1
|
Tatsuno I, Isaka M, Hasegawa T. Association of CovRS Two-Component Regulatory System with NADase Induction by Clindamycin Treatment in Streptococcus pyogenes. Jpn J Infect Dis 2024; 77:247-252. [PMID: 38556301 DOI: 10.7883/yoken.jjid.2023.451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Administration of high-dose clindamycin (CLI) and penicillin is recommended for the treatment of streptococcal toxic shock syndrome (STSS). However, CLI-resistant strains have been identified worldwide. In this study, some CLI-resistant strains demonstrated increased extracellular activity of the NAD-glycohydrolase (NADase) exotoxin following CLI treatment. These results support our previous conclusion that CLI-susceptible and CLI-resistant Streptococcus pyogenes strains exhibit CLI-dependent NADase induction. Furthermore, we investigated the mechanism of this phenomenon using 13 types of two-component sensor knockout strains derived from the CLI-susceptible strain 1529 that has a CLI-dependent NADase induction phenotype. Among the knockout strains, only 1529ΔcovS lost the phenotype. Additionally, 1529ΔspeB, 1529Δmga, and 1529Δrgg retained the CLI-dependent NADase induction phenotype. These findings indicate that CovS is related to this phenotype in a SpeB-independent manner.
Collapse
Affiliation(s)
- Ichiro Tatsuno
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Masanori Isaka
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Tadao Hasegawa
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, Japan
| |
Collapse
|
2
|
Kehinde SA, Ore A, Olajide AT, Ajiboye EO, Papadakis M, Alexiou A, Hadi NR, El-Gazzari AM, Ataya FS. Impaired energy metabolism and altered brain histoarchitecture characterized by inhibition of glycolysis and mitochondrial electron transport-linked enzymes in rats exposed to diisononyl phthalate. Heliyon 2024; 10:e36056. [PMID: 39224312 PMCID: PMC11367486 DOI: 10.1016/j.heliyon.2024.e36056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
The brain is an energy demanding organ, constituting about 20 % of the body's resting metabolic rate. An efficient energy metabolism is critical to neuronal functions. Glucose serves as the primary essential energy source for the adult brain and plays a critical role in supporting neural growth and development. Endocrine disrupting chemicals (EDCs) such as phthalates has been shown to have a negative impact on neurological functions. The impact of diisononyl phthalate (DiNP) on neural energy transduction using cellular energy metabolizing enzymes as indicators was examined. Over the course of 14 days, eighteen (18) albino rats divided into three groups (1,2 and 3) of six albino rats were given Tween-80/saline, 20 and 200 mg/kg body weight respectively. In the brain, we assessed histological changes as well as activities of selected enzymes of energy metabolism such as the glycolytic pathway, citric acid cycle and mitochondrial electron transport-linked complexes. Activities of the glycolytic and TCA cycle enzymes assayed were significantly decreased except citrate synthase activity with no statistically significant change following the administration of DiNP. Also, respiratory chain complexes (Complex I-IV) activities were significantly reduced when compared to control. DiNP exposure altered the histological integrity of various brain sections. These include degenerated Purkinje neurons, distortion of the granular layer and Purkinje cell layer. Data from this study indicated impaired brain energy metabolism via down-regulation of enzymes of cellular respiration of the glycolytic and oxidative phosphorylation pathways and altered brain histoarchitecture orchestrated by DiNP exposure.
Collapse
Affiliation(s)
- Samuel Abiodun Kehinde
- Biochemical Toxicology Laboratory, Faculty of Basic Medical Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Ayokanmi Ore
- Redox Biochemistry, Metabolic and Phytotherapy Research Laboratory, Department of Chemical Sciences, Faculty of Natural Science, Ajayi Crowther University, Oyo, Nigeria
| | - Abosede Temitope Olajide
- Cell and Signaling Laboratory, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Malaysia
| | | | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- 2AFNP Med, 1030, Wien, Austria
| | - Najah R. Hadi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Iraq
| | - Ahmed M. El-Gazzari
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - Farid S. Ataya
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Hall JN, Bah SY, Khalid H, Brailey A, Coleman S, Kirk T, Hussain N, Tovey M, Chaudhuri RR, Davies S, Tilley L, de Silva T, Turner CE. Molecular characterization of Streptococcus pyogenes (StrepA) non-invasive isolates during the 2022-2023 UK upsurge. Microb Genom 2024; 10:001277. [PMID: 39133528 PMCID: PMC11318961 DOI: 10.1099/mgen.0.001277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
At the end of 2022 into early 2023, the UK Health Security Agency reported unusually high levels of scarlet fever and invasive disease caused by Streptococcus pyogenes (StrepA or group A Streptococcus). During this time, we collected and genome-sequenced 341 non-invasive throat and skin S. pyogenes isolates identified during routine clinical diagnostic testing in Sheffield, a large UK city. We compared the data with that obtained from a similar collection of 165 isolates from 2016 to 2017. Numbers of throat-associated isolates collected peaked in early December 2022, reflecting the national scarlet fever upsurge, while skin infections peaked later in December. The most common emm-types in 2022-2023 were emm1 (28.7 %), emm12 (24.9 %) and emm22 (7.7 %) in throat and emm1 (22 %), emm12 (10 %), emm76 (18 %) and emm49 (7 %) in skin. While all emm1 isolates were the M1UK lineage, the comparison with 2016-2017 revealed diverse lineages in other emm-types, including emm12, and emergent lineages within other types including a new acapsular emm75 lineage, demonstrating that the upsurge was not completely driven by a single genotype. The analysis of the capsule locus predicted that only 51 % of throat isolates would produce capsule compared with 78% of skin isolates. Ninety per cent of throat isolates were also predicted to have high NADase and streptolysin O (SLO) expression, based on the promoter sequence, compared with only 56% of skin isolates. Our study has highlighted the value in analysis of non-invasive isolates to characterize tissue tropisms, as well as changing strain diversity and emerging genomic features which may have implications for spillover into invasive disease and future S. pyogenes upsurges.
Collapse
Affiliation(s)
- Jennifer N. Hall
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
- School of Biosciences, University of Sheffield, Sheffield, UK
- Medical Research Council Unit The Gambia at The London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Saikou Y. Bah
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
- School of Biosciences, University of Sheffield, Sheffield, UK
- Medical Research Council Unit The Gambia at The London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Henna Khalid
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Alison Brailey
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Sarah Coleman
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Tracey Kirk
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Naveed Hussain
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Mark Tovey
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Roy R. Chaudhuri
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Steve Davies
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Lisa Tilley
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Thushan de Silva
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
| | - Claire E. Turner
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
- School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
4
|
Kehinde S, Ore A, Olayinka E, Olajide A. Inhibition of hepatic energy metabolizing enzymes in murine model exposed to diisononyl phthalate. BAGHDAD JOURNAL OF BIOCHEMISTRY AND APPLIED BIOLOGICAL SCIENCES 2022. [DOI: 10.47419/bjbabs.v3i04.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background and objectives: Diisononyl phthalate (DINP) is a class of phthalates and phthalates are known to be metabolism disrupting chemicals (MDCs). Numerous MDCs, to which humans are exposed, have an effect on every aspect of energy transduction. They affect the liver by impairing insulin secretion in pancreatic cells and altering the liver’s insulin-dependent glucose metabolism.
Methods: For this study, eighteen male albino rats weighing 200±20g were randomly assigned to three groups (of six rats each) and followed for a 14-days period. The groups were: group A or control which was given Tween-80 orally, group B or DINP1 group which was given 20 mg/kg b.wt. DINP, and Group C or DINP2 group which received 200 mg/kg b.wt. DINP. The rats were then sacrificed, their livers were removed, and the glycolytic and oxidative phosphorylation enzyme activities were evaluated.
Results: Activities of the glycolytic, tricarboxylic acid cycle and electron transport chain enzymes under investigation were significantly down-regulated with severity observed in decreased activities of hepatic oxidative phosphorylation enzymes when compared with control (P<0.05). Hepatic tissue sections of 20 and 200mg/kg DiNP group revealed distorted cytoarchitecture of hepatocytes ranging from histocellular disarrangement to vaocular changes suggestive of loss of liver integrity or fibrosis.
Conclusions: Finally, DINP exposure impairs hepatic energy transduction enzymes as evident in down-regulation of the various enzymes of energy metabolism under investigation and this may invariably be a good tool for the diagnosis of hepatic energy impairment as seen in some disease conditions.
Collapse
|
5
|
Tatsuno I, Isaka M, Hasegawa T. General Phenotype of NADase Induction by CLI Treatment in Streptococcus pyogenes. Int J Microbiol 2022; 2022:4767765. [PMID: 36340423 PMCID: PMC9629962 DOI: 10.1155/2022/4767765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/27/2022] [Accepted: 10/14/2022] [Indexed: 02/27/2025] Open
Abstract
The administration of high-dose clindamycin (CLI) along with penicillin is recommended for the treatment of streptococcal toxic-shock syndrome (STSS). However, we previously reported that a "subinhibitory dose" of CLI induced the expression of the NAD-glycohydrolase (NADase) exotoxin in an emm1-type Streptococcus pyogenes 1529 strain isolated from an STSS patient. In this study, we examine NADase induction by CLI treatment using an extracellular NADase activity assay instead of the previous two-dimensional gel electrophoresis assay. The examination revealed that CLI administration can induce NADase expression in a dose-dependent manner. We analyzed 23 CLI-susceptible strains (5 emm1 strains, 6 emm3 strains, 3 emm4 strains, 1 emm6 strain, 3 emm12 strains, 1 emm28 strain, and 4 emm89 strains), and 19 of the 23 strains showed similar NADase induction phenotypes to that shown in strain 1529. These results indicate that NADase induction by CLI treatment is not restricted to specific strains and it could be a standard phenotype among CLI-susceptible S. pyogenes strains. We also analyzed four CLI-resistant strains. All four strains showed increased extracellular NADase activities at high concentrations of CLI that did not inhibit bacterial growth. These results indicated that the subinhibitory dose of CLI was not the critical factor for NADase induction.
Collapse
Affiliation(s)
- Ichiro Tatsuno
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho Mizuho-ku, Nagoya 467-8601, Japan
| | - Masanori Isaka
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho Mizuho-ku, Nagoya 467-8601, Japan
| | - Tadao Hasegawa
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho Mizuho-ku, Nagoya 467-8601, Japan
| |
Collapse
|
6
|
Streptococcus pyogenes NAD+-Glycohydrolase Reduces Skeletal Muscle βNAD+ Levels Independently of Streptolysin O. Microorganisms 2022; 10:microorganisms10071476. [PMID: 35889195 PMCID: PMC9322677 DOI: 10.3390/microorganisms10071476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 12/03/2022] Open
Abstract
Necrotizing soft tissue infections caused by Streptococcus pyogenes (group A streptococcus [GAS]) are characterized by rapid and extensive necrosis of fascia and muscle. Molecular epidemiological studies have demonstrated a positive correlation between GAS isolates that cause invasive infections and the production of S. pyogenes NAD+-glycohydrolase (SPN), an NADase secreted by GAS, but the effect of SPN on muscle cells has not been described. Thus, using standard βNAD+ and ATP quantification assays, we investigated the effects of SPN on cultured human skeletal muscle cell (SkMC) βNAD+ and ATP with and without streptolysin O (SLO)–a secreted cholesterol-dependent cytolysin known to act synergistically with SPN. We found that culture supernatants from GAS strains producing SLO and SPN depleted intracellular βNAD+ and ATP, while exotoxins from a GAS strain producing SLO and an enzymatically-inactive form of SPN had no effect on βNAD+ or ATP. Addition of purified, enzymatically-active SPN to NADase-negative culture supernatants or sterile media reconstituted βNAD+ depletion but had no effect ATP levels. Further, SPN-mediated βNAD+ depletion could be augmented by SLO or the homologous cholesterol-dependent cytolysin, perfringolysin O (PFO). Remarkably, SPN-mediated βNAD+ depletion was SkMC-specific, as purified SPN had minimal effect on epithelial cell βNAD+. Taken together, this study identifies a previously unrecognized role for SPN as a major disruptor of skeletal muscle βNAD+. Such activity could contribute to the rapid and widespread myonecrosis characteristic of severe GAS soft tissue infections.
Collapse
|
7
|
Flores AR, McNeil JC, Shah B, Van Beneden C, Shelburne SA. Capsule-Negative emm Types Are an Increasing Cause of Pediatric Group A Streptococcal Infections at a Large Pediatric Hospital in Texas. J Pediatric Infect Dis Soc 2019; 8:244-250. [PMID: 30085121 PMCID: PMC8938855 DOI: 10.1093/jpids/piy053] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/25/2018] [Indexed: 11/13/2022]
Abstract
BACKGROUND Bacterial infections caused by group A Streptococcus (GAS) are common in childhood. Few study reports have provided data on pediatric-specific trends in the epidemiology and bacterial strain characteristics of GAS infections. METHODS We prospectively collected GAS isolates from the clinical microbiology laboratory at Texas Children's Hospital between July 1, 2013, and June 30, 2017. Patient characteristics and GAS disease categories were determined through chart review. GAS isolates were obtained from patients in either the inpatient or outpatient setting, and cases were defined as pharyngeal disease, skin and soft-tissue infection (SSTI), or invasive disease on the basis of predefined criteria. All isolates were emm typed to determine trends over time. RESULTS We identified 930 cases over the 4-year period, including 432 (46.4%) pharyngeal, 235 (25.3%) SSTI, and 263 (28.3%) invasive disease types. The most frequently encountered emm types were emm1 (21.4%), emm12 (15.7%), emm89 (14.6%), emm4 (9.2%), and emm3 (8.2%). We observed significant changes over the 4-year period in the relative frequency of infections caused by emm1 (-17.7%; P = .046), emm4 (8.7%; P = .023), or emm6 (-7.9%; P = .024). Using bioinformatic analyses and targeted gene sequencing, we also discovered that all GAS emm28 and emm87 types harbored mutations that rendered them incapable of producing capsule. The relative frequency of GAS disease cases caused by capsule-negative GAS emm types (emm4, emm22, emm28, emm87, and emm89) increased over the 4-year period (32.2%-44.4%), although the difference was statistically significant for only nonpharyngeal disease types (27.1%-43.9%; P = .038). CONCLUSIONS Our data suggest an evolving epidemiology of GAS in the Houston pediatric population characterized by an increase in the frequency of capsule-negative emm types.
Collapse
Affiliation(s)
- Anthony R. Flores
- Division of Infectious Diseases, Department of Pediatrics, Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Sciences Center at Houston
| | - J. Chase McNeil
- Section of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston
| | - Brittany Shah
- Division of Infectious Diseases, Department of Pediatrics, Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Sciences Center at Houston
| | - Chris Van Beneden
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Samuel A. Shelburne
- Division of Internal Medicine, Departments of Infectious Diseases and Genomic Medicine, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
8
|
Kachroo P, Eraso JM, Beres SB, Olsen RJ, Zhu L, Nasser W, Bernard PE, Cantu CC, Saavedra MO, Arredondo MJ, Strope B, Do H, Kumaraswami M, Vuopio J, Gröndahl-Yli-Hannuksela K, Kristinsson KG, Gottfredsson M, Pesonen M, Pensar J, Davenport ER, Clark AG, Corander J, Caugant DA, Gaini S, Magnussen MD, Kubiak SL, Nguyen HAT, Long SW, Porter AR, DeLeo FR, Musser JM. Integrated analysis of population genomics, transcriptomics and virulence provides novel insights into Streptococcus pyogenes pathogenesis. Nat Genet 2019; 51:548-559. [PMID: 30778225 PMCID: PMC8547240 DOI: 10.1038/s41588-018-0343-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022]
Abstract
Streptococcus pyogenes causes 700 million human infections annually worldwide, yet, despite a century of intensive effort, there is no licensed vaccine against this bacterium. Although a number of large-scale genomic studies of bacterial pathogens have been published, the relationships among the genome, transcriptome, and virulence in large bacterial populations remain poorly understood. We sequenced the genomes of 2,101 emm28 S. pyogenes invasive strains, from which we selected 492 phylogenetically diverse strains for transcriptome analysis and 50 strains for virulence assessment. Data integration provided a novel understanding of the virulence mechanisms of this model organism. Genome-wide association study, expression quantitative trait loci analysis, machine learning, and isogenic mutant strains identified and confirmed a one-nucleotide indel in an intergenic region that significantly alters global transcript profiles and ultimately virulence. The integrative strategy that we used is generally applicable to any microbe and may lead to new therapeutics for many human pathogens.
Collapse
Affiliation(s)
- Priyanka Kachroo
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, TX, USA
| | - Jesus M Eraso
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, TX, USA
| | - Stephen B Beres
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, TX, USA
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, TX, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Luchang Zhu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, TX, USA
| | - Waleed Nasser
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, TX, USA
| | - Paul E Bernard
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, TX, USA
| | - Concepcion C Cantu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, TX, USA
| | - Matthew Ojeda Saavedra
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, TX, USA
| | - María José Arredondo
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, TX, USA
| | - Benjamin Strope
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, TX, USA
| | - Hackwon Do
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, TX, USA
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, TX, USA
| | - Jaana Vuopio
- Institute of Biomedicine, Medical Microbiology and Immunology, University of Turku, Turku, Finland
- National Institute for Health and Welfare, Helsinki, Finland
| | | | - Karl G Kristinsson
- Department of Clinical Microbiology, Landspitali University Hospital, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Magnus Gottfredsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Infectious Diseases, Landspitali University Hospital, Reykjavik, Iceland
| | - Maiju Pesonen
- Helsinki Institute of Information Technology, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Johan Pensar
- Helsinki Institute of Information Technology, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Emily R Davenport
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Jukka Corander
- Helsinki Institute of Information Technology, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
- Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Dominique A Caugant
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Shahin Gaini
- Medical Department, Infectious Diseases Division, National Hospital of the Faroe Islands, Tórshavn, Denmark
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Science and Technology, Centre of Health Research, University of the Faroe Islands, Tórshavn, Denmark
| | - Marita Debess Magnussen
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Thetis, Food and Environmental Laboratory, Torshavn, Denmark
| | - Samantha L Kubiak
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, TX, USA
| | - Hoang A T Nguyen
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, TX, USA
| | - S Wesley Long
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, TX, USA
| | - Adeline R Porter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, TX, USA.
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
9
|
Hasegawa T, Matsumoto M, Hata N, Yano H, Isaka M, Tatsuno I. Homologous role of CovRS two-component regulatory system in NAD+-glycohydrolase activity inStreptococcus dysgalactiaesubsp.equisimilisas inStreptococcus pyogenes. APMIS 2019; 127:87-92. [DOI: 10.1111/apm.12914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/26/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Tadao Hasegawa
- Department of Bacteriology; Nagoya City University Graduate School of Medical Sciences; Nagoya Japan
| | - Masakado Matsumoto
- Department of Microbiology and Medical Zoology; Aichi Prefectural Institute of Public Health; Nagoya Japan
| | - Nanako Hata
- Department of Microbiology; Nagoya City University Hospital; Nagoya Japan
| | - Hisako Yano
- Department of Infection Control and Prevention Nursing; Nagoya City University Graduate School of Nursing; Nagoya Japan
| | - Masanori Isaka
- Department of Bacteriology; Nagoya City University Graduate School of Medical Sciences; Nagoya Japan
| | - Ichiro Tatsuno
- Department of Bacteriology; Nagoya City University Graduate School of Medical Sciences; Nagoya Japan
| |
Collapse
|
10
|
Binding of NAD +-Glycohydrolase to Streptolysin O Stabilizes Both Toxins and Promotes Virulence of Group A Streptococcus. mBio 2017; 8:mBio.01382-17. [PMID: 28900022 PMCID: PMC5596348 DOI: 10.1128/mbio.01382-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The globally dominant, invasive M1T1 strain of group A Streptococcus (GAS) harbors polymorphisms in the promoter region of an operon that contains the genes encoding streptolysin O (SLO) and NAD+-glycohydrolase (NADase), resulting in high-level expression of these toxins. While both toxins have been shown experimentally to contribute to pathogenesis, many GAS isolates lack detectable NADase activity. DNA sequencing of such strains has revealed that reduced or absent enzymatic activity can be associated with a variety of point mutations in nga, the gene encoding NADase; a commonly observed polymorphism associated with near-complete abrogation of activity is a substitution of aspartic acid for glycine at position 330 (G330D). However, nga has not been observed to contain early termination codons or mutations that would result in a truncated protein, even when the gene product contains missense mutations that abrogate enzymatic activity. It has been suggested that NADase that lacks NAD-glycohydrolase activity retains an as-yet-unidentified inherent cytotoxicity to mammalian cells and thus is still a potent virulence factor. We now show that expression of NADase, either enzymatically active or inactive, augments SLO-mediated toxicity for keratinocytes. In culture supernatants, SLO and NADase are mutually interdependent for protein stability. We demonstrate that the two proteins interact in solution and that both the translocation domain and catalytic domain of NADase are required for maximal binding between the two toxins. We conclude that binding of NADase to SLO stabilizes both toxins, thereby enhancing GAS virulence. The global increase in invasive GAS infections in the 1980s was associated with the emergence of an M1T1 clone that harbors a 36-kb pathogenicity island, which codes for increased expression of toxins SLO and NADase. Polymorphisms in NADase that render it catalytically inactive can be detected in clinical isolates, including invasive strains. However, such isolates continue to produce full-length NADase. The rationale for this observation is not completely understood. This study characterizes the binding interaction between NADase and SLO and reports that the expression of each toxin is crucial for maximal expression and stability of the other. By this mechanism, the presence of both toxins increases toxicity to keratinocytes and is predicted to enhance GAS survival in the human host. These observations provide an explanation for conservation of full-length NADase expression even when it lacks enzymatic activity and suggest a critical role for binding of NADase to SLO in GAS pathogenesis.
Collapse
|
11
|
Hasegawa T, Hata N, Matsui H, Isaka M, Tatsuno I. Characterisation of clinically isolated Streptococcus pyogenes from balanoposthitis patients, with special emphasis on emm89 isolates. J Med Microbiol 2017; 66:511-516. [PMID: 28463666 DOI: 10.1099/jmm.0.000460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Streptococcus pyogenes causes a variety of diseases, such as pharyngitis and toxic shock syndrome. In addition, this bacterium is a causative agent of balanoposthitis. To reveal the bacteriological characteristics of the isolates from balanoposthitis patients, we analysed 47 isolates. In addition, novel clade genotype emm89 S. pyogenes isolates have been reported to be spreading worldwide recently. Hence, we further analysed eight emm89 isolates. METHODOLOGY A drug susceptibility experiment was performed and emm types were determined. More detailed experiments, such as PCR analysis for the presence of virulence-associated genes and MLST analysis, were performed especially using emm89 isolates. RESULTS All isolates were sensitive to ampicillin, but 34 % of the isolates were resistant to at least one antibiotic. The emm types of the isolates varied, with emm89 and emm11 being the most prevalent, but the emm1 type was not detected. The analysis of emm89 isolates revealed that drug susceptibilities varied. All isolates were negative for the hasABC gene and produced active NADase that are characteristics of novel clade genotype emm89 S. pyogenes. MLST analysis demonstrated that six isolates were of the ST101 type, the most predominant type reported thus far, but two isolates were of the ST646 type. According to the PCR analysis used to determine the presence of streptococcal pyrogenic exotoxin-related genes, the six ST101 isolates were further classified into four groups. CONCLUSION These results suggest that balanoposthitis is caused by a variety of types of S. pyogenes, with novel clade genotype emm89 isolates playing a role in balanoposthitis infections in Japan.
Collapse
Affiliation(s)
- Tadao Hasegawa
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Nanako Hata
- Department of Microbiology, Nagoya City University Hospital, Nagoya, Japan
| | - Hideyuki Matsui
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masanori Isaka
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ichiro Tatsuno
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
12
|
Matsumoto M, Yamada K, Suzuki M, Adachi H, Kobayashi S, Yamashita T, Minagawa H, Tatsuno I, Hasegawa T. Description of the Pathogenic Features of Streptococcus pyogenes Isolates from Invasive and Non-Invasive Diseases in Aichi, Japan. Jpn J Infect Dis 2016; 69:338-41. [PMID: 26567838 DOI: 10.7883/yoken.jjid.2015.334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We identified hypervirulent Streptococcus pyogenes in 27 and 420 isolates from patients with invasive and non-invasive diseases, respectively, in Aichi Prefecture, Japan, between 2003 and 2012, in an attempt to understand why the prevalence of streptococcal toxic shock syndrome (STSS) suddenly increased in this location during 2011. Hypervirulent strains belong to the emm1 genotype, with a mutation in the covR/S genes that regulate many other genes, encoding virulence determinants and resulting in the absence of the proteinase streptococcal exotoxin B and the production of virulence factors such as the superantigen streptococcal exotoxin A, the nuclease streptococcal DNase, the cytotoxin NAD-glycohydrolase, and the hemolysin streptolysin O. We found 1 strain from invasive disease and 1 from non-invasive disease with traits similar to those of hypervirulent strains, except that the sda1 gene was absent. We also found 1 non-emm1 strain with phenotypic and genetic traits identical to those of the emm1 hypervirulent strains except that it did not belong to emm1 genotype, from non-invasive diseases cases in 2011. These findings suggested that hypervirulent and hypervirulent-like strains from invasive and non-invasive disease cases could have at least partially contributed to the sudden increase in the number of patients with STSS in Aichi during 2011.
Collapse
Affiliation(s)
- Masakado Matsumoto
- Department of Microbiology and Medical Zoology, Aichi Prefectural Institute of Public Health
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
NAD+-Glycohydrolase Promotes Intracellular Survival of Group A Streptococcus. PLoS Pathog 2016; 12:e1005468. [PMID: 26938870 PMCID: PMC4777570 DOI: 10.1371/journal.ppat.1005468] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/02/2016] [Indexed: 01/19/2023] Open
Abstract
A global increase in invasive infections due to group A Streptococcus (S. pyogenes or GAS) has been observed since the 1980s, associated with emergence of a clonal group of strains of the M1T1 serotype. Among other virulence attributes, the M1T1 clone secretes NAD+-glycohydrolase (NADase). When GAS binds to epithelial cells in vitro, NADase is translocated into the cytosol in a process mediated by streptolysin O (SLO), and expression of these two toxins is associated with enhanced GAS intracellular survival. Because SLO is required for NADase translocation, it has been difficult to distinguish pathogenic effects of NADase from those of SLO. To resolve the effects of the two proteins, we made use of anthrax toxin as an alternative means to deliver NADase to host cells, independently of SLO. We developed a novel method for purification of enzymatically active NADase fused to an amino-terminal fragment of anthrax toxin lethal factor (LFn-NADase) that exploits the avid, reversible binding of NADase to its endogenous inhibitor. LFn-NADase was translocated across a synthetic lipid bilayer in vitro in the presence of anthrax toxin protective antigen in a pH-dependent manner. Exposure of human oropharyngeal keratinocytes to LFn-NADase in the presence of protective antigen resulted in cytosolic delivery of NADase activity, inhibition of protein synthesis, and cell death, whereas a similar construct of an enzymatically inactive point mutant had no effect. Anthrax toxin-mediated delivery of NADase in an amount comparable to that observed during in vitro infection with live GAS rescued the defective intracellular survival of NADase-deficient GAS and increased the survival of SLO-deficient GAS. Confocal microscopy demonstrated that delivery of LFn-NADase prevented intracellular trafficking of NADase-deficient GAS to lysosomes. We conclude that NADase mediates cytotoxicity and promotes intracellular survival of GAS in host cells. Invasive infections due to group A Streptococcus (S. pyogenes or GAS) have become more frequent since the 1980s due, in part, to the emergence and global spread of closely related strains of the M1T1 serotype. A feature of this clonal group is the production of a secreted enzyme, NAD+-glycohydrolase (NADase), which has been suggested to contribute to GAS virulence by intoxication of host cells. For NADase to exert its toxic effects, it must be translocated into the host cell by a second GAS protein, streptolysin O (SLO). SLO is a pore-forming toxin that damages cell membranes in addition to its role in translocating NADase. In order to distinguish effects of NADase on host cell biology from those of SLO, we used components of anthrax toxin to deliver NADase to human throat epithelial cells, independently of SLO. Introduction of NADase into GAS-infected cells increased the intracellular survival of GAS lacking NADase or SLO, and the increase in bacterial survival correlated with inhibition of intracellular trafficking of GAS to lysosomes that mediate bacterial killing. The results support an important role for NADase in enhancing GAS survival in human epithelial cells, a phenomenon that may contribute to GAS colonization and disease.
Collapse
|
14
|
Zhu L, Olsen RJ, Nasser W, Beres SB, Vuopio J, Kristinsson KG, Gottfredsson M, Porter AR, DeLeo FR, Musser JM. A molecular trigger for intercontinental epidemics of group A Streptococcus. J Clin Invest 2015; 125:3545-59. [PMID: 26258415 DOI: 10.1172/jci82478] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/02/2015] [Indexed: 01/01/2023] Open
Abstract
The identification of the molecular events responsible for strain emergence, enhanced virulence, and epidemicity has been a long-pursued goal in infectious diseases research. A recent analysis of 3,615 genomes of serotype M1 group A Streptococcus strains (the so-called "flesh-eating" bacterium) identified a recombination event that coincides with the global M1 pandemic beginning in the early 1980s. Here, we have shown that the allelic variation that results from this recombination event, which replaces the chromosomal region encoding secreted NADase and streptolysin O, is the key driver of increased toxin production and enhanced infection severity of the M1 pandemic strains. Using isoallelic mutant strains, we found that 3 polymorphisms in this toxin gene region increase resistance to killing by human polymorphonuclear leukocytes, increase bacterial proliferation, and increase virulence in animal models of pharyngitis and necrotizing fasciitis. Genome sequencing of an additional 1,125 streptococcal strains and virulence studies revealed that a highly similar recombinational replacement event underlies an ongoing intercontinental epidemic of serotype M89 group A Streptococcus infections. By identifying the molecular changes that enhance upper respiratory tract fitness, increased resistance to innate immunity, and increased tissue destruction, we describe a mechanism that underpins epidemic streptococcal infections, which have affected many millions of people.
Collapse
|
15
|
Chandrasekaran S, Caparon MG. The Streptococcus pyogenes NAD(+) glycohydrolase modulates epithelial cell PARylation and HMGB1 release. Cell Microbiol 2015; 17:1376-90. [PMID: 25818652 DOI: 10.1111/cmi.12442] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 03/03/2015] [Accepted: 03/24/2015] [Indexed: 12/29/2022]
Abstract
Streptococcus pyogenes uses the cytolysin streptolysin O (SLO) to translocate an enzyme, the S. pyogenes NAD(+) glycohydrolase (SPN), into the host cell cytosol. However, the function of SPN in this compartment is not known. As a complication, many S. pyogenes strains express a SPN variant lacking NAD(+) glycohydrolase (NADase) activity. Here, we show that SPN modifies several SLO- and NAD(+) -dependent host cell responses in patterns that correlate with NADase activity. SLO pore formation results in hyperactivation of the cellular enzyme poly-ADP-ribose polymerase-1 (PARP-1) and production of polymers of poly-ADP-ribose (PAR). However, while SPN NADase activity moderates PARP-1 activation and blocks accumulation of PAR, these processes continued unabated in the presence of NADase-inactive SPN. Temporal analyses revealed that while PAR production is initially independent of NADase activity, PAR rapidly disappears in the presence of NADase-active SPN, host cell ATP is depleted and the pro-inflammatory mediator high-mobility group box-1 (HMGB1) protein is released from the nucleus by a PARP-1-dependent mechanism. In contrast, HMGB1 is not released in response to NADase-inactive SPN and instead the cells release elevated levels of interleukin-8 and tumour necrosis factor-α. Thus, SPN and SLO combine to induce cellular responses subsequently influenced by the presence or absence of NADase activity.
Collapse
Affiliation(s)
- Sukantha Chandrasekaran
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael G Caparon
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
16
|
Zhang Y, Okada R, Isaka M, Tatsuno I, Isobe KI, Hasegawa T. Analysis of the roles of NrdR and DnaB from Streptococcus pyogenes in response to host defense. APMIS 2014; 123:252-9. [PMID: 25469586 DOI: 10.1111/apm.12340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/01/2014] [Indexed: 12/01/2022]
Abstract
Toxic shock syndrome caused by Streptococcus pyogenes (S. pyogenes) is a re-emerging infectious disease. Many virulence-associated proteins play important roles in its pathogenesis and the production of these proteins is controlled by many regulatory factors. CovS is one of the most important two-component sensor proteins in S. pyogenes, and it has been analyzed extensively. Our recent analyses revealed the existence of a transposon between covS and nrdR in several strains, and we speculated that this insertion has some importance. Hence, we examined the significances of the NrdR stand-alone regulator and DnaB, which is encoded by the gene located immediately downstream of nrdR in S. pyogenes infection. We established an nrdR-only knockout strain, and both nrdR and partial dnaB knockout strain. These established knockout strains exhibited a deteriorated response to H2 O2 exposure. nrdR and partial dnaB knockout strain was more easily killed by human polynuclear blood cells, but the nrdR-only knockout strain had no significant difference compared to wild type in contrast to the combined knockout strain. In addition, the mouse infection model experiment illustrated that nrdR and partial dnaB knockout strain, but not the nrdR-only knockout strain, was less virulent compared with the parental strain. These results suggest that DnaB is involved in response to host defense.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Okada R, Matsumoto M, Zhang Y, Isaka M, Tatsuno I, Hasegawa T. Emergence of type I restriction modification system-negative emm1 type Streptococcus pyogenes clinical isolates in Japan. APMIS 2014; 122:914-21. [PMID: 25356467 DOI: 10.1111/apm.12230] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Streptococcus pyogenes emm1 type is the dominant cause of streptococcal toxic shock syndrome (STSS) in Japan and many other developed countries. Recently, the number of STSS patients in Japan was reported to be increasing. Hence, we analyzed the S. pyogenes clinical isolates detected in Japan after 2005. We found that the regions encoding the Spy1908–1910 two-component regulatory system and the adjacent type I restriction modification system were deleted in some emm1 type isolates. The isolates with the deletion were detected only in the emm1 strains that were isolated between 2010 and 2013, but not before 2010. Twenty-six of 46 (56.5%) emm1 type isolates were isolated in 2010–2013, and among these isolates, five of seven (71.4%) emm1 type STSS isolates were shown to have that deletion. PFGE and PCR analysis for the presence of several pyrogenic exotoxin-related genes suggested that the emm1 isolates with and without the deletion shared the same genetic background. The emm1 isolates with the deletion could incorporate exogenous plasmids by experimental electroporation transformation far more efficiently. These results suggested that the novel emm1 isolates have occupied a fairly large part of total emm1 isolates.
Collapse
|
18
|
Yoon JY, An DR, Yoon HJ, Kim HS, Lee SJ, Im HN, Jang JY, Suh SW. High-resolution crystal structure of Streptococcus pyogenes β-NAD⁺ glycohydrolase in complex with its endogenous inhibitor IFS reveals a highly water-rich interface. JOURNAL OF SYNCHROTRON RADIATION 2013; 20:962-7. [PMID: 24121349 PMCID: PMC3795565 DOI: 10.1107/s0909049513020803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 07/25/2013] [Indexed: 06/02/2023]
Abstract
One of the virulence factors produced by Streptococcus pyogenes is β-NAD(+) glycohydrolase (SPN). S. pyogenes injects SPN into the cytosol of an infected host cell using the cytolysin-mediated translocation pathway. As SPN is toxic to bacterial cells themselves, S. pyogenes possesses the ifs gene that encodes an endogenous inhibitor for SPN (IFS). IFS is localized intracellularly and forms a complex with SPN. This intracellular complex must be dissociated during export through the cell envelope. To provide a structural basis for understanding the interactions between SPN and IFS, the complex was overexpressed between the mature SPN (residues 38-451) and the full-length IFS (residues 1-161), but it could not be crystallized. Therefore, limited proteolysis was used to isolate a crystallizable SPNct-IFS complex, which consists of the SPN C-terminal domain (SPNct; residues 193-451) and the full-length IFS. Its crystal structure has been determined by single anomalous diffraction and the model refined at 1.70 Å resolution. Interestingly, our high-resolution structure of the complex reveals that the interface between SPNct and IFS is highly rich in water molecules and many of the interactions are water-mediated. The wet interface may facilitate the dissociation of the complex for translocation across the cell envelope.
Collapse
Affiliation(s)
- Ji Young Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Doo Ri An
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 151-747, Republic of Korea
| | - Hye-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Hyoun Sook Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea
- College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sang Jae Lee
- College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ha Na Im
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 151-747, Republic of Korea
| | - Jun Young Jang
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Se Won Suh
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-747, Republic of Korea
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 151-747, Republic of Korea
| |
Collapse
|
19
|
Streptolysin O and its co-toxin NAD-glycohydrolase protect group A Streptococcus from Xenophagic killing. PLoS Pathog 2013; 9:e1003394. [PMID: 23762025 PMCID: PMC3675196 DOI: 10.1371/journal.ppat.1003394] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 04/17/2013] [Indexed: 01/01/2023] Open
Abstract
Group A Streptococcus (Streptococcus pyogenes or GAS) causes pharyngitis, severe invasive infections, and the post-infectious syndromes of glomerulonephritis and rheumatic fever. GAS can be internalized and killed by epithelial cells in vitro, a process that may contribute to local innate defense against pharyngeal infection. Secretion of the pore-forming toxin streptolysin O (SLO) by GAS has been reported to stimulate targeted autophagy (xenophagy) upon internalization of the bacteria by epithelial cells. Whereas this process was associated with killing of GAS in HeLa cells, studies in human keratinocytes found SLO production enhanced intracellular survival. To reconcile these conflicting observations, we now report in-depth investigation of xenophagy in response to GAS infection of human oropharyngeal keratinocytes, the predominant cell type of the pharyngeal epithelium. We found that SLO expression was associated with prolonged intracellular survival; unexpectedly, expression of the co-toxin NADase was required for this effect. Enhanced intracellular survival was lost upon deletion of NADase or inactivation of its enzymatic activity. Shortly after internalization of GAS by keratinocytes, SLO-mediated damage to the bacteria-containing vacuole resulted in exposure to the cytosol, ubiquitination of GAS and/or associated vacuolar membrane remnants, and engulfment of GAS in LC3-positive vacuoles. We also found that production of streptolysin S could mediate targeting of GAS to autophagosomes in the absence of SLO, a process accompanied by galectin 8 binding to damaged GAS-containing endosomes. Maturation of GAS-containing autophagosome-like vacuoles to degradative autolysosomes was prevented by SLO pore-formation and by SLO-mediated translocation of enzymatically active NADase into the keratinocyte cytosol. We conclude that SLO stimulates xenophagy in pharyngeal keratinocytes, but the coordinated action of SLO and NADase prevent maturation of GAS-containing autophagosomes, thereby prolonging GAS intracellular survival. This novel activity of NADase to block autophagic killing of GAS in pharyngeal cells may contribute to pharyngitis treatment failure, relapse, and chronic carriage. Group A Streptococcus (Streptococcus pyogenes or GAS) is the agent of streptococcal pharyngitis (strep throat), invasive infections such as necrotizing fasciitis and streptococcal toxic shock, and post-infectious complications including rheumatic heart disease. Epithelial cells internalize and kill GAS in vitro and may contribute to local innate immune defense in the human pharynx. We now find that production of the secreted pore-forming toxin streptolysin O (SLO) triggered targeted autophagy (termed xenophagy) of GAS in human oropharyngeal keratinocytes, but also enhanced GAS intracellular survival. Increased GAS survival was dependent both on pore-formation by SLO and on SLO-mediated translocation of an enzymatically active co-toxin, NAD-glycohydrolase, into the keratinocyte cytosol. The survival-enhancing effect of both toxins was associated with inhibition of lysosomal fusion with GAS-containing autophagosomes to form functional degradative autolysosomes. These findings reveal a novel coordinated role of two streptococcal toxins in protecting GAS from xenophagic killing and enhancing intracellular survival. Prolonged GAS intracellular survival may contribute to pharyngitis treatment failure, relapse, and chronic carriage.
Collapse
|
20
|
Chandrasekaran S, Ghosh J, Port GC, Koh EI, Caparon MG. Analysis of polymorphic residues reveals distinct enzymatic and cytotoxic activities of the Streptococcus pyogenes NAD+ glycohydrolase. J Biol Chem 2013; 288:20064-75. [PMID: 23689507 DOI: 10.1074/jbc.m113.481556] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Streptococcus pyogenes NAD(+) glycohydrolase (SPN) is secreted from the bacterial cell and translocated into the host cell cytosol where it contributes to cell death. Recent studies suggest that SPN is evolving and has diverged into NAD(+) glycohydrolase-inactive variants that correlate with tissue tropism. However, the role of SPN in both cytotoxicity and niche selection are unknown. To gain insight into the forces driving the adaptation of SPN, a detailed comparison of representative glycohydrolase activity-proficient and -deficient variants was conducted. Of a total 454 amino acids, the activity-deficient variants differed at only nine highly conserved positions. Exchanging residues between variants revealed that no one single residue could account for the inability of the deficient variants to cleave the glycosidic bond of β-NAD(+) into nicotinamide and ADP-ribose; rather, reciprocal changes at 3 specific residues were required to both abolish activity of the proficient version and restore full activity to the deficient variant. Changing any combination of 1 or 2 residues resulted in intermediate activity. However, a change to any 1 residue resulted in a significant decrease in enzyme efficiency. A similar pattern involving multiple residues was observed for comparison with a second highly conserved activity-deficient variant class. Remarkably, despite differences in glycohydrolase activity, all versions of SPN were equally cytotoxic to cultured epithelial cells. These data indicate that the glycohydrolase activity of SPN may not be the only contribution the toxin has to the pathogenesis of S. pyogenes and that both versions of SPN play an important role during infection.
Collapse
Affiliation(s)
- Sukantha Chandrasekaran
- Department of Molecular Microbiology Washington University School of Medicine, St Louis, Missouri 63110-1093, USA
| | | | | | | | | |
Collapse
|
21
|
Tatsuno I, Okada R, Zhang Y, Isaka M, Hasegawa T. Partial loss of CovS function in Streptococcus pyogenes causes severe invasive disease. BMC Res Notes 2013; 6:126. [PMID: 23537349 PMCID: PMC3637574 DOI: 10.1186/1756-0500-6-126] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND CovRS (or CsrRS) is a two-component regulatory system that regulates the production of multiple virulence factors in Streptococcus pyogenes. covS mutations are often found in isolates recovered from mice that have been experimentally infected with S. pyogenes and covS mutations enhance bacterial virulence in an invasive infection mouse model. In addition, covS mutations were detected more frequently in a panel of clinical isolates from severe invasive streptococcal infections than those from non-severe infections. Thus, covS mutations may be associated with the onset of severe invasive infections. RESULTS Known covS mutations were divided into two groups: (i) frameshift mutations that caused a deletion of functional regions and (ii) point mutations that caused single (or double) amino acid(s) substitutions. Frameshift mutations are frequent in mouse-passaged isolates, whereas point mutations are frequent in clinical isolates. The functions of CovS proteins with a single amino acid substitution in clinical isolates were estimated based on the streptococcal pyrogenic exotoxin B (SpeB) production and NAD+-glycohydrolase (NADase) activity, which are known to be regulated by the CovRS system. Point mutations partially, but not completely, impaired the function of the covS alleles. We also investigated some of the benefits that a partial loss of function in covS alleles with point mutations might confer on clinical isolates. We found that covS knockout mutants (ΔcovS strains) had an impaired growth ability in a normal atmosphere in Todd Hewitt broth compared with parental isolates having wild-type or point-mutated covS. CONCLUSIONS The loss of CovS proteins in S. pyogenes may confer greater virulence, but bacteria may also lose the ability to respond to certain external signals recognized by CovS. Therefore, point mutations that retain the function of CovS and confer hypervirulence may have natural selective advantages.
Collapse
Affiliation(s)
- Ichiro Tatsuno
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho Mizuho-ku, Nagoya 467-8601, Japan
| | | | | | | | | |
Collapse
|
22
|
Zhang L, Xu X, Luo Z, Zhang Y, Shen D, Peng L, Song J. Cu(ii)- and disulfide bonds-induced stabilization during the guanidine hydrochloride- and thermal-induced denaturation of NAD-glycohydrolase from the venom of Agkistrodon acutus. Metallomics 2011; 4:166-73. [PMID: 22045055 DOI: 10.1039/c1mt00135c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
NAD-glycohydrolase (AA-NADase) from Agkistrodon acutus venom is a unique multicatalytic enzyme with both NADase and AT(D)Pase-like activities. Among all identified NADases, only AA-NADase is a disulfide-linked dimer and contains Cu(2+). Cu(2+) and disulfide bonds are essential for its multicatalytic activity. In this study, the effects of Cu(2+) and disulfide-bonds on guanidine hydrochloride (GdnHCl)- and thermal-induced unfolding of AA-NADase have been investigated by fluorescence, circular dichroism (CD) and differential scanning calorimetry (DSC). Cu(2+) and disulfide bonds not only increase the free energy change during the GdnHCl-induced unfolding as determined by fluorescence, but also increase the overall enthalpy change and the transition temperature during the thermal-induced unfolding as determined by CD and DSC. The slope of the GdnHCl-induced unfolding curve at its midpoint and the heat capacity of thermal-induced unfolding are slightly affected by Cu(2+) but significantly decrease after reduction of three disulfide-bonds. This work suggests that Cu(2+) stabilizes the folded state by increasing the enthalpy of unfolding, while disulfide-bonds stabilize the folded state by increasing the enthalpy of unfolding and stabilizing the packing of hydrophobic residues. Thus both Cu(2+) and disulfide bonds play a structural role in its multicatalytic activity.
Collapse
Affiliation(s)
- Liyun Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | | | | | | | | | | | | |
Collapse
|
23
|
Time course of virulence factors produced by group A streptococcus during a food-borne epidemic. J Infect Chemother 2011; 18:35-40. [PMID: 21750972 DOI: 10.1007/s10156-011-0280-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 06/26/2011] [Indexed: 10/18/2022]
Abstract
We studied the protein amount and activity of the major virulence factors hemolysin, cysteine protease streptococcal pyrogenic exotoxin B (SpeB), and NAD glycohydrolase (NADase), which are produced by Streptococcus pyogenes type T-25, with a food poisoning outbreak. The three virulence factors were analyzed by activity and amount of protein using supernatants at 2-30 h of culture. All these virulence factors were confirmed by their activity. Streptolysin O (SLO), SpeB, and NADase were immunochemically confirmed at protein level by Western blot analysis. Two hemolytic forms (70 and 60 kDa) of SLO were identified. SpeB was detected as a 44-kDa precursor form and a 30-kDa mature form. NADase was 50 kDa. SLO protein peaked at 8 h of culture, which corresponded with the hemolytic activity peak. Conversion from precursor to SpeB protein peaked at 14 h of culture. The conversion peak corresponded to the activity expression time. Also, mature SpeB protein peaked at 24 h of culture and corresponded to SpeB activity peak. Electrophoretic analysis clarified the relationship between SLO protein and SpeB protein, although amounts of SLO and SpeB have been reported to be inversely proportional to activity. NADase protein peaked at 12 h of culture, but protein level did not correspond to the peak. Because the NADase protein peak was closer to SpeB activity than SLO protein, our results suggested NADase protein was degraded at 12 h of culture. The time course production of these virulence factors is discussed.
Collapse
|
24
|
Smith CL, Ghosh J, Elam JS, Pinkner JS, Hultgren SJ, Caparon MG, Ellenberger T. Structural basis of Streptococcus pyogenes immunity to its NAD+ glycohydrolase toxin. Structure 2011; 19:192-202. [PMID: 21300288 DOI: 10.1016/j.str.2010.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 12/02/2010] [Accepted: 12/06/2010] [Indexed: 12/31/2022]
Abstract
The virulence of Gram-positive bacteria is enhanced by toxins like the Streptococcus pyogenes β-NAD(+) glycohydrolase known as SPN. SPN-producing strains of S. pyogenes additionally express the protein immunity factor for SPN (IFS), which forms an inhibitory complex with SPN. We have determined crystal structures of the SPN-IFS complex and IFS alone, revealing that SPN is structurally related to ADP-ribosyl transferases but lacks the canonical binding site for protein substrates. SPN is instead a highly efficient glycohydrolase with the potential to deplete cellular levels of β-NAD(+). The protective effect of IFS involves an extensive interaction with the SPN active site that blocks access to β-NAD(+). The conformation of IFS changes upon binding to SPN, with repacking of an extended C-terminal α helix into a compact shape. IFS is an attractive target for the development of novel bacteriocidal compounds functioning by blocking the bacterium's self-immunity to the SPN toxin.
Collapse
Affiliation(s)
- Craig L Smith
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63110-1093, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Sperry JB, Smith CL, Caparon MG, Ellenberger T, Gross ML. Mapping the protein-protein interface between a toxin and its cognate antitoxin from the bacterial pathogen Streptococcus pyogenes. Biochemistry 2011; 50:4038-45. [PMID: 21466233 PMCID: PMC3096607 DOI: 10.1021/bi200244k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein--protein interactions are ubiquitous and essential for most biological processes. Although new proteomic technologies have generated large catalogs of interacting proteins, considerably less is known about these interactions at the molecular level, information that would aid in predicting protein interactions, designing therapeutics to alter these interactions, and understanding the effects of disease-producing mutations. Here we describe mapping the interacting surfaces of the bacterial toxin SPN (Streptococcus pyogenes NAD(+) hydrolase) in complex with its antitoxin IFS (immunity factor for SPN) by using hydrogen-deuterium amide exchange and electrospray ionization mass spectrometry. This approach affords data in a relatively short time for small amounts of protein, typically 5-7 pmol per analysis. The results show a good correspondence with a recently determined crystal structure of the IFS--SPN complex but additionally provide strong evidence for a folding transition of the IFS protein that accompanies its binding to SPN. The outcome shows that mass-based chemical footprinting of protein interaction surfaces can provide information about protein dynamics that is not easily obtained by other methods and can potentially be applied to large, multiprotein complexes that are out of range for most solution-based methods of biophysical analysis.
Collapse
Affiliation(s)
- Justin B Sperry
- Analytical Research and Development, Pfizer Inc., Chesterfield, Missouri 63017, United States
| | | | | | | | | |
Collapse
|
26
|
Properties of metabolic substances produced by group A streptococcus from a food-borne epidemic. J Infect Chemother 2010; 17:462-7. [PMID: 21190121 DOI: 10.1007/s10156-010-0197-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
Abstract
Here we report a large food poisoning outbreak by Streptococcus pyogenes that occurred in Kanagawa, Japan, in July 2005. To compare cases of type T-B3264 (Chiba) and type T-28 (Tokyo) reported to date, we studied the properties and activity of the major virulence factors produced by Streptococcus pyogenes type T-25 (Kanagawa): hemolysin, cysteine protease streptococcal pyrogenic exotoxin B (SpeB), and NAD glycohydrolase (NADase). These virulence factors were also analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The titer of hemolysin was 9 50% hemolytic dose (HD(50)) per milliliter (HD(50)/ml) for T-25, 173 HD(50)/ml for T-28, and 147 HD(50)/ml for T-B3264. The hemolytic titer of T-25 was very low compared with those of T-28 and T-B3264. Each hemolysin produced by the three strains was dependent on its reductant, and its properties differed among strains. The major hemolysin of T-25 was identified as streptolysin O (SLO), because cholesterol or γ-globulin, but not phospholipids, inhibited its hemolysis. In contrast, the major hemolysin of T-28 and T-B3264 was streptolysin S (SLS). Although the SpeB activity of T-25 (4.8 U/ml) was lower than that of T-B3264, its NADase activity (19.1 U) was the largest of the three strains. The conversion from the SpeB precursor to mature SpeB was confirmed by SDS-PAGE analysis of T-25 at 6 h of culture; no conversion was identified for T-28 and T-B3264 at 6 h. SpeB of T-25 was converted quickly, most likely because of the degradation of SLO by SpeB, thereby resulting in the very low hemolytic titer of T-25. These results suggest that the three strains have diverse properties and activities of major virulence factors. The specific interactions of these virulence factors are thought to be involved in the pathosis of these strains.
Collapse
|
27
|
Xu X, Zhang L, Luo Z, Shen D, Wu H, Peng L, Song J, Zhang Y. Metal ions binding to NAD-glycohydrolase from the venom of Agkistrodon acutus: regulation of multicatalytic activity. Metallomics 2010; 2:480-9. [PMID: 21072348 DOI: 10.1039/c0mt00017e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
AA-NADase from Agkistrodon acutus venom is a unique multicatalytic enzyme with both NADase and AT(D)Pase activities. Among all identified NADases, only AA-NADase contains Cu(2+) ions that are essential for its multicatalytic activity. In this study, the interactions between divalent metal ions and AA-NADase and the effects of metal ions on its structure and activity have been investigated by equilibrium dialysis, isothermal titration calorimetry, fluorescence, circular dichroism, dynamic light scattering and HPLC. The results show that AA-NADase has two classes of Cu(2+) binding sites, one activator site with high affinity and approximately six inhibitor sites with low affinity. Cu(2+) ions function as a switch for its NADase activity. In addition, AA-NADase has one Mn(2+) binding site, one Zn(2+) binding site, one strong and two weak Co(2+) binding sites, and two strong and six weak Ni(2+) binding sites. Metal ion binding affinities follow the trend Cu(2+) > Ni(2+) > Mn(2+) > Co(2+) > Zn(2+), which accounts for the existence of one Cu(2+) in the purified AA-NADase. Both NADase and ADPase activities of AA-NADase do not have an absolute requirement for Cu(2+), and all tested metal ions activate its NADase and ADPase activities and the activation capacity follows the trend Zn(2+) > Mn(2+) > Cu(2+) ~Co(2+) > Ni(2+). Metal ions serve as regulators for its multicatalytic activity. Although all tested metal ions have no obvious effects on the global structure of AA-NADase, Cu(2+)- and Zn(2+)-induced conformational changes around some Trp residues have been observed. Interestingly, each tested metal ion has a very similar activation of both NADase and ADPase activities, suggesting that the two different activities probably occur at the same site.
Collapse
Affiliation(s)
- Xiaolong Xu
- Department of Chemistry, University of Science and Technology of China, Hefei, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Variation in Streptococcus pyogenes NAD+ glycohydrolase is associated with tissue tropism. J Bacteriol 2010; 192:3735-46. [PMID: 20494994 DOI: 10.1128/jb.00234-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Streptococcus pyogenes is an important pathogen that causes a variety of diseases. The most common infections involve the throat (pharyngitis) or skin (impetigo); however, the factors that determine tissue tropism and severity are incompletely understood. The S. pyogenes NAD(+) glycohydrolase (SPN) is a virulence factor that has been implicated in contributing to the pathogenesis of severe infections. However, the role of SPN in determining the bacterium's tissue tropism has not been evaluated. In this report, we examine the sequences of spn and its endogenous inhibitor ifs from a worldwide collection of S. pyogenes strains. Analysis of average pairwise nucleotide diversity, average number of nucleotide differences, and ratio of nonsynonymous to synonymous substitutions revealed significant diversity in spn and ifs. Application of established models of molecular evolution shows that SPN is evolving under positive selection and diverging into NAD(+) glycohydrolase (NADase)-active and -inactive subtypes. Additionally, the NADase-inactive SPN subtypes maintain the characteristics of a functional gene while ifs becomes a pseudogene. Thus, NADase-inactive SPN continues to evolve under functional constraint. Furthermore, NADase activity did not correlate with invasive disease in our collection but was associated with tissue tropism. The ability to cause infection at both the pharynx and the skin ("generalist" strains) is correlated with NADase-active SPN, while the preference for causing infection at either the throat or the skin ("specialist" strains) is associated with NADase-inactive SPN. These findings suggest that SPN has a NADase-independent function and prompt a reevaluation of the role of SPN in streptococcal pathogenesis.
Collapse
|
29
|
Tatsuno I, Isaka M, Minami M, Hasegawa T. NADase as a target molecule of in vivo suppression of the toxicity in the invasive M-1 group A Streptococcal isolates. BMC Microbiol 2010; 10:144. [PMID: 20470439 PMCID: PMC2887803 DOI: 10.1186/1471-2180-10-144] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 05/17/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND NAD-glycohydrolase (NADase) secreted by M-1 group A streptococcal (GAS) isolates are suspected as one of the virulence factors to cause severe invasive disease including streptococcal toxic shock-like syndrome (STSS). M-1 GAS strains were divided into three groups based on NADase activity: high activity, low activity and no activity in our previous report. RESULTS The representative high activity isolates taken from STSS patients showed higher virulence compared with isolates from the low activity group, when used to infect mice. The knockout mutant of the nga gene, which encodes NADase also showed reduced virulence in a mouse infection study. The cloned nga gene was able to significantly complement the lost virulence. In addition, the solution containing purified recombinant IFS, which is an inhibitor of NADase, partially rescued mice infected with S. pyogenes. CONCLUSIONS These results indicate that NADase is important for the virulence of S. pyogenes in vivo and is the potential target to suppress the virulence.
Collapse
Affiliation(s)
- Ichiro Tatsuno
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi Mizuho-cho Mizuho-ku, Nagoya 467-8601, Japan
| | | | | | | |
Collapse
|
30
|
Ghosh J, Anderson PJ, Chandrasekaran S, Caparon MG. Characterization of Streptococcus pyogenes beta-NAD+ glycohydrolase: re-evaluation of enzymatic properties associated with pathogenesis. J Biol Chem 2009; 285:5683-94. [PMID: 20018886 DOI: 10.1074/jbc.m109.070300] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gram-positive pathogen Streptococcus pyogenes injects a beta-NAD(+) glycohydrolase (SPN) into the cytosol of an infected host cell using the cytolysin-mediated translocation pathway. In this compartment, SPN accelerates the death of the host cell by an unknown mechanism that may involve its beta-NAD(+)-dependent enzyme activities. SPN has been reported to possess the unique characteristic of not only catalyzing hydrolysis of beta-NAD(+), but also carrying out ADP-ribosyl cyclase and ADP-ribosyltransferase activities, making SPN the only beta-NAD(+) glycohydrolase that can catalyze all of these reactions. With the long term goal of understanding how these activities may contribute to pathogenesis, we have further characterized the enzymatic activity of SPN using highly purified recombinant protein. Kinetic studies of the multiple activities of SPN revealed that SPN possessed only beta-NAD(+) hydrolytic activity and lacked detectable ADP-ribosyl cyclase and ADP-ribosyltransferase activities. Similarly, SPN was unable to catalyze cyclic ADPR hydrolysis, and could not catalyze methanolysis or transglycosidation. Kinetic analysis of product inhibition by recombinant SPN demonstrated an ordered uni-bi mechanism, with ADP-ribose being released as a second product. SPN was unaffected by product inhibition using nicotinamide, suggesting that this moiety contributes little to the binding energy of the substrate. Upon transformation, SPN was toxic to Saccharomyces cerevisiae, whereas a glycohydrolase-inactive SPN allowed for viability. Taken together, these data suggest that SPN functions exclusively as a strict beta-NAD(+) glycohydrolase during pathogenesis.
Collapse
Affiliation(s)
- Joydeep Ghosh
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|