1
|
Phyletic Distribution and Diversification of the Phage Shock Protein Stress Response System in Bacteria and Archaea. mSystems 2022; 7:e0134821. [PMID: 35604119 PMCID: PMC9239133 DOI: 10.1128/msystems.01348-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PspA protein domain is found in all domains of life, highlighting its central role in Psp networks. To date, all insights into the core functions of Psp responses derive mainly from protein network blueprints representing only three bacterial phyla.
Collapse
|
2
|
Favreau C, Tribondeau A, Marugan M, Guyot F, Alpha-Bazin B, Marie A, Puppo R, Dufour T, Huguet A, Zirah S, Kish A. Molecular acclimation of Halobacterium salinarum to halite brine inclusions. Front Microbiol 2022; 13:1075274. [PMID: 36875534 PMCID: PMC9976938 DOI: 10.3389/fmicb.2022.1075274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/22/2022] [Indexed: 01/27/2023] Open
Abstract
Halophilic microorganisms have long been known to survive within the brine inclusions of salt crystals, as evidenced by the change in color for salt crystals containing pigmented halophiles. However, the molecular mechanisms allowing this survival has remained an open question for decades. While protocols for the surface sterilization of halite (NaCl) have enabled isolation of cells and DNA from within halite brine inclusions, "-omics" based approaches have faced two main technical challenges: (1) removal of all contaminating organic biomolecules (including proteins) from halite surfaces, and (2) performing selective biomolecule extractions directly from cells contained within halite brine inclusions with sufficient speed to avoid modifications in gene expression during extraction. In this study, we tested different methods to resolve these two technical challenges. Following this method development, we then applied the optimized methods to perform the first examination of the early acclimation of a model haloarchaeon (Halobacterium salinarum NRC-1) to halite brine inclusions. Examinations of the proteome of Halobacterium cells two months post-evaporation revealed a high degree of similarity with stationary phase liquid cultures, but with a sharp down-regulation of ribosomal proteins. While proteins for central metabolism were part of the shared proteome between liquid cultures and halite brine inclusions, proteins involved in cell mobility (archaellum, gas vesicles) were either absent or less abundant in halite samples. Proteins unique to cells within brine inclusions included transporters, suggesting modified interactions between cells and the surrounding brine inclusion microenvironment. The methods and hypotheses presented here enable future studies of the survival of halophiles in both culture model and natural halite systems.
Collapse
Affiliation(s)
- Charly Favreau
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), CNRS, Paris, France
| | - Alicia Tribondeau
- Unité Physiologie Moléculaire et Adaptation (PhyMA), MNHN, CNRS, Paris, France
| | - Marie Marugan
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), CNRS, Paris, France
| | - François Guyot
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), MNHN, Sorbonne Université, CNRS, IRD, Paris, France
| | - Beatrice Alpha-Bazin
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, Bagnols-sur-Cèze, France
| | - Arul Marie
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), CNRS, Paris, France
| | - Remy Puppo
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), CNRS, Paris, France
| | - Thierry Dufour
- Laboratoire de Physique des Plasma (LPP), Sorbonne Université, CNRS, École Polytechnique, Université Paris-Sud, Observatoire de Paris, Paris, France
| | - Arnaud Huguet
- Unité Milieux Environnementaux Transferts et Interactions dans les hydrosystèmes et les Sols (METIS), Sorbonne Université, CNRS, EPHE, PSL, Paris, France
| | - Séverine Zirah
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), CNRS, Paris, France
| | - Adrienne Kish
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle (MNHN), CNRS, Paris, France
| |
Collapse
|
3
|
Lach J, Jęcz P, Strapagiel D, Matera-Witkiewicz A, Stączek P. The Methods of Digging for "Gold" within the Salt: Characterization of Halophilic Prokaryotes and Identification of Their Valuable Biological Products Using Sequencing and Genome Mining Tools. Genes (Basel) 2021; 12:1756. [PMID: 34828362 PMCID: PMC8619533 DOI: 10.3390/genes12111756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/18/2021] [Accepted: 10/30/2021] [Indexed: 02/06/2023] Open
Abstract
Halophiles, the salt-loving organisms, have been investigated for at least a hundred years. They are found in all three domains of life, namely Archaea, Bacteria, and Eukarya, and occur in saline and hypersaline environments worldwide. They are already a valuable source of various biomolecules for biotechnological, pharmaceutical, cosmetological and industrial applications. In the present era of multidrug-resistant bacteria, cancer expansion, and extreme environmental pollution, the demand for new, effective compounds is higher and more urgent than ever before. Thus, the unique metabolism of halophilic microorganisms, their low nutritional requirements and their ability to adapt to harsh conditions (high salinity, high pressure and UV radiation, low oxygen concentration, hydrophobic conditions, extreme temperatures and pH, toxic compounds and heavy metals) make them promising candidates as a fruitful source of bioactive compounds. The main aim of this review is to highlight the nucleic acid sequencing experimental strategies used in halophile studies in concert with the presentation of recent examples of bioproducts and functions discovered in silico in the halophile's genomes. We point out methodological gaps and solutions based on in silico methods that are helpful in the identification of valuable bioproducts synthesized by halophiles. We also show the potential of an increasing number of publicly available genomic and metagenomic data for halophilic organisms that can be analysed to identify such new bioproducts and their producers.
Collapse
Affiliation(s)
- Jakub Lach
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 93-338 Lodz, Poland; (P.J.); (P.S.)
- Biobank Lab, Department of Molecular Biophysics, Faculty of Environmental Protection, University of Lodz, 93-338 Lodz, Poland;
| | - Paulina Jęcz
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 93-338 Lodz, Poland; (P.J.); (P.S.)
| | - Dominik Strapagiel
- Biobank Lab, Department of Molecular Biophysics, Faculty of Environmental Protection, University of Lodz, 93-338 Lodz, Poland;
| | - Agnieszka Matera-Witkiewicz
- Screening Laboratory of Biological Activity Tests and Collection of Biological Material, Faculty of Pharmacy, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Paweł Stączek
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, 93-338 Lodz, Poland; (P.J.); (P.S.)
| |
Collapse
|
4
|
Matarredona L, Camacho M, Zafrilla B, Bonete MJ, Esclapez J. The Role of Stress Proteins in Haloarchaea and Their Adaptive Response to Environmental Shifts. Biomolecules 2020; 10:biom10101390. [PMID: 33003558 PMCID: PMC7601130 DOI: 10.3390/biom10101390] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/26/2022] Open
Abstract
Over the years, in order to survive in their natural environment, microbial communities have acquired adaptations to nonoptimal growth conditions. These shifts are usually related to stress conditions such as low/high solar radiation, extreme temperatures, oxidative stress, pH variations, changes in salinity, or a high concentration of heavy metals. In addition, climate change is resulting in these stress conditions becoming more significant due to the frequency and intensity of extreme weather events. The most relevant damaging effect of these stressors is protein denaturation. To cope with this effect, organisms have developed different mechanisms, wherein the stress genes play an important role in deciding which of them survive. Each organism has different responses that involve the activation of many genes and molecules as well as downregulation of other genes and pathways. Focused on salinity stress, the archaeal domain encompasses the most significant extremophiles living in high-salinity environments. To have the capacity to withstand this high salinity without losing protein structure and function, the microorganisms have distinct adaptations. The haloarchaeal stress response protects cells against abiotic stressors through the synthesis of stress proteins. This includes other heat shock stress proteins (Hsp), thermoprotectants, survival proteins, universal stress proteins, and multicellular structures. Gene and family stress proteins are highly conserved among members of the halophilic archaea and their study should continue in order to develop means to improve for biotechnological purposes. In this review, all the mechanisms to cope with stress response by haloarchaea are discussed from a global perspective, specifically focusing on the role played by universal stress proteins.
Collapse
|
5
|
Kumar S, Paul D, Bhushan B, Wakchaure GC, Meena KK, Shouche Y. Traversing the "Omic" landscape of microbial halotolerance for key molecular processes and new insights. Crit Rev Microbiol 2020; 46:631-653. [PMID: 32991226 DOI: 10.1080/1040841x.2020.1819770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Post-2005, the biology of the salt afflicted habitats is predominantly studied employing high throughput "Omic" approaches comprising metagenomics, transcriptomics, metatranscriptomics, metabolomics, and proteomics. Such "Omic-based" studies have deciphered the unfamiliar details about microbial salt-stress biology. The MAGs (Metagenome-assembled genomes) of uncultured halophilic microbial lineages such as Nanohaloarchaea and haloalkaliphilic members within CPR (Candidate Phyla Radiation) have been reconstructed from diverse hypersaline habitats. The study of MAGs of such uncultured halophilic microbial lineages has unveiled the genomic basis of salt stress tolerance in "yet to culture" microbial lineages. Furthermore, functional metagenomic approaches have been used to decipher the novel genes from uncultured microbes and their possible role in microbial salt-stress tolerance. The present review focuses on the new insights into microbial salt-stress biology gained through different "Omic" approaches. This review also summarizes the key molecular processes that underlie microbial salt-stress response, and their role in microbial salt-stress tolerance has been confirmed at more than one "Omic" levels.
Collapse
Affiliation(s)
- Satish Kumar
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India.,ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, India
| | - Dhiraj Paul
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Bharat Bhushan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - G C Wakchaure
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, India
| | - Kamlesh K Meena
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, India
| | - Yogesh Shouche
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| |
Collapse
|
6
|
Jevtić Ž, Stoll B, Pfeiffer F, Sharma K, Urlaub H, Marchfelder A, Lenz C. The Response of Haloferax volcanii to Salt and Temperature Stress: A Proteome Study by Label-Free Mass Spectrometry. Proteomics 2019; 19:e1800491. [PMID: 31502396 DOI: 10.1002/pmic.201800491] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 08/27/2019] [Indexed: 01/23/2023]
Abstract
In-depth proteome analysis of the haloarchaeal model organism Haloferax volcanii has been performed under standard, low/high salt, and low/high temperature conditions using label-free mass spectrometry. Qualitative analysis of protein identification data from high-pH/reversed-phase fractionated samples indicates 61.1% proteome coverage (2509 proteins), which is close to the maximum recorded values in archaea. Identified proteins match to the predicted proteome in their physicochemical properties, with only a small bias against low-molecular-weight and membrane-associated proteins. Cells grown under low and high salt stress as well as low and high temperature stress are quantitatively compared to standard cultures by sequential window acquisition of all theoretical mass spectra (SWATH-MS). A total of 2244 proteins, or 54.7% of the predicted proteome, are quantified across all conditions at high reproducibility, which allowed for global analysis of protein expression changes under these stresses. Of these, 2034 are significantly regulated under at least one stress condition. KEGG pathway enrichment analysis shows that several major cellular pathways are part of H. volcanii's universal stress response. In addition, specific pathways (purine, cobalamin, and tryptophan) are affected by temperature stress. The most strongly downregulated proteins under all stress conditions, zinc finger protein HVO_2753 and ribosomal protein S14, are found oppositely regulated to their immediate genetic neighbors from the same operon.
Collapse
Affiliation(s)
- Živojin Jevtić
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, Göttingen, 37077, Germany
| | | | - Friedhelm Pfeiffer
- Computational Biology Group, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Kundan Sharma
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, Göttingen, 37077, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, Göttingen, 37077, Germany.,Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, 37075, Germany
| | | | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, Göttingen, 37077, Germany.,Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, 37075, Germany
| |
Collapse
|
7
|
Hackley RK, Schmid AK. Global Transcriptional Programs in Archaea Share Features with the Eukaryotic Environmental Stress Response. J Mol Biol 2019; 431:4147-4166. [PMID: 31437442 PMCID: PMC7419163 DOI: 10.1016/j.jmb.2019.07.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 01/06/2023]
Abstract
The environmental stress response (ESR), a global transcriptional program originally identified in yeast, is characterized by a rapid and transient transcriptional response composed of large, oppositely regulated gene clusters. Genes induced during the ESR encode core components of stress tolerance, macromolecular repair, and maintenance of homeostasis. In this review, we investigate the possibility for conservation of the ESR across the eukaryotic and archaeal domains of life. We first re-analyze existing transcriptomics data sets to illustrate that a similar transcriptional response is identifiable in Halobacterium salinarum, an archaeal model organism. To substantiate the archaeal ESR, we calculated gene-by-gene correlations, gene function enrichment, and comparison of temporal dynamics. We note reported examples of variation in the ESR across fungi, then synthesize high-level trends present in expression data of other archaeal species. In particular, we emphasize the need for additional high-throughput time series expression data to further characterize stress-responsive transcriptional programs in the Archaea. Together, this review explores an open question regarding features of global transcriptional stress response programs shared across domains of life.
Collapse
Affiliation(s)
- Rylee K Hackley
- Department of Biology, Duke University, Durham, NC 27708, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - Amy K Schmid
- Department of Biology, Duke University, Durham, NC 27708, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA; Center for Genomics and Computational Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
8
|
McMillan LJ, Hwang S, Farah RE, Koh J, Chen S, Maupin-Furlow JA. Multiplex quantitative SILAC for analysis of archaeal proteomes: a case study of oxidative stress responses. Environ Microbiol 2017; 20:385-401. [PMID: 29194950 DOI: 10.1111/1462-2920.14014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 01/08/2023]
Abstract
Stable isotope labelling of amino acids in cell culture (SILAC) is a quantitative proteomic method that can illuminate new pathways used by cells to adapt to different lifestyles and niches. Archaea, while thriving in extreme environments and accounting for ∼20%-40% of the Earth's biomass, have not been analyzed with the full potential of SILAC. Here, we report SILAC for quantitative comparison of archaeal proteomes, using Haloferax volcanii as a model. A double auxotroph was generated that allowed for complete incorporation of 13 C/15 N-lysine and 13 C-arginine such that each peptide derived from trypsin digestion was labelled. This strain was found amenable to multiplex SILAC by case study of responses to oxidative stress by hypochlorite. A total of 2565 proteins was identified by LC-MS/MS analysis (q-value ≤ 0.01) that accounted for 64% of the theoretical proteome. Of these, 176 proteins were altered at least 1.5-fold (p-value < 0.05) in abundance during hypochlorite stress. Many of the differential proteins were of unknown function. Those of known function included transcription factor homologs related to oxidative stress by 3D-homology modelling and orthologous group comparisons. Thus, SILAC is found to be an ideal method for quantitative proteomics of archaea that holds promise to unravel gene function.
Collapse
Affiliation(s)
- Lana J McMillan
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.,Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Sungmin Hwang
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Rawan E Farah
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Jin Koh
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32611, USA
| | - Sixue Chen
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA.,Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32611, USA.,Department of Biology, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.,Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
9
|
Kurt-Kızıldoğan A, Abanoz B, Okay S. Global transcriptome analysis of Halolamina sp. to decipher the salt tolerance in extremely halophilic archaea. Gene 2016; 601:56-64. [PMID: 27919704 DOI: 10.1016/j.gene.2016.11.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/17/2016] [Accepted: 11/30/2016] [Indexed: 12/21/2022]
Abstract
Extremely halophilic archaea survive in the hypersaline environments such as salt lakes or salt mines. Therefore, these microorganisms are good sources to investigate the molecular mechanisms underlying the tolerance to high salt concentrations. In this study, a global transcriptome analysis was conducted in an extremely halophilic archaeon, Halolamina sp. YKT1, isolated from a salt mine in Turkey. A comparative RNA-seq analysis was performed using YKT1 isolate grown either at 2.7M NaCl or 5.5M NaCl concentrations. A total of 2149 genes were predicted to be up-regulated and 1638 genes were down-regulated in the presence of 5.5M NaCl. The salt tolerance of Halolamina sp. YKT1 involves the up-regulation of genes related with membrane transporters, CRISPR-Cas systems, osmoprotectant solutes, oxidative stress proteins, and iron metabolism. On the other hand, the genes encoding the proteins involved in DNA replication, transcription, translation, mismatch and nucleotide excision repair were down-regulated. The RNA-seq data were verified for seven up-regulated genes as well as six down-regulated genes via qRT-PCR analysis. This comprehensive transcriptome analysis showed that the halophilic archaeon canalizes its energy towards keeping the intracellular osmotic balance minimizing the production of nucleic acids and peptides.
Collapse
Affiliation(s)
- Aslıhan Kurt-Kızıldoğan
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, 55139 Samsun, Turkey
| | - Büşra Abanoz
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, 55139 Samsun, Turkey
| | - Sezer Okay
- Department of Biology, Faculty of Science, Çankırı Karatekin University, 18100 Çankırı, Turkey.
| |
Collapse
|
10
|
Chuang MY, Tsai WC, Kuo TY, Chen HM, Chen WJ. Comparative proteome analysis reveals proteins involved in salt adaptation in Photobacterium damselae subsp. piscicida. J Basic Microbiol 2016; 56:1234-1243. [PMID: 27282981 DOI: 10.1002/jobm.201600091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/16/2016] [Indexed: 11/07/2022]
Abstract
Proteomic approaches were applied to investigate whether Photobacterium damselae subsp. piscicida (Phdp) can directly sense and respond to growth conditions under different salinities, 0.85% and 3.5% NaCl concentrations, mimicking the osmotic conditions in host and marine water bodies, respectively. Proteins significantly altered were analyzed by two-dimensional gel electrophoresis (2-DE), liquid chromatography-electrospray ionization-quadrupole-time-of-flight tandem mass spectrometry (LC-ESI-Q-TOF MS/MS) and bioinformatics analysis, thus resulting in 16 outer membrane proteins (OMPs), 12 inner membrane proteins (IMPs), and 20 cytoplasmic proteins (CPs). Quantitative real-time PCR was also applied to monitor the mRNA expression level of these target proteins. Cluster of orthologous groups of protein (COG) analysis revealed that when shifting from 3.5% to 0.85% salinity, the majority of the up-regulated proteins were involved in posttranslational modification, protein turnover, and chaperones, while the down-regulated proteins were mainly related to energy production and conversion, compatible solutes (carbohydrates, amino acids and their derivatives) biogenesis and transport. Differentially expressed proteins identified in the current study could be used to elucidate the salt adaptation mechanisms of Phdp during their transition between host cells and the marine habitats.
Collapse
Affiliation(s)
- Min-Yuan Chuang
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| | - Wei-Chen Tsai
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| | - Tsun-Yung Kuo
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| | - Han-Min Chen
- Department of Life Science, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Wei-Jung Chen
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| |
Collapse
|
11
|
Abstract
The phage shock protein (Psp) system was identified as a response to phage infection in Escherichia coli, but rather than being a specific response to a phage, it detects and mitigates various problems that could increase inner-membrane (IM) permeability. Interest in the Psp system has increased significantly in recent years due to appreciation that Psp-like proteins are found in all three domains of life and because the bacterial Psp response has been linked to virulence and other important phenotypes. In this article, we summarize our current understanding of what the Psp system detects and how it detects it, how four core Psp proteins form a signal transduction cascade between the IM and the cytoplasm, and current ideas that explain how the Psp response keeps bacterial cells alive. Although recent studies have significantly improved our understanding of this system, it is an understanding that is still far from complete.
Collapse
Affiliation(s)
- Josué Flores-Kim
- Department of Microbiology, New York University School of Medicine, New York, NY 10016; ,
| | - Andrew J Darwin
- Department of Microbiology, New York University School of Medicine, New York, NY 10016; ,
| |
Collapse
|
12
|
Biology and survival of extremely halophilic archaeon Haloarcula marismortui RR12 isolated from Mumbai salterns, India in response to salinity stress. Sci Rep 2016; 6:25642. [PMID: 27231230 PMCID: PMC4882750 DOI: 10.1038/srep25642] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/20/2016] [Indexed: 01/20/2023] Open
Abstract
Haloarchaea are unique microorganism’s resistant to environmental and osmotic stresses and thrive in their habitats despite extreme fluctuating salinities. In the present study, haloarchaea were isolated from hypersaline thalossohaline salterns of Bhandup, Mumbai, India and were identified as Haloferax prahovense, Haloferax alexandrines, Haloferax lucentense, Haloarcula tradensis, Haloarcula marismortui and Haloarcula argentinensis. The mechanism of adaptation to contrasting salinities (1.5 M and 4.5 M) was investigated in the extreme haloarchaeon, Hal. marismortui RR12. Hal. marismortui RR12 increased the intracellular sequestration of K+ and Cl− ions in hypo salinity and hyper salinity respectively as detected by Energy-dispersive X-ray spectroscopy microanalysis (EDAX) and Inductively Coupled Plasma- atomic Emission Spectroscopy (ICP-AES) indicating the presence of ‘salt-in’ strategy of osmoadaptation. As a cellular response to salinity stress, it produced small heat shock like proteins (sHSP) identified using MALDI-TOF MS and increased the production of protective red carotenoid pigment. This is the first report on the study of the concomitant cellular, molecular and physiological mechanism adapted by Hal. marismortui RR12 when exposed to contrasting salinities in external environment.
Collapse
|
13
|
Osadnik H, Schöpfel M, Heidrich E, Mehner D, Lilie H, Parthier C, Risselada HJ, Grubmüller H, Stubbs MT, Brüser T. PspF-binding domain PspA1-144and the PspA·F complex: New insights into the coiled-coil-dependent regulation of AAA+ proteins. Mol Microbiol 2015; 98:743-59. [DOI: 10.1111/mmi.13154] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Hendrik Osadnik
- Institute of Microbiology; Leibniz Universität Hannover; Herrenhäuser Str. 2 Hannover 30419 Germany
| | - Michael Schöpfel
- Institute of Biochemistry and Biotechnology; Martin-Luther University Halle-Wittenberg; Kurt-Mothes-Straße 3 Halle (Saale) 06120 Germany
| | - Eyleen Heidrich
- Institute of Microbiology; Leibniz Universität Hannover; Herrenhäuser Str. 2 Hannover 30419 Germany
| | - Denise Mehner
- Institute of Microbiology; Leibniz Universität Hannover; Herrenhäuser Str. 2 Hannover 30419 Germany
| | - Hauke Lilie
- Institute of Biochemistry and Biotechnology; Martin-Luther University Halle-Wittenberg; Kurt-Mothes-Straße 3 Halle (Saale) 06120 Germany
| | - Christoph Parthier
- Institute of Biochemistry and Biotechnology; Martin-Luther University Halle-Wittenberg; Kurt-Mothes-Straße 3 Halle (Saale) 06120 Germany
| | - H. Jelger Risselada
- Max Planck Institute for Biophysical Chemistry; Am Fassberg 11 Göttingen 37077 Germany
| | - Helmut Grubmüller
- Max Planck Institute for Biophysical Chemistry; Am Fassberg 11 Göttingen 37077 Germany
| | - Milton T. Stubbs
- Institute of Biochemistry and Biotechnology; Martin-Luther University Halle-Wittenberg; Kurt-Mothes-Straße 3 Halle (Saale) 06120 Germany
| | - Thomas Brüser
- Institute of Microbiology; Leibniz Universität Hannover; Herrenhäuser Str. 2 Hannover 30419 Germany
| |
Collapse
|
14
|
Maniscalco M, Nannen J, Sodi V, Silver G, Lowrey PL, Bidle KA. Light-dependent expression of four cryptic archaeal circadian gene homologs. Front Microbiol 2014; 5:79. [PMID: 24624125 PMCID: PMC3941300 DOI: 10.3389/fmicb.2014.00079] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/12/2014] [Indexed: 01/21/2023] Open
Abstract
Circadian rhythms are important biological signals that have been found in almost all major groups of life from bacteria to man, yet it remains unclear if any members of the second major prokaryotic domain of life, the Archaea, also possess a biological clock. As an initial investigation of this question, we examined the regulation of four cyanobacterial-like circadian gene homologs present in the genome of the haloarchaeon Haloferax volcanii. These genes, designated cirA, cirB, cirC, and cirD, display similarity to the KaiC-family of cyanobacterial clock proteins, which act to regulate rhythmic gene expression and to control the timing of cell division. Quantitative RT-PCR analysis was used to examine the expression of each of the four cir genes in response to 12 h light/12 h dark cycles (LD 12:12) in H. volcanii during balanced growth. Our data reveal that there is an approximately two to sixteen-fold increase in cir gene expression when cells are shifted from light to constant darkness, and this pattern of gene expression oscillates with the light conditions in a rhythmic manner. Targeted single- and double-gene knockouts in the H. volcanii cir genes result in disruption of light-dependent, rhythmic gene expression, although it does not lead to any significant effect on growth under these conditions. Restoration of light-dependent, rhythmic gene expression was demonstrated by introducing, in trans, a wild-type copy of individual cir genes into knockout strains. These results are noteworthy as this is the first attempt to characterize the transcriptional expression and regulation of the ubiquitous kaiC homologs found among archaeal genomes.
Collapse
Affiliation(s)
| | - Jennifer Nannen
- Department of Biology, Rider University Lawrenceville, NJ, USA
| | - Valerie Sodi
- Department of Biology, Rider University Lawrenceville, NJ, USA
| | - Gillian Silver
- Department of Biology, Rider University Lawrenceville, NJ, USA
| | | | - Kelly A Bidle
- Department of Biology, Rider University Lawrenceville, NJ, USA
| |
Collapse
|
15
|
Anné J, Vrancken K, Van Mellaert L, Van Impe J, Bernaerts K. Protein secretion biotechnology in Gram-positive bacteria with special emphasis on Streptomyces lividans. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1750-61. [PMID: 24412306 DOI: 10.1016/j.bbamcr.2013.12.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/26/2013] [Accepted: 12/31/2013] [Indexed: 02/07/2023]
Abstract
Proteins secreted by Gram-positive bacteria are released into the culture medium with the obvious benefit that they usually retain their native conformation. This property makes these host cells potentially interesting for the production of recombinant proteins, as one can take full profit of established protocols for the purification of active proteins. Several state-of-the-art strategies to increase the yield of the secreted proteins will be discussed, using Streptomyces lividans as an example and compared with approaches used in some other host cells. It will be shown that approaches such as increasing expression and translation levels, choice of secretion pathway and modulation of proteins thereof, avoiding stress responses by changing expression levels of specific (stress) proteins, can be helpful to boost production yield. In addition, the potential of multi-omics approaches as a tool to understand the genetic background and metabolic fluxes in the host cell and to seek for new targets for strain and protein secretion improvement is discussed. It will be shown that S. lividans, along with other Gram-positive host cells, certainly plays a role as a production host for recombinant proteins in an economically viable way. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Jozef Anné
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Laboratory of Molecular Bacteriology, Herestraat 49, box 1037, B-3000 Leuven, Belgium.
| | - Kristof Vrancken
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Laboratory of Molecular Bacteriology, Herestraat 49, box 1037, B-3000 Leuven, Belgium.
| | - Lieve Van Mellaert
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Laboratory of Molecular Bacteriology, Herestraat 49, box 1037, B-3000 Leuven, Belgium.
| | - Jan Van Impe
- Chemical and Biochemical Process Technology and Control Section (BioTeC), Department of Chemical Engineering, KU Leuven, Willem de Croylaan 46 box 2423, B-3001 Leuven, Belgium.
| | - Kristel Bernaerts
- Chemical and Biochemical Process Technology and Control Section (BioTeC), Department of Chemical Engineering, KU Leuven, Willem de Croylaan 46 box 2423, B-3001 Leuven, Belgium.
| |
Collapse
|
16
|
Rubiano-Labrador C, Bland C, Miotello G, Guérin P, Pible O, Baena S, Armengaud J. Proteogenomic insights into salt tolerance by a halotolerant alpha-proteobacterium isolated from an Andean saline spring. J Proteomics 2013; 97:36-47. [PMID: 23727365 DOI: 10.1016/j.jprot.2013.05.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 04/30/2013] [Accepted: 05/16/2013] [Indexed: 01/18/2023]
Abstract
UNLABELLED Tistlia consotensis is a halotolerant Rhodospirillaceae that was isolated from a saline spring located in the Colombian Andes with a salt concentration close to seawater (4.5%w/vol). We cultivated this microorganism in three NaCl concentrations, i.e. optimal (0.5%), without (0.0%) and high (4.0%) salt concentration, and analyzed its cellular proteome. For assigning tandem mass spectrometry data, we first sequenced its genome and constructed a six reading frame ORF database from the draft sequence. We annotated only the genes whose products (872) were detected. We compared the quantitative proteome data sets recorded for the three different growth conditions. At low salinity general stress proteins (chaperons, proteases and proteins associated with oxidative stress protection), were detected in higher amounts, probably linked to difficulties for proper protein folding and metabolism. Proteogenomics and comparative genomics pointed at the CrgA transcriptional regulator as a key-factor for the proteome remodeling upon low osmolarity. In hyper-osmotic condition, T. consotensis produced in larger amounts proteins involved in the sensing of changes in salt concentration, as well as a wide panel of transport systems for the transport of organic compatible solutes such as glutamate. We have described here a straightforward procedure in making a new environmental isolate quickly amenable to proteomics. BIOLOGICAL SIGNIFICANCE The bacterium Tistlia consotensis was isolated from a saline spring in the Colombian Andes and represents an interesting environmental model to be compared with extremophiles or other moderate organisms. To explore the halotolerance molecular mechanisms of the bacterium T. consotensis, we developed an innovative proteogenomic strategy consisting of i) genome sequencing, ii) quick annotation of the genes whose products were detected by mass spectrometry, and iii) comparative proteomics of cells grown in three salt conditions. We highlighted in this manuscript how efficient such an approach can be compared to time-consuming genome annotation when pointing at the key proteins of a given biological question. We documented a large number of proteins found produced in greater amounts when cells are cultivated in either hypo-osmotic or hyper-osmotic conditions. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- Carolina Rubiano-Labrador
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, POB 56710, Bogotá D.C., Colombia; Colombian Center for Genomics and Bioinformatics of Extreme Environments, GeBiX, Colombia
| | - Céline Bland
- CEA, DSV, iBEB, SBTN, Lab Biochim System Perturb, Bagnols-sur-Cèze, F-30207, France
| | - Guylaine Miotello
- CEA, DSV, iBEB, SBTN, Lab Biochim System Perturb, Bagnols-sur-Cèze, F-30207, France
| | - Philippe Guérin
- CEA, DSV, iBEB, SBTN, Lab Biochim System Perturb, Bagnols-sur-Cèze, F-30207, France
| | - Olivier Pible
- CEA, DSV, iBEB, SBTN, Lab Biochim System Perturb, Bagnols-sur-Cèze, F-30207, France
| | - Sandra Baena
- Unidad de Saneamiento y Biotecnología Ambiental, Departamento de Biología, Pontificia Universidad Javeriana, POB 56710, Bogotá D.C., Colombia; Colombian Center for Genomics and Bioinformatics of Extreme Environments, GeBiX, Colombia
| | - Jean Armengaud
- CEA, DSV, iBEB, SBTN, Lab Biochim System Perturb, Bagnols-sur-Cèze, F-30207, France.
| |
Collapse
|
17
|
Seth-Pasricha M, Bidle KA, Bidle KD. Specificity of archaeal caspase activity in the extreme halophile Haloferax volcanii. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:263-71. [PMID: 23565123 PMCID: PMC3615174 DOI: 10.1111/1758-2229.12010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 10/23/2012] [Indexed: 05/30/2023]
Abstract
Caspase-like proteases are key initiators and executioners of programmed cell death (PCD), which is initiated by environmental stimuli and manifests in organisms ranging from unicellular microbes to higher eukaryotes. Archaea had been absent from the caspase inheritance discussion due to a lack of gene homologues. We recently demonstrated extremely high, basal caspase-like catalytic activity in the model haloarcheon, Haloferax volcanii, which was linked to the cellular stress response and was widespread among diverse Archaea. Here, we rigorously tested the catalytic specificity of the observed archaeal caspase-like activities using hydrolytic assays with a diverse suite of protease substrates and inhibitors compared with known model serine and cysteine proteases (trypsin, cathepsin, papain, and human caspase-8). Our experiments demonstrate that exponentially growing H. volcanii possesses a highly specific caspase-like activity that most closely resembles caspase-4, is preferentially inhibited by the pancaspase inhibitor, zVAD-FMK, and has no crossreactivity with other known protease families. Our findings firmly root the extremely high levels of caspase-like activity as the dominant proteolytic activity in this extreme haloarcheaon, thereby providing further support for housekeeping functions in Haloarchaea. Given the deep archaeal roots of eukaryotes, we suggest that this activity served as a foundation for stress pathways in higher organisms.
Collapse
Affiliation(s)
- Mansha Seth-Pasricha
- Institute for Marine and Coastal Sciences, Rutgers UniversityNew Brunswick, NJ, USA
| | - Kelly A Bidle
- Department of Biology, Rider UniversityLawrenceville, NJ, USA
| | - Kay D Bidle
- Institute for Marine and Coastal Sciences, Rutgers UniversityNew Brunswick, NJ, USA
| |
Collapse
|
18
|
Phage shock protein C (PspC) of Yersinia enterocolitica is a polytopic membrane protein with implications for regulation of the Psp stress response. J Bacteriol 2012; 194:6548-59. [PMID: 23024349 DOI: 10.1128/jb.01250-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Phage shock proteins B (PspB) and C (PspC) are integral cytoplasmic membrane proteins involved in inducing the Yersinia enterocolitica Psp stress response. A fundamental aspect of these proteins that has not been studied in depth is their membrane topologies. Various in silico analyses universally predict that PspB is a bitopic membrane protein with the C terminus inside. However, similar analyses yield conflicting predictions for PspC: a bitopic membrane protein with the C terminus inside, a bitopic membrane protein with the C terminus outside, or a polytopic protein with both termini inside. Previous studies of Escherichia coli PspB-LacZ and PspC-PhoA fusion proteins supported bitopic topologies, with the PspB C terminus inside and the PspC C terminus outside. Here we have used a series of independent approaches to determine the membrane topologies of PspB and PspC in Y. enterocolitica. Our data support the predicted arrangement of PspB, with its C terminus in the cytoplasm. In contrast, data from multiple independent approaches revealed that both termini of PspC are located in the cytoplasm. Additional experiments suggested that the C terminus of PspC might be the recognition site for the FtsH protease and an interaction interface with PspA, both of which would be compatible with its newly proposed cytoplasmic location. This unexpected arrangement of PspC allows a new model for events underlying activation of the Psp response, which is an excellent fit with observations from various previous studies.
Collapse
|
19
|
Vothknecht UC, Otters S, Hennig R, Schneider D. Vipp1: a very important protein in plastids?! JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1699-712. [PMID: 22131161 DOI: 10.1093/jxb/err357] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
As a key feature in oxygenic photosynthesis, thylakoid membranes play an essential role in the physiology of plants, algae, and cyanobacteria. Despite their importance in the process of oxygenic photosynthesis, their biogenesis has remained a mystery to the present day. A decade ago, vesicle-inducing protein in plastids 1 (Vipp1) was described to be involved in thylakoid membrane formation in chloroplasts and cyanobacteria. Most follow-up studies clearly linked Vipp1 to membranes and Vipp1 interactions as well as the defects observed after Vipp1 depletion in chloroplasts and cyanobacteria indicate that Vipp1 directly binds to membranes, locally stabilizes bilayer structures, and thereby retains membrane integrity. Here current knowledge about the structure and function of Vipp1 is summarized with a special focus on its relationship to the bacterial phage shock protein A (PspA), as both proteins share a common origin and appear to have retained many similarities in structure and function.
Collapse
Affiliation(s)
- Ute C Vothknecht
- Department of Biology I, LMU Munich, D-82152 Planegg-Martinsried, Germany.
| | | | | | | |
Collapse
|
20
|
Functional genomic and advanced genetic studies reveal novel insights into the metabolism, regulation, and biology of Haloferax volcanii. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2011; 2011:602408. [PMID: 22190865 PMCID: PMC3235422 DOI: 10.1155/2011/602408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/04/2011] [Accepted: 09/06/2011] [Indexed: 11/18/2022]
Abstract
The genome sequence of Haloferax volcanii is available and several comparative genomic in silico studies were performed that yielded novel insight for example into protein export, RNA modifications, small non-coding RNAs, and ubiquitin-like Small Archaeal Modifier Proteins. The full range of functional genomic methods has been established and results from transcriptomic, proteomic and metabolomic studies are discussed. Notably, Hfx. volcanii is together with Halobacterium salinarum the only prokaryotic species for which a translatome analysis has been performed. The results revealed that the fraction of translationally-regulated genes in haloarchaea is as high as in eukaryotes. A highly efficient genetic system has been established that enables the application of libraries as well as the parallel generation of genomic deletion mutants. Facile mutant generation is complemented by the possibility to culture Hfx. volcanii in microtiter plates, allowing the phenotyping of mutant collections. Genetic approaches are currently used to study diverse biological questions–from replication to posttranslational modification—and selected results are discussed. Taken together, the wealth of functional genomic and genetic tools make Hfx. volcanii a bona fide archaeal model species, which has enabled the generation of important results in recent years and will most likely generate further breakthroughs in the future.
Collapse
|
21
|
FtsH-dependent degradation of phage shock protein C in Yersinia enterocolitica and Escherichia coli. J Bacteriol 2011; 193:6436-42. [PMID: 21965563 DOI: 10.1128/jb.05942-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The widely conserved phage shock protein (Psp) extracytoplasmic stress response has been studied extensively in Escherichia coli and Yersinia enterocolitica. Both species have the PspF, -A, -B, and -C proteins, which have been linked to robust phenotypes, including Y. enterocolitica virulence. PspB and PspC are cytoplasmic membrane proteins required for stress-dependent induction of psp gene expression and for bacterial survival during the mislocalization of outer membrane secretin proteins. Previously, we reported that Y. enterocolitica PspB functions to positively control the amount of PspC by an uncharacterized posttranscriptional mechanism. In this study, we have discovered that the cytoplasmic membrane protease FtsH is involved in this phenomenon. FtsH destabilizes PspC in Y. enterocolitica, but coproduction of PspC with its binding partner PspB was sufficient to prevent this destabilization. In contrast, FtsH did not affect any other core component of the Psp system. These data suggested that uncomplexed PspC might be particularly deleterious to the bacterial cell and that FtsH acts as an important quality control mechanism to remove it. This was supported by the observation that toxicity caused by PspC production was reduced either by coproduction of PspB or by increased synthesis of FtsH. We also found that the phenomenon of FtsH-dependent PspC destabilization is conserved between Y. enterocolitica and E. coli.
Collapse
|
22
|
The Yersinia enterocolitica phage shock proteins B and C can form homodimers and heterodimers in vivo with the possibility of close association between multiple domains. J Bacteriol 2011; 193:5747-58. [PMID: 21856846 DOI: 10.1128/jb.05080-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Yersinia enterocolitica phage shock protein (Psp) stress response is essential for virulence and for survival during the mislocalization of outer membrane secretin proteins. The cytoplasmic membrane proteins PspB and PspC are critical components involved in regulating psp gene expression and in facilitating tolerance to secretin-induced stress. Interactions between PspB and PspC monomers might be important for their functions and for PspC stability. However, little is known about these interactions and there are conflicting reports about the ability of PspC to dimerize. To address this, we have used a combination of independent approaches to systematically analyze the ability of PspB and PspC to form dimers in vivo. Formaldehyde cross-linking of the endogenous chromosomally encoded proteins in Y. enterocolitica revealed discrete complexes corresponding in size to PspB-PspB, PspC-PspC, and PspB-PspC. Bacterial two-hybrid analysis corroborated these protein associations, but an important limitation of the two-hybrid approach was uncovered for PspB. A series of PspB and PspC proteins with unique cysteine substitutions at various positions was constructed. In vivo disulfide cross-linking experiments with these proteins further supported close association between PspB and PspC monomers. Detailed cysteine substitution analysis of predicted leucine zipper-like amphipathic helices in both PspB and PspC suggested that their hydrophobic faces could form homodimerization interfaces.
Collapse
|
23
|
Leigh JA, Albers SV, Atomi H, Allers T. Model organisms for genetics in the domain Archaea: methanogens, halophiles, Thermococcales and Sulfolobales. FEMS Microbiol Rev 2011; 35:577-608. [PMID: 21265868 DOI: 10.1111/j.1574-6976.2011.00265.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The tree of life is split into three main branches: eukaryotes, bacteria, and archaea. Our knowledge of eukaryotic and bacteria cell biology has been built on a foundation of studies in model organisms, using the complementary approaches of genetics and biochemistry. Archaea have led to some exciting discoveries in the field of biochemistry, but archaeal genetics has been slow to get off the ground, not least because these organisms inhabit some of the more inhospitable places on earth and are therefore believed to be difficult to culture. In fact, many species can be cultivated with relative ease and there has been tremendous progress in the development of genetic tools for both major archaeal phyla, the Euryarchaeota and the Crenarchaeota. There are several model organisms available for methanogens, halophiles, and thermophiles; in the latter group, there are genetic systems for Sulfolobales and Thermococcales. In this review, we present the advantages and disadvantages of working with each archaeal group, give an overview of their different genetic systems, and direct the neophyte archaeologist to the most appropriate model organism.
Collapse
Affiliation(s)
- John A Leigh
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | | | | | | |
Collapse
|
24
|
Yamaguchi S, Gueguen E, Horstman NK, Darwin AJ. Membrane association of PspA depends on activation of the phage-shock-protein response in Yersinia enterocolitica. Mol Microbiol 2011; 78:429-43. [PMID: 20979344 DOI: 10.1111/j.1365-2958.2010.07344.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regulation of the bacterial phage-shock-protein (Psp) system involves communication between integral (PspBC) and peripheral (PspA) cytoplasmic membrane proteins and a soluble transcriptional activator (PspF). In this study protein subcellular localization studies were used to distinguish between spatial models for this putative signal transduction pathway in Yersinia enterocolitica. In non-inducing conditions PspA and PspF were almost exclusively in the soluble fraction, consistent with them forming an inhibitory complex in the cytoplasm. However, upon induction PspA, but not PspF, mainly associated with the membrane fraction. This membrane association was dependent on PspBC but independent of increased PspA concentration. Analysis of psp null, overexpression and altered function mutants further supported a model where PspA is predominantly membrane associated only when the system is induced. Activation of the Psp system normally leads to a large increase in PspA concentration and we found that this provided a second mechanism for its membrane association, which did not require PspBC. These data suggest that basal PspFABC protein levels constitute a regulatory switch that moves some PspA to the membrane when an inducing trigger is encountered. Once this switch is activated PspA concentration increases, which might then allow it to directly contact the membrane for its physiological function.
Collapse
Affiliation(s)
- Saori Yamaguchi
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | |
Collapse
|
25
|
Dissipation of proton motive force is not sufficient to induce the phage shock protein response in Escherichia coli. Curr Microbiol 2011; 62:1374-85. [PMID: 21259006 PMCID: PMC3069315 DOI: 10.1007/s00284-011-9869-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 01/07/2011] [Indexed: 12/27/2022]
Abstract
Phage shock proteins (Psp) and their homologues are found in species from the three domains of life: Bacteria, Archaea and Eukarya (e.g. higher plants). In enterobacteria, the Psp response helps to maintain the proton motive force (PMF) of the cell when the inner membrane integrity is impaired. The presumed ability of ArcB to sense redox changes in the cellular quinone pool and the strong decrease of psp induction in ΔubiG or ΔarcAB backgrounds suggest a link between the Psp response and the quinone pool. The authors now provide evidence indicating that the physiological signal for inducing psp by secretin-induced stress is neither the quinone redox state nor a drop in PMF. Neither the loss of the H(+)-gradient nor the dissipation of the electrical potential alone is sufficient to induce the Psp response. A set of electron transport mutants differing in their redox states due to the lack of a NADH dehydrogenase and a quinol oxidase, but retaining a normal PMF displayed low levels of psp induction inversely related to oxidised ubiquinone levels under microaerobic growth and independent of PMF. In contrast, cells displaying higher secretin induced psp expression showed increased levels of ubiquinone. Taken together, this study suggests that not a single but likely multiple signals are needed to be integrated to induce the Psp response.
Collapse
|
26
|
Jovanovic G, Engl C, Mayhew AJ, Burrows PC, Buck M. Properties of the phage-shock-protein (Psp) regulatory complex that govern signal transduction and induction of the Psp response in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2010; 156:2920-2932. [PMID: 20595257 PMCID: PMC3068692 DOI: 10.1099/mic.0.040055-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 06/21/2010] [Accepted: 06/30/2010] [Indexed: 11/18/2022]
Abstract
The phage-shock-protein (Psp) response maintains the proton-motive force (pmf) under extracytoplasmic stress conditions that impair the inner membrane (IM) in bacterial cells. In Escherichia coli transcription of the pspABCDE and pspG genes requires activation of σ(54)-RNA polymerase by the enhancer-binding protein PspF. A regulatory network comprising PspF-A-C-B-ArcB controls psp expression. One key regulatory point is the negative control of PspF imposed by its binding to PspA. It has been proposed that under stress conditions, the IM-bound sensors PspB and PspC receive and transduce the signal(s) to PspA via protein-protein interactions, resulting in the release of the PspA-PspF inhibitory complex and the consequent induction of psp. In this work we demonstrate that PspB self-associates and interacts with PspC via putative IM regions. We present evidence suggesting that PspC has two topologies and that conserved residue G48 and the putative leucine zipper motif are determinants required for PspA interaction and signal transduction upon stress. We also establish that PspC directly interacts with the effector PspG, and show that PspG self-associates. These results are discussed in the context of formation and function of the Psp regulatory complex.
Collapse
Affiliation(s)
- Goran Jovanovic
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Christoph Engl
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Antony J Mayhew
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Patricia C Burrows
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Martin Buck
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
27
|
Joly N, Engl C, Jovanovic G, Huvet M, Toni T, Sheng X, Stumpf MPH, Buck M. Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology. FEMS Microbiol Rev 2010; 34:797-827. [PMID: 20636484 DOI: 10.1111/j.1574-6976.2010.00240.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The bacterial phage shock protein (Psp) response functions to help cells manage the impacts of agents impairing cell membrane function. The system has relevance to biotechnology and to medicine. Originally discovered in Escherichia coli, Psp proteins and homologues are found in Gram-positive and Gram-negative bacteria, in archaea and in plants. Study of the E. coli and Yersinia enterocolitica Psp systems provides insights into how membrane-associated sensory Psp proteins might perceive membrane stress, signal to the transcription apparatus and use an ATP-hydrolysing transcription activator to produce effector proteins to overcome the stress. Progress in understanding the mechanism of signal transduction by the membrane-bound Psp proteins, regulation of the psp gene-specific transcription activator and the cell biology of the system is presented and discussed. Many features of the action of the Psp system appear to be dominated by states of self-association of the master effector, PspA, and the transcription activator, PspF, alongside a signalling pathway that displays strong conditionality in its requirement.
Collapse
Affiliation(s)
- Nicolas Joly
- Division of Biology, Imperial College London, South Kensington, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Hartman AL, Norais C, Badger JH, Delmas S, Haldenby S, Madupu R, Robinson J, Khouri H, Ren Q, Lowe TM, Maupin-Furlow J, Pohlschroder M, Daniels C, Pfeiffer F, Allers T, Eisen JA. The complete genome sequence of Haloferax volcanii DS2, a model archaeon. PLoS One 2010; 5:e9605. [PMID: 20333302 PMCID: PMC2841640 DOI: 10.1371/journal.pone.0009605] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 02/11/2010] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Haloferax volcanii is an easily culturable moderate halophile that grows on simple defined media, is readily transformable, and has a relatively stable genome. This, in combination with its biochemical and genetic tractability, has made Hfx. volcanii a key model organism, not only for the study of halophilicity, but also for archaeal biology in general. METHODOLOGY/PRINCIPAL FINDINGS We report here the sequencing and analysis of the genome of Hfx. volcanii DS2, the type strain of this species. The genome contains a main 2.848 Mb chromosome, three smaller chromosomes pHV1, 3, 4 (85, 438, 636 kb, respectively) and the pHV2 plasmid (6.4 kb). CONCLUSIONS/SIGNIFICANCE The completed genome sequence, presented here, provides an invaluable tool for further in vivo and in vitro studies of Hfx. volcanii.
Collapse
Affiliation(s)
- Amber L. Hartman
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
- The Institute for Genomic Research (J. Craig Venter Institute), Rockville, Maryland, United States of America
- UC Davis Genome Center, University of California Davis, Davis, California, United States of America
| | - Cédric Norais
- Institut de Génétique et Microbiologie, Université Paris-Sud, Paris, France
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jonathan H. Badger
- The Institute for Genomic Research (J. Craig Venter Institute), Rockville, Maryland, United States of America
| | - Stéphane Delmas
- Institute of Genetics, University of Nottingham, Nottingham, United Kingdom
| | - Sam Haldenby
- Institute of Genetics, University of Nottingham, Nottingham, United Kingdom
| | - Ramana Madupu
- The Institute for Genomic Research (J. Craig Venter Institute), Rockville, Maryland, United States of America
| | - Jeffrey Robinson
- The Institute for Genomic Research (J. Craig Venter Institute), Rockville, Maryland, United States of America
| | - Hoda Khouri
- The Institute for Genomic Research (J. Craig Venter Institute), Rockville, Maryland, United States of America
| | - Qinghu Ren
- The Institute for Genomic Research (J. Craig Venter Institute), Rockville, Maryland, United States of America
| | - Todd M. Lowe
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Julie Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Mecky Pohlschroder
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Charles Daniels
- Department of Microbiology, Ohio State University, Columbus, Ohio, United States of America
| | - Friedhelm Pfeiffer
- Department of Membrane Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Thorsten Allers
- Institute of Genetics, University of Nottingham, Nottingham, United Kingdom
| | - Jonathan A. Eisen
- The Institute for Genomic Research (J. Craig Venter Institute), Rockville, Maryland, United States of America
- UC Davis Genome Center, University of California Davis, Davis, California, United States of America
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
- Department of Evolution and Ecology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
29
|
Bidle KA, Haramaty L, Baggett N, Nannen J, Bidle KD. Tantalizing evidence for caspase-like protein expression and activity in the cellular stress response of Archaea. Environ Microbiol 2010; 12:1161-72. [DOI: 10.1111/j.1462-2920.2010.02157.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Global transcriptional, physiological, and metabolite analyses of the responses of Desulfovibrio vulgaris hildenborough to salt adaptation. Appl Environ Microbiol 2009; 76:1574-86. [PMID: 20038696 DOI: 10.1128/aem.02141-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The response of Desulfovibrio vulgaris Hildenborough to salt adaptation (long-term NaCl exposure) was examined by performing physiological, global transcriptional, and metabolite analyses. Salt adaptation was reflected by increased expression of genes involved in amino acid biosynthesis and transport, electron transfer, hydrogen oxidation, and general stress responses (e.g., heat shock proteins, phage shock proteins, and oxidative stress response proteins). The expression of genes involved in carbon metabolism, cell growth, and phage structures was decreased. Transcriptome profiles of D. vulgaris responses to salt adaptation were compared with transcriptome profiles of D. vulgaris responses to salt shock (short-term NaCl exposure). Metabolite assays showed that glutamate and alanine accumulated under salt adaptation conditions, suggesting that these amino acids may be used as osmoprotectants in D. vulgaris. Addition of amino acids (glutamate, alanine, and tryptophan) or yeast extract to the growth medium relieved salt-related growth inhibition. A conceptual model that links the observed results to currently available knowledge is proposed to increase our understanding of the mechanisms of D. vulgaris adaptation to elevated NaCl levels.
Collapse
|
31
|
A comprehensive proteomics and transcriptomics analysis of Bacillus subtilis salt stress adaptation. J Bacteriol 2009; 192:870-82. [PMID: 19948795 DOI: 10.1128/jb.01106-09] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In its natural habitats, Bacillus subtilis is exposed to changing osmolarity, necessitating adaptive stress responses. Transcriptomic and proteomic approaches can provide a picture of the dynamic changes occurring in salt-stressed B. subtilis cultures because these studies provide an unbiased view of cells coping with high salinity. We applied whole-genome microarray technology and metabolic labeling, combined with state-of-the-art proteomic techniques, to provide a global and time-resolved picture of the physiological response of B. subtilis cells exposed to a severe and sudden osmotic upshift. This combined experimental approach provided quantitative data for 3,961 mRNA transcription profiles, 590 expression profiles of proteins detected in the cytosol, and 383 expression profiles of proteins detected in the membrane fraction. Our study uncovered a well-coordinated induction of gene expression subsequent to an osmotic upshift that involves large parts of the SigB, SigW, SigM, and SigX regulons. Additionally osmotic upregulation of a large number of genes that do not belong to these regulons was observed. In total, osmotic upregulation of about 500 B. subtilis genes was detected. Our data provide an unprecedented rich basis for further in-depth investigation of the physiological and genetic responses of B. subtilis to hyperosmotic stress.
Collapse
|
32
|
Joly N, Burrows PC, Engl C, Jovanovic G, Buck M. A lower-order oligomer form of phage shock protein A (PspA) stably associates with the hexameric AAA(+) transcription activator protein PspF for negative regulation. J Mol Biol 2009; 394:764-75. [PMID: 19804784 PMCID: PMC3128695 DOI: 10.1016/j.jmb.2009.09.055] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 09/22/2009] [Indexed: 12/02/2022]
Abstract
To survive and colonise their various environments, including those used during infection, bacteria have developed a variety of adaptive systems. Amongst these is phage shock protein (Psp) response, which can be induced in Escherichia coli upon filamentous phage infection (specifically phage secretin pIV) and by other membrane-damaging agents. The E. coli Psp system comprises seven proteins, of which PspA is the central component. PspA is a bifunctional protein that is directly involved in (i) the negative regulation of the psp-specific transcriptional activator PspF and (ii) the maintenance of membrane integrity in a mechanism proposed to involve the formation of a 36-mer ring complex. Here we established that the PspA negative regulation of PspF ATPase activity is the result of a cooperative inhibition. We present biochemical evidence showing that an inhibitory PspA–PspF regulatory complex, which has significantly reduced PspF ATPase activity, is composed of around six PspF subunits and six PspA subunits, suggesting that PspA exists in at least two different oligomeric assemblies. We now establish that all four putative helical domains of PspA are critical for the formation of the 36-mer. In contrast, not all four helical domains are required for the formation of the inhibitory PspA–PspF complex. Since a range of initial PspF oligomeric states permit formation of the apparent PspA–PspF dodecameric assembly, we conclude that PspA and PspF demonstrate a strong propensity to self-assemble into a single defined heteromeric regulatory complex.
Collapse
Affiliation(s)
- Nicolas Joly
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
33
|
Jovanovic G, Engl C, Buck M. Physical, functional and conditional interactions between ArcAB and phage shock proteins upon secretin-induced stress in Escherichia coli. Mol Microbiol 2009; 74:16-28. [PMID: 19682256 PMCID: PMC2764110 DOI: 10.1111/j.1365-2958.2009.06809.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2009] [Indexed: 12/23/2022]
Abstract
The phage shock protein (Psp) system found in enterobacteria is induced in response to impaired inner membrane integrity (where the Psp response is thought to help maintain the proton motive force of the cell) and is implicated in the virulence of pathogens such as Yersinia and Salmonella. We provided evidence that the two-component ArcAB system was involved in induction of the Psp response in Escherichia coli and now report that role of ArcAB is conditional. ArcAB, predominantly through the action of ArcA regulated genes, but also via a direct ArcB-Psp interaction, is required to propagate the protein IV (pIV)-dependent psp-inducing signal(s) during microaerobiosis, but not during aerobiosis or anaerobiosis. We show that ArcB directly interacts with the PspB, possibly by means of the PspB leucine zipper motif, thereby allowing cross-communication between the two systems. In addition we demonstrate that the pIV-dependent induction of psp expression in anaerobiosis is independent of PspBC, establishing that PspA and PspF can function as a minimal Psp system responsive to inner membrane stress.
Collapse
Affiliation(s)
| | | | - Martin Buck
- Division of Biology, Sir Alexander Fleming Building, Imperial College LondonSouth Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
34
|
Gueguen E, Savitzky DC, Darwin AJ. Analysis of the Yersinia enterocolitica PspBC proteins defines functional domains, essential amino acids and new roles within the phage-shock-protein response. Mol Microbiol 2009; 74:619-33. [PMID: 19775245 DOI: 10.1111/j.1365-2958.2009.06885.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Yersinia enterocolitica phage-shock-protein (Psp) stress response system is activated by mislocalized outer-membrane secretin components of protein export systems and is essential for virulence. The cytoplasmic membrane proteins PspB and PspC were proposed to be dual function components of the system, acting both as positive regulators of psp gene expression and to support survival during secretin-induced stress. In this study we have uncoupled the regulatory and physiological functions of PspBC and discovered unexpected new roles, functional domains and essential amino acids. First, we showed that PspB controls PspC concentration by both pre- and post-transcriptional mechanisms. We then screened for PspBC mutants with altered transcriptional regulatory function. Unexpectedly, we identified PspB and PspC mutants that activated psp gene expression in the absence of secretin-induced stress. Together with a subsequent truncation analysis, this revealed that the PspC cytoplasmic domain plays an unforeseen role in negatively regulating psp gene expression. Conversely, mutations within the PspC periplasmic domain abolished its ability to activate psp gene expression. Significantly, PspC mutants unable to activate psp gene expression retained their ability to support survival during secretin-induced stress. These data provide compelling support for the proposal that these two functions are independent.
Collapse
Affiliation(s)
- Erwan Gueguen
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
35
|
Engl C, Jovanovic G, Lloyd LJ, Murray H, Spitaler M, Ying L, Errington J, Buck M. In vivo localizations of membrane stress controllers PspA and PspG in Escherichia coli. Mol Microbiol 2009; 73:382-96. [PMID: 19555453 PMCID: PMC2763126 DOI: 10.1111/j.1365-2958.2009.06776.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2009] [Indexed: 11/29/2022]
Abstract
The phage shock protein (Psp) response in Gram-negative bacteria counteracts membrane stress. Transcription of the PspF regulon (pspABCDE and pspG) in Escherichia coli is induced upon stresses that dissipate the proton motive force (pmf). Using GFP fusions we have visualized the subcellular localizations of PspA (a negative regulator and effector of Psp) and PspG (an effector of Psp). It has previously been proposed that PspA evenly coates the inner membrane of the cell. We now demonstrate that instead of uniformly covering the entire cell, PspA (and PspG) is highly organized into what appear to be distinct functional classes (complexes at the cell pole and the lateral cell wall). Real-time observations revealed lateral PspA and PspG complexes are highly mobile, but absent in cells lacking MreB. Without the MreB cytoskeleton, induction of the Psp response is still observed, yet these cells fail to maintain pmf under stress conditions. The two spatial subspecies therefore appear to be dynamically and functionally distinct with the polar clusters being associated with sensory function and the mobile complexes with maintenance of pmf.
Collapse
Affiliation(s)
- Christoph Engl
- Division of Biology, Sir Alexander Fleming Building, Imperial College LondonLondon SW7 2AZ, UK
| | - Goran Jovanovic
- Division of Biology, Sir Alexander Fleming Building, Imperial College LondonLondon SW7 2AZ, UK
| | - Louise J Lloyd
- Division of Biology, Sir Alexander Fleming Building, Imperial College LondonLondon SW7 2AZ, UK
| | - Heath Murray
- Institute for Cell and Molecular Biosciences, Catherine Cookson Building, University of NewcastleNewcastle NE2 4HH, UK
| | - Martin Spitaler
- FILM, Sir Alexander Fleming Building, Imperial College LondonLondon SW7 2AZ, UK
| | - Liming Ying
- Molecular Medicine, National Heart and Lung Institute, Imperial College LondonLondon SW7 2AZ, UK
| | - Jeff Errington
- Institute for Cell and Molecular Biosciences, Catherine Cookson Building, University of NewcastleNewcastle NE2 4HH, UK
| | - Martin Buck
- Division of Biology, Sir Alexander Fleming Building, Imperial College LondonLondon SW7 2AZ, UK
| |
Collapse
|
36
|
Characterization of halophiles isolated from solar salterns in Baja California, Mexico. Extremophiles 2009; 13:643-56. [DOI: 10.1007/s00792-009-0247-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 04/14/2009] [Indexed: 10/20/2022]
|
37
|
Kao DY, Cheng YC, Kuo TY, Lin SB, Lin CC, Chow LP, Chen WJ. Salt-responsive outer membrane proteins of Vibrio anguillarum serotype O1 as revealed by comparative proteome analysis. J Appl Microbiol 2009; 106:2079-85. [PMID: 19245402 DOI: 10.1111/j.1365-2672.2009.04178.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AIMS Vibrio anguillarum is a universal marine pathogen causing vibriosis. Vibrio anguillarum encounters different osmolarity conditions between seawater and hosts, and its outer membrane proteins (OMPs) play a crucial role in the adaptation to changes of the surroundings. In the present study, proteomic approaches were applied to investigate the salt-responsive OMPs of V. anguillarum. METHODS AND RESULTS Lower salinity (0.85% NaCl) is more suitable for growth, survival and swimming motility of the bacterium. Comparative two-dimensional electrophoresis (2-DE) analysis reveals six differentially expressed protein spots among three different salinities, which were successfully identified as OmpU, maltoporin, flagellin B, Omp26La, Omp26La and OmpW respectively. CONCLUSIONS OmpW and OmpU were highly expressed at 3.5% salinity, suggesting their role in the efficient efflux of NaCl. Maltoporin was downregulated in higher salinity, indicating that higher osmolarity inhibits carbohydrate transport and bacterial growth. Omp26La, the homologue of OmpV, functions as a salt-responsive protein in lower salinity. SIGNIFICANCE AND IMPACT OF THE STUDY To the best of our knowledge, this is the first report describing salt stress-responsive proteins of V. anguillarum using proteomic approaches. Our results provide a useful strategy for delineating the osmoregulatory mechanism of the marine pathogens.
Collapse
Affiliation(s)
- D-Y Kao
- Graduate Institute of Biotechnology, College of Bioresources, National Ilan University, Ilan, Taiwan
| | | | | | | | | | | | | |
Collapse
|