1
|
Huang Y, Liu J, Yang B. Catalytic mechanism and engineering of aromatic prenyltransferase: A review. Int J Biol Macromol 2025; 313:144214. [PMID: 40379159 DOI: 10.1016/j.ijbiomac.2025.144214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/29/2025] [Accepted: 05/12/2025] [Indexed: 05/19/2025]
Abstract
The prenylation of aromatic compounds significantly enhances their metabolic stability and bioactivity. Prenyltransferases, as essential biocatalysts, facilitate the regioselective transfer of prenyl groups from donors to aromatic substrates. This review systematically summarizes recent progress in the rational engineering of prenyltransferases through protein-based strategies, critically evaluates current challenges, and outlines future research priorities. Firstly, we delineate the biosynthetic pathways of prenylated phenolic compounds, emphasizing the pivotal roles of prenyltransferases, and classify these enzymes according to the structural diversity of their aromatic acceptor molecules. Secondly, the current state of prenyltransferase biosynthesis by comparing their heterologous expression levels across diverse microbial hosts is discussed, highlighting key factors influencing catalytic efficiency. Furthermore, we dissect the molecular mechanisms governing prenyltransferase activity and propose innovative engineering approaches integrating artificial intelligence and deep learning to develop high-performance biocatalysts for industrial applications. Finally, we address unresolved challenges in this field, including suboptimal catalytic activity, narrow substrate specificity, and limitations in multi-enzyme cascade systems and immobilization techniques. This review offers strategic insights to guide the engineering and scalable application of prenyltransferases in synthetic biology and pharmaceutical innovation.
Collapse
Affiliation(s)
- Yaoguang Huang
- Guangdong Provincial Key Laboratory of Applied Botany, Key State Laboratory of Plant Diversity and Specialty Crops, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Bao Yang
- Guangdong Provincial Key Laboratory of Applied Botany, Key State Laboratory of Plant Diversity and Specialty Crops, Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Higgins PM, Wehrli NG, Buller AR. Substrate-Multiplexed Assessment of Aromatic Prenyltransferase Activity. Chembiochem 2025; 26:e202400680. [PMID: 39317170 PMCID: PMC11727010 DOI: 10.1002/cbic.202400680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
An increasingly effective strategy to identify synthetically useful enzymes is to sample the diversity already present in Nature. Here, we construct and assay a panel of phylogenetically diverse aromatic prenyltransferases (PTs). These enzymes catalyze a variety of C-C bond forming reactions in natural product biosynthesis and are emerging as tools for synthetic chemistry and biology. Homolog screening was further empowered through substrate-multiplexed screening, which provides direct information on enzyme specificity. We perform a head-to-head assessment of the model members of the PT family and further identify homologs with divergent sequences that rival these superb enzymes. This effort revealed the first bacterial O-Tyr PT and, together, provide valuable benchmarking for future synthetic applications of PTs.
Collapse
Affiliation(s)
- Peyton M. Higgins
- Department of ChemistryUniversity of Wisconsin-Madison1101 University AveMadison, WisconsinUSA
| | - Nicolette G. Wehrli
- Department of ChemistryUniversity of Wisconsin-Madison1101 University AveMadison, WisconsinUSA
| | - Andrew R. Buller
- Department of ChemistryUniversity of Wisconsin-Madison1101 University AveMadison, WisconsinUSA
| |
Collapse
|
3
|
Chen XW, Liu Z, Dai S, Zou Y. Discovery, Characterization and Engineering of the Free l-Histidine C4-Prenyltransferase. J Am Chem Soc 2024; 146:23686-23691. [PMID: 39140691 DOI: 10.1021/jacs.4c08388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Prenylation of amino acids is a critical step for synthesizing building blocks of prenylated alkaloid family natural products, where the corresponding prenyltransferase that catalyzes prenylation on free l-histidine (l-His) has not yet been identified. Here, we first discovered and characterized a prenyltransferase FunA from the antifungal agent fungerin pathway that efficiently performs C4-dimethylallylation on l-His. Crystal structure-guided engineering of the prenyl-binding pocket of FunA, a single M181A mutation, successfully converted it into a C4-geranyltransferase. Furthermore, FunA and its variant FunA-M181A show broad substrate promiscuity toward substrates that vary in substituents of the imidazole ring. Our work furthers our knowledge of free amino acid prenyltransferase and expands the arsenal of alkylation biocatalysts for imidazole-containing small molecules.
Collapse
Affiliation(s)
- Xi-Wei Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Zhiyong Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Shaobo Dai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yi Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
4
|
Chunkrua P, Leschonski KP, Gran-Scheuch AA, Vreeke GJC, Vincken JP, Fraaije MW, van Berkel WJH, de Bruijn WJC, Kabel MA. Prenylation of aromatic amino acids and plant phenolics by an aromatic prenyltransferase from Rasamsonia emersonii. Appl Microbiol Biotechnol 2024; 108:421. [PMID: 39023782 PMCID: PMC11258057 DOI: 10.1007/s00253-024-13254-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/17/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
Dimethylallyl tryptophan synthases (DMATSs) are aromatic prenyltransferases that catalyze the transfer of a prenyl moiety from a donor to an aromatic acceptor during the biosynthesis of microbial secondary metabolites. Due to their broad substrate scope, DMATSs are anticipated as biotechnological tools for producing bioactive prenylated aromatic compounds. Our study explored the substrate scope and product profile of a recombinant RePT, a novel DMATS from the thermophilic fungus Rasamsonia emersonii. Among a variety of aromatic substrates, RePT showed the highest substrate conversion for L-tryptophan and L-tyrosine (> 90%), yielding two mono-prenylated products in both cases. Nine phenolics from diverse phenolic subclasses were notably converted (> 10%), of which the stilbenes oxyresveratrol, piceatannol, pinostilbene, and resveratrol were the best acceptors (37-55% conversion). The position of prenylation was determined using NMR spectroscopy or annotated using MS2 fragmentation patterns, demonstrating that RePT mainly catalyzed mono-O-prenylation on the hydroxylated aromatic substrates. On L-tryptophan, a non-hydroxylated substrate, it preferentially catalyzed C7 prenylation with reverse N1 prenylation as a secondary reaction. Moreover, RePT also possessed substrate-dependent organic solvent tolerance in the presence of 20% (v/v) methanol or DMSO, where a significant conversion (> 90%) was maintained. Our study demonstrates the potential of RePT as a biocatalyst for the production of bioactive prenylated aromatic amino acids, stilbenes, and various phenolic compounds. KEY POINTS: • RePT catalyzes prenylation of diverse aromatic substrates. • RePT enables O-prenylation of phenolics, especially stilbenes. • The novel RePT remains active in 20% methanol or DMSO.
Collapse
Affiliation(s)
- Pimvisuth Chunkrua
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Kai P Leschonski
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Alejandro A Gran-Scheuch
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Gijs J C Vreeke
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Wouter J C de Bruijn
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Mirjam A Kabel
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands.
| |
Collapse
|
5
|
Reed KB, Brooks SM, Wells J, Blake KJ, Zhao M, Placido K, d'Oelsnitz S, Trivedi A, Gadhiyar S, Alper HS. A modular and synthetic biosynthesis platform for de novo production of diverse halogenated tryptophan-derived molecules. Nat Commun 2024; 15:3188. [PMID: 38609402 PMCID: PMC11015028 DOI: 10.1038/s41467-024-47387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Halogen-containing molecules are ubiquitous in modern society and present unique chemical possibilities. As a whole, de novo fermentation and synthetic pathway construction for these molecules remain relatively underexplored and could unlock molecules with exciting new applications in industries ranging from textiles to agrochemicals to pharmaceuticals. Here, we report a mix-and-match co-culture platform to de novo generate a large array of halogenated tryptophan derivatives in Escherichia coli from glucose. First, we engineer E. coli to produce between 300 and 700 mg/L of six different halogenated tryptophan precursors. Second, we harness the native promiscuity of multiple downstream enzymes to access unexplored regions of metabolism. Finally, through modular co-culture fermentations, we demonstrate a plug-and-play bioproduction platform, culminating in the generation of 26 distinct halogenated molecules produced de novo including precursors to prodrugs 4-chloro- and 4-bromo-kynurenine and new-to-nature halogenated beta carbolines.
Collapse
Affiliation(s)
- Kevin B Reed
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, USA
| | - Sierra M Brooks
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, USA
| | - Jordan Wells
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, USA
| | - Kristin J Blake
- Mass Spectrometry Facility, Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Austin, TX, USA
| | - Minye Zhao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, USA
| | - Kira Placido
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, USA
| | - Simon d'Oelsnitz
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX, USA
| | - Adit Trivedi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, USA
| | - Shruti Gadhiyar
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX, USA.
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX, USA.
| |
Collapse
|
6
|
Schäfer T, Haun F, Gressler M, Spiteller P, Hoffmeister D. Parallel Evolution of Asco- and Basidiomycete O-Prenyltransferases. JOURNAL OF NATURAL PRODUCTS 2024; 87:576-582. [PMID: 38231181 DOI: 10.1021/acs.jnatprod.3c01120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Prenyltransferases (PTs) are involved in the biosynthesis of a multitude of pharmaceutically and agriculturally important plant, bacterial, and fungal compounds. Although numerous prenylated compounds have been isolated from Basidiomycota (mushroom-forming fungi), knowledge of the PTs catalyzing the transfer reactions in this group of fungi is scarce. Here, we report the biochemical characterization of an O- and C-prenylating dimethylallyltryptophan synthase (DMATS)-like enzyme LpTyrPT from the scurfy deceiver Laccaria proxima. This PT transfers dimethylallyl moieties to l-tyrosine at the para-O position and to l-tryptophan at atom C-7 and represents the first basidiomycete l-tyrosine PT described so far. Phylogenetic analysis of PTs in fungi revealed that basidiomycete l-tyrosine PTs have evolved independently from their ascomycete counterparts and might represent the evolutionary origin of PTs acting on phenolic compounds in secondary metabolism.
Collapse
Affiliation(s)
- Tim Schäfer
- Institute of Pharmacy, Friedrich Schiller University, Winzerlaer Strasse 2, 07745 Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Fabian Haun
- Institute of Pharmacy, Friedrich Schiller University, Winzerlaer Strasse 2, 07745 Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Markus Gressler
- Institute of Pharmacy, Friedrich Schiller University, Winzerlaer Strasse 2, 07745 Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Peter Spiteller
- Institute of Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Dirk Hoffmeister
- Institute of Pharmacy, Friedrich Schiller University, Winzerlaer Strasse 2, 07745 Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstrasse 11a, 07745 Jena, Germany
| |
Collapse
|
7
|
Li W, Xie X, Liu J, Yu H, Li SM. Prenylation of dimeric cyclo-L-Trp-L-Trp by the promiscuous cyclo-L-Trp-L-Ala prenyltransferase EchPT1. Appl Microbiol Biotechnol 2023; 107:6887-6895. [PMID: 37713115 PMCID: PMC10589136 DOI: 10.1007/s00253-023-12773-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/25/2023] [Accepted: 09/03/2023] [Indexed: 09/16/2023]
Abstract
Prenyltransferases (PTs) from the dimethylallyl tryptophan synthase (DMATS) superfamily are known as efficient biocatalysts and mainly catalyze regioselective Friedel-Crafts alkylation of tryptophan and tryptophan-containing cyclodipeptides (CDPs). They can also use other unnatural aromatic compounds as substrates and play therefore a pivotal role in increasing structural diversity and biological activities of a broad range of natural and unnatural products. In recent years, several prenylated dimeric CDPs have been identified with wide range of bioactivities. In this study, we demonstrate the production of prenylated dimeric CDPs by chemoenzymatic synthesis with a known promiscuous enzyme EchPT1, which uses cyclo-L-Trp-L-Ala as natural substrate for reverse C2-prenylation. High product yields were achieved with EchPT1 for C3-N1' and C3-C3' linked dimers of cyclo-L-Trp-L-Trp. Isolation and structural elucidation confirmed the product structures to be reversely C19/C19'-mono- and diprenylated cyclo-L-Trp-L-Trp dimers. Our study provides an additional example for increasing structural diversity by prenylation of complex substrates with known biosynthetic enzymes. KEY POINTS: • Chemoenzymatic synthesis of prenylated cyclo-L-Trp-L-Trp dimers • Same prenylation pattern and position for cyclodipeptides and their dimers. • Indole prenyltransferases such as EchPT1 can be widely used as biocatalysts.
Collapse
Affiliation(s)
- Wen Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany
| | - Xiulan Xie
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Jing Liu
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany
| | - Huili Yu
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany.
| |
Collapse
|
8
|
Abstract
The ability to site-selectively modify equivalent functional groups in a molecule has the potential to streamline syntheses and increase product yields by lowering step counts. Enzymes catalyze site-selective transformations throughout primary and secondary metabolism, but leveraging this capability for non-native substrates and reactions requires a detailed understanding of the potential and limitations of enzyme catalysis and how these bounds can be extended by protein engineering. In this review, we discuss representative examples of site-selective enzyme catalysis involving functional group manipulation and C-H bond functionalization. We include illustrative examples of native catalysis, but our focus is on cases involving non-native substrates and reactions often using engineered enzymes. We then discuss the use of these enzymes for chemoenzymatic transformations and target-oriented synthesis and conclude with a survey of tools and techniques that could expand the scope of non-native site-selective enzyme catalysis.
Collapse
Affiliation(s)
- Dibyendu Mondal
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Harrison M Snodgrass
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Christian A Gomez
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jared C Lewis
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
9
|
Lin C, Feng XL, Liu Y, Li ZC, Li XZ, Qi J. Bioinformatic Analysis of Secondary Metabolite Biosynthetic Potential in Pathogenic Fusarium. J Fungi (Basel) 2023; 9:850. [PMID: 37623621 PMCID: PMC10455296 DOI: 10.3390/jof9080850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Fusarium species are among the filamentous fungi with the most pronounced impact on agricultural production and human health. The mycotoxins produced by pathogenic Fusarium not only attack various plants including crops, causing various plant diseases that lead to reduced yields and even death, but also penetrate into the food chain of humans and animals to cause food poisoning and consequent health hazards. Although sporadic studies have revealed some of the biosynthetic pathways of Fusarium toxins, they are insufficient to satisfy the need for a comprehensive understanding of Fusarium toxin production. In this study, we focused on 35 serious pathogenic Fusarium species with available genomes and systematically analyzed the ubiquity of the distribution of identified Fusarium- and non-Fusarium-derived fungal toxin biosynthesis gene clusters (BGCs) in these species through the mining of core genes and the comparative analysis of corresponding BGCs. Additionally, novel sesterterpene synthases and PKS_NRPS clusters were discovered and analyzed. This work is the first to systematically analyze the distribution of related mycotoxin biosynthesis in pathogenic Fusarium species. These findings enhance the knowledge of mycotoxin production and provide a theoretical grounding for the prevention of fungal toxin production using biotechnological approaches.
Collapse
Affiliation(s)
- Chao Lin
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xi-long Feng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yu Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Zhao-chen Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xiu-Zhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining 810016, China
| | - Jianzhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
10
|
An T, Feng X, Li C. Prenylation: A Critical Step for Biomanufacturing of Prenylated Aromatic Natural Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2211-2233. [PMID: 36716399 DOI: 10.1021/acs.jafc.2c07287] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Prenylated aromatic natural products (PANPs) have received much attention due to their biomedical benefits for human health. The prenylation of aromatic natural products (ANPs), which is mainly catalyzed by aromatic prenyltransferases (aPTs), contributes significantly to their structural and functional diversity by providing higher lipophilicity and enhanced bioactivity. aPTs are widely distributed in bacteria, fungi, animals, and plants and play a key role in the regiospecific prenylation of ANPs. Recent studies have greatly advanced our understanding of the characteristics and application of aPTs. In this review, we comment on research progress regarding sources, evolutionary relationships, structural features, reaction mechanism, engineering modification, and application of aPTs. Particular emphasis is also placed on recent advances, challenges, and prospects about applications of aPTs in microbial cell factories for producing PANPs. Generally, this review could provide guidance for using aPTs as robust biocatalytic tools to produce various PANPs with high efficiency.
Collapse
Affiliation(s)
- Ting An
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xudong Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Department of Chemical Engineering, Key Lab for Industrial Biocatalysis, Ministry of Education, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Diprenylated cyclodipeptide production by changing the prenylation sequence of the nature’s synthetic machinery. Appl Microbiol Biotechnol 2022; 107:261-271. [DOI: 10.1007/s00253-022-12303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
Abstract
Ascomycetous fungi are often found in agricultural products and foods as contaminants. They produce hazardous mycotoxins for human and animals. On the other hand, the fungal metabolites including mycotoxins are important drug candidates and the enzymes involved in the biosynthesis of these compounds are valuable biocatalysts for production of designed compounds. One of the enzyme groups are members of the dimethylallyl tryptophan synthase superfamily, which mainly catalyze prenylations of tryptophan and tryptophan-containing cyclodipeptides (CDPs). Decoration of CDPs in the biosynthesis of multiple prenylated metabolites in nature is usually initiated by regiospecific C2-prenylation at the indole ring, followed by second and third ones as well as by other modifications. However, the strict substrate specificity can prohibit the further prenylation of unnatural C2-prenylated compounds. To overcome this, we firstly obtained C4-, C5-, C6-, and C7-prenylated cyclo-l-Trp-l-Pro. These products were then used as substrates for the promiscuous C2-prenyltransferase EchPT1, which normally uses the unprenylated CDPs as substrates. Four unnatural diprenylated cyclo-l-Trp-l-Pro including the unique unexpected N1,C6-diprenylated derivative with significant yields were obtained in this way. Our study provides an excellent example for increasing structural diversity by reprogramming the reaction orders of natural biosynthetic pathways. Furthermore, this is the first report that EchPT1 can also catalyze N1-prenylation at the indole ring.
Key points
• Prenyltransferases as biocatalysts for unnatural substrates.
• Chemoenzymatic synthesis of designed molecules.
• A cyclodipeptide prenyltransferase as prenylating enzyme of already prenylated products.
Graphical Abstract
Collapse
|
12
|
Regiospecific 3’-C-prenylation of Naringenin by Nocardiopsis gilva Prenyltransferase. Enzyme Microb Technol 2022; 163:110154. [DOI: 10.1016/j.enzmictec.2022.110154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/20/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
|
13
|
Leveson‐Gower RB, Roelfes G. Biocatalytic Friedel-Crafts Reactions. ChemCatChem 2022; 14:e202200636. [PMID: 36606067 PMCID: PMC9804301 DOI: 10.1002/cctc.202200636] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/10/2022] [Indexed: 01/07/2023]
Abstract
Friedel-Crafts alkylation and acylation reactions are important methodologies in synthetic and industrial chemistry for the construction of aryl-alkyl and aryl-acyl linkages that are ubiquitous in bioactive molecules. Nature also exploits these reactions in many biosynthetic processes. Much work has been done to expand the synthetic application of these enzymes to unnatural substrates through directed evolution. The promise of such biocatalysts is their potential to supersede inefficient and toxic chemical approaches to these reactions, with mild operating conditions - the hallmark of enzymes. Complementary work has created many bio-hybrid Friedel-Crafts catalysts consisting of chemical catalysts anchored into biomolecular scaffolds, which display many of the same desirable characteristics. In this Review, we summarise these efforts, focussing on both mechanistic aspects and synthetic considerations, concluding with an overview of the frontiers of this field and routes towards more efficient and benign Friedel-Crafts reactions for the future of humankind.
Collapse
Affiliation(s)
| | - Gerard Roelfes
- Stratingh Institute for ChemistryUniversity of Groningen9747 AGGroningenThe Netherlands
| |
Collapse
|
14
|
Li Y, Zhou X, Li SM, Zhang Y, Yuan CM, He S, Yang Z, Yang S, Zhou K. Increasing Structural Diversity of Prenylated Chalcones by Two Fungal Prenyltransferases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1610-1617. [PMID: 35089022 DOI: 10.1021/acs.jafc.1c07786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Prenylated chalcones are found mainly in plants and exhibit diverse biological and pharmacological activities. Some of these compounds are components of food and dietary supplements with significant health benefits. In plants, they are derived from chalcones by prenylation with membrane-bound prenyltransferases. In this study, we demonstrate prenylations of 10 chalcones by two fungal prenyltransferases (AtaPT/AnaPT) in the presence of dimethylallyl diphosphate. Eleven mono- (1a-10a and 9b) and four diprenylated products (8b, 9c, 10b, and 10c) were obtained. Among them, 12 have new structures (1a, 2a, 4a-6a, 8a, 8b, 9b, 9c, 10a, 10b, and 10c). Most of the obtained prenylated chalcones are products of AnaPT and carry prenyl moieties at ring B. Our study provides an excellent example for increasing structural diversity of plant metabolites with microbial enzymes.
Collapse
Affiliation(s)
- Yunyun Li
- School of Pharmaceutical Sciences, Guizhou University, Huaxi Avenue 2708, Guiyang 550025, China
| | - Xiang Zhou
- Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, Centre for R&D of Fine Chemicals, Guizhou University, Huaxi Avenue 2708, Guiyang 550025, China
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Str. 4, Marburg 35037, Germany
| | - Yuping Zhang
- Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, Centre for R&D of Fine Chemicals, Guizhou University, Huaxi Avenue 2708, Guiyang 550025, China
| | - Chun-Mao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Gaohai Road, Guiyang 550014, China
| | - Shuzhong He
- School of Pharmaceutical Sciences, Guizhou University, Huaxi Avenue 2708, Guiyang 550025, China
| | - Zaichang Yang
- School of Pharmaceutical Sciences, Guizhou University, Huaxi Avenue 2708, Guiyang 550025, China
| | - Song Yang
- Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, Centre for R&D of Fine Chemicals, Guizhou University, Huaxi Avenue 2708, Guiyang 550025, China
| | - Kang Zhou
- School of Pharmaceutical Sciences, Guizhou University, Huaxi Avenue 2708, Guiyang 550025, China
| |
Collapse
|
15
|
Isogai S, Okahashi N, Asama R, Nakamura T, Hasunuma T, Matsuda F, Ishii J, Kondo A. Synthetic production of prenylated naringenins in yeast using promiscuous microbial prenyltransferases. Metab Eng Commun 2021; 12:e00169. [PMID: 33868922 PMCID: PMC8040282 DOI: 10.1016/j.mec.2021.e00169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/19/2021] [Accepted: 03/01/2021] [Indexed: 11/29/2022] Open
Abstract
Reconstitution of prenylflavonoids using the flavonoid biosynthetic pathway and prenyltransferases (PTs) in microbes can be a promising attractive alternative to plant-based production or chemical synthesis. Here, we demonstrate that promiscuous microbial PTs can be a substitute for regiospecific but mostly unidentified botanical PTs. To test the prenylations of naringenin, we constructed a yeast strain capable of producing naringenin from l-phenylalanine by genomic integration of six exogenous genes encoding components of the naringenin biosynthetic pathway. Using this platform strain, various microbial PTs were tested for prenylnaringenin production. In vitro screening demonstrated that the fungal AnaPT (a member of the tryptophan dimethylallyltransferase family) specifically catalyzed C-3′ prenylation of naringenin, whereas SfN8DT-1, a botanical PT, specifically catalyzed C-8 prenylation. In vivo, the naringenin-producing strain expressing the microbial AnaPT exhibited heterologous microbial production of 3′-prenylnaringenin (3′-PN), in contrast to the previously reported in vivo production of 8-prenylnaringenin (8-PN) using the botanical SfN8DT-1. These findings provide strategies towards expanding the production of a variety of prenylated compounds, including well-known prenylnaringenins and novel prenylflavonoids. These results also suggest the opportunity for substituting botanical PTs, both known and unidentified, that display relatively strict regiospecificity of the prenyl group transfer. Promiscuous microbial prenyltransferases replaced regiospecific botanical enzymes. A stable yeast strain that produced naringenin from l-phenylalanine was constructed. A fungal prenyltransferase (AnaPT) catalyzed C-3′ prenylation of naringenin. AnaPT catalyzed the first microbial production of 3′-prenylnaringenin. Microbial prenyltransferases permit the production of various prenylated compounds.
Collapse
Affiliation(s)
- Shota Isogai
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe, Japan
| | - Nobuyuki Okahashi
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ririka Asama
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tomomi Nakamura
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe, Japan.,Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jun Ishii
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe, Japan.,Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe, Japan.,Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| |
Collapse
|
16
|
Liu R, Zhang H, Wu W, Li H, An Z, Zhou F. C7-Prenylation of Tryptophan-Containing Cyclic Dipeptides by 7-Dimethylallyl Tryptophan Synthase Significantly Increases the Anticancer and Antimicrobial Activities. Molecules 2020; 25:E3676. [PMID: 32806659 PMCID: PMC7463755 DOI: 10.3390/molecules25163676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Prenylated natural products have interesting pharmacological properties and prenylation reactions play crucial roles in controlling the activities of biomolecules. They are difficult to synthesize chemically, but enzymatic synthesis production is a desirable pathway. Cyclic dipeptide prenyltransferase catalyzes the regioselective Friedel-Crafts alkylation of tryptophan-containing cyclic dipeptides. This class of enzymes, which belongs to the dimethylallyl tryptophan synthase superfamily, is known to be flexible to aromatic prenyl receptors, while mostly retaining its typical regioselectivity. In this study, seven tryptophan-containing cyclic dipeptides 1a-7a were converted to their C7-regularly prenylated derivatives 1b-7b in the presence of dimethylallyl diphosphate (DMAPP) by using the purified 7-dimethylallyl tryptophan synthase (7-DMATS) as catalyst. The HPLC analysis of the incubation mixture and the NMR analysis of the separated products showed that the stereochemical structure of the substrate had a great influence on their acceptance by 7-DMATS. Determination of the kinetic parameters proved that cyclo-l-Trp-Gly (1a) consisting of a tryptophanyl and glycine was accepted as the best substrate with a KM value of 169.7 μM and a turnover number of 0.1307 s-1. Furthermore, docking studies simulated the prenyl transfer reaction of 7-DMATS and it could be concluded that the highest affinity between 7-DMATS and 1a. Preliminary results have been clearly shown that prenylation at C7 led to a significant increase of the anticancer and antimicrobial activities of the prenylated derivatives 1b-7b in all the activity test experiment, especially the prenylated product 4b.
Collapse
Affiliation(s)
- Rui Liu
- College of Life Science, Shanxi Datong University, Datong 037009, China; (R.L.); (H.L.)
- Applied Biotechnology Institute, Shanxi Datong University, Datong 037009, China; (W.W.); (Z.A.); (F.Z.)
| | - Hongchi Zhang
- College of Life Science, Shanxi Datong University, Datong 037009, China; (R.L.); (H.L.)
- Applied Biotechnology Institute, Shanxi Datong University, Datong 037009, China; (W.W.); (Z.A.); (F.Z.)
| | - Weiqiang Wu
- Applied Biotechnology Institute, Shanxi Datong University, Datong 037009, China; (W.W.); (Z.A.); (F.Z.)
| | - Hui Li
- College of Life Science, Shanxi Datong University, Datong 037009, China; (R.L.); (H.L.)
- Applied Biotechnology Institute, Shanxi Datong University, Datong 037009, China; (W.W.); (Z.A.); (F.Z.)
| | - Zhipeng An
- Applied Biotechnology Institute, Shanxi Datong University, Datong 037009, China; (W.W.); (Z.A.); (F.Z.)
| | - Feng Zhou
- Applied Biotechnology Institute, Shanxi Datong University, Datong 037009, China; (W.W.); (Z.A.); (F.Z.)
| |
Collapse
|
17
|
Vib-PT, an Aromatic Prenyltransferase Involved in the Biosynthesis of Vibralactone from Stereum vibrans. Appl Environ Microbiol 2020; 86:AEM.02687-19. [PMID: 32144102 DOI: 10.1128/aem.02687-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/03/2020] [Indexed: 02/01/2023] Open
Abstract
Vibralactone, a hybrid compound derived from phenols and a prenyl group, is a strong pancreatic lipase inhibitor with a rare fused bicyclic β-lactone skeleton. Recently, a researcher reported a vibralactone derivative (compound C1) that caused inhibition of pancreatic lipase with a half-maximal inhibitory concentration of 14 nM determined by structure-based optimization, suggesting a potential candidate as a new antiobesity treatment. In the present study, we sought to identify the main gene encoding prenyltransferase in Stereum vibrans, which is responsible for the prenylation of phenol leading to vibralactone synthesis. Two RNA silencing transformants of the identified gene (vib-PT) were obtained through Agrobacterium tumefaciens-mediated transformation. Compared to wild-type strains, the transformants showed a decrease in vib-PT expression ranging from 11.0 to 56.0% at 5, 10, and 15 days in reverse transcription-quantitative PCR analysis, along with a reduction in primary vibralactone production of 37 to 64% at 15 and 21 days, respectively, as determined using ultra-high-performance liquid chromatography-mass spectrometry analysis. A soluble and enzymatically active fusion Vib-PT protein was obtained by expressing vib-PT in Escherichia coli, and the enzyme's optimal reaction conditions and catalytic efficiency (Km /k cat) were determined. In vitro experiments established that Vib-PT catalyzed the C-prenylation at C-3 of 4-hydroxy-benzaldehyde and the O-prenylation at the 4-hydroxy of 4-hydroxy-benzenemethanol in the presence of dimethylallyl diphosphate. Moreover, Vib-PT shows promiscuity toward aromatic compounds and prenyl donors.IMPORTANCE Vibralactone is a lead compound with a novel skeleton structure that shows strong inhibitory activity against pancreatic lipase. Vibralactone is not encoded by the genome directly but rather is synthesized from phenol, followed by prenylation and other enzyme reactions. Here, we used an RNA silencing approach to identify and characterize a prenyltransferase in a basidiomycete species that is responsible for the synthesis of vibralactone. The identified gene, vib-PT, was expressed in Escherichia coli to obtain a soluble and enzymatically active fusion Vib-PT protein. In vitro characterization of the enzyme demonstrated the catalytic mechanism of prenylation and broad substrate range for different aromatic acceptors and prenyl donors. These characteristics highlight the possibility of Vib-PT to generate prenylated derivatives of aromatics and other compounds as improved bioactive agents or potential prodrugs.
Collapse
|
18
|
Roose BW, Christianson DW. Structural Basis of Tryptophan Reverse N-Prenylation Catalyzed by CymD. Biochemistry 2019; 58:3232-3242. [PMID: 31251043 DOI: 10.1021/acs.biochem.9b00399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Indole prenyltransferases catalyze the prenylation of l-tryptophan (l-Trp) and other indoles to produce a diverse set of natural products in bacteria, fungi, and plants, many of which possess useful biological properties. Among this family of enzymes, CymD from Salinispora arenicola catalyzes the reverse N1 prenylation of l-Trp, an unusual reaction given the poor nucleophilicity of the indole nitrogen. CymD utilizes dimethylallyl diphosphate (DMAPP) as the prenyl donor, catalyzing the dissociation of the diphosphate leaving group followed by nucleophilic attack of the indole nitrogen at the tertiary carbon of the dimethylallyl cation. To better understand the structural basis of selective indole N-alkylation reactions in biology, we have determined the X-ray crystal structures of CymD, the CymD-l-Trp complex, and the CymD-l-Trp-DMSPP complex (DMSPP is dimethylallyl S-thiolodiphosphate, an unreactive analogue of DMAPP). The orientation of l-Trp with respect to DMSPP reveals how the active site contour of CymD serves as a template to direct the reverse prenylation of the indole nitrogen. Comparison to PriB, a C6 bacterial indole prenyltransferase, offers further insight regarding the structural basis of regioselective indole prenylation. Isothermal titration calorimetry measurements indicate a synergistic relationship between l-Trp and DMSPP binding. Finally, activity assays demonstrate the selectivity of CymD for l-Trp and indole as prenyl acceptors. Collectively, these data establish a foundation for understanding and engineering the regioselectivity of indole prenylation by members of the prenyltransferase protein family.
Collapse
Affiliation(s)
- Benjamin W Roose
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States
| |
Collapse
|
19
|
Zheng L, Mai P, Fan A, Li SM. Switching a regular tryptophan C4-prenyltransferase to a reverse tryptophan-containing cyclic dipeptide C3-prenyltransferase by sequential site-directed mutagenesis. Org Biomol Chem 2019; 16:6688-6694. [PMID: 30178787 DOI: 10.1039/c8ob01735b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
FgaPT2 from Aspergillus fumigatus catalyzes a regular C4- and its mutant K174A a reverse C3-prenylation of l-tryptophan in the presence of dimethylallyl diphosphate. FgaPT2 also uses tryptophan-containing cyclic dipeptides for C4-prenylation, while FgaPT2_K174A showed almost no activity toward these substrates. In contrast, Arg244 mutants of FgaPT2 accept very well cyclic dipeptides for regular C4-prenylation. In this study, we demonstrate that FgaPT2_K174F, which catalyzes a regular C3-prenylation on tyrosine, can also use cyclo-l-Trp-l-Ala, cyclo-l-Trp-l-Trp, cyclo-l-Trp-Gly, cyclo-l-Trp-l-Phe, cyclo-l-Trp-l-Pro, and cyclo-l-Trp-l-Tyr as substrates, but only with low activity. Combinational mutation on Lys174 and Arg244 increases significantly the acceptance of these cyclic dipeptides. With the exception of cyclo-l-Trp-l-Trp, the tested dipeptides were much better accepted by FgaPT2_K174F_R244X (X = L, N, Q, Y) than FgaPT2, with an increase of two- to six-fold activity. In comparison to FgaPT2_K174F, even two- to ten-fold conversion yields were calculated for the double mutants. Isolation and structural elucidation of the enzyme products revealed stereospecific reverse C3-prenylation on the indole ring, resulting in the formation of syn-cis configured hexahydropyrroloindole derivatives. The results presented in this study highlight the convenience of site-directed mutagenesis for creating new biocatalysts.
Collapse
Affiliation(s)
- Liujuan Zheng
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany.
| | | | | | | |
Collapse
|
20
|
Backhaus K, Ludwig-Radtke L, Xie X, Li SM. Manipulation of the Precursor Supply in Yeast Significantly Enhances the Accumulation of Prenylated β-Carbolines. ACS Synth Biol 2017; 6:1056-1064. [PMID: 28221769 DOI: 10.1021/acssynbio.6b00387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The tryptophan derivative 1-methyl-1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid (MTCA) is present in many plants and foods including fermentation products of the baker's yeast Saccharomyces cerevisiae. MTCA is formed from tryptophan and acetaldehyde via a Pictet-Spengler reaction. In this study, up to 9 mg/L of MTCA were detected as a mixture of (1S,3S) and (1R,3S) isomers in a ratio of 2.2:1 in Saccharomyces cerevisiae cultures. To the best of our knowledge, this is the first report on the presence of MTCA in laboratory baker's yeast cultures. Expression of three fungal tryptophan prenyltransferase genes, fgaPT2, 5-dmats, and 7-dmats in S. cerevisiae resulted in the formation of MTCA derivatives with prenyl moieties at different positions of the indole ring. Expression of these genes in dimethylallyl diphosphate and tryptophan overproducing strains led to generation of up to 400 mg/L of prenylated MTCAs as mixtures of (1S,3S) and (1R,3S) diastereomers in ratios similar to that of unprenylated MTCA. The structures of the described substances including their stereochemistry were unequivocally elucidated by mass spectrometry as well as one- and two-dimensional NMR spectroscopy. The results of this study provide a convenient system for the production of high amounts of designed prenylated MTCAs in S. cerevisiae. Furthermore, our work can be considered as an excellent example for the construction of more complex molecules by introducing just one key gene.
Collapse
Affiliation(s)
- Katja Backhaus
- Institut
für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
- Zentrum
für Synthetische Mikrobiologie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Lena Ludwig-Radtke
- Institut
für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Xiulan Xie
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Shu-Ming Li
- Institut
für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
- Zentrum
für Synthetische Mikrobiologie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| |
Collapse
|
21
|
Arndt B, Janevska S, Schmid R, Hübner F, Tudzynski B, Humpf HU. A Fungal N
-Dimethylallyltryptophan Metabolite from Fusarium fujikuroi. Chembiochem 2017; 18:899-904. [DOI: 10.1002/cbic.201600691] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Birgit Arndt
- Institute of Food Chemistry; University of Münster; Corrensstrasse 45 48149 Münster Germany
| | - Slavica Janevska
- Institute of Plant Biology and Biotechnology; University of Münster; Schlossplatz 8 48143 Münster Germany
| | - Robin Schmid
- Institute of Food Chemistry; University of Münster; Corrensstrasse 45 48149 Münster Germany
| | - Florian Hübner
- Institute of Food Chemistry; University of Münster; Corrensstrasse 45 48149 Münster Germany
| | - Bettina Tudzynski
- Institute of Plant Biology and Biotechnology; University of Münster; Schlossplatz 8 48143 Münster Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry; University of Münster; Corrensstrasse 45 48149 Münster Germany
| |
Collapse
|
22
|
Biochemical and genetic basis of orsellinic acid biosynthesis and prenylation in a stereaceous basidiomycete. Fungal Genet Biol 2017; 98:12-19. [DOI: 10.1016/j.fgb.2016.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 12/25/2022]
|
23
|
Molecular insights into the enzyme promiscuity of an aromatic prenyltransferase. Nat Chem Biol 2016; 13:226-234. [PMID: 27992881 DOI: 10.1038/nchembio.2263] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 11/02/2016] [Indexed: 11/08/2022]
Abstract
Aromatic prenyltransferases (aPTases) transfer prenyl moieties from isoprenoid donors to various aromatic acceptors, some of which have the rare property of extreme enzymatic promiscuity toward both a variety of prenyl donors and a large diversity of acceptors. In this study, we discovered a new aPTase, AtaPT, from Aspergillus terreus that exhibits unprecedented promiscuity toward diverse aromatic acceptors and prenyl donors and also yields products with a range of prenylation patterns. Systematic crystallographic studies revealed various discrete conformations for ligand binding with donor-dependent acceptor specificity and multiple binding sites within a spacious hydrophobic substrate-binding pocket. Further structure-guided mutagenesis of active sites at the substrate-binding pocket is responsible for altering the specificity and promiscuity toward substrates and the diversity of product prenylations. Our study reveals the molecular mechanism underlying the promiscuity of AtaPT and suggests an efficient protein engineering strategy to generate new prenylated derivatives in drug discovery applications.
Collapse
|
24
|
Yang X, Yang J, Jiang Y, Yang H, Yun Z, Rong W, Yang B. Regiospecific synthesis of prenylated flavonoids by a prenyltransferase cloned from Fusarium oxysporum. Sci Rep 2016; 6:24819. [PMID: 27098599 PMCID: PMC4838938 DOI: 10.1038/srep24819] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/31/2016] [Indexed: 11/09/2022] Open
Abstract
Due to their impressive pharmaceutical activities and safety, prenylated flavonoids have a high potent to be applied as medicines and nutraceuticals. Biocatalysis is an effective technique to synthesize prenylated flavonoids. The major concern of this technique is that the microbe-derived prenyltransferases usually have poor regiospecificity and generate multiple prenylated products. In this work, a highly regiospecific prenyltransferase (FoPT1) was found from Fusarium oxysporum. It could recognize apigenin, naringenin, genistein, dihydrogenistein, kampferol, luteolin and hesperetin as substrates, and only 6-C-prenylated flavonoids were detected as the products. The catalytic efficiency of FoPT1 on flavonoids was in a decreasing order with hesperetin >naringenin >apigenin >genistein >luteolin >dihydrogenistein >kaempferol. Chalcones, flavanols and stilbenes were not active when acting as the substrates. 5,7-Dihydroxy and 4-carbonyl groups of flavonid were required for the catalysis. 2,3-Alkenyl was beneficial to the catalysis whereas 3-hydroxy impaired the prenylation reaction. Docking studies simulated the prenyl transfer reaction of FoPT1. E186 was involved in the formation of prenyl carbonium ion. E98, F89, F182, Y197 and E246 positioned apigenin for catalysis.
Collapse
Affiliation(s)
- Xiaoman Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiali Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yueming Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Hongshun Yang
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
| | - Ze Yun
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Weiliang Rong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Bao Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
25
|
Mai P, Zocher G, Ludwig L, Stehle T, Li SM. Actions of Tryptophan Prenyltransferases Toward Fumiquinazolines and their Potential Application for the Generation of Prenylated Derivatives by Combining Chemical and Chemoenzymatic Syntheses. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Fan A, Xie X, Li SM. Tryptophan prenyltransferases showing higher catalytic activities for Friedel-Crafts alkylation of o- and m-tyrosines than tyrosine prenyltransferases. Org Biomol Chem 2016; 13:7551-7. [PMID: 26077893 DOI: 10.1039/c5ob01040c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tryptophan prenyltransferases FgaPT2, 5-DMATS, 6-DMATSSv and 7-DMATS catalyse regiospecific C-prenylations on the indole ring, while tyrosine prenyltransferases SirD and TyrPT catalyse the O-prenylation of the phenolic hydroxyl group. In this study, we report the Friedel-Crafts alkylation of L-o-tyrosine by these enzymes. Surprisingly, no conversion was detected with SirD and three tryptophan prenyltransferases showed significantly higher activity than another tyrosine prenyltransferase TyrPT. C5-prenylated L-o-tyrosine was identified as a unique product of these enzymes. Using L-m-tyrosine as the prenylation substrate, product formation was only observed with the tryptophan prenyltransferases FgaPT2 and 7-DMATS. C4- and C6-prenylated derivatives were identified in the reaction mixture of FgaPT2. These results provided additional evidence for the similarities and differences between these two subgroups within the DMATS superfamily in their catalytic behaviours.
Collapse
Affiliation(s)
- Aili Fan
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Deutschhausstrasse 17A, 35037 Marburg, Germany.
| | | | | |
Collapse
|
27
|
Winkelblech J, Xie X, Li SM. Characterisation of 6-DMATSMo from Micromonospora olivasterospora leading to identification of the divergence in enantioselectivity, regioselectivity and multiple prenylation of tryptophan prenyltransferases. Org Biomol Chem 2016; 14:9883-9895. [DOI: 10.1039/c6ob01803c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Identification of a new tryptophan prenyltransferase 6-DMATSMo and different behaviours of DMATS enzymes for regiospecific mono- and diprenylations of l- and d-tryptophan as well as methylated derivatives.
Collapse
Affiliation(s)
- Julia Winkelblech
- Philipps-Universität Marburg
- Institut für Pharmazeutische Biologie und Biotechnologie
- 35037 Marburg
- Germany
- Zentrum für Synthetische Mikrobiologie
| | - Xiulan Xie
- Philipps-Universität Marburg
- Fachbereich Chemie
- 35032 Marburg
- Germany
| | - Shu-Ming Li
- Philipps-Universität Marburg
- Institut für Pharmazeutische Biologie und Biotechnologie
- 35037 Marburg
- Germany
- Zentrum für Synthetische Mikrobiologie
| |
Collapse
|
28
|
Zhou K, Yu X, Xie X, Li SM. Complementary Flavonoid Prenylations by Fungal Indole Prenyltransferases. JOURNAL OF NATURAL PRODUCTS 2015; 78:2229-2235. [PMID: 26294262 DOI: 10.1021/acs.jnatprod.5b00422] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Flavonoids are found mainly in plants and exhibit diverse biological and pharmacological activities, which can often be enhanced by prenylations. In plants, such reactions are catalyzed by membrane-bound prenyltransferases. In this study, the prenylation of nine flavonoids from different classes by a soluble fungal prenyltransferase (AnaPT) involved in the biosynthesis of the prenylated indole alkaloid acetylaszonalenin is demonstrated. The behavior of AnaPT toward flavonoids regarding substrate acceptance and prenylation positions clearly differs from that of the indole prenyltransferase 7-DMATS. The two enzymes are therefore complementary in flavonoid prenylations.
Collapse
Affiliation(s)
- Kang Zhou
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg , Marburg 35037, Germany
| | - Xia Yu
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg , Marburg 35037, Germany
| | - Xiulan Xie
- Fachbereich Chemie, Philipps-Universität Marburg , Marburg 35032, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg , Marburg 35037, Germany
| |
Collapse
|
29
|
Irmer H, Tarazona S, Sasse C, Olbermann P, Loeffler J, Krappmann S, Conesa A, Braus GH. RNAseq analysis of Aspergillus fumigatus in blood reveals a just wait and see resting stage behavior. BMC Genomics 2015; 16:640. [PMID: 26311470 PMCID: PMC4551469 DOI: 10.1186/s12864-015-1853-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/17/2015] [Indexed: 12/20/2022] Open
Abstract
Background Invasive aspergillosis is started after germination of Aspergillus fumigatus conidia that are inhaled by susceptible individuals. Fungal hyphae can grow in the lung through the epithelial tissue and disseminate hematogenously to invade into other organs. Low fungaemia indicates that fungal elements do not reside in the bloodstream for long. Results We analyzed whether blood represents a hostile environment to which the physiology of A. fumigatus has to adapt. An in vitro model of A. fumigatus infection was established by incubating mycelium in blood. Our model allowed to discern the changes of the gene expression profile of A. fumigatus at various stages of the infection. The majority of described virulence factors that are connected to pulmonary infections appeared not to be activated during the blood phase. Three active processes were identified that presumably help the fungus to survive the blood environment in an advanced phase of the infection: iron homeostasis, secondary metabolism, and the formation of detoxifying enzymes. Conclusions We propose that A. fumigatus is hardly able to propagate in blood. After an early stage of sensing the environment, virtually all uptake mechanisms and energy-consuming metabolic pathways are shut-down. The fungus appears to adapt by trans-differentiation into a resting mycelial stage. This might reflect the harsh conditions in blood where A. fumigatus cannot take up sufficient nutrients to establish self-defense mechanisms combined with significant growth. Electronic supplementary material The online version of this article (doi10.1186/s12864-015-1853-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Henriette Irmer
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstraße 8, D-37077, Göttingen, Germany.
| | - Sonia Tarazona
- Genomics of Gene Expression Lab, Prince Felipe Research Center, Av. Eduardo Primo Yufera 3, 46012, Valencia, Spain.
| | - Christoph Sasse
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstraße 8, D-37077, Göttingen, Germany.
| | - Patrick Olbermann
- Research Center for Infectious Diseases, Julius-Maximilians University Würzburg, Würzburg, Germany.
| | - Jürgen Loeffler
- Laboratory WÜ4i, Medical Clinic and Policlinic II, University Clinic Würzburg, Würzburg, Germany.
| | - Sven Krappmann
- Research Center for Infectious Diseases, Julius-Maximilians University Würzburg, Würzburg, Germany. .,Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinik Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Ana Conesa
- Genomics of Gene Expression Lab, Prince Felipe Research Center, Av. Eduardo Primo Yufera 3, 46012, Valencia, Spain. .,Department of Microbiology and Cell Science, Institute for Food and Agricultura Sciences, University of Florida at Gainesville, Gainesville, FL, USA.
| | - Gerhard H Braus
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstraße 8, D-37077, Göttingen, Germany.
| |
Collapse
|
30
|
Fan A, Winkelblech J, Li SM. Impacts and perspectives of prenyltransferases of the DMATS superfamily for use in biotechnology. Appl Microbiol Biotechnol 2015; 99:7399-415. [PMID: 26227408 DOI: 10.1007/s00253-015-6813-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 12/22/2022]
Abstract
Prenylated compounds are ubiquitously found in nature and demonstrate interesting biological and pharmacological activities. Prenyltransferases catalyze the attachment of prenyl moieties from different prenyl donors to various acceptors and contribute significantly to the structural and biological diversity of natural products. In the last decade, significant progress has been achieved for the prenyltransferases of the dimethylallyltryptophan synthase (DMATS) superfamily. More than 40 members of these soluble enzymes are identified in microorganisms and characterized biochemically. These enzymes were also successfully used for production of a large number of prenylated derivatives. N1-, C4-, C5-, C6-, and C7-prenylated tryptophan and N1-, C2-, C3-, C4-, and C7-prenylated tryptophan-containing peptides were obtained by using DMATS enzymes as biocatalysts. Tyrosine and xanthone prenyltransferases were used for production of prenylated derivatives of their analogs. More interestingly, the members of the DMATS superfamily demonstrated intriguing substrate and catalytic promiscuity and also used structurally quite different compounds as prenyl acceptors. Prenylated hydroxynaphthalenes, flavonoids, indolocarbazoles, and acylphloroglucinols, which are typical bacterial or plant metabolites, were produced by using several fungal DMATS enzymes. Furthermore, the potential usage of these enzymes was further expanded by using natural or unnatural DMAPP analogs as well as by coexpression with other genes like NRPS and by development of whole cell biocatalyst.
Collapse
Affiliation(s)
- Aili Fan
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Deutschhausstrasse 17A, D-35037, Marburg, Germany
| | | | | |
Collapse
|
31
|
|
32
|
Gao B, Chen R, Liu X, Dai J, Sun F. Expression, purification, crystallization and crystallographic study of the Aspergillus terreus aromatic prenyltransferase AtaPT. Acta Crystallogr F Struct Biol Commun 2015; 71:889-94. [PMID: 26144234 PMCID: PMC4498710 DOI: 10.1107/s2053230x15008882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/07/2015] [Indexed: 11/10/2022] Open
Abstract
Prenylated aromatics are produced by aromatic prenyltransferases during the secondary metabolism of bacteria, fungi and plants. The prenylation of nonprenylated precursors can lead to great chemical diversity and extensive biological properties. Aspergillus terreus aromatic prenyltransferase (AtaPT), which has recently been discovered and characterized, is such an enzyme and is responsible for the prenylation of various aromatic compounds. Here, recombinant AtaPT was overexpressed in Escherichia coli, purified and crystallized. Diffraction data were collected to a resolution of 1.71 Å and the crystal belonged to space group P2(1)2(1)2, with unit-cell parameters a = 96.2, b = 135.8, c = 69.5 Å, α = β = γ = 90°. Analysis of the calculated Matthews coefficient and the self-rotation function suggested that there are two AtaPT molecules in the asymmetric unit.
Collapse
Affiliation(s)
- Bingquan Gao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Ridao Chen
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, People’s Republic of China
| | - Xiao Liu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, People’s Republic of China
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People’s Republic of China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, People’s Republic of China
| | - Fei Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| |
Collapse
|
33
|
Zhou K, Ludwig L, Li SM. Friedel-crafts alkylation of acylphloroglucinols catalyzed by a fungal indole prenyltransferase. JOURNAL OF NATURAL PRODUCTS 2015; 78:929-933. [PMID: 25756361 DOI: 10.1021/np5009784] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Naturally occurring prenylated acylphloroglucinol derivatives are plant metabolites with diverse biological and pharmacological activities. Prenylation of acylphloroglucinols plays an important role in the formation of these intriguing natural products and is catalyzed in plants by membrane-bound enzymes. In this study, we demonstrate the prenylation of such compounds by a soluble fungal prenyltransferase AnaPT involved in the biosynthesis of prenylated indole alkaloids. The observed activities of AnaPT toward these substrates are much higher than that of a microsomal fraction containing an overproduced prenyltransferase from the plant hop.
Collapse
Affiliation(s)
- Kang Zhou
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Marburg 35037, Germany
| | - Lena Ludwig
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Marburg 35037, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Marburg 35037, Germany
| |
Collapse
|
34
|
The key role of peltate glandular trichomes in symbiota comprising clavicipitaceous fungi of the genus periglandula and their host plants. Toxins (Basel) 2015; 7:1355-73. [PMID: 25894995 PMCID: PMC4417971 DOI: 10.3390/toxins7041355] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/27/2015] [Accepted: 04/01/2015] [Indexed: 01/07/2023] Open
Abstract
Clavicipitaceous fungi producing ergot alkaloids were recently discovered to be epibiotically associated with peltate glandular trichomes of Ipomoea asarifolia and Turbina corymbosa, dicotyledonous plants of the family Convolvulaceae. Mediators of the close association between fungi and trichomes may be sesquiterpenes, main components in the volatile oil of different convolvulaceous plants. Molecular biological studies and microscopic investigations led to the observation that the trichomes do not only secrete sesquiterpenes and palmitic acid but also seem to absorb ergot alkaloids from the epibiotic fungal species of the genus Periglandula. Thus, the trichomes are likely to have a dual and key function in a metabolic dialogue between fungus and host plant.
Collapse
|
35
|
Winkelblech J, Liebhold M, Gunera J, Xie X, Kolb P, Li SM. TryptophanC5-,C6-andC7-Prenylating Enzymes Displaying a Preference for C-6 of the Indole Ring in the Presence of Unnatural Dimethylallyl Diphosphate Analogues. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201400958] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Abstract
Covering: up to 2014. Prenylated indole alkaloids comprise a large and structurally diverse family of natural products that often display potent biological activities. In recent years a large family of prenyltransferases that install prenyl groups onto the indole core have been discovered. While the vast majority of these enzymes are evolutionarily related and share a common protein fold, they are remarkably versatile in their ability to catalyze reverse and normal prenylations at all positions on the indole ring. This highlight article will focus on recent studies of the mechanisms utilized by indole prenyltransferases. While all of the prenylation reactions may follow a direct electrophilic aromatic substitution mechanism, studies of structure and reactivity suggest that in some cases prenylation may first occur at the nucleophilic C-3 position, and subsequent rearrangements then generate the final product.
Collapse
Affiliation(s)
- Martin E Tanner
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, V6T 1Z1, British Columbia, Canada.
| |
Collapse
|
37
|
Walsh CT. Biological matching of chemical reactivity: pairing indole nucleophilicity with electrophilic isoprenoids. ACS Chem Biol 2014; 9:2718-28. [PMID: 25303280 DOI: 10.1021/cb500695k] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The indole side chain of tryptophan has latent nucleophilic reactivity at both N1 and all six (nonbridgehead) carbons, which is not generally manifested in post-translational reactions of proteins. On the other hand, all seven positions can be prenylated by the primary metabolite Δ(2)-isopentenyl diphosphate by dimethyallyl transferase (DMATs) family members as initial steps in biosynthetic pathways to bioactive fungal alkaloids including ergots and tremorgens. These are formulated as regioselective capture of isopentenyl allylic cationic transition states by the indole side chain as a nucleophile. The balance of regiospecificity and promiscuity among these indole prenyltransferases continues to raise questions about possible Cope and azaCope rearrangements of nascent products. In addition to these two electron reaction manifolds, there is evidence for one electron reaction manifolds in indole ring biosynthetic functionalization.
Collapse
Affiliation(s)
- Christopher T. Walsh
- ChEM-H Institute and Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
38
|
Fan A, Zocher G, Stec E, Stehle T, Li SM. Site-directed mutagenesis switching a dimethylallyl tryptophan synthase to a specific tyrosine C3-prenylating enzyme. J Biol Chem 2014; 290:1364-73. [PMID: 25477507 DOI: 10.1074/jbc.m114.623413] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The tryptophan prenyltransferases FgaPT2 and 7-DMATS (7-dimethylallyl tryptophan synthase) from Aspergillus fumigatus catalyze C(4)- and C(7)-prenylation of the indole ring, respectively. 7-DMATS was found to accept l-tyrosine as substrate as well and converted it to an O-prenylated derivative. An acceptance of l-tyrosine by FgaPT2 was also observed in this study. Interestingly, isolation and structure elucidation revealed the identification of a C(3)-prenylated l-tyrosine as enzyme product. Molecular modeling and site-directed mutagenesis led to creation of a mutant FgaPT2_K174F, which showed much higher specificity toward l-tyrosine than l-tryptophan. Its catalytic efficiency toward l-tyrosine was found to be 4.9-fold in comparison with that of non-mutated FgaPT2, whereas the activity toward l-tryptophan was less than 0.4% of that of the wild-type. To the best of our knowledge, this is the first report on an enzymatic C-prenylation of l-tyrosine as free amino acid and altering the substrate preference of a prenyltransferase by mutagenesis.
Collapse
Affiliation(s)
- Aili Fan
- From the Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, 35037 Marburg and
| | - Georg Zocher
- the Interfakultäres Institut für Biochemie, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Edyta Stec
- From the Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, 35037 Marburg and
| | - Thilo Stehle
- the Interfakultäres Institut für Biochemie, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Shu-Ming Li
- From the Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, 35037 Marburg and
| |
Collapse
|
39
|
Fan A, Li SM. Prenylation of tyrosine and derivatives by a tryptophan C7-prenyltransferase. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.07.080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
C7-prenylation of tryptophanyl and O-prenylation of tyrosyl residues in dipeptides by an Aspergillus terreus prenyltransferase. Appl Microbiol Biotechnol 2014; 99:1719-30. [PMID: 25125042 DOI: 10.1007/s00253-014-5999-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/19/2014] [Accepted: 07/28/2014] [Indexed: 10/24/2022]
Abstract
During our search for novel prenyltransferases, a putative gene ATEG_04218 from Aspergillus terreus raised our attention and was therefore amplified from strain DSM 1958 and expressed in Escherichia coli. Biochemical investigations with the purified recombinant protein and different aromatic substrates in the presence of dimethylallyl diphosphate revealed the acceptance of all the tested tryptophan-containing cyclic dipeptides. Structure elucidation of the main enzyme products by NMR and MS analyses confirmed the attachment of the prenyl moiety to C-7 of the indole ring, proving the identification of a cyclic dipeptide C7-prenyltransferase (CdpC7PT). For some substrates, reversely C3- or N1-prenylated derivatives were identified as minor products. In comparison to the known tryptophan-containing cyclic dipeptide C7-prenyltransferase CTrpPT from Aspergillus oryzae, CdpC7PT showed a much higher substrate flexibility. It also accepted cyclo-L-Tyr-L-Tyr as substrate and catalyzed an O-prenylation at the tyrosyl residue, providing the first example from the dimethylallyltryptophan synthase (DMATS) superfamily with an O-prenyltransferase activity towards dipeptides. Furthermore, products with both C7-prenyl at tryptophanyl and O-prenyl at tyrosyl residue were detected in the reaction mixture of cyclo-L-Trp-L-Tyr. Determination of the kinetic parameters proved that (S)-benzodiazepinedione consisting of a tryptophanyl and an anthranilyl moiety was accepted as the best substrate with a K M value of 204.1 μM and a turnover number of 0.125 s(-1). Cyclo-L-Tyr-L-Tyr was accepted with a K M value of 1,411.3 μM and a turnover number of 0.012 s(-1).
Collapse
|
41
|
A new member of the DMATS superfamily from Aspergillus niger catalyzes prenylations of both tyrosine and tryptophan derivatives. Appl Microbiol Biotechnol 2014; 98:10119-29. [DOI: 10.1007/s00253-014-5872-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/27/2014] [Accepted: 05/29/2014] [Indexed: 01/28/2023]
|
42
|
Biochemical Investigations of Two 6-DMATS Enzymes fromStreptomycesReveal New Features ofL-Tryptophan Prenyltransferases. Chembiochem 2014; 15:1030-9. [DOI: 10.1002/cbic.201400046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Indexed: 02/06/2023]
|
43
|
Miyamoto K, Ishikawa F, Nakamura S, Hayashi Y, Nakanishi I, Kakeya H. A 7-dimethylallyl tryptophan synthase from a fungal Neosartorya sp.: biochemical characterization and structural insight into the regioselective prenylation. Bioorg Med Chem 2014; 22:2517-28. [PMID: 24657051 DOI: 10.1016/j.bmc.2014.02.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/19/2014] [Accepted: 02/22/2014] [Indexed: 11/29/2022]
Abstract
A putative 7-dimethylallyl tryptophan synthase (DMATS) gene from a fungal Neosartorya sp. was cloned and overexpressed as a soluble His6-fusion protein in Escherichia coli. The enzyme was found to catalyze the prenylation of L-tryptophan at the C7 position of the indole moiety in the presence of dimethylallyl diphosphate; thus, it functions as a 7-DMATS. In this study, we describe the biochemical characterization of 7-DMATS from Neosartorya sp., referred to as 7-DMATS(Neo), and the structural basis of the regioselective prenylation of L-tryptophan at the C7 position by comparison of the three-dimensional structural models of 7-DMATS(Neo) with FgaPT2 (4-DMATS) from Aspergillus fumigatus.
Collapse
Affiliation(s)
- Kengo Miyamoto
- Department of System Chemotherapy and Molecular Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Fumihiro Ishikawa
- Department of System Chemotherapy and Molecular Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinya Nakamura
- Faculty of Pharmacy, Kinki University, 3-4-1 Kowakae, Higashi-osaka 577-8502, Japan
| | - Yutaka Hayashi
- Department of System Chemotherapy and Molecular Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Isao Nakanishi
- Faculty of Pharmacy, Kinki University, 3-4-1 Kowakae, Higashi-osaka 577-8502, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
44
|
Zhang J, Wang JD, Liu CX, Yuan JH, Wang XJ, Xiang WS. A new prenylated indole derivative from endophytic actinobacteria Streptomyces sp. neau-D50. Nat Prod Res 2014; 28:431-7. [PMID: 24443904 DOI: 10.1080/14786419.2013.871546] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/29/2013] [Indexed: 10/25/2022]
Abstract
A new prenylated indole derivative 3-acetonylidene-7-prenylindolin-2-one (1) was isolated from the endophytic actinobacterium Streptomyces sp. neau-D50, together with four known hybrid isoprenoids, 7-isoprenylindole-3-carboxylic acid (2), 3-cyanomethyl-6-prenylindole (3), 6-isoprenylindole-3-carboxylic acid (4) and 7,4'-dihydroxy-5-methoxy-8-(γ,γ-dimethylallyl)-flavanone (5). The structures of these compounds were elucidated on the basis of extensive spectroscopic analysis and comparison with data from the literature. Compounds 1 and 2 demonstrated strong cytotoxic activities against human lung adenocarcinoma cell line A549 with an IC50 of 3.3 and 5.1 μg mL(- 1), respectively, which are comparable to that of the positive control doxorubicin (4.2 μg mL(- 1)). Furthermore, compounds 1-4 exhibited potent antifungal activity against phytopathogenic fungi Colletotrichum orbiculare, Phytophthora capsici, Corynespora cassiicola and Fusarium oxysporum.
Collapse
Affiliation(s)
- Ji Zhang
- a School of Life Science, Life Science & Biotechnology Research Center, Northeast Agricultural University , Harbin 150030 , People's Republic of China
| | | | | | | | | | | |
Collapse
|
45
|
Rudolf JD, Poulter CD. Tyrosine O-prenyltransferase SirD catalyzes S-, C-, and N-prenylations on tyrosine and tryptophan derivatives. ACS Chem Biol 2013; 8:2707-14. [PMID: 24083562 DOI: 10.1021/cb400691z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The tyrosine O-prenyltransferase SirD in Leptosphaeria maculans catalyzes normal prenylation of the hydroxyl group in tyrosine as the first committed step in the biosynthesis of the phytotoxin sirodesmin PL. SirD also catalyzes normal N-prenylation of 4-aminophenylalanine and normal C-prenylation at C7 of tryptophan. In this study, we found that 4-mercaptophenylalanine and several derivatives of tryptophan are also substrates for prenylation by dimethylallyl diphosphate. Incubation of SirD with 4-mercaptophenylalanine gave normal S-prenylated mercaptophenylalanine. We found that incubation of the enzyme with tryptophan gave reverse prenylation at N1 in addition to the previously reported normal prenylation at C7. 4-Methyltryptophan also gave normal prenylation at C7 and reverse prenylation at N1, whereas 4-methoxytryptophan gave normal and reverse prenylation at C7, and 7-methyltryptophan gave normal prenylation at C6 and reverse prenylation at N1. The ability of SirD to prenylate at three different sites on the indole nucleus, with normal and reverse prenylation at one of the sites, is similar to behavior seen for dimethylallyltryptophan synthase. The multiple products produced by SirD suggests it and dimethylallyltryptophan synthase use a dissociative electrophilic mechanism for alkylation of amino acid substrates.
Collapse
Affiliation(s)
- Jeffrey D. Rudolf
- Department of Chemistry, University of Utah, 315 South 1400
East, Salt Lake City, Utah 84112, United States
| | - C. Dale Poulter
- Department of Chemistry, University of Utah, 315 South 1400
East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
46
|
Tarcz S, Ludwig L, Li SM. AstPT catalyses both reverse N1- and regular C2 prenylation of a methylated bisindolyl benzoquinone. Chembiochem 2013; 15:108-16. [PMID: 24302698 DOI: 10.1002/cbic.201300610] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Indexed: 01/19/2023]
Abstract
Prenylated bisindolyl benzoquinones exhibit interesting biological activities, such as antidiabetic or anti-HIV activities. A number of these compounds, including asterriquinones, have been isolated from Aspergillus terreus. In this study, we identified two putative genes by genome mining, ATEG_09980 and ATEG_00702, which share high sequence similarity with the known bisindolyl benzoquinone prenyltransferase TdiB from Aspergillus nidulans. The coding sequences were cloned and overexpressed in E. coli. The overproduced recombinant proteins were purified to near homogeneity and used for enzyme assays with asterriquinone D in the presence of dimethylallyl diphosphate. HPLC analysis showed that product formation was only detected in enzyme assays with EAU29429 encoded by ATEG_09980, not in those with EAU39348 encoded by ATEG_00702. Product isolation and structure elucidation by NMR and MS analyses led to identification of N1-reversely and C2-regularly monoprenylated derivatives, as well as N1',N1''reversely, N1'-reversely, C2''-regularly diprenylated derivatives. This proved that EAU29429 functions as an asterriquinone prenyltransferase (AstPT) and indicated the involvement of EAU29429 rather than EAU39348 in the biosynthesis of methylated asterriquinones. Furthermore, incubation of monoprenylated enzyme products with AstPT resulted in the formation of the diprenylated derivatives.
Collapse
Affiliation(s)
- Sylwia Tarcz
- Philipps-Universität Marburg, Institut für Pharmazeutische Biologie und Biotechnologie, Deutschhausstrasse 17 A, 35037 Marburg (Germany)
| | | | | |
Collapse
|
47
|
Regiospecificities and prenylation mode specificities of the fungal indole diterpene prenyltransferases AtmD and PaxD. Appl Environ Microbiol 2013; 79:7298-304. [PMID: 24038699 DOI: 10.1128/aem.02496-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently reported the function of paxD, which is involved in the paxilline (compound 1) biosynthetic gene cluster in Penicillium paxilli. Recombinant PaxD catalyzed a stepwise regular-type diprenylation at the 21 and 22 positions of compound 1 with dimethylallyl diphosphate (DMAPP) as the prenyl donor. In this study, atmD, which is located in the aflatrem (compound 2) biosynthetic gene cluster in Aspergillus flavus and encodes an enzyme with 32% amino acid identity to PaxD, was characterized using recombinant enzyme. When compound 1 and DMAPP were used as substrates, two major products and a trace of minor product were formed. The structures of the two major products were determined to be reversely monoprenylated compound 1 at either the 20 or 21 position. Because compound 2 and β-aflatrem (compound 3), both of which are compound 1-related compounds produced by A. flavus, have the same prenyl moiety at the 20 and 21 position, respectively, AtmD should catalyze the prenylation in compound 2 and 3 biosynthesis. More importantly and surprisingly, AtmD accepted paspaline (compound 4), which is an intermediate of compound 1 biosynthesis that has a structure similar to that of compound 1, and catalyzed a regular monoprenylation of compound 4 at either the 21 or 22 position, though the reverse prenylation was observed with compound 1. This suggests that fungal indole diterpene prenyltransferases have the potential to alter their position and regular/reverse specificities for prenylation and could be applicable for the synthesis of industrially useful compounds.
Collapse
|
48
|
Fan A, Li SM. One Substrate - Seven Products with Different Prenylation Positions in One-Step Reactions: Prenyltransferases Make it Possible. Adv Synth Catal 2013. [DOI: 10.1002/adsc.201300386] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Mundt K, Li SM. CdpC2PT, a reverse prenyltransferase from Neosartorya fischeri with a distinct substrate preference from known C2-prenyltransferases. MICROBIOLOGY-SGM 2013; 159:2169-2179. [PMID: 23845975 DOI: 10.1099/mic.0.069542-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A putative prenyltransferase gene, NFIA_043650, was amplified from Neosartorya fischeri NRRL 181 and cloned into the expression vector pQE60. The deduced polypeptide consisting of 445 amino acids with a molecular mass of 51 kDa was overproduced in Escherichia coli and purified as His6-tagged protein to near homogeneity. The purified soluble protein was subsequently assayed with potential aromatic substrates in the presence of dimethylallyl diphosphate. HPLC analysis of the reaction mixtures revealed acceptance of all tested tryptophan-containing cyclic dipeptides. Isolation and structural elucidation of enzyme products of five selected substrates indicated a reverse C2-prenylation on the indole nucleus, proving the enzyme to be a cyclic dipeptide C2-prenyltransferase (CdpC2PT). Differing significantly from two known brevianamide F reverse C2-prenyltransferases NotF and BrePT which use cyclo-l-Trp-l-Pro as their preferred substrate, CdpC2PT showed a clear substrate preference for (S)-benzodiazepinedinone and cyclo-l-Trp-l-Trp with KM values of 84.1 and 165.2 µM and turnover numbers at 0.63 and 0.30 s(-1), respectively. A possible role of CdpC2PT in the biosynthesis of fellutanines is discussed.
Collapse
Affiliation(s)
- Kathrin Mundt
- Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, 35032 Marburg, Germany.,Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Deutschhausstrasse 17A, 35037 Marburg, Germany
| | - Shu-Ming Li
- Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, 35032 Marburg, Germany.,Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Deutschhausstrasse 17A, 35037 Marburg, Germany
| |
Collapse
|
50
|
Functional analysis of a prenyltransferase gene (paxD) in the paxilline biosynthetic gene cluster. Appl Microbiol Biotechnol 2013; 98:199-206. [DOI: 10.1007/s00253-013-4834-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/27/2013] [Accepted: 03/05/2013] [Indexed: 10/27/2022]
|