1
|
Ruiz-Haddad L, Ali M, Pronk M, van Loosdrecht MC, Saikaly PE. Demystifying polyphosphate-accumulating organisms relevant to wastewater treatment: A review of their phylogeny, metabolism, and detection. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100387. [PMID: 38322240 PMCID: PMC10845257 DOI: 10.1016/j.ese.2024.100387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 02/08/2024]
Abstract
Currently, the most cost-effective and efficient method for phosphorus (P) removal from wastewater is enhanced biological P removal (EPBR) via polyphosphate-accumulating organisms (PAOs). This study integrates a literature review with genomic analysis to uncover the phylogenetic and metabolic diversity of the relevant PAOs for wastewater treatment. The findings highlight significant differences in the metabolic capabilities of PAOs relevant to wastewater treatment. Notably, Candidatus Dechloromonas and Candidatus Accumulibacter can synthesize polyhydroxyalkanoates, possess specific enzymes for ATP production from polyphosphate, and have electrochemical transporters for acetate and C4-dicarboxylates. In contrast, Tetrasphaera, Candidatus Phosphoribacter, Knoellia, and Phycicoccus possess PolyP-glucokinase and electrochemical transporters for sugars/amino acids. Additionally, this review explores various detection methods for polyphosphate and PAOs in activated sludge wastewater treatment plants. Notably, FISH-Raman spectroscopy emerges as one of the most advanced detection techniques. Overall, this review provides critical insights into PAO research, underscoring the need for enhanced strategies in biological phosphorus removal.
Collapse
Affiliation(s)
- Lucia Ruiz-Haddad
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Water Desalination and Reuse Center, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Muhammad Ali
- Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, The University of Dublin, Dublin, 2, Ireland
| | - Mario Pronk
- Department of Biotechnology, Delft University of Technology, Delft, 2629 HZ, the Netherlands
| | | | - Pascal E. Saikaly
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Water Desalination and Reuse Center, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
2
|
Pincam T, Liu YQ, Booth A, Wang Y, Lan G, Zeng P. A comprehensive comparison of microbial communities between aerobic granular sludge and flocculent sludge for nutrient removal in full-scale wastewater treatment plants. CHEMOSPHERE 2024; 362:142644. [PMID: 38901698 DOI: 10.1016/j.chemosphere.2024.142644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/21/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Understanding the microbial community structure of sludge is crucial for improving the design, operation and optimisation of full-scale wastewater treatment plants (WWTPs). This study aimed to have a comprehensive comparison of microbial communities between aerobic granular sludge and flocculent sludge from two full-scale sequential batch reactors-based WWTPs with nutrient removal for the first time. To better understand key functional bacteria such as polyphosphate accumulating bacteria (PAOs), competitive bacteria such as glycogen accumulating bacteria (GAOs) and nitrifying bacteria for both nitrogen and phosphorus removal, another two full-scale WWTPs with only carbon (C) removal and C and nitrogen (N) removal were compared too. It was found that the richness and diversity of the microbial population in sludge increased with pollutant removal from only C, C and N, to C,N, P removal. For C, N P removal, granule structure led to a more diverse and rich microbial community structure than flocculent structure. Although more abundant nitrifying bacteria were enriched in granular sludge than flocculent sludge, the abundance of total putative PAOs was equivalent. However, the most typical putative PAOs such as Tetrasphaera and Candidatus Accumulibacter seemed to be more correlated with biological phosphorus removal performance, which might be more proper to be used as an indication for P removal potential. The higher abundance of GAOs in flocculent sludge with better phosphorus removal performance might suggest that further investigation is needed to understand the functions of GAOs. In addition, the equivalent abundances of PAOs in the WWTPs with only C removal and with C, N, and P removal, respectively, indicate that many newly reported putative PAOs might not contribute to P removal. This study provides insight into the microbial communities and functional bacteria in aerobic granular sludge and flocculent sludge in full-scale SBRs, which can provide microbes-informed optimisation of reactor operation for better nutrient removal.
Collapse
Affiliation(s)
- Tararag Pincam
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Yong-Qiang Liu
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Alexander Booth
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Yi Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Guihong Lan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University (SWPU), Chengdu, 610500, China
| | - Ping Zeng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
3
|
Aghilinasrollahabadi K, Kjellerup BV, Nguyen C, Saavedra Y, Li G. Impact of Carbon Sources Application in Enhanced Biological Phosphorous Removal (EBPR) Improvement: A Review. WATER, AIR, & SOIL POLLUTION 2024; 235:543. [DOI: 10.1007/s11270-024-07350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/13/2024] [Indexed: 01/06/2025]
|
4
|
Zhang C, Zhang L, Liu J, Li X, Zhang Q, Peng Y. Achieving ultra-high nitrogen and phosphorus removal from real municipal wastewater in a novel continuous-flow anaerobic/aerobic/anoxic process via partial nitrification, endogenous denitrification and nitrite-type denitrifying phosphorus removal. WATER RESEARCH 2024; 250:121046. [PMID: 38159538 DOI: 10.1016/j.watres.2023.121046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Achieving economic and efficient removal of nutrients in mainstream wastewater treatment plants (WWTPs) continues to be a challenging research topic. In this study, a continuous-flow anaerobic/aerobic/anoxic system with sludge double recirculation (AOA-SDR), which integrated partial nitrification (PN), endogenous denitrification (ED) and nitrite-type denitrifying phosphorus removal (nDNPR), was constructed to treat real carbon-limited municipal wastewater. The average effluent concentrations of total inorganic nitrogen (TIN) and PO43--P during the stable operation period were 1.8 and 0.3 mg/L, respectively. PN was achieved with an average nitrite accumulation ratio of 90.4 % by combined strategies. Adequate storage of polyhydroxyalkanoates and glycogen in the anaerobic zone promoted the subsequent nitrogen removal capacity. In the anoxic zone, nitrite served as the main electron acceptor for the denitrifying phosphorus removal process. Mass balance analysis revealed that nDNPR contributed to 23.6 % of TIN removal and 44.7 % of PO43--P removal. The enrichment of Nitrosomonas (0.45 %) and Ellin 6067 (1.31 %), along with the washout of Nitrospira (0.15 %) provided the bacterial basis for the successful implementation of PN. Other dominant endogenous heterotrophic bacteria, such as Dechlormonas (10.81 %) and Candidatus Accumulibacter (2.96 %), ensured simultaneous nitrogen and phosphorus removal performance. The successful validation of integrating PN, ED and nDNPR for advanced nutrient removal in the AOA-SDR process provides a transformative technology for WWTPs.
Collapse
Affiliation(s)
- Chuanfeng Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jinjin Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
5
|
Yuan J, Deng X, Xie X, Chen L, Wei C, Feng C, Qiu G. Blind spots of universal primers and specific FISH probes for functional microbe and community characterization in EBPR systems. ISME COMMUNICATIONS 2024; 4:ycae011. [PMID: 38524765 PMCID: PMC10958769 DOI: 10.1093/ismeco/ycae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 03/26/2024]
Abstract
Fluorescence in situ hybridization (FISH) and 16S rRNA gene amplicon sequencing are commonly used for microbial ecological analyses in biological enhanced phosphorus removal (EBPR) systems, the successful application of which was governed by the oligonucleotides used. We performed a systemic evaluation of commonly used probes/primers for known polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs). Most FISH probes showed blind spots and covered nontarget bacterial groups. Ca. Competibacter probes showed promising coverage and specificity. Those for Ca. Accumulibacter are desirable in coverage but targeted out-group bacteria, including Ca. Competibacter, Thauera, Dechlorosoma, and some polyphosphate-accumulating Cyanobacteria. Defluviicoccus probes are good in specificity but poor in coverage. Probes targeting Tetrasphaera or Dechloromonas showed low coverage and specificity. Specifically, DEMEF455, Bet135, and Dech453 for Dechloromonas covered Ca. Accumulibacter. Special attentions are needed when using these probes to resolve the PAO/GAO phenotype of Dechloromonas. Most species-specific probes for Ca. Accumulibacter, Ca. Lutibacillus, Ca. Phosphoribacter, and Tetrasphaera are highly specific. Overall, 1.4% Ca. Accumulibacter, 9.6% Ca. Competibacter, 43.3% Defluviicoccus, and 54.0% Dechloromonas in the MiDAS database were not covered by existing FISH probes. Different 16S rRNA amplicon primer sets showed distinct coverage of known PAOs and GAOs. None of them covered all members. Overall, 520F-802R and 515F-926R showed the most balanced coverage. All primers showed extremely low coverage of Microlunatus (<36.0%), implying their probably overlooked roles in EBPR systems. A clear understanding of the strength and weaknesses of each probe and primer set is a premise for rational evaluation and interpretation of obtained community results.
Collapse
Affiliation(s)
- Jing Yuan
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| | - Xuhan Deng
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| | - Xiaojing Xie
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| | - Liping Chen
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
- Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| | - Chunhua Feng
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
- Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
- Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, 382 Waihuandong Road, University Town, Guangzhou, Guangdong 510006, China
| |
Collapse
|
6
|
Lochyński P, Domańska M, Dziedzic R, Hamal K. Stainless Steel in Municipal Sewage-How to Recognize Favorable Corrosion Conditions. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6637. [PMID: 37895619 PMCID: PMC10607984 DOI: 10.3390/ma16206637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
While chromium-nickel steel is known to be extremely resistant to corrosion, the occurrence of certain factors can unfortunately initiate an uncontrolled corrosion process. This paper presents samples made of 304 stainless steel containing delta ferrite that have been exposed to wastewater for 18 months. Samples placed above the surface of the wastewater (A-series) were intensively corroded. Samples half-submerged in the wastewater and periodically fully submerged at higher effluent flows through the screenings and grit separator (B-series) only suffered minor mechanical erosion. No significant changes in the tested surface were observed on samples fully submerged in wastewater (C-series). The results indicated that the observed pitting corrosion of samples placed above the surface of the wastewater was a consequence of the presence of bacteria in a wet hydrogen sulfide environment. The fluorescence in situ hybridization method showed that either the sludge taken from the wastewater, or from the surface of samples submerged in wastewater exhibited increased amounts of bacteria from the δ-proteobacteria class, indicating the presence of microorganisms involved in the reduction of sulfur or sulfate compounds. A new approach to microbiological evaluation by determining classes of bacteria may be a promising tool for evaluating wastewater in terms of aggressiveness and recognizing favorable corrosive conditions.
Collapse
Affiliation(s)
- Paweł Lochyński
- Institute of Environmental Engineering, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24, 50-363 Wroclaw, Poland; (P.L.); (K.H.)
| | - Magdalena Domańska
- Institute of Environmental Engineering, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24, 50-363 Wroclaw, Poland; (P.L.); (K.H.)
| | - Robert Dziedzic
- Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Lukasiewicza 5, 50-371 Wroclaw, Poland;
| | - Kamila Hamal
- Institute of Environmental Engineering, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24, 50-363 Wroclaw, Poland; (P.L.); (K.H.)
| |
Collapse
|
7
|
Wu JW, Li FL, Yao SK, Zhao ZY, Feng X, Chen RZ, Xu YQ. Iva xanthiifolia leaf extract reduced the diversity of indigenous plant rhizosphere bacteria. BMC PLANT BIOLOGY 2023; 23:297. [PMID: 37268959 DOI: 10.1186/s12870-023-04316-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Iva xanthiifolia, native to North America, is now widely distributed in northeastern China and has become a vicious invasive plant. This article aims to probe the role of leaf extract in the invasion of I. xanthiifolia. METHODS We collected the rhizosphere soil of Amaranthus tricolor and Setaria viridis in the invasive zone, the noninvasive zone and the noninvasive zone treated with extract from I. xanthiifolia leaf, and obtained I. xanthiifolia rhizosphere soil in the invasive zone. All wild plants were identified by Xu Yongqing. I. xanthiifolia (collection number: RQSB04100), A. tricolor (collection number: 831,030) and S. viridis (collection number: CF-0002-034) are all included in Chinese Virtual Herbarium ( https://www.cvh.ac.cn/index.php ). The soil bacterial diversity was analyzed based on the Illumina HiSeq sequencing platform. Subsequently, taxonomic analysis and Faprotax functional prediction were performed. RESULTS The results showed that the leaf extract significantly reduced the diversity of indigenous plant rhizosphere bacteria. A. tricolor and S. viridis rhizobacterial phylum and genus abundances were significantly reduced under the influence of I. xanthiifolia or its leaf extract. The results of functional prediction showed that bacterial abundance changes induced by leaf extracts could potentially hinder nutrient cycling in native plants and increased bacterial abundance in the A. tricolor rhizosphere related to aromatic compound degradation. In addition, the greatest number of sensitive Operational Taxonomic Units (OTUs) appeared in the rhizosphere when S. viridis was in response to the invasion of I. xanthiifolia. It can be seen that A. tricolor and S. viridis have different mechanisms in response to the invasion of I. xanthiifolia. CONCLUSION I. xanthiifolia leaves material has potential role in invasion by altering indigenous plant rhizosphere bacteria.
Collapse
Affiliation(s)
- Jia-Wen Wu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Feng-Lan Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Shu-Kuan Yao
- Agriculture and Rural Affairs Bureau, Jinxiang, Jining, Shandong, 272200, China
| | - Zi-Yi Zhao
- Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530022, China
| | - Xu Feng
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Rong-Ze Chen
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yong-Qing Xu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
8
|
Tomás-Martínez S, Zwolsman EJ, Merlier F, Pabst M, Lin Y, van Loosdrecht MCM, Weissbrodt DG. Turnover of the extracellular polymeric matrix of granules performing biological phosphate removal. Appl Microbiol Biotechnol 2023; 107:1997-2009. [PMID: 36759376 PMCID: PMC10006046 DOI: 10.1007/s00253-023-12421-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/14/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Polyphosphate accumulating organisms (PAOs) are responsible for enhanced biological phosphate removal (EBPR) from wastewater, where they grow embedded in a matrix of extracellular polymeric substances (EPS). EPSs comprise a mixture of biopolymers like polysaccharides or (glyco)proteins. Despite previous studies, little is known about the dynamics of EPS in mixed cultures, and their production by PAOs and potential consumption by flanking microbes. EPSs are biodegradable and have been suggested to be a substrate for other organisms in the community. Studying EPS turnover can help elucidate their biosynthesis and biodegradation cycles. We analyzed the turnover of proteins and polysaccharides in the EPS of an enrichment culture of PAOs relative to the turnover of internal proteins. An anaerobic-aerobic sequencing batch reactor (SBR) simulating EBPR conditions was operated to enrich for PAOs. After achieving a stable culture, carbon source was switched to uniformly 13C-labeled acetate. Samples were collected at the end of each aerobic phase. EPSs were extracted by alkaline treatment. 13C enrichment in proteins and sugars (after hydrolysis of polysaccharides) in the extracted EPS were measured by mass spectrometry. The average turnover rate of sugars and proteins (0.167 and 0.192 d-1 respectively) was higher than the expected value based on the solid removal rate (0.132 d-1), and no significant difference was observed between intracellular and extracellular proteins. This indicates that EPS from the PAO enriched community is not selectively degraded by flanking populations under stable EBPR process conditions. Instead, we observed general decay of biomass, which corresponds to a value of 0.048 d-1. KEY POINTS: • Proteins showed a higher turnover rate than carbohydrates. • Turnover of EPS was similar to the turnover of intracellular proteins. • EPS is not preferentially consumed by flanking populations.
Collapse
Affiliation(s)
- Sergio Tomás-Martínez
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9,2629, HZ, Delft, The Netherlands.
| | - Erwin J Zwolsman
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9,2629, HZ, Delft, The Netherlands
| | - Franck Merlier
- CNRS Enzyme and Cell Engineering Laboratory, Université de Technologie de Compiègne, Rue du Docteur Schweitzer, 60319, 60203, Compiègne Cedex, CS, France
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9,2629, HZ, Delft, The Netherlands
| | - Yuemei Lin
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9,2629, HZ, Delft, The Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9,2629, HZ, Delft, The Netherlands
| | - David G Weissbrodt
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9,2629, HZ, Delft, The Netherlands
| |
Collapse
|
9
|
Diaz R, Mackey B, Chadalavada S, Kainthola J, Heck P, Goel R. Enhanced Bio-P removal: Past, present, and future - A comprehensive review. CHEMOSPHERE 2022; 309:136518. [PMID: 36191763 DOI: 10.1016/j.chemosphere.2022.136518] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Excess amounts of phosphorus (P) and nitrogen (N) from anthropogenic activities such as population growth, municipal and industrial wastewater discharges, agriculture fertilization and storm water runoffs, have affected surface water chemistry, resulting in episodes of eutrophication. Enhanced biological phosphorus removal (EBPR) based treatment processes are an economical and environmentally friendly solution to address the present environmental impacts caused by excess P present in municipal discharges. EBPR practices have been researched and operated for more than five decades worldwide, with promising results in decreasing orthophosphate to acceptable levels. The advent of molecular tools targeting bacterial genomic deoxyribonucleic acid (DNA) has also helped us reveal the identity of potential polyphosphate-accumulating organisms (PAO) and denitrifying PAO (DPAO) responsible for the success of EBPR. Integration of process engineering and environmental microbiology has provided much-needed confidence to the wastewater community for the successful implementation of EBPR practices around the globe. Despite these successes, the process of EBPR continues to evolve in terms of its microbiology and application in light of other biological processes such as anaerobic ammonia oxidation and on-site carbon capture. This review provides an overview of the history of EBPR, discusses different operational parameters critical for the successful operation of EBPR systems, reviews current knowledge of EBPR microbiology, the influence of PAO/DPAO on the disintegration of microbial communities, stoichiometry, EBPR clades, current practices, and upcoming potential innovations.
Collapse
Affiliation(s)
- Ruby Diaz
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Brendan Mackey
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Sreeni Chadalavada
- School of Engineering, University of Southern Queensland Springfield, Queensland, 4350, Australia.
| | - Jyoti Kainthola
- Department of Civil Engineering, École Centrale School of Engineering, Mahindra University, Hyderabad, India, 500043
| | - Phil Heck
- Central Valley Water Reclamation Facility, Salt Lake City, UT, USA
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
10
|
Zong Y, Hao K, Lu G, Li Y, Huang D. Characteristics of the colony structure of A 2O processes under different ultraviolet conditions in plateau areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:67941-67952. [PMID: 35524846 DOI: 10.1007/s11356-022-19579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
In this text, a laboratory-scale A2O was performed in Linzhi City at a 3000-m altitude. During the test operation, the UV irradiation was carried out in oxic tank for 0, 5, 10, 30, and 180 min. The 16SrRNA gene sequencing was performed on the activated sludge in anaerobic, anoxic, and oxic tanks, and the colony structure characteristics of phyla, genera, and species classification levels in the sludge were analyzed. There were significant differences in the numbers of genera and species (p ≤ 0.05). The community richness, uniformity, diversity, and other indicators differed to some degree compared with those of other regions. The analysis of composition of bacterial colonies revealed different levels. The significance test of the difference between the groups, the significance of the dominant species, and the mechanism of UV was analyzed. A CCA diagram was used to verify that UV is an important factor in the colony structure composition, and the correlation heatmap diagram was used to analyze the microorganisms that are significantly related to UV. A sample hierarchical cluster analysis showed that the time of UV exposure can be divided into two categories, and the effects of UV exposure increase sequentially as the time of exposure increases. A comprehensive analysis found that the enhancing and inhibitory effects of UV affect the composition of the colony structure in the sample, and the time of irradiation will affect the enhancing or inhibitory effect, that is, the colony structure from the samples that were irradiated for different amounts of time differs greatly.
Collapse
Affiliation(s)
- Yongchen Zong
- Res. Institute of Tibet Plateau Ecology, Tibet Agriculture & Animal, Husbandry University, Linzhi, 860000, China
- Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal, Husbandry University, Linzhi, 860000, China
| | - Kaiyue Hao
- Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal, Husbandry University, Linzhi, 860000, China
| | - Guanghua Lu
- Res. Institute of Tibet Plateau Ecology, Tibet Agriculture & Animal, Husbandry University, Linzhi, 860000, China.
- Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal, Husbandry University, Linzhi, 860000, China.
| | - Yuanwei Li
- Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal, Husbandry University, Linzhi, 860000, China
| | - Decai Huang
- Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal, Husbandry University, Linzhi, 860000, China
| |
Collapse
|
11
|
Toja Ortega S, van den Berg L, Pronk M, de Kreuk MK. Hydrolysis capacity of different sized granules in a full-scale aerobic granular sludge (AGS) reactor. WATER RESEARCH X 2022; 16:100151. [PMID: 35965888 PMCID: PMC9364025 DOI: 10.1016/j.wroa.2022.100151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
In aerobic granular sludge (AGS) reactors, granules of different sizes coexist in a single reactor. Their differences in settling behaviour cause stratification in the settled granule bed. In combination with substrate concentration gradients over the reactor height during the anaerobic plug-flow feeding regime, this can result in functional differences between granule sizes. In this study, we compared the hydrolytic activity in granules of 4 size ranges (between 0.5 and 4.8 mm diameter) collected from a full-scale AGS installation. Protease and amylase activities were quantified through fluorescent activity assays. To visualise where the hydrolytic active zones were located within the granules, the hydrolysis sites were visualized microscopically after incubating intact and sliced granules with fluorescent casein and starch. The microbial community was studied using fluorescent in situ hybridization (FISH) and sequencing. The results of these assays indicated that hydrolytic capacity was present throughout the granules, but the hydrolysis of bulk substrates was restricted to the outer 100 µm, approximately. Many of the microorganisms studied by FISH, such as polyphosphate and glycogen accumulating organisms (PAO and GAO), were abundant in the vicinity of the hydrolytically active sites. The biomass-specific hydrolysis rate depended mainly on the available granule surface area, suggesting that different sized granules are not differentiated in terms of hydrolytic capacity. Thus, the substrate concentration gradients that are present during the anaerobic feeding in AGS reactors do not seem to affect hydrolytic activity at the granule surfaces. In this paper, we discuss the possible reasons for this and reflect about the implications for AGS technology.
Collapse
Key Words
- AGS, aerobic granular sludge
- AS, activated sludge
- Activity staining
- Aerobic granular sludge
- Biomass segregation
- COD, chemical oxygen demand
- EBPR, enhanced biological phosphorus removal
- EPS, extracellular polymeric substances
- FISH, fluorescence in situ hybridization
- GAO, glycogen-accumulating organism
- Hydrolysis
- PAO, polyphosphate-accumulating organism
- Polymeric substrates
- SBR, sequencing batch reactor
- SND, simultaneous nitrification-denitrification
- SRT, solids retention time
- TSS, total suspended solids
- VFA, volatile fatty acid
- VSS, volatile suspended solids
- WWTP, wastewater treatment plant
- Wastewater treatment
Collapse
Affiliation(s)
- Sara Toja Ortega
- Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, Delft 2628CN, the Netherlands
| | - Lenno van den Berg
- Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, Delft 2628CN, the Netherlands
| | - Mario Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, HZ 2629, the Netherlands
- Royal HaskoningDHV, Laan 1914 35, Amersfoort, AL 3800, the Netherlands
| | - Merle K. de Kreuk
- Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, Delft 2628CN, the Netherlands
| |
Collapse
|
12
|
Diagnostic Method for Enhancing Nitrogen and Phosphorus Removal in Cyclic Activated Sludge Technology (CAST) Process Wastewater Treatment Plant. WATER 2022. [DOI: 10.3390/w14142253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ensuring the stable operation of urban wastewater treatment plants (WWTPs) and achieving energy conservation and emission reduction have become serious problems with the improvement of national requirements for WWTP effluent. Based on a wastewater quality analysis, identification of the contaminant removal, and a simulation and optimization of the wastewater treatment process, a practical engineering diagnosis method for the cyclic activated sludge technology process of WWTPs in China and an optimal control scheme are proposed in this study. Results showed that exceeding the standard of effluent nitrogen and phosphorus due to unreasonable process cycle setting and insufficient influent carbon source is dangerous. The total nitrogen removal rate increased by 9.5% and steadily increased to 67% when agitation was added to the first 40 min of the cycle. Additionally, the total phosphorus (TP) was reduced to 0.27 mg/L after replacing the phosphorus removal agent polyferric sulfate with polyaluminum iron. The corresponding increase in the TP removal rate to 97% resulted in a reduction in the treatment cost by 0.008 CNY/t.
Collapse
|
13
|
Chen L, Chen H, Hu Z, Tian Y, Wang C, Xie P, Deng X, Zhang Y, Tang X, Lin X, Li B, Wei C, Qiu G. Carbon uptake bioenergetics of PAOs and GAOs in full-scale enhanced biological phosphorus removal systems. WATER RESEARCH 2022; 216:118258. [PMID: 35320769 DOI: 10.1016/j.watres.2022.118258] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
This work analyzed, for the first time, the bioenergetics of PAOs and GAOs in full-scale wastewater treatment plants (WWTPs) for the uptake of different carbon sources. Fifteen samples were collected from five full-scale WWTPs. Predominance of different PAOs, i.e., Ca. Accumulibacter (0.00-0.49%), Tetrasphaera (0.37-3.94%), Microlunatus phosphovorus (0.01-0.18%), etc., and GAOs, i.e., Ca. Competibacter (0.08-5.39%), Defluviicoccus (0.05-5.34%), Micropruina (0.17-1.87%), etc., were shown by 16S rRNA gene amplicon sequencing. Despite the distinct PAO/GAO community compositions in different samples, proton motive force (PMF) was found as the key driving force (up to 90.1%) for the uptake of volatile fatty acids (VFAs, acetate and propionate) and amino acids (glutamate and aspartate) by both GAOs and PAOs at the community level, contrasting the previous understanding that Defluviicoccus have a low demand of PMF for acetate uptake. For the uptake of acetate or propionate, PAOs rarely activated F1, F0- ATPase (< 11.7%) or fumarate reductase (< 5.3%) for PMF generation; whereas, intensive involvements of these two pathways (up to 49.2% and 61.0%, respectively) were observed for GAOs, highlighting a major and community-level difference in their VFA uptake biogenetics in full-scale systems. However, different from VFAs, the uptake of glutamate and aspartate by both PAOs and GAOs commonly involved fumarate reductase and F1, F0-ATPase activities. Apart from these major and community-level differences, high level fine-scale micro-diversity in carbon uptake bioenergetics was observed within PAO and GAO lineages, probably resulting from their versatilities in employing different pathways for reducing power generation. Ca. Accumulibacter and Halomonas seemed to show higher dependency on the reverse operation of F1, F0-ATPase than other PAOs, likely due to the low involvement of glyoxylate shunt pathway. Unlike Tetrasphaera, but similar to Ca. Accumulibacter, Microlunatus phosphovorus took up glutamate and aspartate via the proton/glutamate-aspartate symporter driven by PMF. This feature was testified using a pure culture of Microlunatus phosphovorus stain NM-1. The major difference between PAOs and GAOs highlights the potential to selectively suppress GAOs for community regulation in EBPR systems. The finer-scale carbon uptake bioenergetics of PAOs or GAOs from different lineages benefits in understanding their interactions in community assembly in complex environment.
Collapse
Affiliation(s)
- Liping Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hang Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zekun Hu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yucheng Tian
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Cenchao Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Peiran Xie
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xuhan Deng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yushen Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xia Tang
- Guangzhou Sewage Purification Co., Ltd, Guangzhou 510006, China
| | - Xueran Lin
- Guangzhou Sewage Purification Co., Ltd, Guangzhou 510006, China
| | - Biqing Li
- Guangzhou Sewage Purification Co., Ltd, Guangzhou 510006, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou 510006, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou 510006, China.
| |
Collapse
|
14
|
Bessarab I, Maszenan AM, Haryono MAS, Arumugam K, Saw NMMT, Seviour RJ, Williams RBH. Comparative Genomics of Members of the Genus Defluviicoccus With Insights Into Their Ecophysiological Importance. Front Microbiol 2022; 13:834906. [PMID: 35495637 PMCID: PMC9041414 DOI: 10.3389/fmicb.2022.834906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/02/2022] [Indexed: 11/23/2022] Open
Abstract
Members of the genus Defluviicoccus occur often at high abundances in activated sludge wastewater treatment plants designed to remove phosphorus, where biomass is subjected to alternating anaerobic feed/aerobic famine conditions, believed to favor the proliferation of organisms like Ca. Accumulibacter and other phosphate-accumulating organisms (PAO), and Defluviicoccus. All have a capacity to assimilate readily metabolizable substrates and store them intracellularly during the anaerobic feed stage so that under the subsequent famine aerobic stage, these can be used to synthesize polyphosphate reserves by the PAO and glycogen by Defluviicoccus. Consequently, Defluviicoccus is described as a glycogen-accumulating organism or GAO. Because they share a similar anaerobic phenotype, it has been proposed that at high Defluviicoccus abundance, the PAO are out-competed for assimilable metabolites anaerobically, and hence aerobic P removal capacity is reduced. Several Defluviicoccus whole genome sequences have been published (Ca. Defluviicoccus tetraformis, Defluviicoccus GAO-HK, and Ca. Defluviicoccus seviourii). The available genomic data of these suggest marked metabolic differences between them, some of which have ecophysiological implications. Here, we describe the whole genome sequence of the type strain Defluviicoccus vanusT, the only cultured member of this genus, and a detailed comparative re-examination of all extant Defluviicoccus genomes. Each, with one exception, which appears not to be a member of this genus, contains the genes expected of GAO members, in possessing multiple copies of those for glycogen biosynthesis and catabolism, and anaerobic polyhydroxyalkanoate (PHA) synthesis. Both 16S rRNA and genome sequence data suggest that the current recognition of four clades is insufficient to embrace their phylogenetic biodiversity, but do not support the view that they should be re-classified into families other than their existing location in the Rhodospirillaceae. As expected, considerable variations were seen in the presence and numbers of genes encoding properties associated with key substrate assimilation and metabolic pathways. Two genomes also carried the pit gene for synthesis of the low-affinity phosphate transport protein, pit, considered by many to distinguish all PAO from GAO. The data re-emphasize the risks associated with extrapolating the data generated from a single Defluviicoccus population to embrace all members of that genus.
Collapse
Affiliation(s)
- Irina Bessarab
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Abdul Majid Maszenan
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, Singapore, Singapore.,NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Mindia A S Haryono
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Krithika Arumugam
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Nay Min Min Thaw Saw
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Robert J Seviour
- School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
15
|
Petriglieri F, Petersen JF, Peces M, Nierychlo M, Hansen K, Baastrand CE, Nielsen UG, Reitzel K, Nielsen PH. Quantification of Biologically and Chemically Bound Phosphorus in Activated Sludge from Full-Scale Plants with Biological P-Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5132-5140. [PMID: 35358387 PMCID: PMC9022429 DOI: 10.1021/acs.est.1c02642] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Phosphorus (P) is present in activated sludge from wastewater treatment plants in the form of metal salt precipitates, extracellular polymeric substances, or bound into the biomass, for example, as intracellular polyphosphate (poly-P). Several methods for a reliable quantification of the different P-fractions have recently been developed, and this study combines them to obtain a comprehensive P mass-balance of activated sludge from four enhanced biological phosphate removal (EBPR) plants. Chemical characterization by ICP-OES and sequential P fractionation showed that chemically bound P constituted 38-69% of total P, most likely in the form of Fe, Mg, or Al minerals. Raman microspectroscopy, solution state 31P NMR, and 31P MAS NMR spectroscopy applied before and after anaerobic P-release experiments, were used to quantify poly-P, which constituted 22-54% of total P and was found in approximately 25% of all bacterial cells. Raman microspectroscopy in combination with fluorescence in situ hybridization was used to quantify poly-P in known polyphosphate-accumulating organisms (PAO) (Tetrasphaera, Candidatus Accumulibacter, and Dechloromonas) and other microorganisms known to possess high level of poly-P, such as the filamentous Ca. Microthrix. Interestingly, only 1-13% of total P was stored by unidentified PAO, highlighting that most PAOs in the full-scale EBPR plants investigated are known.
Collapse
Affiliation(s)
- Francesca Petriglieri
- Center
for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Jette F. Petersen
- Center
for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Miriam Peces
- Center
for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Marta Nierychlo
- Center
for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Kamilla Hansen
- Center
for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Cecilie E. Baastrand
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Ulla Gro Nielsen
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Kasper Reitzel
- Department
of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Per Halkjær Nielsen
- Center
for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| |
Collapse
|
16
|
Begmatov S, Dorofeev AG, Kadnikov VV, Beletsky AV, Pimenov NV, Ravin NV, Mardanov AV. The structure of microbial communities of activated sludge of large-scale wastewater treatment plants in the city of Moscow. Sci Rep 2022; 12:3458. [PMID: 35236881 PMCID: PMC8891259 DOI: 10.1038/s41598-022-07132-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/03/2022] [Indexed: 12/21/2022] Open
Abstract
Microbial communities in wastewater treatment plants (WWTPs) play a key role in water purification. Microbial communities of activated sludge (AS) vary extensively based on plant operating technology, influent characteristics and WWTP capacity. In this study we performed 16S rRNA gene profiling of AS at nine large-scale WWTPs responsible for the treatment of municipal sewage from the city of Moscow, Russia. Two plants employed conventional aerobic process, one plant-nitrification/denitrification technology, and six plants were operated with the University of Cape Town (UCT) anaerobic/anoxic/oxic process. Microbial communities were impacted by the technology and dominated by the Proteobacteria, Bacteroidota and Actinobacteriota. WWTPs employing the UCT process enabled efficient removal of not only organic matter, but also nitrogen and phosphorus, consistently with the high content of ammonia-oxidizing Nitrosomonas sp. and phosphate-accumulating bacteria. The latter group was represented by Candidatus Accumulibacter, Tetrasphaera sp. and denitrifiers. Co-occurrence network analysis provided information on key hub microorganisms in AS, which may be targeted for manipulating the AS stability and performance. Comparison of AS communities from WWTPs in Moscow and worldwide revealed that Moscow samples clustered together indicating that influent characteristics, related to social, cultural and environmental factors, could be more important than a plant operating technology.
Collapse
Affiliation(s)
- Shahjahon Begmatov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33-2, Moscow, Russia, 119071
| | - Alexander G Dorofeev
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33‑2, Moscow, Russia, 119071
| | - Vitaly V Kadnikov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33-2, Moscow, Russia, 119071
| | - Alexey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33-2, Moscow, Russia, 119071
| | - Nikolai V Pimenov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33‑2, Moscow, Russia, 119071
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33-2, Moscow, Russia, 119071.
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, bld. 33-2, Moscow, Russia, 119071.
| |
Collapse
|
17
|
Tian Y, Chen H, Chen L, Deng X, Hu Z, Wang C, Wei C, Qiu G, Wuertz S. Glycine adversely affects enhanced biological phosphorus removal. WATER RESEARCH 2022; 209:117894. [PMID: 34890912 DOI: 10.1016/j.watres.2021.117894] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/04/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Enhanced biological phosphorus removal (EBPR) is used extensively in full-scale wastewater treatment plants for the removal of phosphorus. Despite previous evidence showing that glycine is a carbon source for a certain lineage of polyphosphate accumulating organisms (PAOs) such as Tetrasphaera, it is still unknown whether glycine can support EBPR. We observed an overall adverse effect of glycine on EBPR using activated sludge from both full-scale wastewater treatment plants and lab-scale reactors harboring distant and diverse PAOs and glycogen accumulating organisms (GAOs), including Candidatus Accumulibacter, Thiothrix, Tetrasphaera, Dechloromonas, Ca. Competibacter, and Defluviicoccus, among others. Glycine induced phosphorus (P) release under anaerobic conditions without being effectively taken up by cells. The induced P release rate correlated with glycine concentration in the range of 10 to 50 mg C/L. PAOs continued to release P in the presence of glycine under aerobic conditions without any evident P uptake. Under mixed carbon conditions, the occurrence of glycine did not seem to affect acetate uptake; however, it significantly reduced the rate of P uptake in the aerobic phase. Overall, glycine did not appear to be an effective carbon source for a majority of PAOs and GAOs in full-scale and lab-scale systems, and neither did other community members utilize glycine under anaerobic or aerobic conditions. Metatranscriptomic analysis showed the transcription of glycine cleavage T, P and H protein genes, but not of the L protein or the downstream genes in the glycine cleavage pathway, suggesting barriers to metabolizing glycine. The high transcription of a gene encoding a drug/metabolite transporter suggests a potential efflux mechanism, where glycine transported into the cells is in turn exported at the expense of ATP, resulting in P release without affecting the glycine concentration in solution. The ability of glycine to induce P release without cellular uptake suggests a way to effectively recover P from P-enriched waste sludge.
Collapse
Affiliation(s)
- Yucheng Tian
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hang Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Liping Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xuhan Deng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zekun Hu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Cenchao Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou 510006, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Key Laboratory of Pollution Control and Ecological Restoration in Industrial Clusters, Ministry of Education, Guangzhou 510006, China.
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
18
|
Kagemasa S, Kuroda K, Nakai R, Li YY, Kubota K. Diversity of <i>Candidatus</i> Patescibacteria in Activated Sludge Revealed by a Size-Fractionation Approach. Microbes Environ 2022; 37. [PMID: 35676047 PMCID: PMC9530733 DOI: 10.1264/jsme2.me22027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Uncultivated members of Candidatus Patescibacteria are commonly found in activated sludge treating sewage and are widely distributed in wastewater treatment plants in different regions and countries. However, the phylogenetic diversity of Ca. Patescibacteria is difficult to examine because of their low relative abundance in the environment. Since Ca. Patescibacteria members have small cell sizes, we herein collected small microorganisms from activated sludge using a filtration-based size-fractionation approach (i.e., 0.45–0.22 μm and 0.22–0.1 μm fractions). Fractionated samples were characterized using 16S rRNA gene amplicon and shotgun metagenomic sequence analyses. The amplicon analysis revealed that the relative abundance of Ca. Patescibacteria increased to 73.5% and 52.5% in the 0.45–0.22 μm and 0.22–0.1 μm fraction samples, respectively, from 5.8% in the unfractionated sample. The members recovered from the two size-fractionated samples included Ca. Saccharimonadia, Ca. Gracilibacteria, Ca. Paceibacteria, Ca. Microgenomatia, class-level uncultured lineage ABY1, Ca. Berkelbacteria, WS6 (Ca. Dojkabacteria), and WWE3, with Ca. Saccharimonadia being predominant in both fraction samples. The number of operational taxonomic units belonging to Ca. Patescibacteria was approximately 6-fold higher in the size-fractionated samples than in the unfractionated sample. The shotgun metagenomic analysis of the 0.45–0.22 μm fractioned sample enabled the reconstruction of 24 high-quality patescibacterial bins. The bins obtained were classified into diverse clades at the family and genus levels, some of which were rarely detected in previous activated sludge studies. Collectively, the present results suggest that the overall diversity of Ca. Patescibacteria inhabiting activated sludge is higher than previously expected.
Collapse
Affiliation(s)
- Shuka Kagemasa
- Department of Civil and Environmental Engineering, Tohoku University
| | - Kyohei Kuroda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Ryosuke Nakai
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Tohoku University
| | - Kengo Kubota
- Department of Frontier Sciences for Advanced Environment, Tohoku University
| |
Collapse
|
19
|
Changes in BNR Microbial Community in Response to Different Selection Pressure. NITROGEN 2021. [DOI: 10.3390/nitrogen2040032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study investigated structural changes in microbial community of biological nutrient removal (BNR) in response to changes in substrate composition (ammonium and phosphate), redox condition, and morphological characteristics (flocs to granules), with a focus on nitrification and phosphate removal. Analyzing treatment performance and 16S rRNA phylogenetic gene sequencing data suggested that heterotrophic nitrification (HN) and autotrophic nitrification (AN) potentially happened in aerobic organic-rich (HN_AS) and aerobic organic-deficient (AN_AS) activated sludge batch reactors, respectively. However, phosphate release and uptake were not observed under alternating anaerobic/aerobic regime. Phosphate release could not be induced even when anaerobic phase was extended, although Accumulibacter existed in the inoculum (5.1% of total bacteria). Some potential HN (e.g., Thauera, Acinetobacter, Flavobacterium), AN (e.g., Nitrosomonas (3.2%) and Nitrospira), and unconventional phosphate-accumulating organisms (PAOs) were identified. Putative HN bacteria (i.e., Thauera (29–36%) and Flavobacterium (18–25%)) were enriched in aerobic granular sludge (AGS) regardless of the granular reactor operation mode. Enrichment of HN organisms in the AGS was suspected to be mainly due to granulation, possibly due to the floc-forming ability of HN species. Thus, HN is likely to play a role in nitrogen removal in AGS reactors. This study is supposed to serve as a starting point for the investigation of the microbial communities of AS- and AGS-based BNR processes. It is recommended that the identified roles for the isolated bacteria are further investigated in future works.
Collapse
|
20
|
Petriglieri F, Singleton C, Peces M, Petersen JF, Nierychlo M, Nielsen PH. "Candidatus Dechloromonas phosphoritropha" and "Ca. D. phosphorivorans", novel polyphosphate accumulating organisms abundant in wastewater treatment systems. THE ISME JOURNAL 2021; 15:3605-3614. [PMID: 34155336 PMCID: PMC8630035 DOI: 10.1038/s41396-021-01029-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/22/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
Members of the genus Dechloromonas are often abundant in enhanced biological phosphorus removal (EBPR) systems and are recognized putative polyphosphate accumulating organisms (PAOs), but their role in phosphate removal is still unclear. Here, we used 16S rRNA gene sequencing and fluorescence in situ hybridization (FISH) to investigate the abundance and distribution of Dechloromonas spp. in Danish and global wastewater treatment plants. The two most abundant species worldwide revealed in situ dynamics of important intracellular storage polymers, measured by FISH-Raman in activated sludge from four full-scale EBPR plants and from a lab-scale reactor fed with different substrates. Moreover, seven distinct Dechloromonas species were determined from a set of ten high-quality metagenome-assembled genomes (MAGs) from Danish EBPR plants, each encoding the potential for polyphosphate (poly-P), glycogen, and polyhydroxyalkanoates (PHA) accumulation. The two species exhibited an in situ phenotype in complete accordance with the metabolic information retrieved by the MAGs, with dynamic levels of poly-P, glycogen, and PHA during feast-famine anaerobic-aerobic cycling, legitimately placing these microorganisms among the important PAOs. They are potentially involved in denitrification showing niche partitioning within the genus and with other important PAOs. As no isolates are available for the two species, we propose the names Candidatus Dechloromonas phosphoritropha and Candidatus Dechloromonas phosphorivorans.
Collapse
Affiliation(s)
- Francesca Petriglieri
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Caitlin Singleton
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Miriam Peces
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Jette F Petersen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Marta Nierychlo
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
21
|
Spieck E, Wegen S, Keuter S. Relevance of Candidatus Nitrotoga for nitrite oxidation in technical nitrogen removal systems. Appl Microbiol Biotechnol 2021; 105:7123-7139. [PMID: 34508283 PMCID: PMC8494671 DOI: 10.1007/s00253-021-11487-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 01/10/2023]
Abstract
Abstract Many biotechnological applications deal with nitrification, one of the main steps of the global nitrogen cycle. The biological oxidation of ammonia to nitrite and further to nitrate is critical to avoid environmental damage and its functioning has to be retained even under adverse conditions. Bacteria performing the second reaction, oxidation of nitrite to nitrate, are fastidious microorganisms that are highly sensitive against disturbances. One important finding with relevance for nitrogen removal systems was the discovery of the mainly cold-adapted Cand. Nitrotoga, whose activity seems to be essential for the recovery of nitrite oxidation in wastewater treatment plants at low temperatures, e.g., during cold seasons. Several new strains of this genus have been recently described and ecophysiologically characterized including genome analyses. With increasing diversity, also mesophilic Cand. Nitrotoga representatives have been detected in activated sludge. This review summarizes the natural distribution and driving forces defining niche separation in artificial nitrification systems. Further critical aspects for the competition with Nitrospira and Nitrobacter are discussed. Knowledge about the physiological capacities and limits of Cand. Nitrotoga can help to define physico-chemical parameters for example in reactor systems that need to be run at low temperatures. Key points • Characterization of the psychrotolerant nitrite oxidizer Cand. Nitrotoga • Comparison of the physiological features of Cand. Nitrotoga with those of other NOB • Identification of beneficial environmental/operational parameters for proliferation Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11487-5.
Collapse
Affiliation(s)
- Eva Spieck
- Department of Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany.
| | - Simone Wegen
- Department of Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany
| | - Sabine Keuter
- Department of Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
22
|
Huang W, Zhou J, He X, He L, Lin Z, Shi S, Zhou J. Simultaneous nitrogen and phosphorus removal from simulated digested piggery wastewater in a single-stage biofilm process coupling anammox and intracellular carbon metabolism. BIORESOURCE TECHNOLOGY 2021; 333:125152. [PMID: 33872997 DOI: 10.1016/j.biortech.2021.125152] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
A Single-stage biofilm process coupling Anammox and Intracellular Carbon metabolism (SAIC) was constructed for treating simulated digested piggery wastewater with low carbon/nitrogen ratio (C/N) in this study. TN removal in SAIC system increased by more than 12.77% compared to the reference, and the maximum total phosphorus (TP) removal efficiency reached to 83.70% (C/N = 1.5). Denitrification driven by intracellular carbon, mainly poly-β-hydroxybutyrate (PHB, 78.57%), contributed 32.60% of TN elimination at most, and at least 67.40% should be attributed to anammox. Phosphorus was thought to be mainly removed through biological route, while chemical precipitation also explained around 10% of removed TP. Furthermore, commensalism of glycogen accumulating organisms (GAOs), phosphate accumulating organisms (PAOs), nitrifiers and anammox bacteria was revealed by combining 16S rRNA amplicon sequencing and metagenomics. As a result, multiple metabolic pathways including anammox, (partial) nitrification, endogenous (partial) denitrification and biological P-removal played synergistic effect in SAIC system.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Xuejie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Ziyuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Shuohui Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jiong Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
23
|
Guo D, Zhang X, Shi Y, Cui B, Fan J, Ji B, Yuan J. Microalgal-bacterial granular sludge process outperformed aerobic granular sludge process in municipal wastewater treatment with less carbon dioxide emissions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:13616-13623. [PMID: 33188629 DOI: 10.1007/s11356-020-11565-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
The aerobic granular sludge (AGS) process and microalgal-bacterial granular sludge (MBGS) process were comparably applied for municipal wastewater treatment in sequencing batch reactors with a height to diameter ratio of eight. For morphological appearances, the yellow aerobic granules were strip-shaped (4.0 mm × 0.62 mm) while the green microalgal-bacterial granules were elliptical-shaped (2.0 mm × 0.75 mm). The dominated rod-shaped bacteria (e.g., Acidobacteria and Bacteroidetes) and the slender configuration might be associated with the strip shape of aerobic granules under weak acid conditions. The nutrients removal performances by MBGS process were generally slightly better than AGS process. In addition, nutrients removal mechanisms were identified to elucidate how organics, ammonia, and phosphorus were removed by AGS process and MBGS process, respectively. Mass balance calculation estimated that MBGS process appeared to achieve much less CO2 emission (5.8%) compared with AGS process (44.4%). Overall, it proved that MBGS process, with the merits of potentially low energy cost, limited CO2 emission, and excellent performance, showed more prospects in municipal wastewater treatment than AGS process.
Collapse
Affiliation(s)
- Dabin Guo
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
| | - Xuechun Zhang
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yuting Shi
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Baihui Cui
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
| | - Jie Fan
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Bin Ji
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Julin Yuan
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China.
| |
Collapse
|
24
|
Liu B, Nan J, Zu X, Zhang X, Xiao Q. Identification of Genome Sequences of Polyphosphate-Accumulating Organisms by Machine Learning. Front Cell Dev Biol 2021; 8:626221. [PMID: 33537313 PMCID: PMC7848102 DOI: 10.3389/fcell.2020.626221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
In the field of sewage treatment, the identification of polyphosphate-accumulating organisms (PAOs) usually relies on biological experiments. However, biological experiments are not only complicated and time-consuming, but also costly. In recent years, machine learning has been widely used in many fields, but it is seldom used in the water treatment. The present work presented a high accuracy support vector machine (SVM) algorithm to realize the rapid identification and prediction of PAOs. We obtained 6,318 genome sequences of microorganisms from the publicly available microbial genome database for comparative analysis (MBGD). Minimap2 was used to compare the genomes of the obtained microorganisms in pairs, and read the overlap. The SVM model was established using the similarity of the genome sequences. In this SVM model, the average accuracy is 0.9628 ± 0.019 with 10-fold cross-validation. By predicting 2,652 microorganisms, 22 potential PAOs were obtained. Through the analysis of the predicted potential PAOs, most of them could be indirectly verified their phosphorus removal characteristics from previous reports. The SVM model we built shows high prediction accuracy and good stability.
Collapse
Affiliation(s)
- Bohan Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Xuehui Zu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Xinhui Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Qiliang Xiao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
25
|
ElNaker NA, Sallam AM, El-Sayed ESM, El Ghandoor H, Talaat MS, Yousef AF, Hasan SW. A conceptual framework modeling of functional microbial communities in wastewater treatment electro-bioreactors. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:3047-3061. [PMID: 33341792 DOI: 10.2166/wst.2020.553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding the microbial ecology of a system allows linking members of the community and their metabolic functions to the performance of the wastewater bioreactor. This study provided a comprehensive conceptual framework for microbial communities in wastewater treatment electro-bioreactors (EBRs). The model was based on data acquired from monitoring the effect of altering different bioreactor operational parameters, such as current density and hydraulic retention time, on the microbial communities of an EBR and its nutrient removal efficiency. The model was also based on the 16S rRNA gene high-throughput sequencing data analysis and bioreactor efficiency data. The collective data clearly demonstrated that applying various electric currents affected the microbial community composition and stability and the reactor efficiency in terms of chemical oxygen demand, N and P removals. Moreover, a schematic that recommends operating conditions that are tailored to the type of wastewater that needs to be treated based on the functional microbial communities enriched at specific operating conditions was suggested. In this study, a conceptual model as a simplified representation of the behavior of microbial communities in EBRs was developed. The proposed conceptual model can be used to predict how biological treatment of wastewater in EBRs can be improved by varying several operating conditions.
Collapse
Affiliation(s)
- Nancy A ElNaker
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates E-mail: ; Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates; Physics Department, Biophysics Group, Faculty of Science, Ain Shams University, P.O. Box 11566, Cairo, Egypt
| | - Abdelsattar M Sallam
- Physics Department, Biophysics Group, Faculty of Science, Ain Shams University, P.O. Box 11566, Cairo, Egypt
| | - El-Sayed M El-Sayed
- Physics Department, Biophysics Group, Faculty of Science, Ain Shams University, P.O. Box 11566, Cairo, Egypt
| | - H El Ghandoor
- Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - M S Talaat
- Physics Department, Biophysics Group, Faculty of Science, Ain Shams University, P.O. Box 11566, Cairo, Egypt
| | - Ahmed F Yousef
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates E-mail:
| |
Collapse
|
26
|
Yuan C, Peng Y, Wang B, Li X, Zhang Q. Facilitating sludge granulation and favoring glycogen accumulating organisms by increased salinity in an anaerobic/micro-aerobic simultaneous partial nitrification, denitrification and phosphorus removal (SPNDPR) process. BIORESOURCE TECHNOLOGY 2020; 313:123698. [PMID: 32585454 DOI: 10.1016/j.biortech.2020.123698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
This study used salinity (0.5 wt%, 0.75 wt%) to accelerate the formation of ammonia oxidizing bacteria (AOB)-enriched aerobic granular sludge in a lab-scale anaerobic/micro-aerobic simultaneous partial nitrification, denitrification and phosphorus removal (SPNDPR) reactor. Results confirmed that the average granule diameter increased from 298.7 to 425.4 µm after 45 days of salinity stress even with low dissolved oxygen. Extracellular polymeric substances increased from 149.5 to 387.7 mg/g VSS after salinity (0.75 wt%) treatment, in turn accelerating granulation. Partial nitrification was maintained under the salinity condition due to the relative high activity and abundance of AOB, and the observed nitrite accumulation ratio averaged 98.9%. Salinity favored glycogen-accumulating organisms over polyphosphate-accumulating organisms (PAOs)/denitrifying-PAOs, with the abundance of Candidatus_Competibacter increasing from 4.86% to 15.34% and the simultaneous partial nitrification-denitrification efficiency increasing from 74.4% to 91.1%, promoting N-removal potential. The P-removal performance was good under 0.5 wt% salinity but was inhibited under 0.75 wt% salinity.
Collapse
Affiliation(s)
- Chuansheng Yuan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| | - Bo Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
27
|
Roots P, Rosenthal A, Wang Y, Sabba F, Jia Z, Yang F, Zhang H, Kozak J, Wells G. Pushing the limits of solids retention time for enhanced biological phosphorus removal: process characteristics and Accumulibacter population structure. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:1614-1627. [PMID: 33107855 DOI: 10.2166/wst.2020.437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Reducing the solids retention time (SRT) of the enhanced biological phosphorus removal (EBPR) process can increase organic carbon diversion to the sidestream for energy recovery, thereby realizing some of the benefits of the high rate activated sludge (HRAS) process. Determining the washout (i.e. minimum) SRT of polyphosphate accumulating organisms (PAOs), therefore, allows for simultaneous phosphorus and carbon diversion for energy recovery from EBPR systems. However, few studies have investigated the washout SRT of PAOs in real wastewater, and little is known of the diversity of PAOs in high rate EBPR systems. Here we demonstrate efficient phosphorus removal (83% orthophosphate removal) in a high rate EBPR sequencing batch reactor fed real primary effluent and operated at 20 °C. Stable operation was achieved at a total SRT of 1.8 ± 0.2 days and hydraulic retention time of 3.7-4.8 hours. 16S rRNA gene sequencing data demonstrated that Accumulibacter were the dominant PAO throughout the study, with a washout aerobic SRT between 0.8 and 1.4 days. qPCR targeting the polyphosphate kinase gene revealed that Accumulibacter clades IIA, IIB and IID dominated the PAO community at low SRT operation, while clade IA was washed out at the lowest SRT values.
Collapse
Affiliation(s)
- Paul Roots
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA E-mail:
| | - Alex Rosenthal
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA E-mail:
| | - Yubo Wang
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA E-mail:
| | - Fabrizio Sabba
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA E-mail:
| | - Zhen Jia
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA E-mail:
| | - Fenghua Yang
- Metropolitan Water Reclamation District of Greater Chicago, 6001 W Pershing Road, Chicago, IL, 60804, USA
| | - Heng Zhang
- Metropolitan Water Reclamation District of Greater Chicago, 6001 W Pershing Road, Chicago, IL, 60804, USA
| | - Joseph Kozak
- Metropolitan Water Reclamation District of Greater Chicago, 6001 W Pershing Road, Chicago, IL, 60804, USA
| | - George Wells
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA E-mail:
| |
Collapse
|
28
|
The community compositions of three nitrogen removal wastewater treatment plants of different configurations in Victoria, Australia, over a 12-month operational period. Appl Microbiol Biotechnol 2020; 104:9839-9852. [DOI: 10.1007/s00253-020-10901-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/06/2020] [Accepted: 09/10/2020] [Indexed: 12/23/2022]
|
29
|
Ji B, Zhang M, Wang L, Wang S, Liu Y. Removal mechanisms of phosphorus in non-aerated microalgal-bacterial granular sludge process. BIORESOURCE TECHNOLOGY 2020; 312:123531. [PMID: 32446034 DOI: 10.1016/j.biortech.2020.123531] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Microalgal-bacterial granular sludge processes are attracting increasing research interest in fields of biological municipal wastewater treatment. However, these processes currently suffer from inefficient phosphorus removal and long hydraulic reaction time. As such, a self-sustaining synergetic microalgal-bacterial granular sludge process was explored for improving phosphorus removal. Results showed that about 86% of influent phosphorus could be removed within 6 h comprising 2-hr dark phase and 4-hr light phase. Slight phosphorus release was observed in dark phase, followed by a significant phosphorus uptake in light phase together with the accumulation of poly-phosphorus in microalgal cells. The analyses by PacBio's sequencing and fluorescence in situ hybridization revealed that microalgal genus of Pantanalinema were the major phosphorus-accumulating organisms. Based on these experimental observations, the removal mechanisms of phosphorus by microalgal-bacterial granular sludge process were identified. It is expected that this study may shed lights on the pathways of biological phosphorus removal in microalgal-bacterial granular sludge process.
Collapse
Affiliation(s)
- Bin Ji
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Meng Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Li Wang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Shulian Wang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; Hubei Key Laboratory of Ecological Remediation for Rivers-Lakes and Algal Utilization, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
30
|
Dorofeev AG, Nikolaev YA, Mardanov AV, Pimenov NV. Role of Phosphate-Accumulating Bacteria in Biological Phosphorus Removal from Wastewater. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820010056] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Qiu G, Liu X, Saw NMMT, Law Y, Zuniga-Montanez R, Thi SS, Ngoc Nguyen TQ, Nielsen PH, Williams RBH, Wuertz S. Metabolic Traits of Candidatus Accumulibacter clade IIF Strain SCELSE-1 Using Amino Acids As Carbon Sources for Enhanced Biological Phosphorus Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2448-2458. [PMID: 31790213 DOI: 10.1021/acs.est.9b02901] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Despite recent evidence from full-scale plants suggesting that Candidatus Accumulibacter may be capable of using amino acids, this metabolic trait has never been confirmed in a bioreactor experiment. Here we show that an enriched culture of Ca. Accumulibacter clade IIF strain SCELSE-1 could metabolize 11 of 20 α-amino acids, with aspartate, glutamate, asparagine, and glutamine resulting in the highest phosphorus removal. The anaerobic uptake of aspartate and glutamate was achieved through a glutamate/aspartate-proton symporter fully powered by the proton motive force (PMF). Under anaerobic conditions aspartate was deaminized and routed into core carbon metabolic pathways to form polyhydroxyalkanoates (PHA). The lack of genes encoding NADH dependent isocitrate dehydrogenase in the Ca. Accumulibacter genome resulted in a kinetic barrier for glutamate to be channelled to the TCA cycle. Glutamate was stored as glutamate polymer. When amino acids (aspartate or glutamate) and acetate were supplied together, Ca. Accumulibacter took up both carbon sources simultaneously, with the uptake rate of each carbon source largely preserved. Overall energy savings (up to 17%) were achieved under mixed carbon scenarios, due to the ability of Ca. Accumulibacter to rearrange its anaerobic carbon metabolism based on the reducing power, PMF and ATP balance.
Collapse
Affiliation(s)
- Guanglei Qiu
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , Singapore 637551 , Singapore
- School of Environment and Energy , South China University of Technology , Guangzhou 510006 , China
| | - Xianghui Liu
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , Singapore 637551 , Singapore
| | - Nay Min Min Thaw Saw
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , Singapore 637551 , Singapore
| | - Yingyu Law
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , Singapore 637551 , Singapore
| | - Rogelio Zuniga-Montanez
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , Singapore 637551 , Singapore
- Department of Civil and Environmental Engineering, One Shields Avenue , University of California , Davis , California 95616 , United States
| | - Sara Swa Thi
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , Singapore 637551 , Singapore
| | - Thi Quynh Ngoc Nguyen
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , Singapore 637551 , Singapore
| | - Per H Nielsen
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , Singapore 637551 , Singapore
- Centre for Microbial Communities, Department of Chemistry and Bioscience , Aalborg University , DK-9220 , Aalborg , Denmark
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering , National University of Singapore , Singapore 119077 , Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , Singapore 637551 , Singapore
- Department of Civil and Environmental Engineering, One Shields Avenue , University of California , Davis , California 95616 , United States
- School of Civil and Environmental Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| |
Collapse
|
32
|
Huang J, Xiao J, Guo Y, Guan W, Cao C, Yan C, Wang M. Long-term effects of silver nanoparticles on performance of phosphorus removal in a laboratory-scale vertical flow constructed wetland. J Environ Sci (China) 2020; 87:319-330. [PMID: 31791505 DOI: 10.1016/j.jes.2019.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Silver nanoparticles (AgNPs) have been widely used in many fields, which raised concerns about potential threats to biological sewage treatment systems. In this study, the phosphorus removal performance, enzymatic activity and microbial population dynamics in constructed wetlands (CWs) were evaluated under a long-term exposure to AgNPs (0, 50, and 200 μg/L) for 450 days. Results have shown that AgNPs inhibited the phosphorus removal efficiency in a short-term exposure, whereas caused no obviously negative effects from a long-term perspective. Moreover, in the coexisting CW system of AgNPs and phosphorus, competition exhibited in the initial exposure phase, however, cooperation between them was observed in later phase. Enzymatic activity of acid-phosphatase at the moderate temperature (10-20°C) was visibly higher than that at the high temperature (20-30°C) and CWs with AgNPs addition had no appreciable differences compared with the control. High-throughput sequencing results indicated that the microbial richness, diversity and composition of CWs were distinctly affected with the extension of exposure time at different AgNPs levels. However, the phosphorus removal performance of CWs did not decline with the decrease of polyphosphate accumulating organisms (PAOs), which also confirmed that adsorption precipitation was the main way of phosphorus removal in CWs. The study suggested that AgNPs and phosphorus could be removed synergistically in the coexistence system. This work has some reference for evaluating the influences of AgNPs on the phosphorus removal and the interrelation between them in CWs.
Collapse
Affiliation(s)
- Juan Huang
- School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | - Jun Xiao
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Yang Guo
- Security Support Center for Urban Water Supply of Jiangsu Province, Nanjing 210036, China
| | - Wenzu Guan
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Chong Cao
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Chunni Yan
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Mingyu Wang
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
33
|
Jouanneau S, Grangé E, Durand MJ, Thouand G. Rapid BOD assessment with a microbial array coupled to a neural machine learning system. WATER RESEARCH 2019; 166:115079. [PMID: 31539666 DOI: 10.1016/j.watres.2019.115079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
The domestic usage of water generates approximately 310 km3 of wastewater worldwide (2015, AQUASTAT, Food and Agriculture Organization of United Nations). This sewage contains an important organic load due to the use of this water; this organic load is characterized using a standard method, namely, the biological oxygen demand measurement (BOD5). The BOD5 provides information about the biodegradable organic load (standard ISO 5815). However, this measurement protocol is very time-consuming (5 days) and may produce variability in approximately 20% of results mainly due to variation in the environmental inocula. To remedy these limitations, this work proposes an innovative concept relying on the implementation of a set of rigorously selected bacterial strains. This publication depicts the different steps used in this study, from bio-indicator selection to validation with real wastewater samples. The results obtained in the final step show a strong correlation between the developed approach and the reference method (ISO 5815) with a correlation rate of approximately 0.9. In addition, the optimization of the experimental conditions and the use of controlled strains (8 selected strains) allow significant reduction in the duration of the BOD5 analysis, with only 3 h required for the proposed method versus 5 days for the reference method. This technological breakthrough should simplify the monitoring of wastewater treatment plants and provide quicker, easier and more coherent control in terms of the treatment time.
Collapse
Affiliation(s)
- Sulivan Jouanneau
- University of Nantes, UMR CNRS 6144 GEPEA, 18 Boulevard Gaston Defferre, 85035, La Roche sur Yon, France.
| | - Emilie Grangé
- University of Nantes, UMR CNRS 6144 GEPEA, 18 Boulevard Gaston Defferre, 85035, La Roche sur Yon, France
| | - Marie-José Durand
- University of Nantes, UMR CNRS 6144 GEPEA, 18 Boulevard Gaston Defferre, 85035, La Roche sur Yon, France
| | - Gérald Thouand
- University of Nantes, UMR CNRS 6144 GEPEA, 18 Boulevard Gaston Defferre, 85035, La Roche sur Yon, France.
| |
Collapse
|
34
|
Adoonsook D, Chia-Yuan C, Wongrueng A, Pumas C. A simple way to improve a conventional A/O-MBR for high simultaneous carbon and nutrient removal from synthetic municipal wastewater. PLoS One 2019; 14:e0214976. [PMID: 31756182 PMCID: PMC6913871 DOI: 10.1371/journal.pone.0214976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/03/2019] [Indexed: 11/18/2022] Open
Abstract
In this study, two anoxic-oxic membrane bioreactor (A/O-MBR) systems, i.e. conventional and biofilm anoxic-oxic-membrane bioreactors (C-A/O-MBR and BF-A/O-MBR, respectively), were operated in parallel under conditions of complete sludge retention for the purposes of comparing system performance and microbial community composition. Moreover, with the microbial communities, comparisons were made between the adhesive stage and the suspended stage. High average removal of COD, NH4+-N and TN was achieved in both systems. However, TP removal efficiency was remarkably higher in BF-A/O-MBR when compared with C-A/O-MBR. TP mass balance analysis suggested that under complete sludge retention, polyurethane sponges that were added into the anoxic tank played a key role in both phosphorus release and accumulation. The qPCR analysis showed that sponge biomass could maintain a higher level of abundance of total bacteria than the suspended sludge. Meanwhile, AOB and denitrifiers were enriched in the suspended sludge but not in the sponge biomass. Results of illumina sequencing reveal that the compacted sponge in BF-A/O-MBR could promote the growth of bacteria involved in nutrient removal and reduce the amount of filamentous and bacterial growth that is related to membrane fouling in the suspended sludge.
Collapse
Affiliation(s)
- Dome Adoonsook
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai Thailand
| | - Chang Chia-Yuan
- Department of Environmental Engineering and Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan.,College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, China
| | - Aunnop Wongrueng
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai Thailand.,Research Program in Control of Hazardous Contaminants in Raw Water Resources for Water Scarcity Resilience, Center of Excellence on Hazardous Substance Management (HSM), Bangkok, Thailand.,Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Chayakorn Pumas
- Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
35
|
Dorofeev AG, Nikolaev YA, Mardanov AV, Pimenov NV. Cyclic Metabolism as a Mode of Microbial Existence. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719040052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
36
|
Li L, Tian Y, Zhang J, Sun L, Zuo W, Li H, Huang D, Zhan W, Wiesner MR. Enhanced denitrifying phosphorus removal and mass balance in a worm reactor. CHEMOSPHERE 2019; 226:883-890. [PMID: 31509917 DOI: 10.1016/j.chemosphere.2019.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/17/2019] [Accepted: 04/03/2019] [Indexed: 06/10/2023]
Abstract
Phosphorus release is one of the disadvantages during worm predation, which has an adverse effect on wastewater treatment. In order to investigate and reveal the effects and mechanisms of worm predation on phosphorus transformation, batch experiments were conducted on a long-running worm reactor (WR). Denitrifying phosphorus removal (DPR) was observed in WR for the first time owing to the special reactor configuration and operating conditions. After DPR in WR, the concentration of supernatant phosphorus increased to 42.2 ± 1.1 mg L-1 owing to bacterial phosphorus release and worm predation, which further promoted DPR in the subsequent cycle. DPR rate in the WR was 12.3 times higher than that in the blank reactor (BR). In addition, the synergistic effects of worm predation and bacterial metabolism on sludge reduction and nutrients transformation were analyzed. The sludge reduction of WR was 84.5% higher than that of BR. Bacterial metabolism played an important role in the removal of supernatant nutrients, which consumed 60.2% of total nitrogen and 55.5% of chemical oxygen demand derived from the reduced sludge. The study suggested that under certain conditions, WR could be functionalized as a bacteria selection tank to further improve the wastewater treatment efficiency. Bacterial metabolism was essential for supernatant nutrients removal during worm predation.
Collapse
Affiliation(s)
- Lipin Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China; Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27708, United States
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Li Sun
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hui Li
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding, 071002, China
| | - Danping Huang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Zhan
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mark R Wiesner
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27708, United States
| |
Collapse
|
37
|
Li Y, Rahman SM, Li G, Fowle W, Nielsen PH, Gu AZ. The Composition and Implications of Polyphosphate-Metal in Enhanced Biological Phosphorus Removal Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1536-1544. [PMID: 30589545 DOI: 10.1021/acs.est.8b06827] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The individual cellular level and quantitative Polyphosphate (PolyP)-metal compositions in EBPR (enhanced biological phosphorus removal) systems have hardly been investigated and its potential link to EBPR performance therefore remain largely unknown. In this study, we applied scanning electron microscopy combined with energy dispersive X-ray spectroscopy (SEM/EDX) method that enabled detection and semiquantification of metal elemental compositions in intact intracellular PolyP granules in individual PAO (polyphosphate accumulating organism) cells. We, for the first time, revealed diverse and dynamic distributions of different metals ions in the PolyP-metal granules in different EBPR systems operated with the same influent metal composition but varying SRT of 5-30 days. We further demonstrated that the PolyP-metal composition diversity correlated with 16S rRNA gene based PAO phylogenetic diversity, suggesting the possible phylogeny-dependent PolyP-metal composition variation. The impact of PolyP metal composition in EBPR system, especially the Mg content in PolyP granules, was evidenced by the significant and strong positive correlation between PolyP-Mg content and the long-term stability of the four EBPR systems with varying SRTs. The PolyP-Mg content can therefore possibly serve as an indicator for EBPR performance monitoring. The results demonstrated that phenotyping techniques, such as PolyP-metal-based profiling, in compliment, or combined with genotyping techniques such as phylogenetic and functional gene sequencing, can provide more insights into the mechanisms and performance prediction of this important microbial ecosystem.
Collapse
Affiliation(s)
- Yueyun Li
- Civil and Environmental Engineering Department , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Sheikh Mokhlesur Rahman
- Civil and Environmental Engineering Department , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Gungyu Li
- Civil and Environmental Engineering Department , Northeastern University , Boston , Massachusetts 02115 , United States
| | - William Fowle
- Biology Department , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience , Aalborg University , Aalborg , Denmark
| | - April Z Gu
- Civil and Environmental Engineering Department , Northeastern University , Boston , Massachusetts 02115 , United States
- School of Civil and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
38
|
Qiu G, Zuniga-Montanez R, Law Y, Thi SS, Nguyen TQN, Eganathan K, Liu X, Nielsen PH, Williams RBH, Wuertz S. Polyphosphate-accumulating organisms in full-scale tropical wastewater treatment plants use diverse carbon sources. WATER RESEARCH 2019; 149:496-510. [PMID: 30476778 DOI: 10.1016/j.watres.2018.11.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/17/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Enhanced biological phosphorus removal (EBPR) is considered challenging in the tropics, based on a great number of laboratory-based studies showing that the polyphosphate-accumulating organism (PAO) Candidatus Accumulibacter does not compete well with glycogen accumulating organisms (GAOs) at temperatures above 25 °C. Yet limited information is available on the PAO community and the metabolic capabilities in full-scale EBPR systems operating at high temperature. We studied the composition of the key functional PAO communities in three full-scale wastewater treatment plants (WWTPs) with high in-situ EBPR activity in Singapore, their EBPR-associated carbon usage characteristics, and the relationship between carbon usage and community composition. Each plant had a signature community composed of diverse putative PAOs with multiple operational taxonomic units (OTUs) affiliated to Ca. Accumulibacter, Tetrasphaera spp., Dechloromonas and Ca. Obscuribacter. Despite the differences in community composition, ex-situ anaerobic phosphorus (P)-release tests with 24 organic compounds from five categories (including four sugars, three alcohols, three volatile fatty acids (VFAs), eight amino acids and six other carboxylic acids) showed that a wide range of organic compounds could potentially contribute to EBPR. VFAs induced the highest P release (12.0-18.2 mg P/g MLSS for acetate with a P release-to-carbon uptake (P:C) ratio of 0.35-0.66 mol P/mol C, 9.4-18.5 mg P/g MLSS for propionate with a P:C ratio of 0.38-0.60, and 9.5-17.3 mg P/g MLSS for n-butyrate), followed by some carboxylic acids (10.1-18.1 mg P/g MLSS for pyruvate, 4.5-11.7 mg P/g MLSS for lactate and 3.7-12.4 mg P/g MLSS for fumarate) and amino acids (3.66-7.33 mg P/g MLSS for glutamate with a P:C ratio of 0.16-0.43 mol P/mol C, and 4.01-7.37 mg P/g MLSS for aspartate with a P:C ratio of 0.17-0.48 mol P/mol C). P-release profiles (induced by different carbon sources) correlated closely with PAO community composition. High micro-diversity was observed within the Ca. Accumulibacter lineage, which represented the most abundant PAOs. The total population of Ca. Accumulibacter taxa was highly correlated with P-release induced by VFAs, highlighting the latter's importance in tropical EBPR systems. There was a strong link between the relative abundance of individual Ca. Accumulibacter OTUs and the extent of P release induced by distinct carbon sources (e.g., OTU 81 and amino acids, and OTU 246 and ethanol), suggesting niche differentiation among Ca. Accumulibacter taxa. A diverse PAO community and the ability to use numerous organic compounds are considered key factors for stable EBPR in full-scale plants at elevated temperatures.
Collapse
Affiliation(s)
- Guanglei Qiu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore.
| | - Rogelio Zuniga-Montanez
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore; Department of Civil and Environmental Engineering, One Shields Avenue, University of California, Davis, CA, 95616, USA
| | - Yingyu Law
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
| | - Sara Swa Thi
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
| | - Thi Quynh Ngoc Nguyen
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
| | - Kaliyamoorthy Eganathan
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Xianghui Liu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore
| | - Per H Nielsen
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore; Centre for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, DK-9220, Denmark
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, 637551, Singapore; Department of Civil and Environmental Engineering, One Shields Avenue, University of California, Davis, CA, 95616, USA; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|
39
|
Yun G, Lee H, Hong Y, Kim S, Daigger GT, Yun Z. The difference of morphological characteristics and population structure in PAO and DPAOgranular sludges. J Environ Sci (China) 2019; 76:388-402. [PMID: 30528031 DOI: 10.1016/j.jes.2018.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 06/09/2023]
Abstract
We examined how long-term operation of anaerobic-oxic and anaerobic-anoxic sequencing batch reactors (SBRs) affects the enhanced biological phosphorus removal (EBPR) performance and sludge characteristics. The microbial characteristics of phosphorus accumulating organism (PAO) and denitrifying PAO (DPAO) sludge were also analyzed through a quantitative analysis of microbial community structure. Compared with the initial stage of operation characterized by unstable EBPR, both PAO and DPAO SBR produced a stable EBPR performance after about 100-day operation. From day 200 days (DPAO SBR) and 250 days (PAO SBR) onward, sludge granulation was observed, and the average granule size of DPAO SBR was approximately 5 times larger than that of PAO SBR. The DPAO granular sludge contained mainly rod-type microbes, whereas the PAO granular sludge contained coccus-type microbes. Fluorescence in situ hybridization analysis revealed that a high ratio of Accumulibacter clade I was found only in DPAO SBR, revealing the important role of this organism in the denitrifying EBPR system. A pyrosequencing analysis showed that Accumulibacter phosphatis was present in PAO sludge at a high proportion of 6%, whereas it rarely observed in DPAO sludge. Dechloromonas was observed in both PAO sludge (3.3%) and DPAO sludge (3.2%), confirming that this organism can use both O2 and NO3- as electron acceptors. Further, Thauera spp. was identified to have a new possibility as denitrifier capable of phosphorous uptake under anoxic condition.
Collapse
Affiliation(s)
- Geumhee Yun
- Department of Environmental Engineering, Korea University, Sejong, 339-700, South Korea.
| | - Hansaem Lee
- Hyundai Engineering & Construction Co., Ltd., 17-6 Mabuk-Ro 240, Giheung-Gu, Yongin-Si, Gyuonggi-Do, South Korea
| | - Yongsuk Hong
- Department of Environmental Engineering, Korea University, Sejong, 339-700, South Korea
| | - Sungpyo Kim
- Department of Environmental Engineering, Korea University, Sejong, 339-700, South Korea
| | - Glen T Daigger
- Department of Civil and Environmental Engineering, University of Michigan, 177 EWRE Building, 1351 Beal Avenue, Ann Arbor, MI 48109-2125, USA
| | - Zuwhan Yun
- Department of Environmental Engineering, Korea University, Sejong, 339-700, South Korea.
| |
Collapse
|
40
|
Zhang L, Fu G, Zhang Z. Simultaneous nutrient and carbon removal and electricity generation in self-buffered biocathode microbial fuel cell for high-salinity mustard tuber wastewater treatment. BIORESOURCE TECHNOLOGY 2019; 272:105-113. [PMID: 30316192 DOI: 10.1016/j.biortech.2018.10.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
Mustard tuber wastewater (MTWW) was used as both anolyte and catholyte in biocathode microbial fuel cell (BMFC). The results showed simultaneous nutrient and carbon removal and electricity generation were realized in BMFC. Excellent Chemical Oxygen Demand (COD) removal occurred in both anode (>90%) and cathode (>91%). Concerning nutrient removal, it was mainly removed in cathode. The maximum total phosphorus (TP) removal could reach 80.8 ± 1.0% by biological action. Simultaneous nitrification and denitrification (SND) was realized in cathode. The bacteria involved in nitrification were Nitrosomonas and SM1A02. Oceanimonas and Saprospiraceae_uncultured (anaerobic denitrifier), Thauera, Stenotrophomonas, Flavobacterium and Marinobacter (aerobic denitrifier), and Thioalkalispira (autotrophic denitrifier) were responsible for denitrification. Considering slight variation of anode and cathode pH, it could be concluded that MTWW was adequately self-buffered when used as electrolyte. Furthermore, electricity generation decreased with cathodic dissolved oxygen (DO) declining. These findings provide a novel method for MTWW resourceful treatment.
Collapse
Affiliation(s)
- Linfang Zhang
- Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Guokai Fu
- Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China.
| | - Zhi Zhang
- Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| |
Collapse
|
41
|
Ceftriaxone Administration Disrupts Intestinal Homeostasis, Mediating Noninflammatory Proliferation and Dissemination of Commensal Enterococci. Infect Immun 2018; 86:IAI.00674-18. [PMID: 30224553 DOI: 10.1128/iai.00674-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/21/2022] Open
Abstract
Enterococci are Gram-positive commensals of the mammalian intestinal tract and harbor intrinsic resistance to broad-spectrum cephalosporins. Disruption of colonization resistance in humans by antibiotics allows enterococci to proliferate in the gut and cause disseminated infections. In this study, we used Enterococcus faecalis (EF)-colonized mice to study the dynamics of enterococci, commensal microbiota, and the host in response to systemic ceftriaxone administration. We found that the mouse model recapitulates intestinal proliferation and dissemination of enterococci seen in humans. Employing a ceftriaxone-sensitive strain of enterococci (E. faecalis JL308), we showed that increased intestinal abundance is critical for the systemic dissemination of enterococci. Investigation of the impact of ceftriaxone on the mucosal barrier defenses and integrity suggested that translocation of enterococci across the intestinal mucosa was not associated with intestinal pathology or increased permeability. Ceftriaxone-induced alteration of intestinal microbial composition was associated with transient increase in the abundance of multiple bacterial operational taxonomic units (OTUs) in addition to enterococci, for example, lactobacilli, which also disseminated to the extraintestinal organs. Collectively, these results emphasize that ceftriaxone-induced disruption of colonization resistance and alteration of mucosal homeostasis facilitate increased intestinal abundance of a limited number of commensals along with enterococci, allowing their translocation and systemic dissemination in a healthy host.
Collapse
|
42
|
Wijeyekoon S, Carere CR, West M, Nath S, Gapes D. Mixed culture polyhydroxyalkanoate (PHA) synthesis from nutrient rich wet oxidation liquors. WATER RESEARCH 2018; 140:1-11. [PMID: 29679930 DOI: 10.1016/j.watres.2018.04.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/12/2018] [Accepted: 04/07/2018] [Indexed: 06/08/2023]
Abstract
Organic waste residues can be hydrothermally treated to produce organic acid rich liquors. These hydrothermal liquors are a potential feedstock for polyhydroxyalkanoate (PHA) production. We investigated the effect of dissolved oxygen concentration and substrate feeding regimes on PHA accumulation and yield using two hydrothermal liquors derived from a mixture of primary and secondary municipal wastewater treatment sludge and food waste. The enriched culture accumulated a maximum of 41% PHA of cell dry weight within 7 h; which is among the highest reported for N and P rich hydrothermal liquors. Recovered PHA was 77% polyhydroxybutyrate and 23% polyhydroxyvalerate by mass. The families Rhodocyclaceae (84%) and Saprospiraceae (20.5%) were the dominant Proteobacteria (73%) in the enriched culture. The third most abundant bacterial genus, Bdellovibrio, includes species of known predators of PHA producers which may lead to suboptimal PHA accumulation. The PHA yield was directly proportional to DO concentration for ammonia stripped liquor (ASL) and inversely proportional to DO concentration for low strength liquor (LSL). The highest yield of 0.50 Cmol PHA/Cmol substrate was obtained for ASL at 25% DO saturation. A progressively increasing substrate feeding regime resulted in increased PHA yields. These findings demonstrate that substrate feeding regime and oxygen concentration can be used to control the PHA yield and accumulation rate thereby enhancing PHA production viability from nutrient rich biomass streams.
Collapse
Affiliation(s)
- Suren Wijeyekoon
- Scion, Te Papa Tipu Innovation Park, 49 Sala Street, Private Bag 3020, Rotorua, 3046, New Zealand.
| | - Carlo R Carere
- Scion, Te Papa Tipu Innovation Park, 49 Sala Street, Private Bag 3020, Rotorua, 3046, New Zealand; GNS Science, Wairakei Research Centre, 114 Karetoto Road, Wairakei, Taupō, 3352, New Zealand
| | - Mark West
- Scion, Te Papa Tipu Innovation Park, 49 Sala Street, Private Bag 3020, Rotorua, 3046, New Zealand
| | - Shresta Nath
- Scion, Te Papa Tipu Innovation Park, 49 Sala Street, Private Bag 3020, Rotorua, 3046, New Zealand
| | - Daniel Gapes
- Scion, Te Papa Tipu Innovation Park, 49 Sala Street, Private Bag 3020, Rotorua, 3046, New Zealand
| |
Collapse
|
43
|
Li Y, Cope HA, Rahman SM, Li G, Nielsen PH, Elfick A, Gu AZ. Toward Better Understanding of EBPR Systems via Linking Raman-Based Phenotypic Profiling with Phylogenetic Diversity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8596-8606. [PMID: 29943965 DOI: 10.1021/acs.est.8b01388] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study reports a proof-of concept study to demonstrate the novel approach of phenotyping microbial communities in enhanced biological phosphorus removal (EBPR) systems using single cell Raman microspectroscopy and link it with phylogentic structures. We use hierarchical clustering analysis (HCA) of single-cell Raman spectral fingerprints and intracellular polymer signatures to separate and classify the functionally relevant populations in EBPR systems, namely polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs), as well as other microbial populations. We then investigated the link between Raman-based community phenotyping and 16S rRNA gene-based phylogenetic characterization of four lab-scale EBPR systems with varying solid retention time (SRT) to gain insights into possible genotype-function relationships. Combined and simultaneous phylogenetic and phenotypic evaluation of EBPR ecosystems revealed SRT-dependent phylogenetic and phenotypic characteristics of the PAOs and GAOs, and their association with EBPR performance. The phenotypic diversity and plasticity of PAO populations, which otherwise could not be obtained with phylogenetic analysis alone, showed complex but potentially crucial association with EBPR process stability.
Collapse
Affiliation(s)
- Yueyun Li
- Civil and Environmental Engineering Department , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Helen A Cope
- School of Engineering, Institute for Bioengineering , The University of Edinburgh , Edinburgh , U.K
| | - Sheikh M Rahman
- Civil and Environmental Engineering Department , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Guangyu Li
- Civil and Environmental Engineering Department , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience , Aalborg University , Aalborg , Denmark
| | - Alistair Elfick
- School of Engineering, Institute for Bioengineering , The University of Edinburgh , Edinburgh , U.K
| | - April Z Gu
- Civil and Environmental Engineering Department , Northeastern University , Boston , Massachusetts 02115 , United States
- School of Civil and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
44
|
Nascimento AL, Souza AJ, Andrade PAM, Andreote FD, Coscione AR, Oliveira FC, Regitano JB. Sewage Sludge Microbial Structures and Relations to Their Sources, Treatments, and Chemical Attributes. Front Microbiol 2018; 9:1462. [PMID: 30018612 PMCID: PMC6037839 DOI: 10.3389/fmicb.2018.01462] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/12/2018] [Indexed: 11/13/2022] Open
Abstract
Sewage sludges generation and their disposal have become one of the greatest challenges of the 21st century. They have great microbial diversity that may impact wastewater treatment plant (WWTP) efficiency and soil quality whether used as fertilizers. Therefore, this research aimed to characterize microbial community diversity and structure of 19 sewage sludges from São Paulo, Brazil, as well as to draw their relations to sludge sources [domestic and mixed (domestic+industrial)], biological treatments (redox conditions and liming), and chemical attributes, using molecular biology as a tool. All sludges revealed high bacterial diversity, but their sources and redox operating conditions as well as liming did not consistently affect bacterial community structures. Proteobacteria was the dominant phylum followed by Bacteroidetes and Firmicutes; whereas Clostridium was the dominant genus followed by Treponema, Propionibacterium, Syntrophus, and Desulfobulbus. The sludge samples could be clustered into six groups (C1 to C6) according their microbial structure similarities. Very high pH (≥11.9) was the main sludge attribute segregating C6, that presented very distinct microbial structure from the others. Its most dominant genera were Propionibacterium > > Comamonas > Brevundimonas > Methylobacterium ∼Stenotrophomonas ∼Cloacibacterium. The other clusters' dominant genera were Clostridium > > Treponema > Desulfobulbus ∼Syntrophus. Moreover, high Fe and S were important modulators of microbial structure in certain sludges undertaking anaerobic treatment and having relatively low N-Kj, B, and P contents (C5). However, high N-Kj, B, P, and low Fe and Al contents were typical of domestic, unlimed, and aerobically treated sludges (C1). In general, heavy metals had little impact on microbial community structure of the sludges. However, our sludges shared a common core of 77 bacteria, mostly Clostridium, Treponema, Syntrophus, and Comamonas. They should dictate microbial functioning within WWTPs, except by SS12 and SS13.
Collapse
Affiliation(s)
- Altina Lacerda Nascimento
- Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Adijailton Jose Souza
- Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Pedro Avelino Maia Andrade
- Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Fernando Dini Andreote
- Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Aline Renée Coscione
- Center of Soil and Environmental Resources, Agronomic Institute of Campinas, Campinas, Brazil
| | | | - Jussara Borges Regitano
- Department of Soil Science, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
45
|
Diversity and assembly patterns of activated sludge microbial communities: A review. Biotechnol Adv 2018; 36:1038-1047. [DOI: 10.1016/j.biotechadv.2018.03.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/11/2018] [Accepted: 03/11/2018] [Indexed: 11/22/2022]
|
46
|
Gil-Pulido B, Tarpey E, Almeida EL, Finnegan W, Zhan X, Dobson ADW, O'Leary N. Evaluation of dairy processing wastewater biotreatment in an IASBR system: Aeration rate impacts on performance and microbial ecology. ACTA ACUST UNITED AC 2018; 19:e00263. [PMID: 29992097 PMCID: PMC6036646 DOI: 10.1016/j.btre.2018.e00263] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/24/2018] [Accepted: 06/02/2018] [Indexed: 02/07/2023]
Abstract
Dairy processing generates large volumes of wastewater that require extensive nutrient remediation prior to discharge. Significant commercial opportunities exist therefore for cost-effective biotechnologies capable of achieving this requirement. In this study the authors evaluated the use of intermittently aerated sequencing batch reactors, (IASBRs), as a single-tank biotreatment system for co-removal of COD, nitrogen and phosphorus from synthetic dairy processing wastewater. Variation of the IASBR aeration rates, (0.8, 0.6 and 0.4 L/min), had significant impacts on the respective nutrient removal efficiencies and underlying microbial diversity profiles. Aeration at 0.6 L/min was most effective and resulted in >90% co-removal of orthophosphate and ammonium. 16S rRNA based pyrosequencing of biomass DNA samples revealed the family Comamonadaceae was notably enriched (>80% relative abundance) under these conditions. In silico predictive metabolic modelling also identified Comamonadaceae as the major contributor of several known genes for nitrogen and phosphorus assimilation (nirK, nosZ, norB, ppK, ppX and phbC).
Collapse
Affiliation(s)
- Beatriz Gil-Pulido
- School of Microbiology, University College Cork, College Road, Cork T12 YN60, Ireland.,Environmental Research Institute, University College Cork, Lee Road, Cork T23 XE10, Ireland
| | - Emma Tarpey
- College of Engineering and Informatics, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| | - Eduardo L Almeida
- School of Microbiology, University College Cork, College Road, Cork T12 YN60, Ireland.,Environmental Research Institute, University College Cork, Lee Road, Cork T23 XE10, Ireland
| | - William Finnegan
- College of Engineering and Informatics, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| | - Xinmin Zhan
- College of Engineering and Informatics, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| | - Alan D W Dobson
- School of Microbiology, University College Cork, College Road, Cork T12 YN60, Ireland.,Environmental Research Institute, University College Cork, Lee Road, Cork T23 XE10, Ireland
| | - Niall O'Leary
- School of Microbiology, University College Cork, College Road, Cork T12 YN60, Ireland.,Environmental Research Institute, University College Cork, Lee Road, Cork T23 XE10, Ireland
| |
Collapse
|
47
|
Figdore BA, David Stensel H, Winkler MKH. Bioaugmentation of sidestream nitrifying-denitrifying phosphorus-accumulating granules in a low-SRT activated sludge system at low temperature. WATER RESEARCH 2018; 135:241-250. [PMID: 29477062 DOI: 10.1016/j.watres.2018.02.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 05/11/2023]
Abstract
Sidestream granular activated sludge grown on anaerobic digester dewatering centrate was bioaugmented and selectively retained to enable high nitrification performance of a 2.5-day aerobic SRT non-nitrifying flocculent activated sludge system at 12 °C. Sidestream-grown granules performed enhanced biological phosphorus removal (EBPR) and short-cut nitrogen removal via nitrite. After bioaugmentation, EBPR continued in the mainstream but ammonia oxidation was eventually to nitrate. Low effluent NH3-N concentrations from 0.6 to 1.7 mg/L were achieved with nitrification solely by granules, thus enabling denitrification and nitrogen removal. Molecular microbial analyses of flocs and granules also suggested that nitrifying organisms persisted on granules with minimal nitrifier loss to flocs. Mainstream granule mass at the end of bioaugmentation testing was 1.7 times the amount of sidestream granules added, indicating mainstream granular growth. Nitrite and nitrate availability during the unaerated feeding period encouraged significant growth of ordinary heterotrophs in mainstream granules, but nevertheless mainstream nitrification capacity was sustained.
Collapse
Affiliation(s)
- Bryce A Figdore
- Civil and Environmental Engineering, University of Washington, 201 More Hall, Seattle, WA 98195, USA
| | - H David Stensel
- Civil and Environmental Engineering, University of Washington, 201 More Hall, Seattle, WA 98195, USA
| | - Mari-Karoliina H Winkler
- Civil and Environmental Engineering, University of Washington, 201 More Hall, Seattle, WA 98195, USA.
| |
Collapse
|
48
|
Zhang C, Sun G, Zhao K, Zou S, Yuan L. Performance of A 2NO-MBR process in treating synthetic and municipal wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10782-10791. [PMID: 29396825 DOI: 10.1007/s11356-018-1359-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/22/2018] [Indexed: 06/07/2023]
Abstract
In this study, a novel anaerobic-anoxic/nitrification (A2N) two-sludge sequencing batch reactor (SBR) configured with post-aeration (A2NO-membrane bioreactor process) was conducted to evaluate the operational efficiency, process characteristics, and microbial community structure in treating synthetic and municipal wastewater. When influent C/N ratios were 4.2-8.6, the removal efficiencies of COD, NH4+-N, TN, and TP were 86.4-90.0, 85.2-93.6, 61.8-76.0, and 97.6-99.3%, respectively, and the effluent concentrations met the first level A criteria of GB18918-2002. Phosphorus removal was mainly in anoxic phase with a removal rate of 0.54-1.30 mgP/(gMLSS h), accounting for 75.9-99.7%. Enhanced phosphorus removal was observed during post-aeration phase with a removal rate of 0.06-0.55 mgP/(gMLSS h). Additionally, Oxidation-Reduction Potential (ORP) and pH could reflect the process of anaerobic phosphorus release and anoxic denitrifying phosphorus removal. DO and pH could indicate the end of nitrification. Moreover, Candidatus Accumulibacter and Dechloromonas related to biological nitrogen and phosphorus removal were enriched effectively with total proportions of 15.9 and 11.5% in treating synthetic and municipal wastewater, respectively.
Collapse
Affiliation(s)
- Chuanyi Zhang
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, 221116, China.
| | - Guangrong Sun
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, 221116, China
| | - Kuixia Zhao
- Guangdong Polytechnic of Water Resources and Electric Engineering, Guangzhou, 510635, China
| | - Siqi Zou
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, 221116, China
| | - Limei Yuan
- School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou, 221116, China.
| |
Collapse
|
49
|
ElNaker NA, Yousef AF, Hasan SW. Effect of hydraulic retention time on microbial community structure in wastewater treatment electro-bioreactors. Microbiologyopen 2018; 7:e00590. [PMID: 29573369 PMCID: PMC6079174 DOI: 10.1002/mbo3.590] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 11/11/2022] Open
Abstract
The impact of hydraulic retention time (HRT) on the performance and microbial community structure of control and electro-bioreactors was investigated. Control bioreactors and electro-bioreactors were operated at HRT ranging between 6 and 75 hr. The total bacterial counts in addition to the removal efficiency of NH4+ -N, sCOD, and PO43- -P was assessed in all the reactors tested. In addition, Illumina sequencing was performed to determine the microbial communities that developed in these reactors under each HRT condition. Phylogenetic analysis showed that Proteobacteria and Bacteroidetes were the dominant phyla in those reactors. In addition, Nitrospira sp. and Pseudomonas sp. were found to be present in electro-bioreactors with higher relative abundance than in control bioreactors. The results presented here are the first to determine what different microbial communities in wastewater electro-bioreactors due to the application of an electric current under different HRTs.
Collapse
Affiliation(s)
- Nancy A ElNaker
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.,Department of Physics, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ahmed F Yousef
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Shadi W Hasan
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
50
|
Tashiro Y, Kanda K, Asakura Y, Kii T, Cheng H, Poudel P, Okugawa Y, Tashiro K, Sakai K. A Unique Autothermal Thermophilic Aerobic Digestion Process Showing a Dynamic Transition of Physicochemical and Bacterial Characteristics from the Mesophilic to the Thermophilic Phase. Appl Environ Microbiol 2018; 84:e02537-17. [PMID: 29305505 PMCID: PMC5835747 DOI: 10.1128/aem.02537-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/20/2017] [Indexed: 01/01/2023] Open
Abstract
A unique autothermal thermophilic aerobic digestion (ATAD) process has been used to convert human excreta to liquid fertilizer in Japan. This study investigated the changes in physicochemical and bacterial community characteristics during the full-scale ATAD process operated for approximately 3 weeks in 2 different years. After initiating simultaneous aeration and mixing using an air-inducing circulator (aerator), the temperature autothermally increased rapidly in the first 1 to 2 days with exhaustive oxygen consumption, leading to a drastic decrease and gradual increase in oxidation-reduction potential in the first 2 days, reached >50°C in the middle 4 to 6 days, and remained steady in the final phase. Volatile fatty acids were rapidly consumed and diminished in the first 2 days, whereas the ammonia nitrogen concentration was relatively stable during the process, despite a gradual pH increase to 9.3. Principal-coordinate analysis of 16S rRNA gene amplicons using next-generation sequencing divided the bacterial community structures into distinct clusters corresponding to three phases, and they were similar in the final phase in both years despite different transitions in the middle phase. The predominant phyla (closest species, dominancy) in the initial, middle, and final phases were Proteobacteria (Arcobacter trophiarum, 19 to 43%; Acinetobacter towneri, 6.3 to 30%), Bacteroidetes (Moheibacter sediminis, 43 to 54%), and Firmicutes (Thermaerobacter composti, 11 to 28%; Heliorestis baculata, 2.1 to 16%), respectively. Two predominant operational taxonomic units (OTUs) in the final phase showed very low similarities to the closest species, indicating that the process is unique compared with previously published ones. This unique process with three distinctive phases would be caused by the aerator with complete aeration.IMPORTANCE Although the autothermal thermophilic aerobic digestion (ATAD) process has several advantages, such as a high degradation capacity, a short treatment period, and inactivation of pathogens, one of the factors limiting its broad application is the high electric power consumption for aerators with a full-scale bioreactor. We elucidated the dynamics of the bacterial community structures, as well as the physicochemical characteristics, in the ATAD process with a full-scale bioreactor from human excreta for 3 weeks. Our results indicated that this unique process can be divided into three distinguishable phases by an aerator with complete aeration and showed a possibility of shortening the digestion period to approximately 10 days. This research not only helps to identify which bacteria play significant roles and how the process can be improved and controlled but also demonstrates an efficient ATAD process with less electric power consumption for worldwide application.
Collapse
Affiliation(s)
- Yukihiro Tashiro
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
- Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Kosuke Kanda
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yuya Asakura
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Toshihiko Kii
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Huijun Cheng
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Pramod Poudel
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yuki Okugawa
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Tashiro
- Laboratory of Molecular Gene Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan
| | - Kenji Sakai
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
- Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|