic diversity that is linked with the clinical phenotype. This study aimed to assess the genotypes and clinical characteristics of different C. albicans isolates from VVC patients. Based on multilocus sequence typing (MLST), clade 1 was identified as the largest C. albicans group, which appeared most frequently in recurrent VVC and treatment failure cases. Further study of antifungal susceptibility demonstrated that MLST clade 1 strains presented significantly higher drug resistance ability than non-clade 1 strains, which result from the overexpression of MDR1. The mRNA and protein expression levels of virulence-related genes were also significantly higher in clade 1 isolates than in non-clade 1 isolates. Proteomic analysis indicated that the protein stabilization pathway was significantly enriched in clade 1 strains and that RPS4 was a central regulator of proteins involved in stress resistance, adherence, and DNA repair, which all contribute to the resistance and virulence of MLST clade 1 strains. This study was the first attempt to compare the correlation mechanisms between C. albicans MLST clade 1 and non-clade 1 strains and the clinical phenotype, which is of great significance for VVC classification and treatment.
Collapse
Affiliation(s)
- Yuxia Zhu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen PKU-HKUST Medical Center, Institute of Obstetrics and Gynecology, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Disease, Shenzhen, China
| | | | - Yu Shi
- Clinical College of Peking University Shenzhen Hospital, Anhui Medical University, Hefei, China
| | - Yingying Shan
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen PKU-HKUST Medical Center, Institute of Obstetrics and Gynecology, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Disease, Shenzhen, China
| | - Xiaoping Liu
- Department of Laboratory Science, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yiheng Liang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen PKU-HKUST Medical Center, Institute of Obstetrics and Gynecology, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Disease, Shenzhen, China
| | - Liting Huang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen PKU-HKUST Medical Center, Institute of Obstetrics and Gynecology, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Disease, Shenzhen, China
| | - Xinyang Liu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen PKU-HKUST Medical Center, Institute of Obstetrics and Gynecology, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Disease, Shenzhen, China
| | - Chunfeng Liu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen PKU-HKUST Medical Center, Institute of Obstetrics and Gynecology, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Disease, Shenzhen, China
| | - Yin Zhao
- Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen, China
| | - Shangrong Fan
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen PKU-HKUST Medical Center, Institute of Obstetrics and Gynecology, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Disease, Shenzhen, China
- Shangrong Fan
| | - Xiaowei Zhang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen PKU-HKUST Medical Center, Institute of Obstetrics and Gynecology, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecological Disease, Shenzhen, China
- *Correspondence: Xiaowei Zhang
| |
Collapse
|
12
|
CO 2 enhances the formation, nutrient scavenging and drug resistance properties of C. albicans biofilms. NPJ Biofilms Microbiomes 2021; 7:67. [PMID: 34385462 PMCID: PMC8361082 DOI: 10.1038/s41522-021-00238-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
C. albicans is the predominant human fungal pathogen and frequently colonises medical devices, such as voice prostheses, as a biofilm. It is a dimorphic yeast that can switch between yeast and hyphal forms in response to environmental cues, a property that is essential during biofilm establishment and maturation. One such cue is the elevation of CO2 levels, as observed in exhaled breath for example. However, despite the clear medical relevance, the effect of CO2 on C. albicans biofilm growth has not been investigated to date. Here we show that physiologically relevant CO2 elevation enhances each stage of the C. albicans biofilm-forming process: from attachment through maturation to dispersion. The effects of CO2 are mediated via the Ras/cAMP/PKA signalling pathway and the central biofilm regulators Efg1, Brg1, Bcr1 and Ndt80. Biofilms grown under elevated CO2 conditions also exhibit increased azole resistance, increased Sef1-dependent iron scavenging and enhanced glucose uptake to support their rapid growth. These findings suggest that C. albicans has evolved to utilise the CO2 signal to promote biofilm formation within the host. We investigate the possibility of targeting CO2-activated processes and propose 2-deoxyglucose as a drug that may be repurposed to prevent C. albicans biofilm formation on medical airway management implants. We thus characterise the mechanisms by which CO2 promotes C. albicans biofilm formation and suggest new approaches for future preventative strategies.
Collapse
|
13
|
Ponde NO, Lortal L, Ramage G, Naglik JR, Richardson JP. Candida albicans biofilms and polymicrobial interactions. Crit Rev Microbiol 2021; 47:91-111. [PMID: 33482069 PMCID: PMC7903066 DOI: 10.1080/1040841x.2020.1843400] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/05/2020] [Accepted: 10/25/2020] [Indexed: 12/16/2022]
Abstract
Candida albicans is a common fungus of the human microbiota. While generally a harmless commensal in healthy individuals, several factors can lead to its overgrowth and cause a range of complications within the host, from localized superficial infections to systemic life-threatening disseminated candidiasis. A major virulence factor of C. albicans is its ability to form biofilms, a closely packed community of cells that can grow on both abiotic and biotic substrates, including implanted medical devices and mucosal surfaces. These biofilms are extremely hard to eradicate, are resistant to conventional antifungal treatment and are associated with high morbidity and mortality rates, making biofilm-associated infections a major clinical challenge. Here, we review the current knowledge of the processes involved in C. albicans biofilm formation and development, including the central processes of adhesion, extracellular matrix production and the transcriptional network that regulates biofilm development. We also consider the advantages of the biofilm lifestyle and explore polymicrobial interactions within multispecies biofilms that are formed by C. albicans and selected microbial species.
Collapse
Affiliation(s)
- Nicole O. Ponde
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Léa Lortal
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Gordon Ramage
- School of Medicine, Dentistry & Nursing, Glasgow Dental School and Hospital, Faculty of Medicine, University of Glasgow, G2 3JZ, United Kingdom
| | - Julian R. Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| | - Jonathan P. Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, SE1 9RT, United Kingdom
| |
Collapse
|
14
|
Munusamy K, Loke MF, Vadivelu J, Tay ST. LC-MS analysis reveals biological and metabolic processes essential for Candida albicans biofilm growth. Microb Pathog 2020; 152:104614. [PMID: 33202254 DOI: 10.1016/j.micpath.2020.104614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022]
Abstract
Candidiasis is the most common fungal infection associated with high morbidity and mortality among immunocompromised patients. The ability to form biofilm is essential for Candida albicans pathogenesis and drug resistance. In this study, the planktonic cell and biofilm proteomes of C. albicans SC5314 strain analyzed using Liquid Chromatography-Mass Spectrometry (LC-MS) were compared. In total, 280 and 449 proteins are annotated from the planktonic cell and biofilm proteomes, respectively. The biofilm proteome demonstrated significantly higher proportion of proteins associated with the endomembrane system, mitochondrion and cytoplasm than planktonic proteome. Among proteins detected, 143 and 207 biological processes are annotated, of which, 38 and 102 are specific to the planktonic cell and biofilm proteomes, respectively, while 105 are common biological processes. The specific biological processes of C. albicans planktonic cell proteome are associated with cell polarity, energy metabolism and nucleotide (purine) metabolism, oxido-reduction coenzyme metabolic process, monosaccharide and amino acid (methionine) biosynthesis, regulation of anatomical structure morphogenesis and cell cycling, and single organism reproduction. Meanwhile, regulation of cellular macromolecule biosynthesis and metabolism, transcription and gene expression are major biological processes specifically associated with C. albicans biofilm proteome. Biosynthesis of leucine, isoleucine, and thiocysteine are highlighted as planktonic-related pathways, whereas folate metabolism, fatty acid metabolism and biosynthesis of amino acids (lysine, serine and glycine) are highlighted as biofilm-related pathways. In summary, LC-MS-based proteomic analysis reveals different adaptative strategies of C. albicans via specific biological and metabolic processes for planktonic cell and biofilm lifestyles. The mass spectrometry data are available via ProteomeXchange with identifiers PXD007830 (for biofilm proteome) and PXD007831 (for planktonic cell proteome).
Collapse
Affiliation(s)
- Komathy Munusamy
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mun Fai Loke
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sun Tee Tay
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
15
|
Kowalski CH, Morelli KA, Schultz D, Nadell CD, Cramer RA. Fungal biofilm architecture produces hypoxic microenvironments that drive antifungal resistance. Proc Natl Acad Sci U S A 2020; 117:22473-22483. [PMID: 32848055 PMCID: PMC7486789 DOI: 10.1073/pnas.2003700117] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human fungal infections may fail to respond to contemporary antifungal therapies in vivo despite in vitro fungal isolate drug susceptibility. Such a discrepancy between in vitro antimicrobial susceptibility and in vivo treatment outcomes is partially explained by microbes adopting a drug-resistant biofilm mode of growth during infection. The filamentous fungal pathogen Aspergillus fumigatus forms biofilms in vivo, and during biofilm growth it has reduced susceptibility to all three classes of contemporary antifungal drugs. Specific features of filamentous fungal biofilms that drive antifungal drug resistance remain largely unknown. In this study, we applied a fluorescence microscopy approach coupled with transcriptional bioreporters to define spatial and temporal oxygen gradients and single-cell metabolic activity within A. fumigatus biofilms. Oxygen gradients inevitably arise during A. fumigatus biofilm maturation and are both critical for, and the result of, A. fumigatus late-stage biofilm architecture. We observe that these self-induced hypoxic microenvironments not only contribute to filamentous fungal biofilm maturation but also drive resistance to antifungal treatment. Decreasing oxygen levels toward the base of A. fumigatus biofilms increases antifungal drug resistance. Our results define a previously unknown mechanistic link between filamentous fungal biofilm physiology and contemporary antifungal drug resistance. Moreover, we demonstrate that drug resistance mediated by dynamic oxygen gradients, found in many bacterial biofilms, also extends to the fungal kingdom. The conservation of hypoxic drug-resistant niches in bacterial and fungal biofilms is thus a promising target for improving antimicrobial therapy efficacy.
Collapse
Affiliation(s)
- Caitlin H Kowalski
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Kaesi A Morelli
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Daniel Schultz
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755;
| |
Collapse
|
16
|
Anane YA, Apalata T, Vasaikar S, Okuthe GE, Songca SP. In vitro antimicrobial photodynamic inactivation of multidrug-resistant Acinetobacter baumannii biofilm using Protoporphyrin IX and Methylene blue. Photodiagnosis Photodyn Ther 2020; 30:101752. [PMID: 32289462 DOI: 10.1016/j.pdpdt.2020.101752] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/19/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Acinetobacter baumannii is a challenging pathogen due to the rapid development of antimicrobial resistance and biofilm formation. The objective of this study was to evaluate the effect of antimicrobial photodynamic inactivation against biofilms of multidrug-resistant A. baumannii isolated from clinical, abattoir and aquatic sources. METHODS The isolates were tested for susceptibility to imipenem, meropenem, tigecycline and colistin using autoSCAN-4 automated system and rechecked by the E-test. Methylene blue, Protoporphyrin IX, and a halogen lamp were used in the in vitro assay against biofilms of the isolates. The antimicrobial photodynamic inactivation was assessed by counting colony-forming units (CFU). RESULTS The isolates from abattoir and aquatic sources were resistant to carbapenems (>64 μg/mL) but susceptible to tigecycline (2 μg/mL) and colistin (Abattoir, 0.35 μg/mL and Aquatic, 0.24 μg/mL), whereas the clinical isolate was susceptible to only colistin (0.5 μg/mL) using the E-test. The log survival percentages of the control group at a concentration of 20 μM were 5 × 10-6 % for Protoporphyrin IX and 2 × 10-6 % for Methylene blue. Therefore, Methylene blue showed higher bacterial reduction of 7.0 log10 colony forming units than 6.0 log10 for Protoporphyrin IX. No significant difference was observed with respect to the origin of isolates and the minimum inhibitory concentrations. CONCLUSION The results indicate that antimicrobial photodynamic inactivation could be an alternative strategy for the control of infections caused by multi-drug resistant A. baumannii by significantly reducing biofilm growth at a sub-lethal concentrations.
Collapse
Affiliation(s)
- Yaw Adjei Anane
- Division of Medical Microbiology, Department of Laboratory Medicine and Pathology, Faculty of Health Sciences, Walter Sisulu University, Private Bag: X1, Mthatha, 5117 Eastern Cape Province, South Africa.
| | - Teke Apalata
- Division of Medical Microbiology, Department of Laboratory Medicine and Pathology, Faculty of Health Sciences, Walter Sisulu University, Private Bag: X1, Mthatha, 5117 Eastern Cape Province, South Africa; Division of Medical Microbiology, National Health Laboratory Services (NHLS), Nelson Mandela Central Hospital, Mthatha 5100, South Africa.
| | - Sandeep Vasaikar
- Division of Medical Microbiology, Department of Laboratory Medicine and Pathology, Faculty of Health Sciences, Walter Sisulu University, Private Bag: X1, Mthatha, 5117 Eastern Cape Province, South Africa; Division of Medical Microbiology, National Health Laboratory Services (NHLS), Nelson Mandela Central Hospital, Mthatha 5100, South Africa
| | - Grace Emily Okuthe
- Department of Biological & Environmental Sciences, Walter Sisulu University, Private Bag: X1, Mthatha, 5117 Eastern Cape Province, South Africa.
| | - Sandile Phinda Songca
- School of Chemistry and Physics, College of Agriculture Engineering and Science, University of KwaZulu-Natal, 2nd Floor, Francis Stock Building, Howard College Campus, UKZN, Durban, 4041, South Africa.
| |
Collapse
|
17
|
Effect of progesterone on Candida albicans biofilm formation under acidic conditions: A transcriptomic analysis. Int J Med Microbiol 2020; 310:151414. [PMID: 32173268 DOI: 10.1016/j.ijmm.2020.151414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 01/08/2020] [Accepted: 02/25/2020] [Indexed: 11/22/2022] Open
Abstract
Vulvovaginal candidiasis (VVC) caused by Candida albicans is a common disease worldwide. A very important C. albicans virulence factor is its ability to form biofilms on epithelium and/or on intrauterine devices promoting VVC. It has been shown that VVC has a hormonal dependency and that progesterone affects virulence traits of C. albicans cells. To understand how the acidic environment (pH 4) and progesterone (either alone and in combination) modulate C. albicans response during formation of biofilm, a transcriptomic analysis was performed together with characterization of the biofilm properties. Compared to planktonic cells, acidic biofilm-cells exhibited major changes in their transcriptome, including modifications in the expression of 286 genes that were not previously associated with biofilm formation in C. albicans. The vast majority of the genes up-regulated in the acidic biofilm cells (including those uniquely identified in our study) are known targets of Sfl1, and consistently, Sfl1 deletion is herein shown to impair the formation of acidic biofilms (pH 4). Under the acidic conditions used, the presence of progesterone reduced C. albicans biofilm biomass and structural cohesion. Transcriptomic analysis of biofilms developed in the presence of progesterone led to the identification of 65 down-regulated genes including, among others, the regulator Tec1 and several of its target genes, suggesting that the function of this transcription factor is inhibited by the presence of the hormone. Additionally, progesterone reduced the susceptibility of biofilm cells to fluconazole, consistent with an up-regulation of efflux pumps. Overall, the results of this study show that progesterone modulates C. albicans biofilm formation and genomic expression under acidic conditions, which may have implications for C. albicans pathogenicity in the vaginal environment.
Collapse
|
18
|
Screening of Candida albicans GRACE library revealed a unique pattern of biofilm formation under repression of the essential gene ILS1. Sci Rep 2019; 9:9187. [PMID: 31235750 PMCID: PMC6591175 DOI: 10.1038/s41598-019-45624-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/06/2019] [Indexed: 01/19/2023] Open
Abstract
Candida albicans biofilm formation is governed by a regulatory circuit comprising nine transcription factors which control a network of target genes. However, there are still unknown genes contributing to biofilm features. Thus, the GRACE library was screened to identify genes involved in mature biofilm development. Twenty-nine conditional mutants were selected for a second screening revealing three groups of genes: twenty- two conditional mutants were defective for normal growth and unable to form biofilms; six strains, conditionally defective in genes ARC40, ARC35, ORF19.2438, SKP1, ERG6, and ADE5,7 that are likely essential or involved in general cell processes, grew normally as free-floating cells but produced less biofilm; finally, the conditional strain for a putative essential isoleucyl- tRNA synthetase gene, ILS1, was unable to grow as yeast-phase cells but was capable of producing a tridimensional biofilm structure in spite of reduced metabolic activity. This unique biofilm still relied on the classical biofilm genes, while it differentially induced groups of genes involved in adhesion, protein synthesis, cell wall organization, and protein folding. Although the conditional mutant repressed genes annotated for morphology and homeostasis processes affecting morphology and metabolism, the dynamic cell growth enabled the formation of a complex biofilm community independent of ILS1.
Collapse
|
19
|
Fillinger RJ, Anderson MZ. Seasons of change: Mechanisms of genome evolution in human fungal pathogens. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 70:165-174. [PMID: 30826447 DOI: 10.1016/j.meegid.2019.02.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/23/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Fungi are a diverse kingdom of organisms capable of thriving in various niches across the world including those in close association with multicellular eukaryotes. Fungal pathogens that contribute to human disease reside both within the host as commensal organisms of the microbiota and the environment. Their niche of origin dictates how infection initiates but also places specific selective pressures on the fungal pathogen that contributes to its genome organization and genetic repertoire. Recent efforts to catalogue genomic variation among major human fungal pathogens have unveiled evolutionary themes that shape the fungal genome. Mechanisms ranging from large scale changes such as aneuploidy and ploidy cycling as well as more targeted mutations like base substitutions and gene copy number variations contribute to the evolution of these species, which are often under multiple competing selective pressures with their host, environment, and other microbes. Here, we provide an overview of the major selective pressures and mechanisms acting to evolve the genome of clinically important fungal pathogens of humans.
Collapse
Affiliation(s)
- Robert J Fillinger
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew Z Anderson
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA; Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
20
|
Phenotypic characteristics and transcriptome profile of Cryptococcus gattii biofilm. Sci Rep 2019; 9:6438. [PMID: 31015652 PMCID: PMC6478838 DOI: 10.1038/s41598-019-42896-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/08/2019] [Indexed: 12/23/2022] Open
Abstract
In this study, we characterized Cryptococcus gattii biofilm formation in vitro. There was an increase in the density of metabolically active sessile cells up to 72 h of biofilm formation on polystyrene and glass surfaces. Scanning electron microscopy and confocal laser scanning microscopy analysis revealed that in the early stage of biofilm formation, yeast cells adhered to the abiotic surface as a monolayer. After 12 h, extracellular fibrils were observed projecting from C. gattii cells, connecting the yeast cells to each other and to the abiotic surface; mature biofilm consisted of a dense network of cells deeply encased in an extracellular polymeric matrix. These features were also observed in biofilms formed on polyvinyl chloride and silicone catheter surfaces. We used RNA-Seq-based transcriptome analysis to identify changes in gene expression associated with C. gattii biofilm at 48 h compared to the free-floating planktonic cells. Differential expression analysis showed that 97 and 224 transcripts were up-regulated and down-regulated in biofilm, respectively. Among the biological processes, the highest enriched term showed that the transcripts were associated with cellular metabolic processes, macromolecule biosynthetic processes and translation.
Collapse
|
21
|
Da W, Shao J, Li Q, Shi G, Wang T, Wu D, Wang C. Extraction of Extracellular Matrix in Static and Dynamic Candida Biofilms Using Cation Exchange Resin and Untargeted Analysis of Matrix Metabolites by Ultra-High-Performance Liquid Chromatography-Tandem Quadrupole Time-of-Flight Mass Spectrometry (UPLC-Q-TOF-MS). Front Microbiol 2019; 10:752. [PMID: 31110494 PMCID: PMC6499207 DOI: 10.3389/fmicb.2019.00752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 11/13/2022] Open
Abstract
Fungal infections caused by Candida albicans poses a great threat to human health. The ability of biofilm formation is believed to be associated with resistance-related Candida infections. Currently, knowledge on extracellular matrix (EM) of C. albicans biofilm is limited. In this study, we introduced ion exchange resin, i.e., cation exchange resin (CER) and anion exchange resin (AER), in EM extraction of C. albicans biofilm as well as several non-albicans Candida (NAC) biofilms under static and dynamic states in combination with vortexing and ultrasonication (VU). The metabolites extracted from the dynamic C. albicans biofilm matrix using the CER-VU and VU were identified with ultra-high-performance liquid chromatography-tandem quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) via untargeted filtration. Compared with other physical and chemical extraction methods, CER-VU was demonstrated to be an ideal approach with high-yield acquisitions of EM constituents including proteins, triglycerides and carbohydrates and low-level damages on fungal cell viability and integrity. The untargeted MS analysis further showed the high efficacy of CER-VU, as a large quantity of metabolites (217 versus 198) was matched comprising a great number of lipids, carbohydrates, amino acids, nucleic acids and their derivatives together with a high involvement of signaling pathways compared with the VU alone. However, combining the results from both the CER-VU and VU methods could generate more metabolites. In summary, the EM analysis of the dynamic C. albicans biofilm expands our understanding upon a comprehensive depiction of matrix components and provides another effective approach for EM extraction.
Collapse
Affiliation(s)
- Wenyue Da
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Jing Shao
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Qianqian Li
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Gaoxiang Shi
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Tianming Wang
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Daqiang Wu
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Changzhong Wang
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
22
|
Tsutsumi-Arai C, Arai Y, Terada-Ito C, Takebe Y, Ide S, Umeki H, Tatehara S, Tokuyama-Toda R, Wakabayashi N, Satomura K. Effectiveness of 405-nm blue LED light for degradation of Candida biofilms formed on PMMA denture base resin. Lasers Med Sci 2019; 34:1457-1464. [DOI: 10.1007/s10103-019-02751-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/12/2019] [Indexed: 12/19/2022]
|
23
|
Vishwakarma V, Anandkumar B. Molecular biological tools in concrete biodeterioration - a mini review. ENVIRONMENTAL TECHNOLOGY 2019; 40:i-xi. [PMID: 30112961 DOI: 10.1080/09593330.2018.1513082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 08/12/2018] [Indexed: 06/08/2023]
Abstract
Concrete structures develop biofilms when exposed to various environments. At a certain stage, the microbial films destroy the concrete structures leading to significant deterioration. Culture-dependent techniques give an incomplete picture of the microbial communities on the concrete surface. Culture-independent techniques or molecular biological tools pave a new way to analyse microbial communities involved in concrete biodeterioration. This study highlights the need to 'build' a database, for Microbiologically Influenced Concrete Corrosion (MICC) involving microbial groups that are being identified using culture-dependent and independent techniques. The role of molecular tools such as 16S rRNA sequencing, denaturing gradient gel electrophoresis (DGGE), Fluorescent in situ hybridization (FISH), Real-time Polymerase Chain Reaction (RT-PCR), microarray analysis, 2-Dimensional gel electrophoresis (2-DE) in analysing microbial communities on the concrete structures have been reviewed in this paper.
Collapse
Affiliation(s)
- Vinita Vishwakarma
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, India
| | - Balakrishnan Anandkumar
- Corrosion Science and Technology Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, India
| |
Collapse
|
24
|
The Significance of Lipids to Biofilm Formation in Candida albicans: An Emerging Perspective. J Fungi (Basel) 2018; 4:jof4040140. [PMID: 30567300 PMCID: PMC6308932 DOI: 10.3390/jof4040140] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 01/03/2023] Open
Abstract
Candida albicans, the dimorphic opportunistic human fungal pathogen, is capable of forming highly drug-resistant biofilms in the human host. Formation of biofilm is a multistep and multiregulatory process involving various adaptive mechanisms. The ability of cells in a biofilm to alter membrane lipid composition is one such adaptation crucial for biofilm development in C. albicans. Lipids modulate mixed species biofilm formation in vivo and inherent antifungal resistance associated with these organized communities. Cells in C. albicans biofilms display phase-dependent changes in phospholipid classes and in levels of lipid raft formation. Systematic studies with genetically modified strains in which the membrane phospholipid composition can be manipulated are limited in C. albicans. In this review, we summarize the knowledge accumulated on the impact that alterations in phospholipids may have on the biofilm forming ability of C. albicans in the human host. This review may provide the requisite impetus to analyze lipids from a therapeutic standpoint in managing C. albicans biofilms.
Collapse
|
25
|
Sundararajan A, Rane HS, Ramaraj T, Sena J, Howell AB, Bernardo SM, Schilkey FD, Lee SA. Cranberry-derived proanthocyanidins induce a differential transcriptomic response within Candida albicans urinary biofilms. PLoS One 2018; 13:e0201969. [PMID: 30089157 PMCID: PMC6082538 DOI: 10.1371/journal.pone.0201969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/25/2018] [Indexed: 11/18/2022] Open
Abstract
Candida albicans is one of the most common causes of hospital-acquired urinary tract infections (UTIs). However, azoles are poorly active against biofilms, echinocandins do not achieve clinically useful urinary concentrations, and amphotericin B exhibits severe toxicities. Thus, novel strategies are needed to prevent Candida UTIs, which are often associated with urinary catheter biofilms. We previously demonstrated that cranberry-derived proanthocyanidins (PACs) prevent C. albicans biofilm formation in an in vitro urinary model. To elucidate functional pathways unique to urinary biofilm development and PAC inhibition, we investigated the transcriptome of C. albicans in artificial urine (AU), with and without PACs. C. albicans biofilm and planktonic cells were cultivated with or without PACs. Genome-wide expression analysis was performed by RNA sequencing. Differentially expressed genes were determined using DESeq2 software; pathway analysis was performed using Cytoscape. Approximately 2,341 of 6,444 total genes were significantly expressed in biofilm relative to planktonic cells. Functional pathway analysis revealed that genes involved in filamentation, adhesion, drug response and transport were up-regulated in urinary biofilms. Genes involved in carbon and nitrogen metabolism and nutrient response were down-regulated. In PAC-treated urinary biofilms compared to untreated control biofilms, 557 of 6,444 genes had significant changes in gene expression. Genes downregulated in PAC-treated biofilms were implicated in iron starvation and adhesion pathways. Although urinary biofilms share key features with biofilms formed in other environments, many genes are uniquely expressed in urinary biofilms. Cranberry-derived PACs interfere with the expression of iron acquisition and adhesion genes within urinary biofilms.
Collapse
Affiliation(s)
- Anitha Sundararajan
- National Center for Genome Resources, Santa Fe, NM, United States of America
| | - Hallie S. Rane
- Section of Infectious Diseases, New Mexico VA Healthcare System, Albuquerque, NM, United States of America
| | | | - Johnny Sena
- National Center for Genome Resources, Santa Fe, NM, United States of America
| | - Amy B. Howell
- Marucci Center for Blueberry and Cranberry Research and Extension, Rutgers, The State University of New Jersey, Chatsworth, NJ, United States of America
| | - Stella M. Bernardo
- Division of Infectious Diseases, University of New Mexico Health Science Center, Albuquerque, NM, United States of America
| | - Faye D. Schilkey
- National Center for Genome Resources, Santa Fe, NM, United States of America
| | - Samuel A. Lee
- Section of Infectious Diseases, New Mexico VA Healthcare System, Albuquerque, NM, United States of America
- Division of Infectious Diseases, University of New Mexico Health Science Center, Albuquerque, NM, United States of America
| |
Collapse
|
26
|
Li DD, Fuchs BB, Wang Y, Huang XW, Hu DD, Sun Y, Chai D, Jiang YY, Mylonakis E. Histone acetyltransferase encoded by NGG1 is required for morphological conversion and virulence of Candida albicans. Future Microbiol 2017; 12:1497-1510. [PMID: 29110536 DOI: 10.2217/fmb-2017-0084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To assess the function of Ngg1 in Candida albicans and reveal the role of NGG1 in the morphological conversion and virulence of C. albicans. MATERIALS & METHODS C. albicans NGG1 gene was deleted in the wild-type strain SC5314 and the function of Ngg1 was assessed by western blot analysis. The phenotypes and the virulence of the ngg1 mutants were examined. Microarray analysis was performed to explore the mechanism. RESULTS The ngg1 mutants attenuated acetylated histone H3, obviously reduced filamentous growth and showed significantly diminished pathogenicity in all the infection models. CONCLUSION This study suggested the histone acetyltransferase activity of C. albicans Ngg1 and revealed the important role of NGG1 in morphological conversion and virulence of C. albicans. [Formula: see text].
Collapse
Affiliation(s)
- De-Dong Li
- Clinical Pharmacy Center, Department of Pharmacy, Chinese PLA General Hospital, Beijing 100853, China.,Division of Infectious Disease, Rhode Island Hospital, Alpert Medical School & Brown University, RI 02903, USA.,New Drug Research & Development Center, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Beth Burgwyn Fuchs
- Division of Infectious Disease, Rhode Island Hospital, Alpert Medical School & Brown University, RI 02903, USA
| | - Yan Wang
- New Drug Research & Development Center, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xiao-Wen Huang
- Division of Infectious Disease, Rhode Island Hospital, Alpert Medical School & Brown University, RI 02903, USA.,Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Dan-Dan Hu
- New Drug Research & Development Center, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yan Sun
- Clinical Pharmacy Center, Department of Pharmacy, Chinese PLA General Hospital, Beijing 100853, China
| | - Dong Chai
- Clinical Pharmacy Center, Department of Pharmacy, Chinese PLA General Hospital, Beijing 100853, China
| | - Yuan-Ying Jiang
- New Drug Research & Development Center, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Eleftherios Mylonakis
- Division of Infectious Disease, Rhode Island Hospital, Alpert Medical School & Brown University, RI 02903, USA
| |
Collapse
|
27
|
Srivastava A, Sircaik S, Husain F, Thomas E, Ror S, Rastogi S, Alim D, Bapat P, Andes DR, Nobile CJ, Panwar SL. Distinct roles of the 7-transmembrane receptor protein Rta3 in regulating the asymmetric distribution of phosphatidylcholine across the plasma membrane and biofilm formation in Candida albicans. Cell Microbiol 2017; 19. [PMID: 28745020 DOI: 10.1111/cmi.12767] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/10/2017] [Accepted: 07/14/2017] [Indexed: 12/17/2022]
Abstract
Fungal pathogens such as Candida albicans exhibit several survival mechanisms to evade attack by antifungals and colonise host tissues. Rta3, a member of the Rta1-like family of lipid-translocating exporters has a 7-transmembrane domain topology, similar to the G-protein-coupled receptors and is unique to the fungal kingdom. Our findings point towards a role for the plasma membrane localised Rta3 in providing tolerance to miltefosine, an analogue of alkylphosphocholine, by maintaining mitochondrial energetics. Concurrent with miltefosine susceptibility, the rta3Δ/Δ strain displays increased inward translocation (flip) of fluorophore-labelled phosphatidylcholine (PC) across the plasma membrane attributed to enhanced PC-specific flippase activity. We also assign a novel role to Rta3 in the Bcr1-regulated pathway for in vivo biofilm development. Transcriptome analysis reveals that Rta3 regulates expression of Bcr1 target genes involved in cell surface properties, adhesion, and hyphal growth. We show that rta3Δ/Δ mutant is biofilm-defective in a rat venous catheter model of infection and that BCR1 overexpression rescues this defect, indicating that Bcr1 functions downstream of Rta3 to mediate biofilm formation in C. albicans. The identification of this novel Rta3-dependent regulatory network that governs biofilm formation and PC asymmetry across the plasma membrane will provide important insights into C. albicans pathogenesis.
Collapse
Affiliation(s)
- Archita Srivastava
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shabnam Sircaik
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Farha Husain
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Edwina Thomas
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shivani Ror
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sumit Rastogi
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Darakshan Alim
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Priyanka Bapat
- Department of Molecular and Cell Biology, University of California, Merced, California, USA.,Quantitative and System Biology Graduate Program, University of California, Merced, California, USA
| | - David R Andes
- Department of Medicine, Section of Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, University of California, Merced, California, USA
| | - Sneh L Panwar
- Yeast Molecular Genetics Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
28
|
Abstract
Candida albicans is among the most prevalent fungal species of the human microbiota and asymptomatically colonizes healthy individuals. However, it is also an opportunistic pathogen that can cause severe, and often fatal, bloodstream infections. The medical impact of C. albicans typically depends on its ability to form biofilms, which are closely packed communities of cells that attach to surfaces, such as tissues and implanted medical devices. In this Review, we provide an overview of the processes involved in the formation of C. albicans biofilms and discuss the core transcriptional network that regulates biofilm development. We also consider some of the advantages that biofilms provide to C. albicans in comparison with planktonic growth and explore polymicrobial biofilms that are formed by C. albicans and certain bacterial species.
Collapse
|
29
|
Abstract
We focus this article on turning a biofilm inside out. The "inside" of the biofilm comprises the individual biofilm-related phenotypes, their environmental drivers and genetic determinants, and the coordination of gene functions through transcriptional regulators. Investigators have viewed the inside of the biofilm through diverse approaches, and this article will attempt to capture the essence of many. The ultimate goal is to connect the inside to the "outside," which we view as biofilm structure, development, pharmacological attributes, and medical impact.
Collapse
|
30
|
Núñez-Beltrán A, López-Romero E, Cuéllar-Cruz M. Identification of proteins involved in the adhesionof Candida species to different medical devices. Microb Pathog 2017; 107:293-303. [PMID: 28396240 DOI: 10.1016/j.micpath.2017.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/04/2017] [Accepted: 04/06/2017] [Indexed: 01/09/2023]
Abstract
Adhesion is the first step for Candida species to form biofilms on medical devices implanted in the human host. Both the physicochemical nature of the biomaterial and cell wall proteins (CWP) of the pathogen play a determinant role in the process. While it is true that some CWP have been identified in vitro, little is known about the CWP of pathogenic species of Candida involved in adhesion. On this background, we considered it important to investigate the potential role of CWP of C. albicans, C. glabrata, C. krusei and C. parapsilosis in adhesion to different medical devices. Our results indicate that the four species strongly adher to polyvinyl chloride (PVC) devices, followed by polyurethane and finally by silicone. It was interesting to identify fructose-bisphosphate aldolase (Fba1) and enolase 1 (Eno1) as the CWP involved in adhesion of C. albicans, C. glabrata and C. krusei to PVC devices whereas phosphoglycerate kinase (Pgk) and Eno1 allow C. parapsilosis to adher to silicone-made implants. Results presented here suggest that these CWP participate in the initial event of adhesion and are probably followed by other proteins that covalently bind to the biomaterial thus providing conditions for biofilm formation and eventually the onset of infection.
Collapse
Affiliation(s)
- Arianna Núñez-Beltrán
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Mexico
| | - Everardo López-Romero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Mexico
| | - Mayra Cuéllar-Cruz
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Mexico.
| |
Collapse
|
31
|
Ząbek A, Junka A, Szymczyk P, Wojtowicz W, Klimek-Ochab M, Młynarz P. Metabolomics analysis of fungal biofilm development and of arachidonic acid-based quorum sensing mechanism. J Basic Microbiol 2017; 57:428-439. [DOI: 10.1002/jobm.201600636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/06/2017] [Accepted: 01/27/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Adam Ząbek
- Department of Chemistry; Wroclaw University of Technology; 50-370 Wrocław Poland
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology; Wroclaw Medical University; 50-556 Wrocław Poland
| | - Patrycja Szymczyk
- Centre of Advance Manufacturing Technologies; Wroclaw University of Technology; 50-370 Wrocław Poland
| | - Wojciech Wojtowicz
- Department of Chemistry; Wroclaw University of Technology; 50-370 Wrocław Poland
| | | | - Piotr Młynarz
- Department of Chemistry; Wroclaw University of Technology; 50-370 Wrocław Poland
| |
Collapse
|
32
|
Abstract
We focus this article on turning a biofilm inside out. The "inside" of the biofilm comprises the individual biofilm-related phenotypes, their environmental drivers and genetic determinants, and the coordination of gene functions through transcriptional regulators. Investigators have viewed the inside of the biofilm through diverse approaches, and this article will attempt to capture the essence of many. The ultimate goal is to connect the inside to the "outside," which we view as biofilm structure, development, pharmacological attributes, and medical impact.
Collapse
Affiliation(s)
- Katherine Lagree
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Aaron P Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
33
|
Rodrigues CF, Rodrigues ME, Silva S, Henriques M. Candida glabrata Biofilms: How Far Have We Come? J Fungi (Basel) 2017; 3:E11. [PMID: 29371530 PMCID: PMC5715960 DOI: 10.3390/jof3010011] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/07/2017] [Accepted: 02/16/2017] [Indexed: 11/25/2022] Open
Abstract
Infections caused by Candida species have been increasing in the last decades and can result in local or systemic infections, with high morbidity and mortality. After Candida albicans, Candida glabrata is one of the most prevalent pathogenic fungi in humans. In addition to the high antifungal drugs resistance and inability to form hyphae or secret hydrolases, C. glabrata retain many virulence factors that contribute to its extreme aggressiveness and result in a low therapeutic response and serious recurrent candidiasis, particularly biofilm formation ability. For their extraordinary organization, especially regarding the complex structure of the matrix, biofilms are very resistant to antifungal treatments. Thus, new approaches to the treatment of C. glabrata's biofilms are emerging. In this article, the knowledge available on C. glabrata's resistance will be highlighted, with a special focus on biofilms, as well as new therapeutic alternatives to control them.
Collapse
Affiliation(s)
- Célia F Rodrigues
- CEB, Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal.
| | - Maria Elisa Rodrigues
- CEB, Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal.
| | - Sónia Silva
- CEB, Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal.
| | - Mariana Henriques
- CEB, Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
34
|
Temporal Profile of Biofilm Formation, Gene Expression and Virulence Analysis in Candida albicans Strains. Mycopathologia 2016; 182:285-295. [DOI: 10.1007/s11046-016-0088-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 10/29/2016] [Indexed: 10/20/2022]
|
35
|
Rajendran R, May A, Sherry L, Kean R, Williams C, Jones BL, Burgess KV, Heringa J, Abeln S, Brandt BW, Munro CA, Ramage G. Integrating Candida albicans metabolism with biofilm heterogeneity by transcriptome mapping. Sci Rep 2016; 6:35436. [PMID: 27765942 PMCID: PMC5073228 DOI: 10.1038/srep35436] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/29/2016] [Indexed: 12/20/2022] Open
Abstract
Candida albicans biofilm formation is an important virulence factor in the pathogenesis of disease, a characteristic which has been shown to be heterogeneous in clinical isolates. Using an unbiased computational approach we investigated the central metabolic pathways driving biofilm heterogeneity. Transcripts from high (HBF) and low (LBF) biofilm forming isolates were analysed by RNA sequencing, with 6312 genes identified to be expressed in these two phenotypes. With a dedicated computational approach we identified and validated a significantly differentially expressed subnetwork of genes associated with these biofilm phenotypes. Our analysis revealed amino acid metabolism, such as arginine, proline, aspartate and glutamate metabolism, were predominantly upregulated in the HBF phenotype. On the contrary, purine, starch and sucrose metabolism was generally upregulated in the LBF phenotype. The aspartate aminotransferase gene AAT1 was found to be a common member of these amino acid pathways and significantly upregulated in the HBF phenotype. Pharmacological inhibition of AAT1 enzyme activity significantly reduced biofilm formation in a dose-dependent manner. Collectively, these findings provide evidence that biofilm phenotype is associated with differential regulation of metabolic pathways. Understanding and targeting such pathways, such as amino acid metabolism, is potentially useful for developing diagnostics and new antifungals to treat biofilm-based infections.
Collapse
Affiliation(s)
- Ranjith Rajendran
- School of Medicine, College of Medical, Veterinary and Life Sciences (MVLS), University of Glasgow, UK
| | - Ali May
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, The Netherlands.,Centre for Integrative Bioinformatics VU (IBIVU), VU University Amsterdam, The Netherlands
| | - Leighann Sherry
- School of Medicine, College of Medical, Veterinary and Life Sciences (MVLS), University of Glasgow, UK
| | - Ryan Kean
- School of Medicine, College of Medical, Veterinary and Life Sciences (MVLS), University of Glasgow, UK.,Institute of Healthcare Associated Infection, School of Health, Nursing and Midwifery, University of the West of Scotland, UK
| | - Craig Williams
- Institute of Healthcare Associated Infection, School of Health, Nursing and Midwifery, University of the West of Scotland, UK
| | - Brian L Jones
- Microbiology Department, Glasgow Royal Infirmary, Glasgow, UK
| | | | - Jaap Heringa
- Centre for Integrative Bioinformatics VU (IBIVU), VU University Amsterdam, The Netherlands
| | - Sanne Abeln
- Centre for Integrative Bioinformatics VU (IBIVU), VU University Amsterdam, The Netherlands
| | - Bernd W Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, The Netherlands
| | - Carol A Munro
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, UK
| | - Gordon Ramage
- School of Medicine, College of Medical, Veterinary and Life Sciences (MVLS), University of Glasgow, UK
| |
Collapse
|
36
|
Abstract
Candida albicans, the most pervasive fungal pathogen that colonizes humans, forms biofilms that are architecturally complex. They consist of a basal yeast cell polylayer and an upper region of hyphae encapsulated in extracellular matrix. However, biofilms formed in vitro vary as a result of the different conditions employed in models, the methods used to assess biofilm formation, strain differences, and, in a most dramatic fashion, the configuration of the mating type locus (MTL). Therefore, integrating data from different studies can lead to problems of interpretation if such variability is not taken into account. Here we review the conditions and factors that cause biofilm variation, with the goal of engendering awareness that more attention must be paid to the strains employed, the methods used to assess biofilm development, every aspect of the model employed, and the configuration of the MTL locus. We end by posing a set of questions that may be asked in comparing the results of different studies and developing protocols for new ones. This review should engender the notion that not all biofilms are created equal.
Collapse
Affiliation(s)
- David R Soll
- Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, USA
| | - Karla J Daniels
- Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
37
|
ZCF32, a fungus specific Zn(II)2 Cys6 transcription factor, is a repressor of the biofilm development in the human pathogen Candida albicans. Sci Rep 2016; 6:31124. [PMID: 27498700 PMCID: PMC4976313 DOI: 10.1038/srep31124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/11/2016] [Indexed: 01/12/2023] Open
Abstract
As a human fungal pathogen, Candida albicans can cause a wide variety of disease conditions ranging from superficial to systemic infections. Many of these infections are caused by an inherent ability of the pathogen to form biofilms on medical devices resulting in high mortality. Biofilms formed by C. albicans are a complex consortium of yeast and hyphal cells embedded in an extracellular matrix and are regulated by a network of transcription factors. Here, we report the role of a novel Zn(II)2-Cys6 binuclear cluster transcription factor, ZCF32, in the regulation of biofilm formation. Global transcriptome analysis reveals that biofilm development is the most altered pathway in the zcf32 null mutant. To delineate the functional correlation between ZCF32 and biofilm development, we determined the set of genes directly regulated by Zcf32. Our data suggests that Zcf32 regulates biofilm formation by repressing the expression of adhesins, chitinases and a significant number of other GPI-anchored proteins. We establish that there is the lesser recruitment of Zcf32 on the promoters of biofilm genes in biofilm condition compared to the planktonic mode of growth. Taking together, we propose that the transcription factor ZCF32 negatively regulates biofilm development in C. albicans.
Collapse
|
38
|
Abstract
In humans, microbial cells (including bacteria, archaea, and fungi) greatly outnumber host cells. Candida albicans is the most prevalent fungal species of the human microbiota; this species asymptomatically colonizes many areas of the body, particularly the gastrointestinal and genitourinary tracts of healthy individuals. Alterations in host immunity, stress, resident microbiota, and other factors can lead to C. albicans overgrowth, causing a wide range of infections, from superficial mucosal to hematogenously disseminated candidiasis. To date, most studies of C. albicans have been carried out in suspension cultures; however, the medical impact of C. albicans (like that of many other microorganisms) depends on its ability to thrive as a biofilm, a closely packed community of cells. Biofilms are notorious for forming on implanted medical devices, including catheters, pacemakers, dentures, and prosthetic joints, which provide a surface and sanctuary for biofilm growth. C. albicans biofilms are intrinsically resistant to conventional antifungal therapeutics, the host immune system, and other environmental perturbations, making biofilm-based infections a significant clinical challenge. Here, we review our current knowledge of biofilms formed by C. albicans and closely related fungal species.
Collapse
Affiliation(s)
- Clarissa J Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California 95343;
| | - Alexander D Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143;
| |
Collapse
|
39
|
Lu H, Xiong J, Shang Q, Jiang Y, Cao Y. Roles of RPS41 in Biofilm Formation, Virulence, and Hydrogen Peroxide Sensitivity in Candida albicans. Curr Microbiol 2016; 72:783-787. [PMID: 26952720 DOI: 10.1007/s00284-016-1019-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/28/2016] [Indexed: 11/29/2022]
Abstract
In eukaryotes, loss of cytoplasmic ribosomal proteins (RPs) results in a reduced growth rate and other phenotypic defects. The ability to transition from a unicellular budding yeast to a filamentous form is very important for biofilm formation and virulence in Candida albicans. Our recent study found that loss of the RPS41 (C2_10620W_A) gene but not its paralog RPS42 (C1_01640W_A) resulted in altered growth and filamentation changes in C. albicans, so we hypothesized that the RPS41 gene should play important roles in virulence and biofilm formation in this pathogen. We found that both virulence and the ability to form biofilms were defective due to deletion of the RPS41 gene. We also found that loss of the RPS41 gene increased sensitivity to hydrogen peroxide, and that hydrogen peroxide induced the expression of the RPS41 gene in a wild-type strain. These results suggested that the RPS41 gene plays important roles in C. albicans biofilm formation, virulence, and susceptibility to hydrogen peroxide.
Collapse
Affiliation(s)
- Hui Lu
- Key Laboratory of the Plateau of the Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, China
| | - Juan Xiong
- Key Laboratory of the Plateau of the Environmental Damage Control, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, China
| | - Qinghua Shang
- Department of Pharmacology, Center for New Drug Research, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Yuanying Jiang
- Department of Pharmacology, Center for New Drug Research, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| | - Yingying Cao
- Department of Pharmacology, Center for New Drug Research, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| |
Collapse
|
40
|
Shayani Rad M, Khameneh B, Sabeti Z, Mohajeri SA, Fazly Bazzaz BS. Antibacterial Activity of Silver Nanoparticle-Loaded Soft Contact Lens Materials: The Effect of Monomer Composition. Curr Eye Res 2016; 41:1286-1293. [DOI: 10.3109/02713683.2015.1123726] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Maryam Shayani Rad
- Student Research Committee (SRC), Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Khameneh
- Department of Pharmaceutical Control, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Sabeti
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Mohajeri
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
41
|
Abstract
Fungal biofilms have become an increasingly important clinical problem. The widespread use of antibiotics, frequent use of indwelling medical devices, and a trend toward increased patient immunosuppression have resulted in a creation of opportunity for clinically important yeasts and molds to form biofilms. This review will discuss the diversity and importance of fungal biofilms in the context of clinical medicine, provide novel insights into the clinical management of fungal biofilm infection, present evidence why these structures are recalcitrant to antifungal therapy, and discuss how our knowledge and understanding may lead to novel therapeutic intervention.
Collapse
|
42
|
Abstract
The fungus Candida albicans is a major source of device-associated infection because of its capacity for biofilm formation. It is part of the natural mucosal flora and thus has access to available niches that can lead to infection. In this chapter we discuss the major properties of C. albicans biofilms and the insight that has been gleaned from their genetic determinants. Our specific areas of focus include biofilm structure and development, cell morphology and biofilm formation, biofilm-associated gene expression, the cell surface and adherence, the extracellular matrix, biofilm metabolism, and biofilm drug resistance.
Collapse
|
43
|
Souza CMC, Pereira Junior SA, Moraes TDS, Damasceno JL, Amorim Mendes S, Dias HJ, Stefani R, Tavares DC, Martins CHG, Crotti AEM, Mendes-Giannini MJS, Pires RH. Antifungal activity of plant-derived essential oils on Candida tropicalis planktonic and biofilms cells. Med Mycol 2016; 54:515-23. [PMID: 26868902 DOI: 10.1093/mmy/myw003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 01/05/2016] [Indexed: 01/27/2023] Open
Abstract
Dental prosthesis supports Candida species growth and may predispose the oral cavity to lesions. C. tropicalis has emerged as a colonizer of prosthesis and has shown resistance to clinically used antifungal agents, which has increased the search for new antifungals. This work describes the effectiveness of fifteen essential oils (EOs) against C. tropicalis The EOs were obtained by hydrodistillation and were chemically characterized by gas chromatography-mass spectrometry. The antifungal activities of the EOs were evaluated by the microdilution method and showed that Pelargonium graveolens (Geraniaceae) (PG-EO) was the most effective oil. Geraniol and linalool were the major constituents of PG-EO. The 2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide (XTT) assay showed that all the clinical C. tropicalis strains formed viable biofilms. Scanning electron microscopy examination of the biofilms revealed a complex architecture with basal layer of yeast cells and an upper layer of filamentous cells. Treatments with PG-EO, linalool, and geraniol significantly reduced the number of viable biofilm cells and inhibited biofilm formation after exposure for 48 h. PG-EO, geraniol, and linalool were not toxic to normal human lung fibroblasts (GM07492A) at the concentrations they were active against C. tropicalis Together, our results indicated that C. tropicalis is susceptible to treatment with PG-EO, geraniol, and linalool, which could become options to prevent or treat this infection.
Collapse
Affiliation(s)
- Caio Marcelo Cury Souza
- Laboratório de Pesquisa em Microbiologia Aplicada, Universidade de Franca, Franca, SP, Brazil
| | | | - Thaís da Silva Moraes
- Laboratório de Pesquisa em Microbiologia Aplicada, Universidade de Franca, Franca, SP, Brazil
| | | | - Suzana Amorim Mendes
- Laboratório de Pesquisa em Microbiologia Aplicada, Universidade de Franca, Franca, SP, Brazil
| | - Herbert Júnior Dias
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ricardo Stefani
- Instituto de Ciências Exatas e da Terra, Universidade Federal do Mato Grosso, Pontal do Araguaia, MT, Brazil
| | - Denise Crispim Tavares
- Laboratório de Pesquisa em Microbiologia Aplicada, Universidade de Franca, Franca, SP, Brazil
| | | | - Antônio Eduardo Miller Crotti
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Regina Helena Pires
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Júlio de Mesquita Filho, Araraquara, São Paulo, Brazil
| |
Collapse
|
44
|
An D, Wang X, Li J, Jiang S, Ma X, Zhang H, Shi H, Sun H, Ye L, Li J. The Activity of Fungichromin against the Formation of Candida albicans Biofilm. Biol Pharm Bull 2016; 39:1948-1954. [DOI: 10.1248/bpb.b16-00380] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Duopeng An
- Department of Biosynthetic Medicinal Chemistry, School of Pharmacy, Fudan University
| | - Xiang Wang
- Department of Biosynthetic Medicinal Chemistry, School of Pharmacy, Fudan University
| | - Jun Li
- Department of Biosynthetic Medicinal Chemistry, School of Pharmacy, Fudan University
| | - Shanshan Jiang
- Department of Biosynthetic Medicinal Chemistry, School of Pharmacy, Fudan University
| | | | | | | | | | - Li Ye
- Department of Biosynthetic Medicinal Chemistry, School of Pharmacy, Fudan University
| | - Jiyang Li
- Department of Biosynthetic Medicinal Chemistry, School of Pharmacy, Fudan University
| |
Collapse
|
45
|
Ghosh AK, Wangsanut T, Fonzi WA, Rolfes RJ. The GRF10 homeobox gene regulates filamentous growth in the human fungal pathogen Candida albicans. FEMS Yeast Res 2015; 15:fov093. [PMID: 26472755 PMCID: PMC4705307 DOI: 10.1093/femsyr/fov093] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/14/2015] [Accepted: 10/07/2015] [Indexed: 12/14/2022] Open
Abstract
Candida albicans is the most common human fungal pathogen and can cause life-threatening infections. Filamentous growth is critical in the pathogenicity of C. albicans, as the transition from yeast to hyphal forms is linked to virulence and is also a pivotal process in fungal biofilm development. Homeodomain-containing transcription factors have been linked to developmental processes in fungi and other eukaryotes. We report here on GRF10, a homeobox transcription factor-encoding gene that plays a role in C. albicans filamentation. Deletion of the GRF10 gene, in both C. albicans SN152 and BWP17 strain backgrounds, results in mutants with strongly decreased hyphal growth. The mutants are defective in chlamydospore and biofilm formation, as well as showing dramatically attenuated virulence in a mouse infection model. Expression of the GRF10 gene is highly induced during stationary phase and filamentation. In summary, our study emphasizes a new role for the homeodomain-containing transcription factor in morphogenesis and pathogenicity of C. albicans.
Collapse
Affiliation(s)
- Anup K Ghosh
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | | | - William A Fonzi
- Department of Microbiology and Immunology, Georgetown University, Washington, DC 20057, USA
| | - Ronda J Rolfes
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
46
|
Chandra J, Mukherjee PK. Candida Biofilms: Development, Architecture, and Resistance. Microbiol Spectr 2015; 3:10.1128/microbiolspec.MB-0020-2015. [PMID: 26350306 PMCID: PMC4566167 DOI: 10.1128/microbiolspec.mb-0020-2015] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Indexed: 12/17/2022] Open
Abstract
Intravascular device-related infections are often associated with biofilms (microbial communities encased within a polysaccharide-rich extracellular matrix) formed by pathogens on the surfaces of these devices. Candida species are the most common fungi isolated from catheter-, denture-, and voice prosthesis-associated infections and also are commonly isolated from contact lens-related infections (e.g., fungal keratitis). These biofilms exhibit decreased susceptibility to most antimicrobial agents, which contributes to the persistence of infection. Recent technological advances have facilitated the development of novel approaches to investigate the formation of biofilms and identify specific markers for biofilms. These studies have provided extensive knowledge of the effect of different variables, including growth time, nutrients, and physiological conditions, on biofilm formation, morphology, and architecture. In this article, we will focus on fungal biofilms (mainly Candida biofilms) and provide an update on the development, architecture, and resistance mechanisms of biofilms.
Collapse
Affiliation(s)
- Jyotsna Chandra
- Center for Medical Mycology and Mycology Reference Laboratory, Department of Dermatology, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH 44106
| | - Pranab K Mukherjee
- Center for Medical Mycology and Mycology Reference Laboratory, Department of Dermatology, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
47
|
Fox EP, Bui CK, Nett JE, Hartooni N, Mui MC, Andes DR, Nobile CJ, Johnson AD. An expanded regulatory network temporally controls Candida albicans biofilm formation. Mol Microbiol 2015; 96:1226-39. [PMID: 25784162 PMCID: PMC4464956 DOI: 10.1111/mmi.13002] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2015] [Indexed: 01/10/2023]
Abstract
Candida albicans biofilms are composed of highly adherent and densely arranged cells with properties distinct from those of free‐floating (planktonic) cells. These biofilms are a significant medical problem because they commonly form on implanted medical devices, are drug resistant and are difficult to remove. C. albicans biofilms are not static structures; rather they are dynamic and develop over time. Here we characterize gene expression in biofilms during their development, and by comparing them to multiple planktonic reference states, we identify patterns of gene expression relevant to biofilm formation. In particular, we document time‐dependent changes in genes involved in adhesion and metabolism, both of which are at the core of biofilm development. Additionally, we identify three new regulators of biofilm formation, Flo8, Gal4, and Rfx2, which play distinct roles during biofilm development over time. Flo8 is required for biofilm formation at all time points, and Gal4 and Rfx2 are needed for proper biofilm formation at intermediate time points.
Collapse
Affiliation(s)
- Emily P Fox
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA.,Tetrad Program, Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Catherine K Bui
- School of Natural Sciences, University of California, Merced, CA, USA
| | - Jeniel E Nett
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA.,Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Nairi Hartooni
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Michael C Mui
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - David R Andes
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA.,Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Clarissa J Nobile
- School of Natural Sciences, University of California, Merced, CA, USA
| | - Alexander D Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| |
Collapse
|
48
|
Cabral V, Znaidi S, Walker LA, Martin-Yken H, Dague E, Legrand M, Lee K, Chauvel M, Firon A, Rossignol T, Richard ML, Munro CA, Bachellier-Bassi S, d'Enfert C. Targeted changes of the cell wall proteome influence Candida albicans ability to form single- and multi-strain biofilms. PLoS Pathog 2014; 10:e1004542. [PMID: 25502890 PMCID: PMC4263760 DOI: 10.1371/journal.ppat.1004542] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 10/28/2014] [Indexed: 12/29/2022] Open
Abstract
Biofilm formation is an important virulence trait of the pathogenic yeast Candida albicans. We have combined gene overexpression, strain barcoding and microarray profiling to screen a library of 531 C. albicans conditional overexpression strains (∼10% of the genome) for genes affecting biofilm development in mixed-population experiments. The overexpression of 16 genes increased strain occupancy within a multi-strain biofilm, whereas overexpression of 4 genes decreased it. The set of 16 genes was significantly enriched for those encoding predicted glycosylphosphatidylinositol (GPI)-modified proteins, namely Ihd1/Pga36, Phr2, Pga15, Pga19, Pga22, Pga32, Pga37, Pga42 and Pga59; eight of which have been classified as pathogen-specific. Validation experiments using either individually- or competitively-grown overexpression strains revealed that the contribution of these genes to biofilm formation was variable and stage-specific. Deeper functional analysis of PGA59 and PGA22 at a single-cell resolution using atomic force microscopy showed that overexpression of either gene increased C. albicans ability to adhere to an abiotic substrate. However, unlike PGA59, PGA22 overexpression led to cell cluster formation that resulted in increased sensitivity to shear forces and decreased ability to form a single-strain biofilm. Within the multi-strain environment provided by the PGA22-non overexpressing cells, PGA22-overexpressing cells were protected from shear forces and fitter for biofilm development. Ultrastructural analysis, genome-wide transcript profiling and phenotypic analyses in a heterologous context suggested that PGA22 affects cell adherence through alteration of cell wall structure and/or function. Taken together, our findings reveal that several novel predicted GPI-modified proteins contribute to the cooperative behaviour between biofilm cells and are important participants during C. albicans biofilm formation. Moreover, they illustrate the power of using signature tagging in conjunction with gene overexpression for the identification of novel genes involved in processes pertaining to C. albicans virulence. Candida albicans is the most prevalent human fungal pathogen. Its ability to cause disease relies, in part, on the formation of biofilms, a protective structure of highly adherent cells tolerant to antifungal agents and the host immune response. The biofilm is considered as a persistent root of infection, disseminating infectious cells to other locations. In this study, we performed large-scale phenotypic analyses aimed at identifying genes whose overexpression affects biofilm development in C. albicans. Our screen relied on a collection of 531 C. albicans strains, each conditionally overexpressing one given gene and carrying one specific molecular tag allowing the quantification of strain abundance in mixed-population experiments. Our results strikingly revealed the enrichment of strains overproducing poorly-characterized surface proteins called Pgas (Putative GPI-Anchored proteins), within a 531-strain-containing biofilm model. We show that these PGA genes differentially contribute to single-strain and multi-strain biofilm formation and are involved in specific stages of the biofilm developmental process. Taken together, our results reveal the importance of C. albicans cell surface proteins during biofilm formation and reflect the powerful use of strain barcoding in combination with gene overexpression to identify genes and/or pathways involved in processes pertaining to virulence of pathogenic microbes.
Collapse
Affiliation(s)
- Vitor Cabral
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
- Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Sadri Znaidi
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Louise A. Walker
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Hélène Martin-Yken
- INSA, UPS, INP, ISAE, LAAS, Université de Toulouse, Toulouse, France
- UMR792 Ingénierie des Systèmes Biologiques et des Procédés, INRA, Toulouse, France
- UMR5504, CNRS, Toulouse, France
| | - Etienne Dague
- INSA, UPS, INP, ISAE, LAAS, Université de Toulouse, Toulouse, France
- LAAS, CNRS, Toulouse, France
| | - Mélanie Legrand
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Keunsook Lee
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Murielle Chauvel
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Arnaud Firon
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Tristan Rossignol
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Mathias L. Richard
- INRA, UMR1319 Micalis, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Thiverval Grignon, France
| | - Carol A. Munro
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Sophie Bachellier-Bassi
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
| | - Christophe d'Enfert
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC2019, Paris, France
- * E-mail:
| |
Collapse
|
49
|
Fox EP, Cowley ES, Nobile CJ, Hartooni N, Newman DK, Johnson AD. Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures. Curr Biol 2014; 24:2411-6. [PMID: 25308076 PMCID: PMC4252622 DOI: 10.1016/j.cub.2014.08.057] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 07/31/2014] [Accepted: 08/22/2014] [Indexed: 12/28/2022]
Abstract
The human microbiome contains diverse microorganisms, which share and compete for the same environmental niches. A major microbial growth form in the human body is the biofilm state, where tightly packed bacterial, archaeal, and fungal cells must cooperate and/or compete for resources in order to survive. We examined mixed biofilms composed of the major fungal species of the gut microbiome, Candida albicans, and each of five prevalent bacterial gastrointestinal inhabitants: Bacteroides fragilis, Clostridium perfringens, Escherichia coli, Klebsiella pneumoniae, and Enterococcus faecalis. We observed that biofilms formed by C. albicans provide a hypoxic microenvironment that supports the growth of two anaerobic bacteria, even when cultured in ambient oxic conditions that are normally toxic to the bacteria. We also found that coculture with bacteria in biofilms induces massive gene expression changes in C. albicans, including upregulation of WOR1, which encodes a transcription regulator that controls a phenotypic switch in C. albicans, from the "white" cell type to the "opaque" cell type. Finally, we observed that in suspension cultures, C. perfringens induces aggregation of C. albicans into "mini-biofilms," which allow C. perfringens cells to survive in a normally toxic environment. This work indicates that bacteria and C. albicans interactions modulate the local chemistry of their environment in multiple ways to create niches favorable to their growth and survival.
Collapse
Affiliation(s)
- Emily P Fox
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16(th) Street, San Francisco, CA 94158, USA; Tetrad Program, Department of Biochemistry and Biophysics, University of California, San Francisco, 600 16(th) Street, San Francisco, CA 94158, USA
| | - Elise S Cowley
- Division of Biology and Biological Engineering, California Institute of Technology, 147-75, 1200 East California Boulevard, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, 147-75, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Clarissa J Nobile
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16(th) Street, San Francisco, CA 94158, USA; School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Nairi Hartooni
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16(th) Street, San Francisco, CA 94158, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, 147-75, 1200 East California Boulevard, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, 147-75, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Alexander D Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16(th) Street, San Francisco, CA 94158, USA.
| |
Collapse
|
50
|
Lindsay AK, Morales DK, Liu Z, Grahl N, Zhang A, Willger SD, Myers LC, Hogan DA. Analysis of Candida albicans mutants defective in the Cdk8 module of mediator reveal links between metabolism and biofilm formation. PLoS Genet 2014; 10:e1004567. [PMID: 25275466 PMCID: PMC4183431 DOI: 10.1371/journal.pgen.1004567] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/30/2014] [Indexed: 12/29/2022] Open
Abstract
Candida albicans biofilm formation is a key virulence trait that involves hyphal growth and adhesin expression. Pyocyanin (PYO), a phenazine secreted by Pseudomonas aeruginosa, inhibits both C. albicans biofilm formation and development of wrinkled colonies. Using a genetic screen, we identified two mutants, ssn3Δ/Δ and ssn8Δ/Δ, which continued to wrinkle in the presence of PYO. Ssn8 is a cyclin-like protein and Ssn3 is similar to cyclin-dependent kinases; both proteins are part of the heterotetrameric Cdk8 module that forms a complex with the transcriptional co-regulator, Mediator. Ssn3 kinase activity was also required for PYO sensitivity as a kinase dead mutant maintained a wrinkled colony morphology in the presence of PYO. Furthermore, similar phenotypes were observed in mutants lacking the other two components of the Cdk8 module-Srb8 and Srb9. Through metabolomics analyses and biochemical assays, we showed that a compromised Cdk8 module led to increases in glucose consumption, glycolysis-related transcripts, oxidative metabolism and ATP levels even in the presence of PYO. In the mutant, inhibition of respiration to levels comparable to the PYO-treated wild type inhibited wrinkled colony development. Several lines of evidence suggest that PYO does not act through Cdk8. Lastly, the ssn3 mutant was a hyperbiofilm former, and maintained higher biofilm formation in the presence of PYO than the wild type. Together these data provide novel insights into the role of the Cdk8 module of Mediator in regulation of C. albicans physiology and the links between respiratory activity and both wrinkled colony and biofilm development.
Collapse
Affiliation(s)
- Allia K. Lindsay
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Diana K. Morales
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Zhongle Liu
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Nora Grahl
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Anda Zhang
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Sven D. Willger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Lawrence C. Myers
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|