1
|
Jiang L, Huang P, Li A, Fen B, Zhong Y, Tang C, Wu G, Wang W, Chen Y, Pan J, Tang G, Pu H. Discovery of phenoxazine congeners as novel α-glucosidase inhibitors and identification of their biosynthetic gene cluster from Streptomyces sp. CB00316. Arch Microbiol 2025; 207:132. [PMID: 40299064 DOI: 10.1007/s00203-025-04337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
α-Glucosidase is considered an ideal target for the treatment of type 2 diabetes mellitus. Streptomyces species are known to produce a plethora of bioactive metabolites. On the basis of genomic information, the one strain many compounds (OSMAC) strategy and various chromatographic separation techniques, two compounds, bezerramycin A (1) and elloxazinone A (2), were identified from among Streptomyces sp. CB00316 metabolites. The α-glucosidase inhibitory activities of the isolated compounds were evaluated and compound 2 showed the strongest activity, with an IC50 value of 74.31 ± 3.74 µM. In silico molecular docking and molecular dynamics simulations confirmed the in vitro activities of these α-glucosidase inhibitors. In addition, we investigated the biosynthetic gene clusters and metabolic pathways of compounds 1 and 2. These findings highlight the potential of phenoxazines as lead compounds to combat the development of type 2 diabetes.
Collapse
Affiliation(s)
- Lin Jiang
- Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, 410013, China
- Changsha Concord Herbs Cultivation Technology Co., Ltd, Changsha, 410221, China
| | - Pingzhi Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, China‑Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, 418000, China
| | - Aijie Li
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, China‑Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, 418000, China
| | - Bin Fen
- Huaihua Hospital of Traditional Chinese Medicine, Huaihua, 418000, China
| | - Yani Zhong
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, China‑Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, 418000, China
| | - Caijun Tang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, China‑Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, 418000, China
| | - Guangling Wu
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, China‑Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, 418000, China
| | - Wenlei Wang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, China‑Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, 418000, China
| | - Yuhan Chen
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, China‑Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, 418000, China
| | - Jian Pan
- College of Pharmacy, Hunan Vocational College of Science and Technology, Changsha, 410004, China.
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, 410013, China.
| | - Genyun Tang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, China‑Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, 418000, China.
| | - Hong Pu
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, China‑Pakistan International Science and Technology Innovation Cooperation Base for Ethnic Medicine Development in Hunan Province, Hunan University of Medicine, Huaihua, 418000, China.
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, 410013, China.
| |
Collapse
|
2
|
Baltz RH. Regulation of daptomycin biosynthesis in Streptomyces roseosporus: new insights from genomic analysis and synthetic biology to accelerate lipopeptide discovery and commercial production. Nat Prod Rep 2024; 41:1895-1914. [PMID: 39279757 DOI: 10.1039/d4np00024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Covering 2005-2024Daptomycin is a clinically important antibiotic that treats Gram-positive infections of skin and skin structure, bacteremia, and right-sided endocarditis, including those caused by methicillin-resistant Staphylococcus aureus (MRSA). Daptomycin is now generic, and many companies are involved in manufacturing and commercializing this life-saving medicine. There has been much recent interest in improving the daptomycin fermentation of Streptomyces roseosporus by mutagenesis, metabolic engineering, and synthetic biology methods. The genome sequences of two strains discovered and developed at Eli Lilly and Company, a wild-type low-producer and a high-producer induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) mutagenesis, are available for comparitive studies. DNA sequence analysis of the daptomycin biosynthetic gene clusters (BGCs) from these strains indicates that the high producer has two mutations in a large promoter region that drives the transcription of a giant multicistronic mRNA that includes all nine genes involved in daptomycin biosynthesis. The locations of translational start and stop codons strongly suggest that all nine genes are translationally coupled by overlapping stop and start codons or by 70S ribosome scanning. This report also reviews recent studies on this promoter region that have identified at least ten positive or negative regulatory genes suitable to manipulate by metabolic engineering, synthetic biology and focused mutagenesis for strain improvement. Improvements in daptomycin production will also enable high-level production of novel lipopeptide antibiotics identified by genome mining and combinatorial biosynthesis, and accelerate clinical and commercial development of superior lipopeptide antibiotics.
Collapse
Affiliation(s)
- Richard H Baltz
- CognoGen Biotechnology Consulting, 7757 Uliva Way, Sarasota, FL 34238, USA.
| |
Collapse
|
3
|
Quiroga I, Hernández-González JA, Bautista-Rodríguez E, Benítez-Rojas AC. Exploring the Structurally Conserved Regions and Functional Significance in Bacterial N-Terminal Nucleophile (Ntn) Amide-Hydrolases. Int J Mol Sci 2024; 25:6850. [PMID: 38999960 PMCID: PMC11241749 DOI: 10.3390/ijms25136850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 07/14/2024] Open
Abstract
The initial adoption of penicillin as an antibiotic marked the start of exploring other compounds essential for pharmaceuticals, yet resistance to penicillins and their side effects has compromised their efficacy. The N-terminal nucleophile (Ntn) amide-hydrolases S45 family plays a key role in catalyzing amide bond hydrolysis in various compounds, including antibiotics like penicillin and cephalosporin. This study comprehensively analyzes the structural and functional traits of the bacterial N-terminal nucleophile (Ntn) amide-hydrolases S45 family, covering penicillin G acylases, cephalosporin acylases, and D-succinylase. Utilizing structural bioinformatics tools and sequence analysis, the investigation delineates structurally conserved regions (SCRs) and substrate binding site variations among these enzymes. Notably, sixteen SCRs crucial for substrate interaction are identified solely through sequence analysis, emphasizing the significance of sequence data in characterizing functionally relevant regions. These findings introduce a novel approach for identifying targets to enhance the biocatalytic properties of N-terminal nucleophile (Ntn) amide-hydrolases, while facilitating the development of more accurate three-dimensional models, particularly for enzymes lacking structural data. Overall, this research advances our understanding of structure-function relationships in bacterial N-terminal nucleophile (Ntn) amide-hydrolases, providing insights into strategies for optimizing their enzymatic capabilities.
Collapse
Affiliation(s)
- Israel Quiroga
- Department of Life and Health Sciences, Universidad Popular Autónoma del Estado de Puebla, 13 Poniente No. 1927, Barrio de Santiago, Puebla 72410, Mexico
| | - Juan Andrés Hernández-González
- Department of Life and Health Sciences, Universidad Popular Autónoma del Estado de Puebla, 13 Poniente No. 1927, Barrio de Santiago, Puebla 72410, Mexico
| | - Elizabeth Bautista-Rodríguez
- Department of Life and Health Sciences, Universidad Popular Autónoma del Estado de Puebla, 13 Poniente No. 1927, Barrio de Santiago, Puebla 72410, Mexico
- Department of Health Sciences, Universidad Autónoma de Tlaxcala, Sur 11, Barrio de Guardia, Zacatelco 90070, Mexico
| | - Alfredo C Benítez-Rojas
- Department of Life and Health Sciences, Universidad Popular Autónoma del Estado de Puebla, 13 Poniente No. 1927, Barrio de Santiago, Puebla 72410, Mexico
| |
Collapse
|
4
|
Wu W, Kang Y, Hou B, Ye J, Wang R, Wu H, Zhang H. Characterization of a TetR-type positive regulator AtrA for lincomycin production in Streptomyces lincolnensis. Biosci Biotechnol Biochem 2023; 87:786-795. [DOI: doi.org/10.1093/bbb/zbad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2023]
Abstract
ABSTRACT
AtrA belongs to the TetR family and has been well characterized for its roles in antibiotic biosynthesis regulation. Here, we identified an AtrA homolog (AtrA-lin) in Streptomyces lincolnensis. Disruption of atrA-lin resulted in reduced lincomycin production, whereas the complement restored the lincomycin production level to that of the wild-type. In addition, atrA-lin disruption did not affect cell growth and morphological differentiation. Furthermore, atrA-lin disruption hindered the transcription of regulatory gene lmbU, structural genes lmbA and lmbW inside the lincomycin biosynthesis gene cluster, and 2 other regulatory genes, adpA and bldA. Completement of atrA-lin restored the transcription of these genes to varying degrees. Notably, we found that AtrA-lin directly binds to the promoter region of lmbU. Collectively, AtrA-lin positively modulated lincomycin production via both pathway-specific and global regulators. This study offers further insights into the functional diversity of AtrA homologs and the mechanism of lincomycin biosynthesis regulation.
Collapse
Affiliation(s)
- Wei Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , China
- Department of Applied Biology, East China University of Science and Technology , Shanghai , China
| | - Yajing Kang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , China
- Department of Applied Biology, East China University of Science and Technology , Shanghai , China
| | - Bingbing Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , China
- Department of Applied Biology, East China University of Science and Technology , Shanghai , China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , China
- Department of Applied Biology, East China University of Science and Technology , Shanghai , China
| | - Ruida Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , China
- Department of Applied Biology, East China University of Science and Technology , Shanghai , China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , China
- Department of Applied Biology, East China University of Science and Technology , Shanghai , China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology , Shanghai , China
- Department of Applied Biology, East China University of Science and Technology , Shanghai , China
| |
Collapse
|
5
|
Singh P, Kumar A, Chhabra R, Singh K, Kaur J. MSMEG_5850, a stress-induced TetR protein, involved in global transcription regulation in Mycobacterium smegmatis. Future Microbiol 2023; 18:563-580. [PMID: 37284769 DOI: 10.2217/fmb-2022-0238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023] Open
Abstract
Aim: To decipher the role of MSMEG_5850 in the physiology of mycobacteria. Methods: MSMEG_5850 was knocked out and RNA sequencing was performed. MSMEG_5850 protein was purified from the Escherichia coli pET28a system. Electrophoretic mobility shift assay and size exclusion chromatography were used to determine the binding of MSMEG_5850 to its motif and binding stoichiometry. The effect of nutritional stress was monitored. Results: Transcriptome analysis revealed the differential expression of 148 genes in an MSMEG_5850 knockout strain. MSMEG_5850 had control over 50 genes because those genes had a binding motif upstream of their sequence. The electrophoretic mobility shift assay showed MSMEG_5850 bound to its motif as a monomer. MSMEG_5850 was upregulated under nutritional stress and promoted the survival of mycobacteria. Conclusion: The study confirms the role of MSMEG_5850 in global transcriptional regulation.
Collapse
Affiliation(s)
- Parul Singh
- Department of Biotechnology, BMS Block-1, Sector-25, Panjab University, Chandigarh, 160014, India
| | - Arbind Kumar
- Department of Biotechnology, BMS Block-1, Sector-25, Panjab University, Chandigarh, 160014, India
- Current Address: Fellow Scientist, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Ravindresh Chhabra
- Department of Biochemistry, Central University of Punjab, Bathinda, 151001, India
| | - Kashmir Singh
- Department of Biotechnology, BMS Block-1, Sector-25, Panjab University, Chandigarh, 160014, India
| | - Jagdeep Kaur
- Department of Biotechnology, BMS Block-1, Sector-25, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
6
|
Xu W, Sun C, Gao W, Scharf DH, Zhu C, Bu Q, Zhao Q, Li Y. Degradation mechanism of AtrA mediated by ClpXP and its application in daptomycin production in Streptomyces roseosporus. Protein Sci 2023; 32:e4617. [PMID: 36882943 PMCID: PMC10031807 DOI: 10.1002/pro.4617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
The efficiency of drug biosynthesis depends on different transcriptional regulatory pathways in Streptomyces, and the protein degradation system adds another layer of complexity to the regulatory processes. AtrA, a transcriptional regulator in the A-factor regulatory cascade, stimulates the production of daptomycin by binding to the dptE promoter in Streptomyces roseosporus. Using pull-down assays, bacterial two-hybrid system and knockout verification, we demonstrated that AtrA is a substrate for ClpP protease. Furthermore, we showed that ClpX is necessary for AtrA recognition and subsequent degradation. Bioinformatics analysis, truncating mutation, and overexpression proved that the AAA motifs of AtrA were essential for initial recognition in the degradation process. Finally, overexpression of mutated atrA (AAA-QQQ) in S. roseosporus increased the yield of daptomycin by 225% in shake flask and by 164% in the 15 L bioreactor. Thus, improving the stability of key regulators is an effective method to promote the ability of antibiotic synthesis.
Collapse
Affiliation(s)
- Wei‐Feng Xu
- First Affiliated Hospital and Institute of Pharmaceutical BiotechnologyZhejiang University School of MedicineHangzhouChina
- Institute of Pharmaceutical BiotechnologyZhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
| | - Chen‐Fan Sun
- First Affiliated Hospital and Institute of Pharmaceutical BiotechnologyZhejiang University School of MedicineHangzhouChina
- Institute of Pharmaceutical BiotechnologyZhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
| | - Wen‐Li Gao
- First Affiliated Hospital and Institute of Pharmaceutical BiotechnologyZhejiang University School of MedicineHangzhouChina
- Institute of Pharmaceutical BiotechnologyZhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
| | - Daniel H. Scharf
- First Affiliated Hospital and Institute of Pharmaceutical BiotechnologyZhejiang University School of MedicineHangzhouChina
- Institute of Pharmaceutical BiotechnologyZhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
| | - Chen‐Yang Zhu
- First Affiliated Hospital and Institute of Pharmaceutical BiotechnologyZhejiang University School of MedicineHangzhouChina
- Institute of Pharmaceutical BiotechnologyZhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
| | - Qing‐Ting Bu
- First Affiliated Hospital and Institute of Pharmaceutical BiotechnologyZhejiang University School of MedicineHangzhouChina
- Institute of Pharmaceutical BiotechnologyZhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
| | - Qing‐Wei Zhao
- First Affiliated Hospital and Institute of Pharmaceutical BiotechnologyZhejiang University School of MedicineHangzhouChina
| | - Yong‐Quan Li
- First Affiliated Hospital and Institute of Pharmaceutical BiotechnologyZhejiang University School of MedicineHangzhouChina
- Institute of Pharmaceutical BiotechnologyZhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
| |
Collapse
|
7
|
Pan X, Liang H, Zhao X, Zhang Q, Chen L, Yue Z, Yin L, Jin Y, Bai F, Cheng Z, Bartlam M, Wu W. Regulatory and structural mechanisms of PvrA-mediated regulation of the PQS quorum-sensing system and PHA biosynthesis in Pseudomonas aeruginosa. Nucleic Acids Res 2023; 51:2691-2708. [PMID: 36744476 PMCID: PMC10085694 DOI: 10.1093/nar/gkad059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa is capable of causing acute and chronic infections in various host tissues, which depends on its abilities to effectively utilize host-derived nutrients and produce protein virulence factors and toxic compounds. However, the regulatory mechanisms that direct metabolic intermediates towards production of toxic compounds are poorly understood. We previously identified a regulatory protein PvrA that controls genes involved in fatty acid catabolism by binding to palmitoyl-coenzyme A (CoA). In this study, transcriptomic analyses revealed that PvrA activates the Pseudomonas quinolone signal (PQS) synthesis genes, while suppressing genes for production of polyhydroxyalkanoates (PHAs). When palmitic acid was the sole carbon source, mutation of pvrA reduced production of pyocyanin and rhamnolipids due to defective PQS synthesis, but increased PHA production. We further solved the co-crystal structure of PvrA with palmitoyl-CoA and identified palmitoyl-CoA-binding residues. By using pvrA mutants, we verified the roles of the key palmitoyl-CoA-binding residues in gene regulation in response to palmitic acid. Since the PQS signal molecules, rhamnolipids and PHA synthesis pathways are interconnected by common metabolic intermediates, our results revealed a regulatory mechanism that directs carbon flux from carbon/energy storage to virulence factor production, which might be crucial for the pathogenesis.
Collapse
Affiliation(s)
- Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Han Liang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.,Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China
| | - Xinrui Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qionglin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.,Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China
| | - Lei Chen
- Department of Plant Biology and Ecology, College of Life Science Nankai University, Tianjin 300071 China
| | - Zhuo Yue
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Liwen Yin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.,Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China.,Nankai International Advanced Research Institute (Shenzhen Futian), Shenzhen, Guangdong 518045, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Sagarika MS, Parameswaran C, Senapati A, Barala J, Mitra D, Prabhukarthikeyan SR, Kumar A, Nayak AK, Panneerselvam P. Lytic polysaccharide monooxygenases (LPMOs) producing microbes: A novel approach for rapid recycling of agricultural wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150451. [PMID: 34607097 DOI: 10.1016/j.scitotenv.2021.150451] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Out of the huge quantity of agricultural wastes produced globally, rice straw is one of the most abundant ligno-cellulosic waste. For efficient utilization of these wastes, several cost-effective biological processes are available. The practice of field level in-situ or ex-situ decomposition of rice straw is having less degree of adoption due to its poor decomposition ability within a short time span between rice harvest and sowing of the next crop. Agricultural wastes including rice straw are in general utilized by using lignocellulose degrading microbes for industrial metabolite or compost production. However, bioconversion of crystalline cellulose and lignin present in the waste, into simple molecules is a challenging task. To resolve this issue, researchers have identified a novel new generation microbial enzyme i.e., lytic polysaccharide monooxygenases (LPMOs) and reported that the combination of LPMOs with other glycolytic enzymes are found efficient. This review explains the progress made in LPMOs and their role in lignocellulose bioconversion and the possibility of exploring LPMOs producers for rapid decomposition of agricultural wastes. Also, it provides insights to identify the knowledge gaps in improving the potential of the existing ligno-cellulolytic microbial consortium for efficient utilization of agricultural wastes at industrial and field levels.
Collapse
Affiliation(s)
- Mahapatra Smruthi Sagarika
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India; Indira Gandhi Agricultural University, Raipur, Chhattisgarh 492012, India
| | | | - Ansuman Senapati
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | - Jatiprasad Barala
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | - Debasis Mitra
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | | | - Anjani Kumar
- ICAR - National Rice Research Institute, Cuttack, Odisha 753006, India
| | | | | |
Collapse
|
9
|
Pietrzyk-Brzezinska AJ, Cociurovscaia A. Structures of the TetR-like transcription regulator RcdA alone and in complexes with ligands. Proteins 2021; 90:33-44. [PMID: 34288132 DOI: 10.1002/prot.26183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/20/2021] [Accepted: 07/11/2021] [Indexed: 01/25/2023]
Abstract
RcdA is a helix-turn-helix (HTH) transcriptional regulator belonging to the TetR family. The protein regulates the transcription of curlin subunit gene D, the master regulator of biofilm formation. Moreover, it was predicted that it might be involved in the regulation of up to 27 different genes. However, an effector of RcdA and the environmental conditions which trigger RcdA action remain unknown. Herein, we report the first crystal structures of RcdA in complexes with ligands, trimethylamine N-oxide (TMAO) and tris(hydroxymethyl)aminomethane (Tris), which might serve as RcdA effectors. Based on these structures, the ligand-binding pocket of RcdA was characterized in detail. The conservation of the amino acid residues forming the ligand-binding cavity was analyzed and the comprehensive search for RcdA structural homologs was performed. This analysis indicated that RcdA is structurally similar to multidrug-binding TetR family members, however, its ligand-binding cavity differs significantly from the pockets of its structural homologs. The interaction of RcdA with TMAO and Tris indicates that the protein might be involved in alkaline stress response.
Collapse
Affiliation(s)
- Agnieszka J Pietrzyk-Brzezinska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Anna Cociurovscaia
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
10
|
Kasai D. Poly( cis-1,4-isoprene)-cleavage enzymes from natural rubber-utilizing bacteria. Biosci Biotechnol Biochem 2020; 84:1089-1097. [PMID: 32114907 DOI: 10.1080/09168451.2020.1733927] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Natural rubber and synthetic poly(cis-1,4-isoprene) are used industrially in the world. Microbial utilization for the isoprene rubbers has been reported in gram-positive and gram-negative bacteria. Poly(cis-1,4-isoprene)-cleavage enzymes that are secreted by rubber-utilizing bacteria cleave the poly(cis-1,4-isoprene) chain to generate low-molecular-weight oligo(cis-1,4-isoprene) derivatives containing aldehyde and ketone groups. The resulting products are converted to the compounds including carboxyl groups, which could then be further catabolized through β-oxidation pathway. One of poly(cis-1,4-isoprene)-cleavage enzymes is latex-clearing protein (Lcp) that was found in gram-positive rubber degraders including Streptomyces, Gordonia, Rhodococcus, and Nocardia species. The other one is rubber oxygenase A and B (RoxA/RoxB) which have been identified from gram-negative rubber degraders such as Steroidobacter cummioxidans and Rhizobacter gummiphilus. Recently, the transcriptional regulation mechanisms for Lcp-coding genes in gram-positive bacteria have been characterized. Here, the current knowledge of genes and enzymes for the isoprene rubber catabolism were summarized.
Collapse
Affiliation(s)
- Daisuke Kasai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| |
Collapse
|
11
|
Xia H, Zhan X, Mao XM, Li YQ. The regulatory cascades of antibiotic production in Streptomyces. World J Microbiol Biotechnol 2020; 36:13. [PMID: 31897764 DOI: 10.1007/s11274-019-2789-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/18/2019] [Indexed: 01/27/2023]
Abstract
Streptomyces is famous for its capability to produce the most abundant antibiotics in all kingdoms. All Streptomyces antibiotics are natural products, whose biosynthesis from the so-called gene clusters are elaborately regulated by pyramidal transcriptional regulatory cascades. In the past decades, scientists have striven to unveil the regulatory mechanisms involved in antibiotic production in Streptomyces. Here we mainly focus on three aspects of the regulation on antibiotic production. 1. The onset of antibiotic production triggered by hormones and their coupled receptors as regulators; 2. The cascades of global and pathway-specific regulators governing antibiotic production; 3. The feedback regulation of antibiotics and/or intermediates on the gene cluster expression for their coordinated production. This review will summarize how the antibiotic production is stringently regulated in Streptomyces based on the signaling, and lay a theoretical foundation for improvement of antibiotic production and potentially drug discovery.
Collapse
Affiliation(s)
- Haiyang Xia
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, 318000, China
| | - Xinqiao Zhan
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, 318000, China
| | - Xu-Ming Mao
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, 318000, China. .,Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Yong-Quan Li
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, 318000, China. .,Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
12
|
AveI, an AtrA homolog of Streptomyces avermitilis, controls avermectin and oligomycin production, melanogenesis, and morphological differentiation. Appl Microbiol Biotechnol 2019; 103:8459-8472. [PMID: 31422450 DOI: 10.1007/s00253-019-10062-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 01/22/2023]
Abstract
Streptomyces avermitilis is well known as the producer of anthelmintic agent avermectins, which are widely used in agriculture, veterinary medicine, and human medicine. aveI encodes a TetR-family regulator, which is the homolog of AtrA. It was reported that deletion of aveI caused enhanced avermectin production. In this study, we investigated the regulatory function of the AveI in S. avermitilis. By binding to the 15-nt palindromic sequence in the promoter regions, AveI directly regulates at least 35 genes. AveI represses avermectin production by directly regulating the transcription of the cluster-situated regulator gene aveR and structural genes aveA1, aveA3, and aveD. AveI represses oligomycin production by repressing the CSR gene olmRII and structural genes olmC. AveI activates melanin biosynthesis by activating the expression of melC1C2 operon. AveI activates morphological differentiation by activating the expression of ssgR and ssgD genes, repressing the expression of wblI gene. Besides, AveI regulates many genes involved in primary metabolism, including substrates transport, the metabolism of amino acids, lipids, and carbohydrates. Therefore, AveI functions as a global regulator in S. avermitilis, controls not only secondary metabolism and morphological differentiation, but also primary metabolism.
Collapse
|
13
|
Lopatniuk M, Myronovskyi M, Nottebrock A, Busche T, Kalinowski J, Ostash B, Fedorenko V, Luzhetskyy A. Effect of “ribosome engineering” on the transcription level and production of S. albus indigenous secondary metabolites. Appl Microbiol Biotechnol 2019; 103:7097-7110. [DOI: 10.1007/s00253-019-10005-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/11/2019] [Accepted: 06/30/2019] [Indexed: 01/31/2023]
|
14
|
Murarka P, Bagga T, Singh P, Rangra S, Srivastava P. Isolation and identification of a TetR family protein that regulates the biodesulfurization operon. AMB Express 2019; 9:71. [PMID: 31127394 PMCID: PMC6534649 DOI: 10.1186/s13568-019-0801-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/16/2019] [Indexed: 11/10/2022] Open
Abstract
Biodesulfurization helps in removal of sulfur from organosulfur present in petroleum fractions. All microorganisms isolated to date harbor a desulfurization operon consisting of three genes dszA, -B and -C which encode for monooxygenases (DszA & C) and desulfinase (DszB). Most of the studies have been carried out using dibenzothiophene as the model organosulfur compound, which is converted into 2 hydroxybiphenyl by a 4S pathway which maintains the calorific value of fuel. There are few studies reported on the regulation of this operon. However, there are no reports on the proteins which can enhance the activity of the operon. In the present study, we used in vitro and in vivo methods to identify a novel TetR family transcriptional regulator from Gordonia sp. IITR100 which functions as an activator of the dsz operon. Activation by TetR family regulator resulted in enhanced levels of desulfurization enzymes in Gordonia sp. IITR100. Activation was observed only when the 385 bp full length promoter was used. Upstream sequences between - 385 and - 315 were found to be responsible for activation. We provide evidence that the TetR family transcription regulator serves as an activator in other biodesulfurizing microorganisms such as Rhodococcus erythropolis IGTS8 and heterologous host Escherichia coli. This is the first report on the isolation of a possible transcriptional regulator that activates the desulfurization operon resulting in improved biodesulfurization.
Collapse
|
15
|
van der Heul HU, Bilyk BL, McDowall KJ, Seipke RF, van Wezel GP. Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era. Nat Prod Rep 2019; 35:575-604. [PMID: 29721572 DOI: 10.1039/c8np00012c] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2000 to 2018 The antimicrobial activity of many of their natural products has brought prominence to the Streptomycetaceae, a family of Gram-positive bacteria that inhabit both soil and aquatic sediments. In the natural environment, antimicrobial compounds are likely to limit the growth of competitors, thereby offering a selective advantage to the producer, in particular when nutrients become limited and the developmental programme leading to spores commences. The study of the control of this secondary metabolism continues to offer insights into its integration with a complex lifecycle that takes multiple cues from the environment and primary metabolism. Such information can then be harnessed to devise laboratory screening conditions to discover compounds with new or improved clinical value. Here we provide an update of the review we published in NPR in 2011. Besides providing the essential background, we focus on recent developments in our understanding of the underlying regulatory networks, ecological triggers of natural product biosynthesis, contributions from comparative genomics and approaches to awaken the biosynthesis of otherwise silent or cryptic natural products. In addition, we highlight recent discoveries on the control of antibiotic production in other Actinobacteria, which have gained considerable attention since the start of the genomics revolution. New technologies that have the potential to produce a step change in our understanding of the regulation of secondary metabolism are also described.
Collapse
|
16
|
Zheng Y, Sun CF, Fu Y, Chen XA, Li YQ, Mao XM. Dual regulation between the two-component system PhoRP and AdpA regulates antibiotic production in Streptomyces. J Ind Microbiol Biotechnol 2019; 46:725-737. [PMID: 30712141 DOI: 10.1007/s10295-018-02127-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/19/2018] [Indexed: 01/03/2023]
Abstract
Antibiotic production during secondary metabolism in Streptomyces spp. is elaborately controlled by multiple environmental signals and intracellular cascades. These include the two-component system PhoRP responding to phosphate starvation and a conserved signaling pathway mediated by the pleiotropic regulator AdpA. However, little information exists about how these two pathways work together for secondary metabolite production of Streptomyces. Herein, we report the dual regulation from the phosphate starvation-responsive regulator PhoP and AdpA on atrA promoter (atrAp) for the production of daptomycin, an antibiotic produced by Streptomyces roseosporus. We found that PhoP directly binds to atrAp, positively regulates atrA expression and thus daptomycin production. We also observed positive auto-regulation of phoRP expression during fermentation for daptomycin production. Moreover, partial overlap between PhoP- and AdpA-binding sites on atrAp was observed, which results in partial competitive binding between these two regulators. This partial overlapping and competition between PhoP and AdpA was further confirmed by mutations and binding assays. In summary, our findings have revealed dual regulation of PhoP and AdpA on the same promoter for antibiotic production in Streptomyces. This mechanism would be beneficial to further environment-responsive fermentation optimization for antibiotic production.
Collapse
Affiliation(s)
- Yang Zheng
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China
| | - Chen-Fan Sun
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China
| | - Yu Fu
- School of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xin-Ai Chen
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China
| | - Yong-Quan Li
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, 310058, China. .,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China.
| | - Xu-Ming Mao
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, 310058, China. .,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Le Roes-Hill M, Durrell K, Prins A, Meyers PR. Streptosporangium minutum sp. nov., isolated from garden soil exposed to microwave radiation. J Antibiot (Tokyo) 2018. [PMID: 29515231 DOI: 10.1038/s41429-018-0036-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The actinobacterium, strain M26T, was isolated from garden soil that was pre-treated with microwave radiation. The soil sample was collected in Roodepoort, Gauteng Province, South Africa as part of an antibiotic-screening programme. The isolate produced branched vegetative mycelium with sporangiophores bearing small sporangia ranging from 3 to 6 μm in diameter. Rapid genus identification revealed that the isolate belongs to the genus Streptosporangium. To confirm this result, the strain was subjected to polyphasic taxonomic characterisation. Chemotaxonomic characteristics were as follows: meso-DAP in the peptidoglycan, the whole-cell hydrolysate yielded madurose, predominant menaquinones were MK9 (21%), MK9(H2) (40%), MK9(H4) (31%) and MK9(H6) (3%); the polar lipid profile included an aminolipid, phosphoglycolipids, phosphatidylethanolamine, and phosphatidylmonomethylethanolamine. In addition, the fatty acid profile showed the presence of C16:0 (12.8%), C17:1ω8c (14.2%), and 10-methyl-C17:0 (15.8%). Furthermore, 16S rRNA gene sequence phylogenetic analysis showed that the strain is closely related to members of the genus Streptosporangium, which supports its classification within the family Streptosporangiaceae. Strain M26T exhibited antibiosis against a range of pathogenic bacteria, including, but not limited to Acinetobacter baumannii ATCC 19606T, Enterobacter cloacae subsp. cloacae ATCC BAA-1143, Enterococcus faecalis ATCC 51299 (vancomycin resistant), Escherichia coli ATCC 25922, Listeria monocytogenes ATCC 19111, Mycobacterium tuberculosis H37RvT, Pseudomonas aeruginosa ATCC 27853, Salmonella enterica subsp. arizonae ATCC 13314T, and the methicillin-resistant Staphylococcus aureus subsp. aureus ATCC 33591 (MRSA). The name Streptosporangium minutum is proposed with the type strain M26T (=LMG 28850T =NRRL B-65295T).
Collapse
Affiliation(s)
- Marilize Le Roes-Hill
- Biocatalysis and Technical Biology Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville, 7535, South Africa.
| | - Kim Durrell
- Biocatalysis and Technical Biology Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville, 7535, South Africa.,Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Alaric Prins
- Biocatalysis and Technical Biology Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, PO Box 1906, Bellville, 7535, South Africa.,Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Bellville, 7535, South Africa
| | - Paul R Meyers
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch, 7701, Cape Town, South Africa
| |
Collapse
|
18
|
Jiang M, Yin M, Wu S, Han X, Ji K, Wen M, Lu T. GdmRIII, a TetR Family Transcriptional Regulator, Controls Geldanamycin and Elaiophylin Biosynthesis in Streptomyces autolyticus CGMCC0516. Sci Rep 2017; 7:4803. [PMID: 28684749 PMCID: PMC5500506 DOI: 10.1038/s41598-017-05073-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/24/2017] [Indexed: 11/13/2022] Open
Abstract
Geldanamycin and elaiophylin are co-produced in several Streptomyces strains. However, the regulation of their biosynthesis is not fully understood yet. Herein the function of a TetR family regulator GdmRIII, which is located in the biosynthetic gene cluster of geldanamycin, was studied to understand the regulatory mechanism of geldanamycin biosynthesis in Streptomyces autolyticus CGMCC0516. The production of geldanamycin decreased substantially in a ΔgdmRIII mutant and the yield of three compounds which were thought to be geldanamycin congeners greatly increased. Surprisingly, the structural elucidation of these compounds showed that they were elaiophylin and its analogues, which implied that GdmRIII not only played a positive regulatory role in the biosynthesis of geldanamycin, but also played a negative role in elaiophylin biosynthesis. GdmRIII affected the expression of multiple genes in both gene clusters, and directly regulated the expression of gdmM, gdmN, and elaF by binding to the promoter regions of these three genes. A conserved non-palindromic sequence was found among the binding sites of elaF. Our findings suggested that the biosynthetic pathways of geldanamycin and elaiophylin were connected through GdmRIII, which might provide a way for Streptomyces to coordinate the biosynthesis of these compounds for better adapting to environment changes.
Collapse
Affiliation(s)
- MingXing Jiang
- Yunnan Institute of Microbiology, Yunnan University, 2 North Cui Hu Road, Kunming, Yunnan, 650091, China
| | - Min Yin
- Yunnan Institute of Microbiology, Yunnan University, 2 North Cui Hu Road, Kunming, Yunnan, 650091, China
| | - ShaoHua Wu
- Yunnan Institute of Microbiology, Yunnan University, 2 North Cui Hu Road, Kunming, Yunnan, 650091, China
| | - XiuLin Han
- Yunnan Institute of Microbiology, Yunnan University, 2 North Cui Hu Road, Kunming, Yunnan, 650091, China
| | - KaiYan Ji
- Yunnan Institute of Microbiology, Yunnan University, 2 North Cui Hu Road, Kunming, Yunnan, 650091, China
| | - MengLiang Wen
- Yunnan Institute of Microbiology, Yunnan University, 2 North Cui Hu Road, Kunming, Yunnan, 650091, China.
| | - Tao Lu
- Yunnan Institute of Microbiology, Yunnan University, 2 North Cui Hu Road, Kunming, Yunnan, 650091, China.
| |
Collapse
|
19
|
Zhang Y, Lin CY, Li XM, Tang ZK, Qiao J, Zhao GR. DasR positively controls monensin production at two-level regulation in Streptomyces cinnamonensis. J Ind Microbiol Biotechnol 2016; 43:1681-1692. [PMID: 27718094 DOI: 10.1007/s10295-016-1845-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023]
Abstract
The polyether ionophore antibiotic monensin is produced by Streptomyces cinnamonensis and is used as a coccidiostat for chickens and growth-promoting agent for cattle. Monensin biosynthetic gene cluster has been cloned and partially characterized. The GntR-family transcription factor DasR regulates antibiotic production and morphological development in Streptomyces coelicolor and Saccharopolyspora erythraea. In this study, we identified and characterized the two-level regulatory cascade of DasR to monensin production in S. cinnamonensis. Forward and reverse genetics by overexpression and antisense RNA silence of dasR revealed that DasR positively controls monensin production under nutrient-rich condition. Electrophoresis mobility shift assay (EMSA) showed that DasR protein specifically binds to the promoter regions of both pathway-specific regulatory gene monRII and biosynthetic genes monAIX, monE and monT. Semi-quantitative RT-PCR further confirmed that DasR upregulates the transcriptional levels of these genes during monensin fermentation. Subsequently, co-overexpressed dasR with pathway-specific regulatory genes monRI, monRII or monH greatly improved monensin production.
Collapse
Affiliation(s)
- Yue Zhang
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300072, China
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, University, Tianjin, 300072, China
- SynBio Research Platform, Collaborative, Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Chun-Yan Lin
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300072, China
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, University, Tianjin, 300072, China
- SynBio Research Platform, Collaborative, Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Xiao-Mei Li
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300072, China
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, University, Tianjin, 300072, China
- SynBio Research Platform, Collaborative, Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Zheng-Kun Tang
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300072, China
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, University, Tianjin, 300072, China
- SynBio Research Platform, Collaborative, Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Jianjun Qiao
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300072, China
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, University, Tianjin, 300072, China
- SynBio Research Platform, Collaborative, Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Guang-Rong Zhao
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300072, China.
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, University, Tianjin, 300072, China.
- SynBio Research Platform, Collaborative, Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
| |
Collapse
|
20
|
Iwatani S, Ishibashi N, Flores FP, Zendo T, Nakayama J, Sonomoto K. LnqR, a TetR-family transcriptional regulator, positively regulates lacticin Q production in Lactococcus lactis QU 5. FEMS Microbiol Lett 2016; 363:fnw200. [PMID: 27549303 DOI: 10.1093/femsle/fnw200] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2016] [Indexed: 02/07/2023] Open
Abstract
Lacticin Q is an unmodified leaderless bacteriocin produced by Lactococcus lactis QU 5. It has been revealed that the production and self-immunity of lacticin Q are facilitated by a gene cluster lnqQBCDEF The gene for a putative TetR-family transcriptional regulator, termed lnqR, was found nearby the lnqQBCDEF cluster, but its involvement in lacticin Q biosynthesis remained unknown. In this study, we created an LnqR-overexpressing QU 5 recombinant by using lactococcal constitutive promoter P32 The recombinant QU 5 showed enhanced production of and self-immunity to lacticin Q. RT-PCR analysis has revealed that an overexpression of LnqR increases the amounts of lnqQBCDEF transcripts, and these six genes are transcribed as an operon in a single transcriptional unit. Interestingly, LnqR expression and thus lacticin Q production by L. lactis QU 5 was found temperature dependent, while LnzR, an LnqR-homologue, in L. lactis QU 14 was expressed in a similar but not identical manner to LnqR, resulting in dissimilar bacteriocin productivities by these strains. This report demonstrates LnqR as the first TetR-family transcriptional regulator involved in LAB bacteriocin biosynthesis and that, as an exceptional case of TetR-family regulators, LnqR positively regulates the transcription of these biosynthetic genes.
Collapse
Affiliation(s)
- Shun Iwatani
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Naoki Ishibashi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Floirendo P Flores
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan Institute of Food Science and Technology, University of the Philippines Los Baños College, Laguna 4031, Philippines
| | - Takeshi Zendo
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Jiro Nakayama
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Kenji Sonomoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan Department of Functional Metabolic Design, Bio-Architecture Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|
21
|
Balhana RJC, Singla A, Sikder MH, Withers M, Kendall SL. Global analyses of TetR family transcriptional regulators in mycobacteria indicates conservation across species and diversity in regulated functions. BMC Genomics 2015; 16:479. [PMID: 26115658 PMCID: PMC4482099 DOI: 10.1186/s12864-015-1696-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 06/12/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mycobacteria inhabit diverse niches and display high metabolic versatility. They can colonise both humans and animals and are also able to survive in the environment. In order to succeed, response to environmental cues via transcriptional regulation is required. In this study we focused on the TetR family of transcriptional regulators (TFTRs) in mycobacteria. RESULTS We used InterPro to classify the entire complement of transcriptional regulators in 10 mycobacterial species and these analyses showed that TFTRs are the most abundant family of regulators in all species. We identified those TFTRs that are conserved across all species analysed and those that are unique to the pathogens included in the analysis. We examined genomic contexts of 663 of the conserved TFTRs and observed that the majority of TFTRs are separated by 200 bp or less from divergently oriented genes. Analyses of divergent genes indicated that the TFTRs control diverse biochemical functions not limited to efflux pumps. TFTRs typically bind to palindromic motifs and we identified 11 highly significant novel motifs in the upstream regions of divergently oriented TFTRs. The C-terminal ligand binding domain from the TFTR complement in M. tuberculosis showed great diversity in amino acid sequence but with an overall architecture common to other TFTRs. CONCLUSION This study suggests that mycobacteria depend on TFTRs for the transcriptional control of a number of metabolic functions yet the physiological role of the majority of these regulators remain unknown.
Collapse
Affiliation(s)
- Ricardo J C Balhana
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Royal College street, Camden, London, NW1 OTU, UK. .,Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Stag Hill, Guildford, GU2 7XH, UK.
| | - Ashima Singla
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Royal College street, Camden, London, NW1 OTU, UK. .,Indian Institute of Technology Kanpur, Kanpur, India.
| | - Mahmudul Hasan Sikder
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Royal College street, Camden, London, NW1 OTU, UK. .,Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Mike Withers
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Royal College street, Camden, London, NW1 OTU, UK.
| | - Sharon L Kendall
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Royal College street, Camden, London, NW1 OTU, UK.
| |
Collapse
|
22
|
Romero-Rodríguez A, Robledo-Casados I, Sánchez S. An overview on transcriptional regulators in Streptomyces. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1017-39. [PMID: 26093238 DOI: 10.1016/j.bbagrm.2015.06.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/09/2015] [Accepted: 06/12/2015] [Indexed: 12/19/2022]
Abstract
Streptomyces are Gram-positive microorganisms able to adapt and respond to different environmental conditions. It is the largest genus of Actinobacteria comprising over 900 species. During their lifetime, these microorganisms are able to differentiate, produce aerial mycelia and secondary metabolites. All of these processes are controlled by subtle and precise regulatory systems. Regulation at the transcriptional initiation level is probably the most common for metabolic adaptation in bacteria. In this mechanism, the major players are proteins named transcription factors (TFs), capable of binding DNA in order to repress or activate the transcription of specific genes. Some of the TFs exert their action just like activators or repressors, whereas others can function in both manners, depending on the target promoter. Generally, TFs achieve their effects by using one- or two-component systems, linking a specific type of environmental stimulus to a transcriptional response. After DNA sequencing, many streptomycetes have been found to have chromosomes ranging between 6 and 12Mb in size, with high GC content (around 70%). They encode for approximately 7000 to 10,000 genes, 50 to 100 pseudogenes and a large set (around 12% of the total chromosome) of regulatory genes, organized in networks, controlling gene expression in these bacteria. Among the sequenced streptomycetes reported up to now, the number of transcription factors ranges from 471 to 1101. Among these, 315 to 691 correspond to transcriptional regulators and 31 to 76 are sigma factors. The aim of this work is to give a state of the art overview on transcription factors in the genus Streptomyces.
Collapse
Affiliation(s)
- Alba Romero-Rodríguez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico
| | - Ivonne Robledo-Casados
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico.
| |
Collapse
|
23
|
Kim SH, Traag BA, Hasan AH, McDowall KJ, Kim BG, van Wezel GP. Transcriptional analysis of the cell division-related ssg genes in Streptomyces coelicolor reveals direct control of ssgR by AtrA. Antonie van Leeuwenhoek 2015; 108:201-13. [PMID: 26002075 PMCID: PMC4457907 DOI: 10.1007/s10482-015-0479-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/11/2015] [Indexed: 11/26/2022]
Abstract
SsgA-like proteins are a family of actinomycete-specific regulatory proteins that control cell division and spore maturation in streptomycetes. SsgA and SsgB together activate sporulation-specific cell division by controlling the localization of FtsZ. Here we report the identification of novel regulators that control the transcription of the ssgA-like genes. Transcriptional regulators controlling ssg gene expression were identified using a DNA-affinity capture assay. Supporting transcriptional and DNA binding studies showed that the ssgA activator gene ssgR is controlled by the TetR-family regulator AtrA, while the γ-butyrolactone-responsive AdpA (SCO2792) and SlbR (SCO0608) and the metabolic regulator Rok7B7 (SCO6008) were identified as candidate regulators for the cell division genes ssgA, ssgB and ssgG. Transcription of the cell division gene ssgB depended on the sporulation genes whiA and whiH, while ssgR, ssgA and ssgD were transcribed independently of the whi genes. Our work sheds new light on the mechanisms by which sporulation-specific cell division is controlled in Streptomyces.
Collapse
Affiliation(s)
- Songhee H. Kim
- />School of Chemical and Biological Engineering and Institute of Molecular Biology and Genetics, Seoul National University, Kwanak-gu, Seoul, 151-744 Korea
| | - Bjørn A. Traag
- />Bayer CropScience LP, Biologics, 890 Embarcadero Drive, West Sacramento, CA 95605 USA
| | - Ayad H. Hasan
- />Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT UK
| | - Kenneth J. McDowall
- />Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT UK
| | - Byung-Gee Kim
- />School of Chemical and Biological Engineering and Institute of Molecular Biology and Genetics, Seoul National University, Kwanak-gu, Seoul, 151-744 Korea
| | - Gilles P. van Wezel
- />Molecular Biotechnology, Institute of Biology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands
| |
Collapse
|
24
|
Wang W, Tian J, Li L, Ge M, Zhu H, Zheng G, Huang H, Ruan L, Jiang W, Lu Y. Identification of two novel regulatory genes involved in pristinamycin biosynthesis and elucidation of the mechanism for AtrA-p-mediated regulation in Streptomyces pristinaespiralis. Appl Microbiol Biotechnol 2015; 99:7151-64. [PMID: 25957493 DOI: 10.1007/s00253-015-6638-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/19/2015] [Accepted: 04/22/2015] [Indexed: 11/25/2022]
Abstract
In this study, using a transposon-based strategy, two novel regulatory genes were identified as being involved in the biosynthesis of both pristinamycin I (PI) and II (PII) in Streptomyces pristinaespiralis, including a TetR-family regulatory gene atrA-p (SSDG_00466) and an orphan histidine kinase gene SSDG_02492. The mechanism by which AtrA-p exerted a positive role in pristinamycin production was elucidated. We showed that deletion of atrA-p resulted in a delayed production of both PI and PII as well as reduced PII production. Transcriptional analysis integrated with electrophoretic mobility shift assays (EMSAs) demonstrated that AtrA-p played a positive role in pristinamycin production by directly activating the transcription of two cluster-situated regulatory genes, spbR and papR5, which encode a γ-butyrolactone receptor protein and a TetR-family repressor, respectively. The precise AtrA-p-binding sites upstream of these two targets were determined, which allowed the identification of a relatively conserved binding motif comprising two 5-nt inverted repeats separated by a variable 5-nt sequence (5'-GGAAT-n5-ATTCC-3') possibly required for the regulation of AtrA-like regulators in Streptomyces. Base substitutions of the AtrA-p-binding sites on the genome caused similar decreases in spbR and papR5 transcription as those observed in ∆atrA-p. Taken together, herein, a novel mechanism for AtrA-dependent regulation of antibiotic biosynthesis was revealed in S. pristinaespiralis, which is distinct from those of its homologs, AtrA-c from Streptomyces coelicolor, AtrA-g from Streptomyces griseus, and AtrA from Streptomyces roseosporus that perform their effects in antibiotic biosynthesis directly via pathway-specific activator genes or the biosynthetic structural genes.
Collapse
Affiliation(s)
- Wenfang Wang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Li X, Yu T, He Q, McDowall KJ, Jiang B, Jiang Z, Wu L, Li G, Li Q, Wang S, Shi Y, Wang L, Hong B. Binding of a biosynthetic intermediate to AtrA modulates the production of lidamycin by Streptomyces globisporus. Mol Microbiol 2015; 96:1257-71. [PMID: 25786547 DOI: 10.1111/mmi.13004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2015] [Indexed: 11/30/2022]
Abstract
The control of secondary production in streptomycetes involves the funneling of environmental and physiological signals to the cluster-situated (transcriptional) regulators (CSRs) of the biosynthetic genes. For some systems, the binding of biosynthetic products to the CSR has been shown to provide negative feedback. Here we show for the production of lidamycin (C-1027), a clinically relevant antitumor agent, by Streptomyces globisporus that negative feedback can extend to a point higher in the regulatory cascade. We show that the DNA-binding activity of the S. globisporus orthologue of AtrA, which was initially described as a transcriptional activator of actinorhodin biosynthesis in S. coelicolor, is inhibited by the binding of heptaene, a biosynthetic intermediate of lidamycin. Additional experiments described here show that S. globisporus AtrA binds in vivo as well as in vitro to the promoter region of the gene encoding SgcR1, one of the CSRs of lidamycin production. The feedback to the pleiotropic regulator AtrA is likely to provide a mechanism for coordinating the production of lidamycin with that of other secondary metabolites. The activity of AtrA is also regulated by actinorhodin. As AtrA is evolutionarily conserved, negative feedback of the type described here may be widespread within the streptomycetes.
Collapse
Affiliation(s)
- Xingxing Li
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Tengfei Yu
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qing He
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kenneth J McDowall
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Bingya Jiang
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhibo Jiang
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Linzhuan Wu
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Guangwei Li
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qinglian Li
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Songmei Wang
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yuanyuan Shi
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lifei Wang
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Bin Hong
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
26
|
Taylor DL, Ante VM, Bina XR, Howard MF, Bina JE. Substrate-dependent activation of the Vibrio cholerae vexAB RND efflux system requires vexR. PLoS One 2015; 10:e0117890. [PMID: 25695834 PMCID: PMC4335029 DOI: 10.1371/journal.pone.0117890] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/05/2015] [Indexed: 01/08/2023] Open
Abstract
Vibrio cholerae encodes six resistance-nodulation-division (RND) efflux systems which function in antimicrobial resistance, virulence factor production, and intestinal colonization. Among the six RND efflux systems, VexAB exhibited broad substrate specificity and played a predominant role in intrinsic antimicrobial resistance. The VexAB system was encoded in an apparent three gene operon that included vexR; which encodes an uncharacterized TetR family regulator. In this work we examined the role of vexR in vexRAB expression. We found that VexR bound to the vexRAB promoter and vexR deletion resulted in decreased vexRAB expression and increased susceptibility to VexAB antimicrobial substrates. Substrate-dependent induction of vexRAB was dependent on vexR and episomal vexR expression provided a growth advantage in the presence of the VexAB substrate deoxycholate. The expression of vexRAB increased, in a vexR-dependent manner, in response to the loss of RND efflux activity. This suggested that VexAB may function to export intracellular metabolites. Support for this hypothesis was provided by data showing that vexRAB was upregulated in several metabolic mutants including tryptophan biosynthetic mutants that were predicted to accumulate indole. In addition, vexRAB was found to be upregulated in response to exogenous indole and to contribute to indole resistance. The collective results indicate that vexR is required for vexRAB expression in response to VexAB substrates and that the VexAB RND efflux system modulates the intracellular levels of metabolites that could otherwise accumulate to toxic levels.
Collapse
Affiliation(s)
- Dawn L. Taylor
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, Pittsburgh, Pennsylvania, United States of America
| | - Vanessa M. Ante
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, Pittsburgh, Pennsylvania, United States of America
| | - X. Renee Bina
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, Pittsburgh, Pennsylvania, United States of America
| | - Mondraya F. Howard
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, Pittsburgh, Pennsylvania, United States of America
| | - James E. Bina
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
27
|
Mao XM, Luo S, Zhou RC, Wang F, Yu P, Sun N, Chen XX, Tang Y, Li YQ. Transcriptional regulation of the daptomycin gene cluster in Streptomyces roseosporus by an autoregulator, AtrA. J Biol Chem 2015; 290:7992-8001. [PMID: 25648897 DOI: 10.1074/jbc.m114.608273] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Daptomycin is a cyclic lipopeptide antibiotic produced by Streptomyces roseosporus. To reveal the transcriptional regulatory mechanism of daptomycin biosynthesis, we used the biotinylated dptE promoter (dptEp) as a probe to affinity isolate the dptEp-interactive protein AtrA, a TetR family transcriptional regulator, from the proteome of mycelia. AtrA bound directly to dptEp to positively regulate gene cluster expression and daptomycin production. Meanwhile, both ΔatrA and ΔadpA mutants showed bald phenotype and null production of daptomycin. AdpA positively regulated atrA expression by direct interaction with atrA promoter (atrAp), and removal of ArpA in S. roseosporus, a homolog of the A-factor receptor, resulted in accelerated morphological development and increased daptomycin production, suggesting that atrA was the target of AdpA to mediate the A-factor signaling pathway. Furthermore, AtrA was positively autoregulated by binding to its own promoter atrAp. Thus, for the first time at the transcriptional level, we have identified an autoregulator, AtrA, that directly mediates the A-factor signaling pathway to regulate the proper production of daptomycin.
Collapse
Affiliation(s)
- Xu-Ming Mao
- From the College of Life Sciences, Zhejiang University, Hangzhou 310058, China, Department of Chemical and Biomolecular Engineering, UCLA, Los, Angeles, California 90095, the Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou 310058, China, and
| | - Shuai Luo
- From the College of Life Sciences, Zhejiang University, Hangzhou 310058, China, the Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou 310058, China, and
| | - Ri-Cheng Zhou
- From the College of Life Sciences, Zhejiang University, Hangzhou 310058, China, the Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou 310058, China, and
| | - Feng Wang
- From the College of Life Sciences, Zhejiang University, Hangzhou 310058, China, the Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou 310058, China, and
| | - Pin Yu
- From the College of Life Sciences, Zhejiang University, Hangzhou 310058, China, the Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou 310058, China, and
| | - Ning Sun
- From the College of Life Sciences, Zhejiang University, Hangzhou 310058, China, the Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou 310058, China, and
| | - Xiao-Xia Chen
- the Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou 310058, China, and the Hangzhou Huadong Medicine Group Biotechnology Institute Company, Ltd., Hangzhou 310011, China
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, UCLA, Los, Angeles, California 90095
| | - Yong-Quan Li
- From the College of Life Sciences, Zhejiang University, Hangzhou 310058, China, the Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou 310058, China, and
| |
Collapse
|
28
|
Wu H, Chen M, Mao Y, Li W, Liu J, Huang X, Zhou Y, Ye BC, Zhang L, Weaver DT, Zhang B. Dissecting and engineering of the TetR family regulator SACE_7301 for enhanced erythromycin production in Saccharopolyspora erythraea. Microb Cell Fact 2014; 13:158. [PMID: 25391994 PMCID: PMC4258057 DOI: 10.1186/s12934-014-0158-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 10/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Saccharopolyspora erythraea was extensively utilized for the industrial-scale production of erythromycin A (Er-A), a macrolide antibiotic commonly used in human medicine. Yet, S. erythraea lacks regulatory genes in the erythromycin biosynthetic gene (ery) cluster, hampering efforts to enhance Er-A production via the engineering of regulatory genes. RESULTS By the chromosome gene inactivation technique based on homologous recombination with linearized DNA fragments, we have inactivated a number of candidate TetR family transcriptional regulators (TFRs) and identified one TFR (SACE_7301) positively controlling erythromycin biosynthesis in S. erythraea A226. qRT-PCR and EMSA analyses demonstrated that SACE_7301 activated the transcription of erythromycin biosynthetic gene eryAI and the resistance gene ermE by interacting with their promoter regions with low affinities, similar to BldD (SACE_2077) previously identified to regulate erythromycin biosynthesis and morphological differentiation. Therefore, we designed a strategy for overexpressing SACE_7301 with 1 to 3 extra copies under the control of PermE* in A226. Following up-regulated transcriptional expression of SACE_7301, eryAI and ermE, the SACE_7301-overexpressed strains all increased Er-A production over A226 proportional to the number of copies. Likewise, when SACE_7301 was overexpressed in an industrial S. erythraea WB strain, Er-A yields of the mutants WB/7301, WB/2×7301 and WB/3×7301 were respectively increased by 17%, 29% and 42% relative to that of WB. In a 5 L fermentor, Er-A accumulation increased to 4,230 mg/L with the highest-yield strain WB/3×7301, an approximately 27% production improvement over WB (3,322 mg/L). CONCLUSIONS We have identified and characterized a TFR, SACE_7301, in S. erythraea that positively regulated erythromycin biosynthesis, and overexpression of SACE_7301 in wild-type and industrial S. erythraea strains enhanced Er-A yields. This study markedly improves our understanding of the unusual regulatory mechanism of erythromycin biosynthesis, and provides a novel strategy towards Er-A overproduction by engineering transcriptional regulators of S. erythraea.
Collapse
Affiliation(s)
- Hang Wu
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei, 230601, China.
| | - Meng Chen
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei, 230601, China.
| | - Yongrong Mao
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei, 230601, China.
| | - Weiwei Li
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei, 230601, China.
| | - Jingtao Liu
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei, 230601, China. .,Beijing Institute of Cell Biotechnology, Beijing, 100043, China.
| | - Xunduan Huang
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei, 230601, China.
| | - Ying Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai, 200237, China.
| | - Bang-Ce Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai, 200237, China.
| | - Lixin Zhang
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei, 230601, China. .,CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - David T Weaver
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei, 230601, China.
| | - Buchang Zhang
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei, 230601, China.
| |
Collapse
|
29
|
Two glycine riboswitches activate the glycine cleavage system essential for glycine detoxification in Streptomyces griseus. J Bacteriol 2014; 196:1369-76. [PMID: 24443533 DOI: 10.1128/jb.01480-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The glycine cleavage (GCV) system catalyzes the oxidative cleavage of glycine into CO2, NH4(+), and a methylene group, which is accepted by tetrahydrofolate (THF) to form N(5),N(10)-methylene-THF. Streptomyces griseus contains gcvP and the gcvT-gcvH operon, which encode three intrinsic components of the GCV system. We identified the transcriptional start sites of gcvTH and gcvP and found putative glycine riboswitches in their 5' untranslated regions (5' UTRs). The ratios of the transcripts of the gcvT and gcvP coding sequences (CDSs) to those of the respective 5' UTRs were significantly higher in the presence of glycine in the wild-type strain. However, the levels of gcvT and gcvP CDS transcripts were not increased by glycine in the respective 5' UTR deletion mutants. A reporter gene assay showed that a transcriptional terminator exists in the 5' UTR of gcvTH. Furthermore, by an in-line probing assay, we confirmed that glycine bound directly to the putative riboswitch RNAs. These results indicate that the S. griseus glycine riboswitches enhance transcriptional read-through to the downstream CDSs, like known glycine riboswitches in other bacteria. We examined the growth of three mutants in which either or both of the gcvTH and gcvP 5' UTRs were deleted. Like the wild-type strain, all mutants grew vigorously in a medium containing 0.9% glucose as a carbon source. However, the mutants showed severely restricted growth in a medium containing 0.9% glucose and 1% glycine, while the wild-type strain grew normally. This indicates that glycine has a growth-inhibitory effect and that the GCV system plays a critical role in glycine detoxification in S. griseus.
Collapse
|
30
|
Zhu H, Sandiford SK, van Wezel GP. Triggers and cues that activate antibiotic production by actinomycetes. J Ind Microbiol Biotechnol 2013; 41:371-86. [PMID: 23907251 DOI: 10.1007/s10295-013-1309-z] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/30/2013] [Indexed: 12/24/2022]
Abstract
Actinomycetes are a rich source of natural products, and these mycelial bacteria produce the majority of the known antibiotics. The increasing difficulty to find new drugs via high-throughput screening has led to a decline in antibiotic research, while infectious diseases associated with multidrug resistance are spreading rapidly. Here we review new approaches and ideas that are currently being developed to increase our chances of finding novel antimicrobials, with focus on genetic, chemical, and ecological methods to elicit the expression of biosynthetic gene clusters. The genome sequencing revolution identified numerous gene clusters for natural products in actinomycetes, associated with a potentially huge reservoir of unknown molecules, and prioritizing them is a major challenge for in silico screening-based approaches. Some antibiotics are likely only expressed under very specific conditions, such as interaction with other microbes, which explains the renewed interest in soil and marine ecology. The identification of new gene clusters, as well as chemical elicitors and culturing conditions that activate their expression, should allow scientists to reinforce their efforts to find the necessary novel antimicrobial drugs.
Collapse
Affiliation(s)
- Hua Zhu
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | | | | |
Collapse
|
31
|
NdgR, a common transcriptional activator for methionine and leucine biosynthesis in Streptomyces coelicolor. J Bacteriol 2012; 194:6837-46. [PMID: 23065973 DOI: 10.1128/jb.00695-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We show here that NdgR, a known transcriptional activator of isopropylmalate dehydratase in actinomycetes, may have other targets in the cell. An in-frame deletion mutant of ndgR showed unexpectedly poor growth in defined minimal medium even in the presence of leucine. To our surprise, it was supplementation of cysteine and methionine that corrected the growth. Based on this, we propose that NdgR induces cysteine-methionine biosynthesis. Direct involvement of NdgR in the very last steps of methionine synthesis with methionine synthase (metH) and 5,10-methylenetetrahydrofolate reductase (metF) was examined. From a pulldown assay, it was seen that NdgR was enriched from crude cell lysates with a strong affinity to metH and metF upstream sequences. Direct physical interaction of NdgR with these targets was further examined with a gel mobility shift assay. ndgR, leuC, metH, and metF were inducible in M145 cells upon nutrient downshift from rich to minimal medium but were not induced in the ndgR knockout mutant. Taking these observations together, NdgR-dependent metH-metF expression would account for the abnormal growth phenotype of the ndgR mutant although there may be additional NdgR-dependent genes in the Cys-Met metabolic pathways. As the first transcriptional factor reported for regulating Cys-Met metabolism in Streptomyces, NdgR links two disparate amino acid families, branched-chain amino acids (BCAAs) and sulfur amino acids, at the transcriptional level. Considering that Cys-Met metabolism is connected to mycothiol and one-carbon metabolism, NdgR may have broad physiological impacts.
Collapse
|
32
|
Gómez C, Olano C, Méndez C, Salas JA. Three pathway-specific regulators control streptolydigin biosynthesis in Streptomyces lydicus. Microbiology (Reading) 2012; 158:2504-2514. [DOI: 10.1099/mic.0.061325-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Cristina Gómez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | - José A. Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
33
|
CcrR, a TetR family transcriptional regulator, activates the transcription of a gene of the Ethylmalonyl coenzyme A pathway in Methylobacterium extorquens AM1. J Bacteriol 2012; 194:2802-8. [PMID: 22447902 DOI: 10.1128/jb.00061-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ethylmalonyl coenzyme A (ethylmalonyl-CoA) pathway is one of the central methylotrophy pathways in Methylobacterium extorquens involved in glyoxylate generation and acetyl-CoA assimilation. Previous studies have elucidated the operation of the ethylmalonyl-CoA pathway in C(1) and C(2) assimilation, but the regulatory mechanisms for the ethylmalonyl-CoA pathway have not been reported. In this study, a TetR-type activator, CcrR, was shown to regulate the expression of crotonyl-CoA reductase/carboxylase, an enzyme of the ethylmalonyl-CoA pathway involved in the assimilation of C(1) and C(2) compounds in Methylobacterium extorquens AM1. A ccrR null mutant strain was impaired in its ability to grow on C(1) and C(2) compounds, correlating with the reduced activity of crotonyl-CoA reductase/carboxylase. Promoter fusion assays demonstrated that the activity of the promoter required for ccr expression (the katA-ccr promoter) decreased as much as 50% in the absence of ccrR compared to wild-type M. extorquens AM1. Gel mobility shift assays confirmed that CcrR directly binds to the region upstream of the katA-ccr promoter. A palindromic sequence upstream of katA at positions -334 to -321 with respect to the predicted translational start site was identified, and mutations in this region eliminated the gel retardation of the katA-ccr promoter region by CcrR. CcrR does not appear to regulate the expression of other ethylmalonyl-CoA pathway genes, suggesting the existence of additional regulators.
Collapse
|
34
|
Gao B, Gupta RS. Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 2012; 76:66-112. [PMID: 22390973 PMCID: PMC3294427 DOI: 10.1128/mmbr.05011-11] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The phylum Actinobacteria harbors many important human pathogens and also provides one of the richest sources of natural products, including numerous antibiotics and other compounds of biotechnological interest. Thus, a reliable phylogeny of this large phylum and the means to accurately identify its different constituent groups are of much interest. Detailed phylogenetic and comparative analyses of >150 actinobacterial genomes reported here form the basis for achieving these objectives. In phylogenetic trees based upon 35 conserved proteins, most of the main groups of Actinobacteria as well as a number of their superageneric clades are resolved. We also describe large numbers of molecular markers consisting of conserved signature indels in protein sequences and whole proteins that are specific for either all Actinobacteria or their different clades (viz., orders, families, genera, and subgenera) at various taxonomic levels. These signatures independently support the existence of different phylogenetic clades, and based upon them, it is now possible to delimit the phylum Actinobacteria (excluding Coriobacteriia) and most of its major groups in clear molecular terms. The species distribution patterns of these markers also provide important information regarding the interrelationships among different main orders of Actinobacteria. The identified molecular markers, in addition to enabling the development of a stable and reliable phylogenetic framework for this phylum, also provide novel and powerful means for the identification of different groups of Actinobacteria in diverse environments. Genetic and biochemical studies on these Actinobacteria-specific markers should lead to the discovery of novel biochemical and/or other properties that are unique to different groups of Actinobacteria.
Collapse
Affiliation(s)
- Beile Gao
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
35
|
MdoR is a novel positive transcriptional regulator for the oxidation of methanol in Mycobacterium sp. strain JC1. J Bacteriol 2011; 193:6288-94. [PMID: 21908665 DOI: 10.1128/jb.05649-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium sp. strain JC1 is able to grow on methanol as a sole source of carbon and energy using methanol:N,N'-dimethyl-4-nitrosoaniline oxidoreductase (MDO) as a key enzyme for methanol oxidation. The second open reading frame (mdoR) upstream of, and running divergently from, the mdo gene was identified as a gene for a TetR family transcriptional regulator. The N-terminal region of MdoR contained a helix-turn-helix DNA-binding motif. An electrophoretic mobility shift assay (EMSA) indicated that MdoR could bind to a mdo promoter region containing an inverted repeat. The mdoR deletion mutant did not grow on methanol, but growth on methanol was restored by a plasmid containing an intact mdoR gene. In DNase I footprinting and EMSA experiments, MdoR bound to two inverted repeats in the putative mdoR promoter region. Reverse transcription-PCR indicated that the mdoR gene was transcribed only in cells growing on methanol, whereas β-galactosidase assays showed that the mdoR promoter was activated in the presence of methanol. These results indicate that MdoR serves as a transcriptional activator for the expression of mdo and its own gene. Also, MdoR is the first discovered member of the TetR family of transcriptional regulators to be involved in the regulation of the methanol oxidation, as well as to function as a positive autoregulator.
Collapse
|
36
|
van Wezel GP, McDowall KJ. The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 2011; 28:1311-33. [PMID: 21611665 DOI: 10.1039/c1np00003a] [Citation(s) in RCA: 322] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Streptomycetes and other actinobacteria are renowned as a rich source of natural products of clinical, agricultural and biotechnological value. They are being mined with renewed vigour, supported by genome sequencing efforts, which have revealed a coding capacity for secondary metabolites in vast excess of expectations that were based on the detection of antibiotic activities under standard laboratory conditions. Here we review what is known about the control of production of so-called secondary metabolites in streptomycetes, with an emphasis on examples where details of the underlying regulatory mechanisms are known. Intriguing links between nutritional regulators, primary and secondary metabolism and morphological development are discussed, and new data are included on the carbon control of development and antibiotic production, and on aspects of the regulation of the biosynthesis of microbial hormones. Given the tide of antibiotic resistance emerging in pathogens, this review is peppered with approaches that may expand the screening of streptomycetes for new antibiotics by awakening expression of cryptic antibiotic biosynthetic genes. New technologies are also described that have potential to greatly further our understanding of gene regulation in what is an area fertile for discovery and exploitation
Collapse
|
37
|
Mo X, Wang Z, Wang B, Ma J, Huang H, Tian X, Zhang S, Zhang C, Ju J. Cloning and characterization of the biosynthetic gene cluster of the bacterial RNA polymerase inhibitor tirandamycin from marine-derived Streptomyces sp. SCSIO1666. Biochem Biophys Res Commun 2011; 406:341-7. [DOI: 10.1016/j.bbrc.2011.02.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 02/11/2011] [Indexed: 10/18/2022]
|
38
|
Olano C, Méndez C, Salas JA. Molecular insights on the biosynthesis of antitumour compounds by actinomycetes. Microb Biotechnol 2010; 4:144-64. [PMID: 21342461 PMCID: PMC3818856 DOI: 10.1111/j.1751-7915.2010.00231.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Natural products are traditionally the main source of drug leads. In particular, many antitumour compounds are either natural products or derived from them. However, the search for novel antitumour drugs active against untreatable tumours, with fewer side-effects or with enhanced therapeutic efficiency, is a priority goal in cancer chemotherapy. Microorganisms, particularly actinomycetes, are prolific producers of bioactive compounds, including antitumour drugs, produced as secondary metabolites. Structural genes involved in the biosynthesis of such compounds are normally clustered together with resistance and regulatory genes, which facilitates the isolation of the gene cluster. The characterization of these clusters has represented, during the last 25 years, a great source of genes for the generation of novel derivatives by using combinatorial biosynthesis approaches: gene inactivation, gene expression, heterologous expression of the clusters or mutasynthesis. In addition, these techniques have been also applied to improve the production yields of natural and novel antitumour compounds. In this review we focus on some representative antitumour compounds produced by actinomycetes covering the genetic approaches used to isolate and validate their biosynthesis gene clusters, which finally led to generating novel derivatives and to improving the production yields.
Collapse
Affiliation(s)
- Carlos Olano
- Departamento de Biología Funcional and Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain
| | | | | |
Collapse
|
39
|
de Eugenio LI, Galán B, Escapa IF, Maestro B, Sanz JM, García JL, Prieto MA. The PhaD regulator controls the simultaneous expression of thephagenes involved in polyhydroxyalkanoate metabolism and turnover inPseudomonas putidaKT2442. Environ Microbiol 2010; 12:1591-603. [DOI: 10.1111/j.1462-2920.2010.02199.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Olano C, Gómez C, Pérez M, Palomino M, Pineda-Lucena A, Carbajo RJ, Braña AF, Méndez C, Salas JA. Deciphering Biosynthesis of the RNA Polymerase Inhibitor Streptolydigin and Generation of Glycosylated Derivatives. ACTA ACUST UNITED AC 2009; 16:1031-44. [DOI: 10.1016/j.chembiol.2009.09.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 09/15/2009] [Accepted: 09/18/2009] [Indexed: 11/29/2022]
|
41
|
Identification and gene disruption of small noncoding RNAs in Streptomyces griseus. J Bacteriol 2009; 191:4896-904. [PMID: 19465662 DOI: 10.1128/jb.00087-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small noncoding RNAs (sRNAs) have been shown to control diverse cellular processes in prokaryotes. To identify and characterize novel bacterial sRNAs, a gram-positive, soil-inhabiting, filamentous bacterium, Streptomyces griseus, was examined, on the assumption that Streptomyces should express sRNAs as important regulators of morphological and physiological differentiation. By bioinformatics investigation, 54 sRNA candidates, which were encoded on intergenic regions of the S. griseus chromosome and were highly conserved in those of both Streptomyces coelicolor A3(2) and Streptomyces avermitilis, were selected. Of these 54 sRNA candidates, 17 transcripts were detected by Northern blot analysis of the total RNAs isolated from cells grown on solid medium. Then, the direction of transcription of each sRNA candidate gene was determined by S1 nuclease mapping, followed by exclusion of four sRNA candidates that were considered riboswitches of their downstream open reading frames (ORFs). Finally, a further sRNA candidate was excluded because it was cotranscribed with the upstream ORF determined by reverse transcription-PCR. Thus, 12 sRNAs ranging in size from 40 to 300 nucleotides were identified in S. griseus. Seven of them were apparently transcribed in a growth phase-dependent manner. Furthermore, of the 12 sRNAs, the expression profiles of 7 were significantly influenced by a mutation of adpA, which encodes the central transcriptional regulator of the A-factor regulatory cascade involved in both morphological differentiation and secondary metabolism in S. griseus. However, disruption of all 12 sRNA genes showed no detectable phenotypic changes; all the disruptants grew and formed aerial mycelium and spores with the same time course as the wild-type strain on various media and produced streptomycin similarly to the wild-type strain.
Collapse
|
42
|
van Wezel GP, McKenzie NL, Nodwell JR. Chapter 5. Applying the genetics of secondary metabolism in model actinomycetes to the discovery of new antibiotics. Methods Enzymol 2009; 458:117-41. [PMID: 19374981 DOI: 10.1016/s0076-6879(09)04805-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The actinomycetes, including in particular members of the filamentous genus Streptomyces, are the industrial source of a large number of bioactive small molecules employed as antibiotics and other drugs. They produce these molecules as part of their "secondary" or nonessential metabolism. The number and diversity of secondary metabolic pathways is enormous, with some estimates suggesting that this one genus can produce more than 100,000 distinct molecules. However, the discovery of new antimicrobials is hampered by the fact that many wild isolates fail to express all or sometimes any of their secondary metabolites under laboratory conditions. Furthermore, the use of previously successful screening strategies frequently results in the rediscovery of known molecules: the all-important novel structures have proven to be elusive. Mounting evidence suggests that streptomycetes possess many regulatory pathways that control the biosynthetic gene clusters for these secondary metabolic pathways and that cell metabolism plays a significant role in limiting or potentiating expression as well. In this article we explore the idea that manipulating metabolic conditions and regulatory pathways can "awaken" silent gene clusters and lead to the discovery of novel antimicrobial activities.
Collapse
Affiliation(s)
- Gilles P van Wezel
- Molecular Genetics, Leiden Institute of Chemistry, Gorlaeus Laboratories, The Netherlands
| | | | | |
Collapse
|
43
|
Pompeani AJ, Irgon JJ, Berger MF, Bulyk ML, Wingreen NS, Bassler BL. The Vibrio harveyi master quorum-sensing regulator, LuxR, a TetR-type protein is both an activator and a repressor: DNA recognition and binding specificity at target promoters. Mol Microbiol 2008; 70:76-88. [PMID: 18681939 PMCID: PMC2628434 DOI: 10.1111/j.1365-2958.2008.06389.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quorum sensing is the process of cell-to-cell communication by which bacteria communicate via secreted signal molecules called autoinducers. As cell population density increases, the accumulation of autoinducers leads to co-ordinated changes in gene expression across the bacterial community. The marine bacterium, Vibrio harveyi, uses three autoinducers to achieve intra-species, intra-genera and inter-species cell-cell communication. The detection of these autoinducers ultimately leads to the production of LuxR, the quorum-sensing master regulator that controls expression of the genes in the quorum-sensing regulon. LuxR is a member of the TetR protein superfamily; however, unlike other TetR repressors that typically repress their own gene expression and that of an adjacent operon, LuxR is capable of activating and repressing a large number of genes. Here, we used protein binding microarrays and a two-layered bioinformatics approach to show that LuxR binds a 21 bp consensus operator with dyad symmetry. In vitro and in vivo analyses of two promoters directly regulated by LuxR allowed us to identify those bases that are critical for LuxR binding. Together, the in silico and biochemical results enabled us to scan the genome and identify novel targets of LuxR in V. harveyi and thus expand the understanding of the quorum-sensing regulon.
Collapse
Affiliation(s)
- Audra J Pompeani
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | |
Collapse
|