1
|
Yonehara K, Kumakura N, Motoyama T, Ishihama N, Dallery J, O'Connell R, Shirasu K. Efficient multiple gene knockout in Colletotrichum higginsianum via CRISPR/Cas9 ribonucleoprotein and URA3-based marker recycling. MOLECULAR PLANT PATHOLOGY 2023; 24:1451-1464. [PMID: 37522511 PMCID: PMC10576178 DOI: 10.1111/mpp.13378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/21/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023]
Abstract
Colletotrichum higginsianum is a hemibiotrophic pathogen that causes anthracnose disease on crucifer hosts, including Arabidopsis thaliana. Despite the availability of genomic and transcriptomic information and the ability to transform both organisms, identifying C. higginsianum genes involved in virulence has been challenging due to recalcitrance to gene targeting and redundancy of virulence factors. To overcome these obstacles, we developed an efficient method for multiple gene disruption in C. higginsianum by combining CRISPR/Cas9 and a URA3-based marker recycling system. Our method significantly increased the efficiency of gene knockout via homologous recombination by introducing genomic DNA double-strand breaks. We demonstrated the applicability of the URA3-based marker recycling system for multiple gene targeting in the same strain. Using our technology, we successfully targeted two melanin biosynthesis genes, SCD1 and PKS1, which resulted in deficiency in melanization and loss of pathogenicity in the mutants. Our findings demonstrate the effectiveness of our methods in analysing virulence factors in C. higginsianum, thus accelerating research on plant-fungus interactions.
Collapse
Affiliation(s)
- Katsuma Yonehara
- RIKEN Center for Sustainable Resource ScienceYokohamaJapan
- Department of Biological Science, Graduate School of ScienceThe University of TokyoTokyoJapan
| | | | | | | | | | | | - Ken Shirasu
- RIKEN Center for Sustainable Resource ScienceYokohamaJapan
- Department of Biological Science, Graduate School of ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
2
|
Inoue Y, Phuong Vy TT, Singkaravanit-Ogawa S, Zhang R, Yamada K, Ogawa T, Ishizuka J, Narusaka Y, Takano Y. Selective deployment of virulence effectors correlates with host specificity in a fungal plant pathogen. THE NEW PHYTOLOGIST 2023; 238:1578-1592. [PMID: 36939621 DOI: 10.1111/nph.18790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The hemibiotrophic fungal plant pathogen Colletotrichum orbiculare is predicted to secrete hundreds of effector proteins when the pathogen infects cucurbit crops, such as cucumber and melon, and tobacco (Nicotiana benthamiana), a distantly related Solanaceae species. Here, we report the identification of sets of C. orbiculare effector genes that are differentially required for fungal virulence to two phylogenetically distant host species. Through targeted gene knockout screening of C. orbiculare 'core' effector candidates defined based on in planta gene expression, we identified: four host-specific virulence effectors (named effector proteins for cucurbit infection, or EPCs) that are required for full virulence of C. orbiculare to cucurbit hosts, but not to the Solanaceae host N. benthamiana; and five host-nonspecific virulence effectors, which collectively contribute to fungal virulence to both hosts. During host infection, only a small subset of genes, including the host-specific EPC effector genes, showed preferential expression on one of the hosts, while gene expression profiles of the majority of other genes, including the five host-nonspecific effector genes, were common to both hosts. This work suggests that C. orbiculare adopts a host-specific effector deployment strategy, in addition to general host-blind virulence mechanisms, for adaptation to cucurbit hosts.
Collapse
Affiliation(s)
- Yoshihiro Inoue
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | | | | | - Ru Zhang
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Kohji Yamada
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, 770-8513, Japan
| | - Taiki Ogawa
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Junya Ishizuka
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yoshihiro Narusaka
- Research Institute for Biological Sciences, Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, Okayama, 716-1241, Japan
| | - Yoshitaka Takano
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
3
|
Chen X, Chen X, Tan Q, Mo X, Liu J, Zhou G. Recent progress on harm, pathogen classification, control and pathogenic molecular mechanism of anthracnose of oil-tea. Front Microbiol 2022; 13:918339. [PMID: 35966682 PMCID: PMC9372368 DOI: 10.3389/fmicb.2022.918339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/30/2022] [Indexed: 12/26/2022] Open
Abstract
Oil tea (Camellia oleifera), mainly used to produce high-quality edible oil, is an important cash crop in China. Anthracnose of oil tea is a considerable factor that limits the yield of tea oil. In order to effectively control the anthracnose of oil tea, researchers have worked hard for many years, and great progress has been made in the research of oil tea anthracnose. For instance, researchers isolated a variety of Colletotrichum spp. from oil tea and found that Colletotrichum fructicola was the most popular pathogen in oil tea. At the same time, a variety of control methods have been explored, such as cultivating resistant varieties, pesticides, and biological control, etc. Furthermore, the research on the molecular pathogenesis of Colletotrichum spp. has also made good progress, such as the elaboration of the transcription factors and effector functions of Colletotrichum spp. The authors summarized the research status of the harm, pathogen types, control, and pathogenic molecular mechanism of oil tea anthracnose in order to provide theoretical support and new technical means for the green prevention and control of oil tea anthracnose.
Collapse
Affiliation(s)
| | | | | | | | - Junang Liu
- Key Laboratory of National Forestry and Grassland Administration for Control of Diseases and Pests of South Plantation, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| | - Guoying Zhou
- Key Laboratory of National Forestry and Grassland Administration for Control of Diseases and Pests of South Plantation, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-wood Forest Cultivation and Conservation of Ministry of Education, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
4
|
Zhang YZ, Li B, Pan YT, Fang YL, Li DW, Huang L. Protein Phosphatase CgPpz1 Regulates Potassium Uptake, Stress Responses, and Plant Infection in Colletotrichum gloeosporioides. PHYTOPATHOLOGY 2022; 112:820-829. [PMID: 34689611 DOI: 10.1094/phyto-02-21-0051-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein phosphatases play important roles in the regulation of various cellular processes in eukaryotes. The ascomycete Colletotrichum gloeosporioides is a causal agent of anthracnose disease on some important crops and trees. In this study, CgPPZ1, a protein phosphate gene and a homolog of yeast PPZ1, was identified in C. gloeosporioides. Targeted gene deletion showed that CgPpz1 was important for vegetative growth and asexual development, conidial germination, and plant infection. Cytological examinations revealed that CgPpz1 was localized to the cytoplasm. The ΔCgppz1 mutant was hypersensitive to osmotic stresses, cell wall stressors, and oxidative stressors. Taken together, our results indicated that CgPpz1 plays an important role in the fungal development and virulence of C. gloeosporioides and the multiple stress responses generated.
Collapse
Affiliation(s)
- Yun-Zhao Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Bing Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yu-Ting Pan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yu-Lan Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - De-Wei Li
- The Connecticut Agricultural Experiment Station Valley Laboratory, Windsor, CT 06095, U.S.A
| | - Lin Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
5
|
Prasanth CN, Viswanathan R, Malathi P, Sundar AR. Comparative transcriptome analysis of candidate secretory effector proteins from Colletotrichum falcatum infecting sugarcane. AGRI GENE 2019; 13:100089. [DOI: 10.1016/j.aggene.2019.100089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Lu Q, Wang Y, Li N, Ni D, Yang Y, Wang X. Differences in the Characteristics and Pathogenicity of Colletotrichum camelliae and C. fructicola Isolated From the Tea Plant [ Camellia sinensis (L.) O. Kuntze]. Front Microbiol 2018; 9:3060. [PMID: 30619146 PMCID: PMC6297754 DOI: 10.3389/fmicb.2018.03060] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/27/2018] [Indexed: 12/11/2022] Open
Abstract
Colletotrichum, the causative agent of anthracnose, is an important pathogen that invades the tea plant (Camellia sinensis). In this study, 38 isolates were obtained from the diseased leaves of tea plants collected in different areas of Zhejiang Province, China. A combination of multigene (ITS, ACT, GAPDH, TUB2, CAL, and GS) and morphology analyses showed that the 38 strains belonged to two different species, namely, C. camelliae (CC), and C. fructicola (CF). Pathogenicity tests revealed that CC was more invasive than CF. In vitro inoculation experiments demonstrated that CC formed acervuli at 72 hpi and developed appressoria on wound edges, but CF did not develop these structures. Under treatment with catechins and caffeine, the growth inhibition rates of CF were remarkably higher than those of CC, indicating that the nonpathogenic species CF was more vulnerable to catechins and caffeine. Growth condition testing indicated that CF grew at a wide temperature range of 15-35°C and that the optimum temperature for CC growth was 25°C. Growth of both CC and CF did not differ between acidic and weakly alkaline environments (pH 5-8), but the growth of CC was significantly reduced at pH values of 9 and 10. Furthermore, the PacC/RIM101 gene, which associated with pathogenicity, was identified from CC and CF genomes, and its expression was suppressed in the hyphae of both species under pH value of 5 and 10, and much lower expression level was detected in CC than that in CF at pH 6. These results indicated that temperature has more important effect than pH for the growth of two Colletotrichum species. In conclusion, the inhibition by secondary metabolite is an important reason why the pathogenicity by CC and CF are different to tea plant, although the environmental factors including pH and temperature effect the growth of two Colletotrichum species.
Collapse
Affiliation(s)
- Qinhua Lu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Improvement, Tea Research Institute of Chinese Academy of Agricultural Sciences, Hangzhou, China
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Yuchun Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Improvement, Tea Research Institute of Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Nana Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Improvement, Tea Research Institute of Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Dejiang Ni
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Yajun Yang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Improvement, Tea Research Institute of Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xinchao Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, National Center for Tea Improvement, Tea Research Institute of Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
7
|
Plaumann PL, Schmidpeter J, Dahl M, Taher L, Koch C. A Dispensable Chromosome Is Required for Virulence in the Hemibiotrophic Plant Pathogen Colletotrichum higginsianum. Front Microbiol 2018; 9:1005. [PMID: 29867895 PMCID: PMC5968395 DOI: 10.3389/fmicb.2018.01005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/30/2018] [Indexed: 01/01/2023] Open
Abstract
The hemibiotrophic plant pathogen Colletotrichum higginsianum infects Brassicaceae and in combination with Arabidopsis thaliana, represents an important model system to investigate various ecologically important fungal pathogens and their infection strategies. After penetration of plant cells by appressoria, C. higginsianum establishes large biotrophic primary hyphae in the first infected cell. Shortly thereafter, a switch to necrotrophic growth occurs leading to the invasion of neighboring cells by secondary hyphae. In a forward genetic screen for virulence mutants by insertional mutagenesis, we identified mutants that penetrate the plant but show a defect in the passage from biotrophy to necrotrophy. Genome sequencing and pulsed-field gel electrophoresis revealed that two mutants were lacking chromosome 11, encoding potential pathogenicity genes. We established a chromosome loss assay to verify that strains lacking this small chromosome abort infection during biotrophy, while their ability to grow on artificial media was not affected. C. higginsianum harbors a second small chromosome, which can be lost without effects on virulence or growth on agar plates. Furthermore, we found that chromosome 11 is required to suppress Arabidopsis thaliana plant defense mechanisms dependent on tryptophan derived secondary metabolites.
Collapse
Affiliation(s)
- Peter-Louis Plaumann
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Schmidpeter
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marlis Dahl
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Leila Taher
- Division of Bioinformatics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Koch
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
8
|
Wang X, Xu X, Liang Y, Wang Y, Tian C. A Cdc42 homolog in Colletotrichum gloeosporioides regulates morphological development and is required for ROS-mediated plant infection. Curr Genet 2018; 64:1153-1169. [PMID: 29700579 DOI: 10.1007/s00294-018-0833-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/18/2018] [Accepted: 04/04/2018] [Indexed: 01/21/2023]
Abstract
The Rho GTPase Cdc42 is conserved in fungi and plays a key role in regulating polarity establishment, morphogenesis and differentiation. In this study, we identified an ortholog of Cdc42, CgCdc42, and functionally characterized it to determine the role of Cdc42 in the development and pathogenicity of Colletotrichum gloeosporioides, a causal agent of poplar anthracnose. Targeted deletion of CgCdc42 resulted in reduced vegetative growth and dramatic morphological defects, including the formation of elongated conidia and abnormally shaped appressoria. Moreover, CgCdc42 deletion mutants were less virulent on poplar leaves than were wild type. Appressoria formed by ΔCgCdc42 mutants were morphologically abnormal and present in lower numbers on poplar leaves than were those formed by wild type. However, an ROS scavenging assay indicated that the ΔCgCdc42 mutants maintained wild type pathogenicity in the absence of ROS despite having fewer appressoria than wild type, suggesting that the ΔCgCdc42 mutants were deficient in their tolerance of ROS. Additionally, we also found that the distribution of ROS was different after the deletion of CgCdc42, the ΔCgCdc42 mutants were hypersensitive to H2O2, and transcriptional analysis revealed that CgCdc42 is involved in the regulation of ROS-related genes. Furthermore, loss of CgCdc42 caused defects in cell wall integrity and an uneven distribution of chitin. These data collectively suggest that CgCdc42 plays an important role in the regulation of vegetative growth, morphological development, cell wall integrity and ROS-mediated plant infection in C. gloeosporioides.
Collapse
Affiliation(s)
- Xiaolian Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, No.35, Qinghua Eastern Road, Haidian District, Beijing, 100083, China
| | - Xin Xu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, No.35, Qinghua Eastern Road, Haidian District, Beijing, 100083, China
| | - Yingmei Liang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, No.35, Qinghua Eastern Road, Haidian District, Beijing, 100083, China
| | - Yonglin Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, No.35, Qinghua Eastern Road, Haidian District, Beijing, 100083, China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, No.35, Qinghua Eastern Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
9
|
He P, Wang Y, Wang X, Zhang X, Tian C. The Mitogen-Activated Protein Kinase CgMK1 Governs Appressorium Formation, Melanin Synthesis, and Plant Infection of Colletotrichum gloeosporioides. Front Microbiol 2017; 8:2216. [PMID: 29176970 PMCID: PMC5686099 DOI: 10.3389/fmicb.2017.02216] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/27/2017] [Indexed: 11/13/2022] Open
Abstract
The fungus Colletotrichum gloeosporiodes infects plant hosts with a specialized cell called an appressorium, which is melanized and required for plant cell wall penetration. Here, we show that the mitogen-activated protein kinase CgMK1 governs appressorium formation and virulence in the poplar anthracnose fungus C. gloeosporioides. Deletion of CgMK1 impairs aerial hyphal growth and biomass accumulation, and CgMK1 is responsible for the expression of melanin biosynthesis-associated genes. CgMK1 deletion mutants are unable to form appressorium and lose the capacity to colonize either wounded or unwounded poplar leaves, leading to loss of virulence. We demonstrate that the exogenous application of cAMP fails to restore defective appressorium formation in the CgMK1 deletion mutants, suggesting that CgMK1 may function downstream or independent of a cAMP-dependent signal for appressorium formation. Moreover, CgMK1 mutants were sensitive to high osmosis, indicating that CgMK1 plays an important role in stress response. We conclude that CgMK1 plays a vital role in regulating appressorium formation, melanin biosynthesis, and virulence in C. gloeosporiodes.
Collapse
Affiliation(s)
- Puhuizhong He
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Yonglin Wang
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Xiaolian Wang
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Xiaolin Zhang
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Chengming Tian
- College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
10
|
Xu X, Wang Y, Tian C, Liang Y. The Colletotrichum gloeosporioides RhoB regulates cAMP and stress response pathways and is required for pathogenesis. Fungal Genet Biol 2016; 96:12-24. [PMID: 27670809 DOI: 10.1016/j.fgb.2016.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 09/16/2016] [Accepted: 09/22/2016] [Indexed: 12/26/2022]
Abstract
Rho GTPases regulate morphology and multiple cellular functions such as asexual development, polarity establishment, and differentiation in fungi. To determine the roles of CgRhoB, a Rho GTPase protein, here we characterized CgRhoB in the poplar anthracnose fungus Colletotrichum gloeosporioides. First of all, we determined that conidial germination was inhibited and intracellular cyclic AMP (cAMP) level was increased in the CgRhoB deletion mutants. Loss of CgRhoB resulted in shorter germ tubes and enhanced appressoria formation after germination on the hydrophobic surface. Exogenous addition of cAMP to the wild type generated the similar phenotypes of ΔCgRhoB inoculated in CM liquid. Furthermore, deletion of CgRhoB had discernible effect upon the sensitivity of C. gloeosporioides to cell wall perturbing agents and altered the distribution of chitin on the cell wall. H2O2 sensitivity assay showed the hypersensitive effect on the oxidative stress, and transcriptional analysis revealed that transcription of genes involved in peroxidase activities was altered in the mutants. Finally, virulence assay revealed that CgRhoB was required for pathogenicity. Taken together, our results showed that CgRhoB was associated with appressoria formation and pathogenicity, and affected cAMP level and stress pathways.
Collapse
Affiliation(s)
- Xin Xu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Yonglin Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Yingmei Liang
- Museum of Beijing Forestry University, Beijing Forestry University, Beijing, China.
| |
Collapse
|
11
|
Torres MF, Ghaffari N, Buiate EAS, Moore N, Schwartz S, Johnson CD, Vaillancourt LJ. A Colletotrichum graminicola mutant deficient in the establishment of biotrophy reveals early transcriptional events in the maize anthracnose disease interaction. BMC Genomics 2016; 17:202. [PMID: 26956617 PMCID: PMC4782317 DOI: 10.1186/s12864-016-2546-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/26/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Colletotrichum graminicola is a hemibiotrophic fungal pathogen that causes maize anthracnose disease. It progresses through three recognizable phases of pathogenic development in planta: melanized appressoria on the host surface prior to penetration; biotrophy, characterized by intracellular colonization of living host cells; and necrotrophy, characterized by host cell death and symptom development. A "Mixed Effects" Generalized Linear Model (GLM) was developed and applied to an existing Illumina transcriptome dataset, substantially increasing the statistical power of the analysis of C. graminicola gene expression during infection and colonization. Additionally, the in planta transcriptome of the wild-type was compared with that of a mutant strain impaired in the establishment of biotrophy, allowing detailed dissection of events occurring specifically during penetration, and during early versus late biotrophy. RESULTS More than 2000 fungal genes were differentially transcribed during appressorial maturation, penetration, and colonization. Secreted proteins, secondary metabolism genes, and membrane receptors were over-represented among the differentially expressed genes, suggesting that the fungus engages in an intimate and dynamic conversation with the host, beginning prior to penetration. This communication process probably involves reception of plant signals triggering subsequent developmental progress in the fungus, as well as production of signals that induce responses in the host. Later phases of biotrophy were more similar to necrotrophy, with increased production of secreted proteases, inducers of plant cell death, hydrolases, and membrane bound transporters for the uptake and egress of potential toxins, signals, and nutrients. CONCLUSIONS This approach revealed, in unprecedented detail, fungal genes specifically expressed during critical phases of host penetration and biotrophic establishment. Many encoded secreted proteins, secondary metabolism enzymes, and receptors that may play roles in host-pathogen communication necessary to promote susceptibility, and thus may provide targets for chemical or biological controls to manage this important disease. The differentially expressed genes could be used as 'landmarks' to more accurately identify developmental progress in compatible versus incompatible interactions involving genetic variants of both host and pathogen.
Collapse
Affiliation(s)
- Maria F Torres
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans Drive, Lexington, KY, 40546-0312, USA.
- Present Address: Functional Genomics Laboratory, Weill Cornell Medical College, Cornell University, Qatar Foundation - Education City, Doha, Qatar.
| | - Noushin Ghaffari
- AgriLife Genomics and Bioinformatics, Texas A&M AgriLife Research, Texas A&M University, College Station, TX, 77845, USA.
| | - Ester A S Buiate
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans Drive, Lexington, KY, 40546-0312, USA.
- Present Address: Monsanto Company Brazil, Uberlândia, Minas Gerais, Brazil.
| | - Neil Moore
- Department of Computer Science, University of Kentucky, Davis Marksbury Building, 328 Rose Street, Lexington, KY, 40506-0633, USA.
| | - Scott Schwartz
- AgriLife Genomics and Bioinformatics, Texas A&M AgriLife Research, Texas A&M University, College Station, TX, 77845, USA.
- Present Address: Department of Integrative Biology, University of Texas, Austin, TX, 78712, USA.
| | - Charles D Johnson
- AgriLife Genomics and Bioinformatics, Texas A&M AgriLife Research, Texas A&M University, College Station, TX, 77845, USA.
| | - Lisa J Vaillancourt
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans Drive, Lexington, KY, 40546-0312, USA.
- Present Address: Department of Integrative Biology, University of Texas, Austin, TX, 78712, USA.
| |
Collapse
|
12
|
Vieira A, Cabral A, Fino J, Azinheira HG, Loureiro A, Talhinhas P, Pires AS, Varzea V, Moncada P, Oliveira H, Silva MDC, Paulo OS, Batista D. Comparative Validation of Conventional and RNA-Seq Data-Derived Reference Genes for qPCR Expression Studies of Colletotrichum kahawae. PLoS One 2016; 11:e0150651. [PMID: 26950697 PMCID: PMC4780792 DOI: 10.1371/journal.pone.0150651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/16/2016] [Indexed: 01/01/2023] Open
Abstract
Colletotrichum kahawae is an emergent fungal pathogen causing severe epidemics of Coffee Berry Disease on Arabica coffee crops in Africa. Currently, the molecular mechanisms underlying the Coffea arabica—C. kahawae interaction are still poorly understood, as well as the differences in pathogen aggressiveness, which makes the development of functional studies for this pathosystem a crucial step. Quantitative real time PCR (qPCR) has been one of the most promising approaches to perform gene expression analyses. However, proper data normalization with suitable reference genes is an absolute requirement. In this study, a set of 8 candidate reference genes were selected based on two different approaches (literature and Illumina RNA-seq datasets) to assess the best normalization factor for qPCR expression analysis of C. kahawae samples. The gene expression stability of candidate reference genes was evaluated for four isolates of C. kahawae bearing different aggressiveness patterns (Ang29, Ang67, Zim12 and Que2), at different stages of fungal development and key time points of the plant-fungus interaction process. Gene expression stability was assessed using the pairwise method incorporated in geNorm and the model-based method used by NormFinder software. For C. arabica—C. kahawae interaction samples, the best normalization factor included the combination of PP1, Act and ck34620 genes, while for C. kahawae samples the combination of PP1, Act and ck20430 revealed to be the most appropriate choice. These results suggest that RNA-seq analyses can provide alternative sources of reference genes in addition to classical reference genes. The analysis of expression profiles of bifunctional catalase-peroxidase (cat2) and trihydroxynaphthalene reductase (thr1) genes further enabled the validation of the selected reference genes. This study provides, for the first time, the tools required to conduct accurate qPCR studies in C. kahawae considering its aggressiveness pattern, developmental stage and host interaction.
Collapse
Affiliation(s)
- Ana Vieira
- CIFC—Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- Computational Biology and Population Genomics group, cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Cabral
- CIFC—Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| | - Joana Fino
- CIFC—Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- Computational Biology and Population Genomics group, cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Helena G. Azinheira
- CIFC—Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Andreia Loureiro
- CIFC—Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Talhinhas
- CIFC—Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
- Plant Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana Sofia Pires
- CIFC—Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- Plant Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Vitor Varzea
- CIFC—Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | | | - Helena Oliveira
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Maria do Céu Silva
- CIFC—Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Octávio S. Paulo
- Computational Biology and Population Genomics group, cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Dora Batista
- CIFC—Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Oeiras, Portugal
- Computational Biology and Population Genomics group, cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
13
|
Vargas WA, Sanz-Martín JM, Rech GE, Armijos-Jaramillo VD, Rivera LP, Echeverria MM, Díaz-Mínguez JM, Thon MR, Sukno SA. A Fungal Effector With Host Nuclear Localization and DNA-Binding Properties Is Required for Maize Anthracnose Development. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:83-95. [PMID: 26554735 DOI: 10.1094/mpmi-09-15-0209-r] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Plant pathogens have the capacity to manipulate the host immune system through the secretion of effectors. We identified 27 putative effector proteins encoded in the genome of the maize anthracnose pathogen Colletotrichum graminicola that are likely to target the host's nucleus, as they simultaneously contain sequence signatures for secretion and nuclear localization. We functionally characterized one protein, identified as CgEP1. This protein is synthesized during the early stages of disease development and is necessary for anthracnose development in maize leaves, stems, and roots. Genetic, molecular, and biochemical studies confirmed that this effector targets the host's nucleus and defines a novel class of double-stranded DNA-binding protein. We show that CgEP1 arose from a gene duplication in an ancestor of a lineage of monocot-infecting Colletotrichum spp. and has undergone an intense evolution process, with evidence for episodes of positive selection. We detected CgEP1 homologs in several species of a grass-infecting lineage of Colletotrichum spp., suggesting that its function may be conserved across a large number of anthracnose pathogens. Our results demonstrate that effectors targeted to the host nucleus may be key elements for disease development and aid in the understanding of the genetic basis of anthracnose development in maize plants.
Collapse
Affiliation(s)
- Walter A Vargas
- 1 Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, 37185 Villamayor, Spain
| | - José M Sanz-Martín
- 1 Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, 37185 Villamayor, Spain
| | - Gabriel E Rech
- 1 Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, 37185 Villamayor, Spain
| | - Vinicio D Armijos-Jaramillo
- 1 Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, 37185 Villamayor, Spain
| | - Lina P Rivera
- 1 Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, 37185 Villamayor, Spain
| | - María Mercedes Echeverria
- 2 Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata - C.C. 276 (7620) Balcarce, Buenos Aires, Argentina
| | - José M Díaz-Mínguez
- 1 Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, 37185 Villamayor, Spain
| | - Michael R Thon
- 1 Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, 37185 Villamayor, Spain
| | - Serenella A Sukno
- 1 Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Departamento de Microbiología y Genética, Universidad de Salamanca, 37185 Villamayor, Spain
| |
Collapse
|
14
|
Bhadauria V, MacLachlan R, Pozniak C, Banniza S. Candidate effectors contribute to race differentiation and virulence of the lentil anthracnose pathogen Colletotrichum lentis. BMC Genomics 2015; 16:628. [PMID: 26296655 PMCID: PMC4546252 DOI: 10.1186/s12864-015-1836-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/07/2015] [Indexed: 12/03/2022] Open
Abstract
Background The hemibiotroph Colletotrichum lentis, causative agent of anthracnose on Lens culinaris (lentil) was recently described as a new species. During its interaction with the host plant, C. lentis likely secretes numerous effector proteins, including toxins to alter the plant’s innate immunity, thereby gaining access to the host tissues for nutrition and reproduction. Results In silico analysis of 2000 ESTs generated from C. lentis-infected lentil leaf tissues identified 15 candidate effectors. In planta infection stage-specific gene expression waves among candidate effectors were revealed for the appressorial penetration phase, biotrophic phase and necrotrophic phase. No sign of positive selection pressure [ω (dN/dS) < 1] in effectors was detected at the intraspecific level. A single nucleotide polymorphism in the ORF of candidate effector ClCE6, used to develop a KASPar marker, differentiated perfectly between pathogenic race 0 and race 1 isolates when tested on 52 isolates arbitrarily selected from a large culture collection representing the western Canadian population of C. lentis. Furthermore, an EST encoding argininosuccinate lyase (Arg) was identified as a bacterial gene. A toxin protein ClToxB was further characterized as a potential host-specific toxin through heterologous in planta expression. The knock-down of ClToxB transcripts by RNAi resulted in reduced virulence, suggesting that ClToxB is a virulence factor. In silico analysis of the ClToxB sequence and comparative genomics revealed that ToxB is unlikely a foreign gene in the C. lentis genome. Incongruency between established species relationships and that established based on gene sequence data confirmed ToxB arose through evolution from a common ancestor, whereas the bacterial gene Arg identified in C. lentis was horizontally transferred from bacteria. Conclusions EST mining and expression profiling revealed a set of in planta expressed candidate effectors. We developed a KASPar assay using effector polymorphism to differentiate C. lentis races. Comparative genomics revealed a foreign gene encoding a potential virulence factor Arg, which was horizontally transferred from bacteria into the genus Colletotrichum. ClToxB is further characterized as a host-specific toxin that is likely to contribute to quantitative differences in virulence between the races 0 and 1. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1836-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vijai Bhadauria
- Crop Development Centre/Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada.
| | - Ron MacLachlan
- Crop Development Centre/Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada.
| | - Curtis Pozniak
- Crop Development Centre/Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada.
| | - Sabine Banniza
- Crop Development Centre/Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada.
| |
Collapse
|
15
|
Eloy YRG, Vasconcelos IM, Barreto ALH, Freire-Filho FR, Oliveira JTA. H2O2 plays an important role in the lifestyle of Colletotrichum gloeosporioides during interaction with cowpea [Vigna unguiculata (L.) Walp]. Fungal Biol 2015; 119:747-57. [PMID: 26228563 DOI: 10.1016/j.funbio.2015.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 04/28/2015] [Accepted: 05/05/2015] [Indexed: 12/18/2022]
Abstract
Plant-fungus interactions usually generate H(2)O(2) in the infected plant tissue. H(2)O(2) has a direct antimicrobial effect and is involved in the cross-linking of cell walls, signaling, induction of gene expression, hypersensitive cell death and induced systemic acquired resistance. This has raised the hypothesis that H(2)O(2) manipulation by pharmacological compounds could alter the lifestyle of Colletotrichum gloeosporioides during interaction with the BR-3-Tracuateua cowpea genotype. The primary leaves of cowpea were excised, infiltrated with salicylic acid (SA), glucose oxidase + glucose (GO/G), catalase (CAT) or diphenyliodonium chloride (DPI), followed by spore inoculation on the adaxial leaf surface. SA or GO/G-treated plantlets showed increased H(2)O(2) accumulation and lipid peroxidation. The fungus used a subcuticular, intramural necrotrophic strategy, and developed secondary hyphae associated with the quick spread and rapid killing of host cells. However, CAT or DPI-treated leaves exhibited decreased H(2)O(2) concentration and lipid peroxidation and the fungus developed intracellular hemibiotrophic infection with vesicles, in addition to primary and secondary hyphal formation. These results suggest that H(2)O(2) plays an important role in the cowpea (C. gloeosporioides) pathosystem given that it affected fungal lifestyle during interaction.
Collapse
Affiliation(s)
- Ygor R G Eloy
- Department of Biochemistry and Molecular Biology, Federal University of Ceara (UFC), Campus do Pici, Fortaleza, Ceara 60451-970, Brazil; University of Fortaleza (UNIFOR), Fortaleza, Ceara 60811-905, Brazil.
| | - Ilka M Vasconcelos
- Department of Biochemistry and Molecular Biology, Federal University of Ceara (UFC), Campus do Pici, Fortaleza, Ceara 60451-970, Brazil.
| | - Ana L H Barreto
- Brazilian Agricultural Research Corporation (EMBRAPA) - Meio-Norte, Teresina, Piaui 64006-220, Brazil.
| | - Francisco R Freire-Filho
- Brazilian Agricultural Research Corporation (EMBRAPA) - Meio-Norte, Teresina, Piaui 64006-220, Brazil.
| | - Jose T A Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceara (UFC), Campus do Pici, Fortaleza, Ceara 60451-970, Brazil.
| |
Collapse
|
16
|
Louis B, Waikhom SD, Roy P, Bhardwaj PK, Singh MW, Goyari S, Sharma CK, Talukdar NC. Secretome weaponries of Cochliobolus lunatus interacting with potato leaf at different temperature regimes reveal a CL[xxxx]LHM - motif. BMC Genomics 2014; 15:213. [PMID: 24650331 PMCID: PMC4000054 DOI: 10.1186/1471-2164-15-213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 03/13/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plant and animal pathogenic fungus Cochliobolus lunatus cause great economic damages worldwide every year. C. lunatus displays an increased temperature dependent-virulence to a wide range of hosts. Nonetheless, this phenomenon is poorly understood due to lack of insights on the coordinated secretome weaponries produced by C. lunatus under heat-stress conditions on putative hosts. To understand the mechanism better, we dissected the secretome of C. lunatus interacting with potato (Solanum tuberosum L.) leaf at different temperature regimes. RESULTS C. lunatus produced melanized colonizing hyphae in and on potato leaf, finely modulated the ambient pH as a function of temperature and secreted diverse set of proteins. Using two dimensional gel electrophoresis (2-D) and mass spectrometry (MS) technology, we observed discrete secretomes at 20°C, 28°C and 38°C. A total of 21 differentially expressed peptide spots and 10 unique peptide spots (that did not align on the gels) matched with 28 unique protein models predicted from C. lunatus m118 v.2 genome peptides. Furthermore, C. lunatus secreted peptides via classical and non-classical pathways related to virulence, proteolysis, nucleic acid metabolism, carbohydrate metabolism, heat stress, signal trafficking and some with unidentified catalytic domains. CONCLUSIONS We have identified a set of 5 soluble candidate effectors of unknown function from C. lunatus secretome weaponries against potato crop at different temperature regimes. Our findings demonstrate that C. lunatus has a repertoire of signature secretome which mediates thermo-pathogenicity and share a leucine rich "CL[xxxx]LHM"-motif. Considering the rapidly evolving temperature dependent-virulence and host diversity of C. lunatus, this data will be useful for designing new protection strategies.
Collapse
Affiliation(s)
- Bengyella Louis
- Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal 795001, Manipur, India
- Department of Biotechnology, The University of Burdwan, Golapbag More 713104, West Bengal, India
- Department of Biochemistry, University of Yaoundé I, Yaoundé-BP812 Yaoundé, Cameroon
| | - Sayanika Devi Waikhom
- Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal 795001, Manipur, India
| | - Pranab Roy
- Department of Biotechnology, Haldia Institute of Technology, Haldia 721657, West Bengal, India
| | - Pardeep Kumar Bhardwaj
- Regional Centre of the Institute of Bioresources and Sustainable Development (RCIBSD), Gangtok 737102, Sikkim, India
| | - Mohendro Wakambam Singh
- Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal 795001, Manipur, India
| | - Sailendra Goyari
- Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal 795001, Manipur, India
- Department of Biotechnology, Guwahati University, Guwahati 781 014, Assam, India
| | - Chandradev K Sharma
- Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal 795001, Manipur, India
| | - Narayan Chandra Talukdar
- Institute of Bioresources and Sustainable Development (IBSD), Takyelpat, Imphal 795001, Manipur, India
| |
Collapse
|
17
|
Torres MF, Cuadros DF, Vaillancourt LJ. Evidence for a diffusible factor that induces susceptibility in the Colletotrichum-maize disease interaction. MOLECULAR PLANT PATHOLOGY 2014; 15:80-93. [PMID: 24003973 PMCID: PMC6638722 DOI: 10.1111/mpp.12069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Colletotrichum graminicola, the causal agent of maize anthracnose, is a hemibiotrophic fungus that initially infects living host cells via primary hyphae surrounded by a membrane. A nonpathogenic mutant disrupted in a gene encoding a component of the signal peptidase complex, and believed to be deficient in protein processing and secretion, regained pathogenicity when it was inoculated onto maize leaf sheaths close to the wild-type fungus. Evidence is presented suggesting that the wild-type produces a diffusible factor(s) that induces the localized susceptibility of host cells at the borders of expanding colonies, causing them to become receptive to biotrophic invasion. The induced susceptibility effect is limited to a distance of approximately eight cells from the edge of the wild-type colony, is dosage dependent and is specific to C. graminicola.
Collapse
Affiliation(s)
- Maria F Torres
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans Drive, Lexington, KY, 40546, USA
| | | | | |
Collapse
|
18
|
Palaniyandi S, Yang S, Suh JW. Extracellular proteases from Streptomyces phaeopurpureus
ExPro138 inhibit spore adhesion, germination and appressorium formation in Colletotrichum coccodes. J Appl Microbiol 2013; 115:207-17. [DOI: 10.1111/jam.12212] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/05/2013] [Accepted: 03/27/2013] [Indexed: 11/27/2022]
Affiliation(s)
- S.A. Palaniyandi
- Center for Nutraceutical and Pharmaceutical Materials; Myongji University; Yongin Gyeonggi-Do, Korea
- Division of Bioscience and Bioinformatics; College of Natural Science; Myongji University; Yongin Gyeonggi-Do, Korea
| | - S.H. Yang
- Center for Nutraceutical and Pharmaceutical Materials; Myongji University; Yongin Gyeonggi-Do, Korea
| | - J.-W. Suh
- Center for Nutraceutical and Pharmaceutical Materials; Myongji University; Yongin Gyeonggi-Do, Korea
- Division of Bioscience and Bioinformatics; College of Natural Science; Myongji University; Yongin Gyeonggi-Do, Korea
| |
Collapse
|
19
|
Armijos Jaramillo VD, Vargas WA, Sukno SA, Thon MR. Horizontal transfer of a subtilisin gene from plants into an ancestor of the plant pathogenic fungal genus Colletotrichum. PLoS One 2013; 8:e59078. [PMID: 23554975 PMCID: PMC3598655 DOI: 10.1371/journal.pone.0059078] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/11/2013] [Indexed: 12/21/2022] Open
Abstract
The genus Colletotrichum contains a large number of phytopathogenic fungi that produce enormous economic losses around the world. The effect of horizontal gene transfer (HGT) has not been studied yet in these organisms. Inter-Kingdom HGT into fungal genomes has been reported in the past but knowledge about the HGT between plants and fungi is particularly limited. We describe a gene in the genome of several species of the genus Colletotrichum with a strong resemblance to subtilisins typically found in plant genomes. Subtilisins are an important group of serine proteases, widely distributed in all of the kingdoms of life. Our hypothesis is that the gene was acquired by Colletotrichum spp. through (HGT) from plants to a Colletotrichum ancestor. We provide evidence to support this hypothesis in the form of phylogenetic analyses as well as a characterization of the similarity of the subtilisin at the primary, secondary and tertiary structural levels. The remarkable level of structural conservation of Colletotrichum plant-like subtilisin (CPLS) with plant subtilisins and the differences with the rest of Colletotrichum subtilisins suggests the possibility of molecular mimicry. Our phylogenetic analysis indicates that the HGT event would have occurred approximately 150–155 million years ago, after the divergence of the Colletotrichum lineage from other fungi. Gene expression analysis shows that the gene is modulated during the infection of maize by C. graminicola suggesting that it has a role in plant disease. Furthermore, the upregulation of the CPLS coincides with the downregulation of several plant genes encoding subtilisins. Based on the known roles of subtilisins in plant pathogenic fungi and the gene expression pattern that we observed, we postulate that the CPLSs have an important role in plant infection.
Collapse
Affiliation(s)
- Vinicio Danilo Armijos Jaramillo
- Centro Hispano-Luso de Investigaciones Agrarias, Departamento de Microbiología y Genética, Universidad de Salamanca, Villamayor, Spain
| | - Walter Alberto Vargas
- Centro Hispano-Luso de Investigaciones Agrarias, Departamento de Microbiología y Genética, Universidad de Salamanca, Villamayor, Spain
| | - Serenella Ana Sukno
- Centro Hispano-Luso de Investigaciones Agrarias, Departamento de Microbiología y Genética, Universidad de Salamanca, Villamayor, Spain
| | - Michael R. Thon
- Centro Hispano-Luso de Investigaciones Agrarias, Departamento de Microbiología y Genética, Universidad de Salamanca, Villamayor, Spain
- * E-mail:
| |
Collapse
|
20
|
Morais do Amaral A, Antoniw J, Rudd JJ, Hammond-Kosack KE. Defining the predicted protein secretome of the fungal wheat leaf pathogen Mycosphaerella graminicola. PLoS One 2012; 7:e49904. [PMID: 23236356 PMCID: PMC3517617 DOI: 10.1371/journal.pone.0049904] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 10/15/2012] [Indexed: 01/16/2023] Open
Abstract
The Dothideomycete fungus Mycosphaerella graminicola is the causal agent of Septoria tritici blotch, a devastating disease of wheat leaves that causes dramatic decreases in yield. Infection involves an initial extended period of symptomless intercellular colonisation prior to the development of visible necrotic disease lesions. Previous functional genomics and gene expression profiling studies have implicated the production of secreted virulence effector proteins as key facilitators of the initial symptomless growth phase. In order to identify additional candidate virulence effectors, we re-analysed and catalogued the predicted protein secretome of M. graminicola isolate IPO323, which is currently regarded as the reference strain for this species. We combined several bioinformatic approaches in order to increase the probability of identifying truly secreted proteins with either a predicted enzymatic function or an as yet unknown function. An initial secretome of 970 proteins was predicted, whilst further stringent selection criteria predicted 492 proteins. Of these, 321 possess some functional annotation, the composition of which may reflect the strictly intercellular growth habit of this pathogen, leaving 171 with no functional annotation. This analysis identified a protein family encoding secreted peroxidases/chloroperoxidases (PF01328) which is expanded within all members of the family Mycosphaerellaceae. Further analyses were done on the non-annotated proteins for size and cysteine content (effector protein hallmarks), and then by studying the distribution of homologues in 17 other sequenced Dothideomycete fungi within an overall total of 91 predicted proteomes from fungal, oomycete and nematode species. This detailed M. graminicola secretome analysis provides the basis for further functional and comparative genomics studies.
Collapse
|
21
|
O'Connell RJ, Thon MR, Hacquard S, Amyotte SG, Kleemann J, Torres MF, Damm U, Buiate EA, Epstein L, Alkan N, Altmüller J, Alvarado-Balderrama L, Bauser CA, Becker C, Birren BW, Chen Z, Choi J, Crouch JA, Duvick JP, Farman MA, Gan P, Heiman D, Henrissat B, Howard RJ, Kabbage M, Koch C, Kracher B, Kubo Y, Law AD, Lebrun MH, Lee YH, Miyara I, Moore N, Neumann U, Nordström K, Panaccione DG, Panstruga R, Place M, Proctor RH, Prusky D, Rech G, Reinhardt R, Rollins JA, Rounsley S, Schardl CL, Schwartz DC, Shenoy N, Shirasu K, Sikhakolli UR, Stüber K, Sukno SA, Sweigard JA, Takano Y, Takahara H, Trail F, van der Does HC, Voll LM, Will I, Young S, Zeng Q, Zhang J, Zhou S, Dickman MB, Schulze-Lefert P, Ver Loren van Themaat E, Ma LJ, Vaillancourt LJ. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat Genet 2012; 44:1060-5. [PMID: 22885923 DOI: 10.1038/ng.2372] [Citation(s) in RCA: 618] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 07/05/2012] [Indexed: 11/09/2022]
Abstract
Colletotrichum species are fungal pathogens that devastate crop plants worldwide. Host infection involves the differentiation of specialized cell types that are associated with penetration, growth inside living host cells (biotrophy) and tissue destruction (necrotrophy). We report here genome and transcriptome analyses of Colletotrichum higginsianum infecting Arabidopsis thaliana and Colletotrichum graminicola infecting maize. Comparative genomics showed that both fungi have large sets of pathogenicity-related genes, but families of genes encoding secreted effectors, pectin-degrading enzymes, secondary metabolism enzymes, transporters and peptidases are expanded in C. higginsianum. Genome-wide expression profiling revealed that these genes are transcribed in successive waves that are linked to pathogenic transitions: effectors and secondary metabolism enzymes are induced before penetration and during biotrophy, whereas most hydrolases and transporters are upregulated later, at the switch to necrotrophy. Our findings show that preinvasion perception of plant-derived signals substantially reprograms fungal gene expression and indicate previously unknown functions for particular fungal cell types.
Collapse
Affiliation(s)
- Richard J O'Connell
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Stone CL, McMahon MB, Fortis LL, Nuñez A, Smythers GW, Luster DG, Frederick RD. Gene expression and proteomic analysis of the formation of Phakopsora pachyrhizi appressoria. BMC Genomics 2012; 13:269. [PMID: 22727213 PMCID: PMC3431228 DOI: 10.1186/1471-2164-13-269] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 06/12/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phakopsora pachyrhizi is an obligate fungal pathogen causing Asian soybean rust (ASR). A dual approach was taken to examine the molecular and biochemical processes occurring during the development of appressoria, specialized infection structures by which P. pachyrhizi invades a host plant. Suppression subtractive hybridization (SSH) was utilized to generate a cDNA library enriched for transcripts expressed during appressoria formation. Two-dimensional gel electrophoresis and mass spectroscopy analysis were used to generate a partial proteome of proteins present during appressoria formation. RESULTS Sequence analysis of 1133 expressed sequence tags (ESTs) revealed 238 non-redundant ESTs, of which 53% had putative identities assigned. Twenty-nine of the non-redundant ESTs were found to be specific to the appressoria-enriched cDNA library, and did not occur in a previously constructed germinated urediniospore cDNA library. Analysis of proteins against a custom database of the appressoria-enriched ESTs plus Basidiomycota EST sequences available from NCBI revealed 256 proteins. Fifty-nine of these proteins were not previously identified in a partial proteome of P. pachyrhizi germinated urediniospores. Genes and proteins identified fell into functional categories of metabolism, cell cycle and DNA processing, protein fate, cellular transport, cellular communication and signal transduction, and cell rescue. However, 38% of ESTs and 24% of proteins matched only to hypothetical proteins of unknown function, or showed no similarity to sequences in the current NCBI database. Three novel Phakopsora genes were identified from the cDNA library along with six potentially rust-specific genes. Protein analysis revealed eight proteins of unknown function, which possessed classic secretion signals. Two of the extracellular proteins are reported as potential effector proteins. CONCLUSIONS Several genes and proteins were identified that are expressed in P. pachyrhizi during appressoria formation. Understanding the role that these genes and proteins play in the molecular and biochemical processes in the infection process may provide insight for developing targeted control measures and novel methods of disease management.
Collapse
Affiliation(s)
- Christine L Stone
- USDA-Agricultural Research Service, Foreign Disease-Weed Science Research Unit, 1301 Ditto Avenue, Fort Detrick, MD, 21702, USA
| | - Michael B McMahon
- USDA-Agricultural Research Service, Foreign Disease-Weed Science Research Unit, 1301 Ditto Avenue, Fort Detrick, MD, 21702, USA
| | - Laurie L Fortis
- USDA-Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
- Present address: USDA-National Institute of Food and Agriculture, Institute of Bioenergy, Climate, and Environment, 3245 Waterfront Centre, 800 9th Street, Southwest, Washington, District of Columbia, 20024, USA
| | - Alberto Nuñez
- USDA-Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Gary W Smythers
- National Cancer Institute, Advanced Biomedical Computing Center, Building 430, Fort Detrick, MD, 21702, USA
| | - Douglas G Luster
- USDA-Agricultural Research Service, Foreign Disease-Weed Science Research Unit, 1301 Ditto Avenue, Fort Detrick, MD, 21702, USA
| | - Reid D Frederick
- USDA-Agricultural Research Service, Foreign Disease-Weed Science Research Unit, 1301 Ditto Avenue, Fort Detrick, MD, 21702, USA
| |
Collapse
|
23
|
Yoshino K, Irieda H, Sugimoto F, Yoshioka H, Okuno T, Takano Y. Cell death of Nicotiana benthamiana is induced by secreted protein NIS1 of Colletotrichum orbiculare and is suppressed by a homologue of CgDN3. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:625-36. [PMID: 22352720 DOI: 10.1094/mpmi-12-11-0316] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Colletotrichum orbiculare, the causal agent of cucumber anthracnose, infects Nicotiana benthamiana. Functional screening of C. orbiculare cDNAs in a virus vector-based plant expression system identified a novel secreted protein gene, NIS1, whose product induces cell death in N. benthamiana. Putative homologues of NIS1 are present in selected members of fungi belonging to class Sordariomycetes, Dothideomycetes, or Orbiliomycetes. Green fluorescent protein-based expression studies suggested that NIS1 is preferentially expressed in biotrophic invasive hyphae. NIS1 lacking signal peptide did not induce NIS1-triggered cell death (NCD), suggesting apoplastic recognition of NIS1. NCD was prevented by virus-induced gene silencing of SGT1 and HSP90, indicating the dependency of NCD on SGT1 and HSP90. Deletion of NIS1 had little effect on the virulence of C. orbiculare against N. benthamiana, suggesting possible suppression of NCD by C. orbiculare at the postinvasive stage. The CgDN3 gene of C. gloeosporioides was previously identified as a secreted protein gene involved in suppression of hypersensitive-like response in Stylosanthes guianensis. Notably, we found that NCD was suppressed by the expression of a CgDN3 homologue of C. orbiculare. Our findings indicate that C. orbiculare expresses NIS1 at the postinvasive stage and suggest that NCD could be repressed via other effectors, including the CgDN3 homologue.
Collapse
Affiliation(s)
- Kae Yoshino
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Moretti M, Minerdi D, Gehrig P, Garibaldi A, Gullino ML, Riedel K. A bacterial-fungal metaproteomic analysis enlightens an intriguing multicomponent interaction in the rhizosphere of Lactuca sativa. J Proteome Res 2012; 11:2061-77. [PMID: 22360353 DOI: 10.1021/pr201204v] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fusarium oxysporum MSA 35 [wild-type (WT) strain] is an antagonistic isolate that protects plants against pathogenic Fusaria. This strain lives in association with ectosymbiotic bacteria. When cured of the prokaryotic symbionts [cured (CU) form], the fungus is pathogenic, causing wilt symptoms similar to those of F. oxysporum f.sp. lactucae. The aim of this study was to understand if and how the host plant Lactuca sativa contributes to the expression of the antagonistic/pathogenic behaviors of MSA 35 strains. A time-course comparative analysis of the proteomic profiles of WT and CU strains was performed. Fungal proteins expressed during the early stages of plant-fungus interaction were involved in stress defense, energy metabolism, and virulence and were equally induced in both strains. In the late phase of the interkingdom interaction, only CU strain continued the production of virulence- and energy-related proteins. The expression analysis of lettuce genes coding for proteins involved in resistance-related processes corroborated proteomic data by showing that, at the beginning of the interaction, both fungi are perceived by the plant as pathogen. On the contrary, after 8 days, only the CU strain is able to induce plant gene expression. For the first time, it was demonstrated that an antagonistic F. oxysporum behaves initially as pathogen, showing an interesting similarity with other beneficial organisms such as mychorrizae.
Collapse
Affiliation(s)
- Marino Moretti
- Agroinnova-Centre of Competence for the Innovation in the Agro-Environmental Field, University of Torino, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Kleemann J, Rincon-Rivera LJ, Takahara H, Neumann U, van Themaat EVL, van der Does HC, Hacquard S, Stüber K, Will I, Schmalenbach W, Schmelzer E, O'Connell RJ. Sequential delivery of host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen Colletotrichum higginsianum. PLoS Pathog 2012; 8:e1002643. [PMID: 22496661 PMCID: PMC3320591 DOI: 10.1371/journal.ppat.1002643] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 02/29/2012] [Indexed: 12/29/2022] Open
Abstract
Phytopathogens secrete effector proteins to manipulate their hosts for effective colonization. Hemibiotrophic fungi must maintain host viability during initial biotrophic growth and elicit host death for subsequent necrotrophic growth. To identify effectors mediating these opposing processes, we deeply sequenced the transcriptome of Colletotrichum higginsianum infecting Arabidopsis. Most effector genes are host-induced and expressed in consecutive waves associated with pathogenic transitions, indicating distinct effector suites are deployed at each stage. Using fluorescent protein tagging and transmission electron microscopy-immunogold labelling, we found effectors localised to stage-specific compartments at the host-pathogen interface. In particular, we show effectors are focally secreted from appressorial penetration pores before host invasion, revealing new levels of functional complexity for this fungal organ. Furthermore, we demonstrate that antagonistic effectors either induce or suppress plant cell death. Based on these results we conclude that hemibiotrophy in Colletotrichum is orchestrated through the coordinated expression of antagonistic effectors supporting either cell viability or cell death.
Collapse
Affiliation(s)
- Jochen Kleemann
- Department of Plant-Microbe Interactions, Max-Planck-Institute for Plant Breeding Research, Cologne, Germany
| | - Linda J. Rincon-Rivera
- Department of Plant-Microbe Interactions, Max-Planck-Institute for Plant Breeding Research, Cologne, Germany
| | - Hiroyuki Takahara
- Department of Plant-Microbe Interactions, Max-Planck-Institute for Plant Breeding Research, Cologne, Germany
| | - Ulla Neumann
- Central Microscopy Max-Planck-Institute for Plant Breeding Research, Cologne, Germany
| | - Emiel Ver Loren van Themaat
- Department of Plant-Microbe Interactions, Max-Planck-Institute for Plant Breeding Research, Cologne, Germany
| | - H. Charlotte van der Does
- Department of Plant-Microbe Interactions, Max-Planck-Institute for Plant Breeding Research, Cologne, Germany
| | - Stéphane Hacquard
- Department of Plant-Microbe Interactions, Max-Planck-Institute for Plant Breeding Research, Cologne, Germany
| | - Kurt Stüber
- Max Planck Genome Centre Cologne, Cologne, Germany
| | - Isa Will
- Department of Plant-Microbe Interactions, Max-Planck-Institute for Plant Breeding Research, Cologne, Germany
| | - Wolfgang Schmalenbach
- Department of Plant-Microbe Interactions, Max-Planck-Institute for Plant Breeding Research, Cologne, Germany
| | - Elmon Schmelzer
- Central Microscopy Max-Planck-Institute for Plant Breeding Research, Cologne, Germany
| | - Richard J. O'Connell
- Department of Plant-Microbe Interactions, Max-Planck-Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
26
|
Bhadauria V, Banniza S, Vandenberg A, Selvaraj G, Wei Y. EST mining identifies proteins putatively secreted by the anthracnose pathogen Colletotrichum truncatum. BMC Genomics 2011; 12:327. [PMID: 21699715 PMCID: PMC3149586 DOI: 10.1186/1471-2164-12-327] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 06/23/2011] [Indexed: 01/01/2023] Open
Abstract
Background Colletotrichum truncatum is a haploid, hemibiotrophic, ascomycete fungal pathogen that causes anthracnose disease on many economically important leguminous crops. This pathogen exploits sequential biotrophic- and necrotrophic- infection strategies to colonize the host. Transition from biotrophy to a destructive necrotrophic phase called the biotrophy-necrotrophy switch is critical in symptom development. C. truncatum likely secretes an arsenal of proteins that are implicated in maintaining a compatible interaction with its host. Some of them might be transition specific. Results A directional cDNA library was constructed from mRNA isolated from infected Lens culinaris leaflet tissues displaying the biotrophy-necrotrophy switch of C. truncatum and 5000 expressed sequence tags (ESTs) with an average read of > 600 bp from the 5-prime end were generated. Nearly 39% of the ESTs were predicted to encode proteins of fungal origin and among these, 162 ESTs were predicted to contain N-terminal signal peptides (SPs) in their deduced open reading frames (ORFs). The 162 sequences could be assembled into 122 tentative unigenes comprising 32 contigs and 90 singletons. Sequence analyses of unigenes revealed four potential groups: hydrolases, cell envelope associated proteins (CEAPs), candidate effectors and other proteins. Eleven candidate effector genes were identified based on features common to characterized fungal effectors, i.e. they encode small, soluble (lack of transmembrane domain), cysteine-rich proteins with a putative SP. For a selected subset of CEAPs and candidate effectors, semiquantitative RT-PCR showed that these transcripts were either expressed constitutively in both in vitro and in planta or induced during plant infection. Using potato virus X (PVX) based transient expression assays, we showed that one of the candidate effectors, i. e. contig 8 that encodes a cerato-platanin (CP) domain containing protein, unlike CP proteins from other fungal pathogens was unable to elicit a hypersensitive response (HR). Conclusions The current study catalogues proteins putatively secreted at the in planta biotrophy-necrotrophy transition of C. truncatum. Some of these proteins may have a role in establishing compatible interaction with the host plant.
Collapse
Affiliation(s)
- Vijai Bhadauria
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2 Canada
| | | | | | | | | |
Collapse
|
27
|
Takahara H, Endl E, O'Connell R. Isolation of fungal infection structures from plant tissue by flow cytometry for cell-specific transcriptome analysis. Methods Mol Biol 2011; 729:3-13. [PMID: 21365480 DOI: 10.1007/978-1-61779-065-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Many plant pathogenic fungi differentiate a series of highly specialized infection structures to invade and colonize host tissues. Especially at early stages of infection, the ratio of fungal to plant biomass is very low. To investigate cell-specific patterns of gene expression, it is necessary to purify the fungal structures of interest from infected plants. We describe here a method to isolate the biotrophic hyphae of Colletotrichum higginsianum from Arabidopsis leaves, based on a combination of pre-enrichment by isopycnic centrifugation followed by further purification by fluorescence-activated cell sorting. This protocol efficiently eliminates contamination by plant components and nontarget fungal cell-types. Moreover, the isolated cells remain alive, providing high-quality RNA for library construction. The method can be readily adapted for cell-specific transcriptome analysis in other plant-microbe interactions.
Collapse
Affiliation(s)
- Hiroyuki Takahara
- Department of Bioproduction Science, Ishikawa Prefectural University, Ishikawa, Japan
| | | | | |
Collapse
|
28
|
Ushimaru T, Terada H, Tsuboi K, Kogou Y, Sakaguchi A, Tsuji G, Kubo Y. Development of an efficient gene targeting system in Colletotrichum higginsianum using a non-homologous end-joining mutant and Agrobacterium tumefaciens-mediated gene transfer. Mol Genet Genomics 2010; 284:357-71. [PMID: 20853009 DOI: 10.1007/s00438-010-0572-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 08/24/2010] [Indexed: 11/28/2022]
Abstract
The hemibiotrophic ascomycete Colletotrichum higginsianum is the casual agent of anthracnose disease of cruciferous plants. High efficiency transformation by Agrobacterium tumefaciens-mediated gene transfer has been established for this fungus. However, targeted gene mutagenesis through homologous recombination rarely occurs in C. higginsianum. We have identified and disrupted the C. higginsianum homologue of the human Ku70 gene, ChKU70, which encodes a protein that plays a role in non-homologous end-joining for repair of DNA breaks. chku70 mutants showed a dramatic increase in the frequency of integration of introduced exogenous DNA fragments by homologous recombination without any detectable phenotypic defects. This result demonstrates that the chku70 mutant is an efficient recipient for targeted gene mutagenesis in C. higginsianum. We have also developed a novel approach [named direct repeat recombination-mediated gene targeting (DRGT)] for targeted gene disruption through Agrobacterium tumefaciens-mediated gene transfer. DRGT utilizes homologous recombination between repeated sequences on the T-DNA flanking a partial fragment of the target gene. Our results suggest that DRGT in the chku70 mutant background could be a useful tool for rapid isolation of targeted gene disruptants in C. higginsianum.
Collapse
Affiliation(s)
- Takuma Ushimaru
- Laboratory of Plant Pathology, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, 606-8522, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Takahara H, Dolf A, Endl E, O'Connell R. Flow cytometric purification of Colletotrichum higginsianum biotrophic hyphae from Arabidopsis leaves for stage-specific transcriptome analysis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:672-683. [PMID: 19392696 DOI: 10.1111/j.1365-313x.2009.03896.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Generation of stage-specific cDNA libraries is a powerful approach to identify pathogen genes that are differentially expressed during plant infection. Biotrophic pathogens develop specialized infection structures inside living plant cells, but sampling the transcriptome of these structures is problematic due to the low ratio of fungal to plant RNA, and the lack of efficient methods to isolate them from infected plants. Here we established a method, based on fluorescence-activated cell sorting (FACS), to purify the intracellular biotrophic hyphae of Colletotrichum higginsianum from homogenates of infected Arabidopsis leaves. Specific selection of viable hyphae using a fluorescent vital marker provided intact RNA for cDNA library construction. Pilot-scale sequencing showed that the library was enriched with plant-induced and pathogenicity-related fungal genes, including some encoding small, soluble secreted proteins that represent candidate fungal effectors. The high purity of the hyphae (94%) prevented contamination of the library by sequences derived from host cells or other fungal cell types. RT-PCR confirmed that genes identified in the FACS-purified hyphae were also expressed in planta. The method has wide applicability for isolating the infection structures of other plant pathogens, and will facilitate cell-specific transcriptome analysis via deep sequencing and microarray hybridization, as well as proteomic analyses.
Collapse
Affiliation(s)
- Hiroyuki Takahara
- Department of Plant-Microbe Interactions, Max-Planck-Institute for Plant Breeding Research, 50829 Köln, Germany
| | | | | | | |
Collapse
|
30
|
Bowen JK, Mesarich CH, Rees-George J, Cui W, Fitzgerald A, Win J, Plummer KM, Templeton MD. Candidate effector gene identification in the ascomycete fungal phytopathogen Venturia inaequalis by expressed sequence tag analysis. MOLECULAR PLANT PATHOLOGY 2009; 10:431-48. [PMID: 19400844 PMCID: PMC6640279 DOI: 10.1111/j.1364-3703.2009.00543.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The hemi-biotrophic fungus Venturia inaequalis infects members of the Maloideae, causing the economically important apple disease, scab. The plant-pathogen interaction of Malus and V. inaequalis follows the gene-for-gene model. cDNA libraries were constructed, and bioinformatic analysis of the resulting expressed sequence tags (ESTs) was used to characterize potential effector genes. Effectors are small proteins, secreted in planta, that are assumed to facilitate infection. Therefore, a cDNA library was constructed from a compatible interaction. To distinguish pathogen from plant sequences, the library was probed with genomic DNA from V. inaequalis to enrich for pathogen genes, and cDNA libraries were constructed from in vitro-grown material. A suppression subtractive hybridization library enriched for cellophane-induced genes was included, as growth on cellophane may mimic that in planta, with the differentiation of structures resembling those formed during plant colonization. Clustering of ESTs from the in planta and in vitro libraries indicated a fungal origin of the resulting non-redundant sequence. A total of 937 ESTs was classified as putatively fungal, which could be assembled into 633 non-redundant sequences. Sixteen new candidate effector genes were identified from V. inaequalis based on features common to characterized effector genes from filamentous fungi, i.e. they encode a small, novel, cysteine-rich protein, with a putative signal peptide. Three of the 16 candidates, in particular, conformed to most of the protein structural characteristics expected of fungal effectors and showed significant levels of transcriptional up-regulation during in planta growth. In addition to candidate effector genes, this collection of ESTs represents a valuable genomic resource for V. inaequalis.
Collapse
Affiliation(s)
- Joanna K Bowen
- The New Zealand Institute for Plant and Food Research Limited, Mt. Albert Research Centre, Auckland, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Huser A, Takahara H, Schmalenbach W, O'Connell R. Discovery of pathogenicity genes in the crucifer anthracnose fungus Colletotrichum higginsianum, using random insertional mutagenesis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:143-156. [PMID: 19132867 DOI: 10.1094/mpmi-22-2-0143] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Agrobacterium tumefaciens-mediated transformation (ATMT) was used for random insertional mutagenesis to identify pathogenicity genes in the hemibiotrophic fungus Colletotrichum higginsianum. A high-throughput primary infection assay on Arabidopsis thaliana seedlings allowed the rapid screening of 8,850 transformants. Forty mutants showing reproducible pathogenicity defects on Arabidopsis and Brassica plants were obtained, and their infection phenotypes were characterized microscopically. Six mutants were impaired in appressorial melanization, fifteen had reduced penetration ability, 14 induced host papillae or hypersensitive cell death, and five were affected in the transition from biotrophy to necrotrophy. Southern blot analysis showed 58% of the transformants had single-site T-DNA integrations. Right-border flanking sequences were recovered from 12 mutants by inverse polymerase chain reaction (PCR) or thermal asymmetric interlaced PCR and were used to isolate the tagged genes from a genomic library. The putative pathogenicity genes encoded homologs of a major facilitator superfamily phosphate transporter, importin-beta2, ornithine decarboxylase, beta-1,3(4)-glucanase, ATP-binding endoribonuclease, carbamoyl-phosphate synthetase, and the polyprotein precursor of N-acetylglutamate kinase and N-acetylglutamyl-phosphate reductase. Six further loci were homologous to proteins of unknown function. None of these genes were previously implicated in the pathogenicity of any Colletotrichum species. The results demonstrate that ATMT is an effective tool for gene discovery in this model pathogen.
Collapse
Affiliation(s)
- Aurélie Huser
- Max-Planck-Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, Koln, Germany
| | | | | | | |
Collapse
|