1
|
Yancey CE, Hart L, Lad AC, Birbeck JA, Song S, Mohamed OG, Fribley AM, Haller ST, Tripathi A, Kennedy DJ, Westrick JA, Sherman DH, Dick GJ. Synthesis of a Truncated Microcystin Tetrapeptide Molecule from a Partial Mcy Gene Cluster in Microcystis Cultures and Blooms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19936-19947. [PMID: 39529579 DOI: 10.1021/acs.est.4c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Microcystis spp. threaten freshwater ecosystems through the proliferation of cyanobacterial harmful algal blooms (cyanoHABs) and production of the hepatotoxin, microcystin. While microcystin and its biosynthesis pathway, encoded by the mcy genes, have been well studied for over 50 years, a recent study found that Microcystis populations in western Lake Erie contain a transcriptionally active partial mcy operon, in which the A2 domain of mcyA and mcyB-C are present but the mcyD-J genes are absent. Here, we investigate the potential biosynthetic products and the evolutionary history of this partial operon. Our results reveal two candidate tetrapeptide constructs, with an X variable position, to be produced by strains with the partial operon. The partial operon appears necessary and sufficient for tetrapeptide biosynthesis and likely evolved from a single ancestor hundreds to tens of thousands of years ago. Bioactivity screens using Hep3B cells indicate a mild elevation of some markers of hepatotoxicity and inflammation, suggesting the need to further assess the effects of these novel secondary metabolites on freshwater ecosystems and public health. The need to assess these effects is even more pressing given the detection of tetrapeptides in both culture and western Lake Erie, which is a vital source of fresh water. Results from this study emphasize previous findings in which novel bacterial secondary metabolites may be derived from the molecular evolution of existing biosynthetic machinery under different environmental forcings.
Collapse
Affiliation(s)
- Colleen E Yancey
- Department of Earth and Environmental Science, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lauren Hart
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Johnna A Birbeck
- Lumigen Instrument Center, Wayne State University, Detroit, Michigan 48202, United States
| | - Siliang Song
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Osama G Mohamed
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Natural Products Discovery Core, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Andrew M Fribley
- Department of Pediatrics, Wayne State University, Detroit, Michigan 48202, United States
| | - Steven T Haller
- Department of Medicine, University of Toledo, Toledo, Ohio 43614, United States
| | - Ashootosh Tripathi
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Natural Products Discovery Core, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - David J Kennedy
- Department of Medicine, University of Toledo, Toledo, Ohio 43614, United States
| | - Judy A Westrick
- Lumigen Instrument Center, Wayne State University, Detroit, Michigan 48202, United States
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - David H Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Gregory J Dick
- Department of Earth and Environmental Science, University of Michigan, Ann Arbor, Michigan 48109, United States
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, Michigan 48108, United States
| |
Collapse
|
2
|
Wei N, Hu C, Dittmann E, Song L, Gan N. The biological functions of microcystins. WATER RESEARCH 2024; 262:122119. [PMID: 39059200 DOI: 10.1016/j.watres.2024.122119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Microcystins are potent hepatotoxins predominantly produced by bloom-forming freshwater cyanobacteria (e.g., Microcystis, Planktothrix, Dolichospermum). Microcystin biosynthesis involves large multienzyme complexes and tailoring enzymes encoded by the mcy gene cluster. Mutation, recombination, and deletion events have shaped the mcy gene cluster in the course of evolution, resulting in a large diversity of microcystin congeners and the natural coexistence of toxic and non-toxic strains. The biological functions of microcystins and their association with algal bloom formation have been extensively investigated over the past decades. This review synthesizes recent advances in decoding the biological role of microcystins in carbon/nitrogen metabolism, antioxidation, colony formation, and cell-to-cell communication. Microcystins appear to adopt multifunctional roles in cyanobacteria that reflect the adaptive plasticity of toxic cyanobacteria to changing environments.
Collapse
Affiliation(s)
- Nian Wei
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Chenlin Hu
- College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Elke Dittmann
- Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Lirong Song
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Nanqin Gan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
3
|
Yancey CE, Kiledal EA, Chaganti SR, Denef VJ, Errera RM, Evans JT, Hart LN, Isailovic D, James WS, Kharbush JJ, Kimbrel JA, Li W, Mayali X, Nitschky H, Polik CA, Powers MA, Premathilaka SH, Rappuhn NA, Reitz LA, Rivera SR, Zwiers CC, Dick GJ. The Western Lake Erie culture collection: A promising resource for evaluating the physiological and genetic diversity of Microcystis and its associated microbiome. HARMFUL ALGAE 2023; 126:102440. [PMID: 37290887 DOI: 10.1016/j.hal.2023.102440] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 06/10/2023]
Abstract
Cyanobacterial harmful algal blooms (cyanoHABs) dominated by Microcystis spp. have significant public health and economic implications in freshwater bodies around the world. These blooms are capable of producing a variety of cyanotoxins, including microcystins, that affect fishing and tourism industries, human and environmental health, and access to drinking water. In this study, we isolated and sequenced the genomes of 21 primarily unialgal Microcystis cultures collected from western Lake Erie between 2017 and 2019. While some cultures isolated in different years have a high degree of genetic similarity (genomic Average Nucleotide Identity >99%), genomic data show that these cultures also represent much of the breadth of known Microcystis diversity in natural populations. Only five isolates contained all the genes required for microcystin biosynthesis while two isolates contained a previously described partial mcy operon. Microcystin production within cultures was also assessed using Enzyme-Linked Immunosorbent Assay (ELISA) and supported genomic results with high concentrations (up to 900 μg L⁻¹) in cultures with complete mcy operons and no or low toxin detected otherwise. These xenic cultures also contained a substantial diversity of bacteria associated with Microcystis, which has become increasingly recognized as an essential component of cyanoHAB community dynamics. These results highlight the genomic diversity among Microcystis strains and associated bacteria in Lake Erie, and their potential impacts on bloom development, toxin production, and toxin degradation. This culture collection significantly increases the availability of environmentally relevant Microcystis strains from temperate North America.
Collapse
Affiliation(s)
- Colleen E Yancey
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - E Anders Kiledal
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Subba Rao Chaganti
- Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, 4840 S State Road, Ann Arbor, MI 48108, United States of America
| | - Vincent J Denef
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Reagan M Errera
- National Oceanic and Atmospheric Administration (NOAA), Great Lakes Environmental Research Laboratory (GLERL), 4840 S State Road, Ann Arbor, MI 48108, United States of America
| | - Jacob T Evans
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Lauren N Hart
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, United States of America; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Dragan Isailovic
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, United States of America
| | - William S James
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Jenan J Kharbush
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Jeffrey A Kimbrel
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States of America
| | - Wei Li
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States of America
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States of America
| | - Helena Nitschky
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Catherine A Polik
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - McKenzie A Powers
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Sanduni H Premathilaka
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, United States of America
| | - Nicole A Rappuhn
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Laura A Reitz
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Sara R Rivera
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Claire C Zwiers
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Gregory J Dick
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, United States of America; Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, 4840 S State Road, Ann Arbor, MI 48108, United States of America.
| |
Collapse
|
4
|
Guo Y, Zhao X, Yao Z, Qian Z, Wang Y, Xian Q. The effects of exogenous amino acids on production of microcystin variants in Microcystis aeruginosa. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106525. [PMID: 37087861 DOI: 10.1016/j.aquatox.2023.106525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/25/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Dissolved free amino acids are a significant component of dissolved organic nitrogen (DON) in natural waterbodies. The effects of four amino acids (glutamic acid, phenylalanine, leucine, and arginine) on the growth and microcystins (MCs) production of Microcystis aeruginosa were studied in batch culture. The profiles of five MCs variants and the expression levels of target genes involved in MCs biosynthesis and nitrogen metabolism were measured. When amino acids were used as the sole nitrogen source instead of nitrate at different levels (0.5, 2.0 and 8.0 mg/L based on N) in BG-11 medium, algal cell growth and intracellular MCs quotas were inhibited slightly by the treatments with glutamic acid and arginine. The treatments with phenylalanine and leucine, on the other hand, had a strong inhibitory effect on algal cell growth and MCs production. Moreover, the concentrations of Chlorophyll a, phycocyanin and allophycocyanin in cells cultured in glutamic acid, leucine and phenylalanine were lower than those in the control group with nitrate as nitrogen source. The existence of leucine or phenylalanine can lead to a significant increase in the relative abundance of MCs variants structured with the corresponding amino acids. The expression of microcystin-producing gene mcyD was downregulated while the gene pipX associated with nitrogen metabolism was upregulated during the cultivation of M. aeruginosa with amino acids as sole nitrogen source. M. aeruginosa undergoes significant alterations due to exogenous amino acids and exhibits advanced strategies for MCs production.
Collapse
Affiliation(s)
- Yaxin Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiating Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zongcheng Yao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zongyao Qian
- Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Yuting Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
5
|
Yancey CE, Smith DJ, Den Uyl PA, Mohamed OG, Yu F, Ruberg SA, Chaffin JD, Goodwin KD, Tripathi A, Sherman DH, Dick GJ. Metagenomic and Metatranscriptomic Insights into Population Diversity of Microcystis Blooms: Spatial and Temporal Dynamics of mcy Genotypes, Including a Partial Operon That Can Be Abundant and Expressed. Appl Environ Microbiol 2022; 88:e0246421. [PMID: 35438519 PMCID: PMC9088275 DOI: 10.1128/aem.02464-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
Cyanobacterial harmful algal blooms (cyanoHABs) degrade freshwater ecosystems globally. Microcystis aeruginosa often dominates cyanoHABs and produces microcystin (MC), a class of hepatotoxins that poses threats to human and animal health. Microcystin toxicity is influenced by distinct structural elements across a diversity of related molecules encoded by variant mcy operons. However, the composition and distribution of mcy operon variants in natural blooms remain poorly understood. Here, we characterized the variant composition of mcy genes in western Lake Erie Microcystis blooms from 2014 and 2018. Sampling was conducted across several spatial and temporal scales, including different bloom phases within 2014, extensive spatial coverage on the same day (2018), and frequent, autonomous sampling over a 2-week period (2018). Mapping of metagenomic and metatranscriptomic sequences to reference sequences revealed three Microcystis mcy genotypes: complete (all genes present [mcyA-J]), partial (truncated mcyA, complete mcyBC, and missing mcyD-J), and absent (no mcy genes). We also detected two different variants of mcyB that may influence the production of microcystin congeners. The relative abundance of these genotypes was correlated with pH and nitrate concentrations. Metatranscriptomic analysis revealed that partial operons were, at times, the most abundant genotype and expressed in situ, suggesting the potential biosynthesis of truncated products. Quantification of genetic divergence between genotypes suggests that the observed strains are the result of preexisting heterogeneity rather than de novo mutation during the sampling period. Overall, our results show that natural Microcystis populations contain several cooccurring mcy genotypes that dynamically shift in abundance spatiotemporally via strain succession and likely influence the observed diversity of the produced congeners. IMPORTANCE Cyanobacteria are responsible for producing microcystins (MCs), a class of potent and structurally diverse toxins, in freshwater systems around the world. While microcystins have been studied for over 50 years, the diversity of their chemical forms and how this variation is encoded at the genetic level remain poorly understood, especially within natural populations of cyanobacterial harmful algal blooms (cyanoHABs). Here, we leverage community DNA and RNA sequences to track shifts in mcy genes responsible for producing microcystin, uncovering the relative abundance, expression, and variation of these genes. We studied this phenomenon in western Lake Erie, which suffers annually from cyanoHAB events, with impacts on drinking water, recreation, tourism, and commercial fishing.
Collapse
Affiliation(s)
- Colleen E. Yancey
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Derek J. Smith
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Paul A. Den Uyl
- Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, Ann Arbor, Michigan, USA
| | - Osama G. Mohamed
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Life Science Institute, University of Michigan, Ann Arbor, Michigan, USA
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Fengan Yu
- Life Science Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Steven A. Ruberg
- National Oceanic and Atmospheric Administration (NOAA) Great Lakes Environmental Research Laboratory, Ann Arbor, Michigan, USA
| | - Justin D. Chaffin
- F. T. Stone Laboratory, The Ohio State University, Put-In-Bay, Ohio, USA
- Ohio Sea Grant, The Ohio State University, Put-In-Bay, Ohio, USA
| | - Kelly D. Goodwin
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory (AOML), NOAA, Miami, Florida, USA
- Southwest Fisheries Science Center, NOAA, La Jolla, California, USA
| | - Ashootosh Tripathi
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Life Science Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - David H. Sherman
- Life Science Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Gregory J. Dick
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Gaget V, Almuhtaram H, Kibuye F, Hobson P, Zamyadi A, Wert E, Brookes JD. Benthic cyanobacteria: A utility-centred field study. HARMFUL ALGAE 2022; 113:102185. [PMID: 35287926 DOI: 10.1016/j.hal.2022.102185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Although there is growing evidence that benthic cyanobacteria represent a significant source of toxins and taste and odour (T&O) compounds in water bodies globally, water utilities rarely monitor for them. Benthic cyanobacteria grow in an array of matrices such as sediments, biofilms, and floating mats, and they can detach and colonize treatment plants. The occurrence of compounds produced by benthic species across matrix and climate types has not been systematically investigated. Consequently, there is a lack of guidance available to utilities to monitor for and mitigate the risk associated with benthic cyanobacteria. To assess toxin and T&O risk across climatic zones and provide guidance to water utilities for the monitoring of benthic mats, two field surveys were conducted across three continents. The surveys examined the occurrence of six secondary metabolites and associated genes, namely, geosmin, 2-methylisoborneol (MIB), anatoxin-a, saxitoxin, microcystin, and cylindrospermopsin, in benthic environmental samples collected across three climates (i.e., temperate, sub-tropical, and tropical) and a range of matrix types. Existing enzyme-linked immunosorbent assays (ELISAs) and qPCR assays and were used to measure compound concentrations and their associated genes in samples. A novel qPCR assay was designed to differentiate the production of MIB by actinobacteria from that of cyanobacteria. MIB occurrence was higher in warmer climates than temperate climates. Cyanobacteria in benthic mats were the major producers of taste and odour compounds. Floating mats contained significantly higher concentrations of geosmin and saxitoxins compared to other matrix types. Samples collected in warmer areas contained significantly more saxitoxin and cylindrospermopsin than samples collected in temperate climates. While these trends were mainly indicative, they can be used to establish monitoring practices. These surveys demonstrate that benthic mats are significant contributors of secondary metabolites in source water and should be monitored accordingly. Benthic cyanobacteria were the sole producers of T&O in up to 17% of the collected samples compared to actinobacteria, which were sole producers in only 1% of the samples. The surveys also provided a platform of choice for the transfer of methodologies and specific knowledge to participating utilities to assist with the establishment of monitoring practices for benthic cyanobacteria and associated secondary metabolites.
Collapse
Affiliation(s)
- Virginie Gaget
- University of Adelaide, Water Research Centre, Department of Ecology and Evolutionary Biology, School of Biological Sciences, South Australia, 5005, Australia.
| | - Husein Almuhtaram
- University of Toronto, Department of Civil and Mineral Engineering, Toronto, Ontario, M5S 1A4, Canada
| | - Faith Kibuye
- Department of Research and Development, Southern Nevada Water Authority, Henderson, NV, 89015, USA
| | - Peter Hobson
- Australian Water Quality Centre, South Australia Water Corporation, Adelaide, South Australia, 5000, Australia
| | - Arash Zamyadi
- Water Research Australia Limited, Adelaide, South Australia, 5001, Australia; Department of Chemical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Victoria 3010 Australia
| | - Eric Wert
- Department of Research and Development, Southern Nevada Water Authority, Henderson, NV, 89015, USA
| | - Justin D Brookes
- University of Adelaide, Water Research Centre, Department of Ecology and Evolutionary Biology, School of Biological Sciences, South Australia, 5005, Australia
| |
Collapse
|
7
|
Lima TB, Silva-Stenico ME, Fiore MF, Etchegaray A. Microcystins can be extracted from Microcystis aeruginosa using amino acid-derived biosurfactants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8767-8778. [PMID: 34491500 DOI: 10.1007/s11356-021-16257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Microcystin, a cyanotoxin produced by Microcystis aeruginosa growing in eutrophic waters, can promote liver tumors in people ingesting contaminated water. To date, water treatment systems have not been effective in removing or degrading these cyanotoxins. In this work, we investigated the inhibitory activity of surfactants on the growth of M. aeruginosa and their application to extract the intracellular produced cyanotoxins. The experiments involving growth inhibition and extraction of cyanotoxins were carried out using the non-biodegradable surfactant cetyl trimethyl ammonium bromide (CTAB) in addition to other biodegradable surfactants. These were Tween 80 and surfactants derived from amino acids and peptides, respectively, from arginine, SDA, and hydrolyzed peptone, SDP. We demonstrated that the tested surfactants could be used to inhibit the growth of M. aeruginosa. At this point, CTAB and SDA proved to be the most competent surfactants in reducing cyanobacterial growth. Moreover, microcystins have been successfully removed from the water employing a cloud point extraction protocol based on the use of these surfactants and ammonium sulfate.
Collapse
Affiliation(s)
- Tatiani Brenelli Lima
- Center for Exact, Environmental and Technological Sciences, Faculty of Chemistry, Pontifical Catholic University of Campinas, R. Prof. Dr. Euryclides de Jesus Zerbini, 1516, Campinas, SP, 13087-571, Brazil
| | - Maria Estela Silva-Stenico
- Center for Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário, 303, Piracicaba, SP, 13416-903, Brazil
| | - Marli F Fiore
- Center for Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário, 303, Piracicaba, SP, 13416-903, Brazil
| | - Augusto Etchegaray
- Center for Exact, Environmental and Technological Sciences, Faculty of Chemistry, Pontifical Catholic University of Campinas, R. Prof. Dr. Euryclides de Jesus Zerbini, 1516, Campinas, SP, 13087-571, Brazil.
- Center for Life Sciences, Post-Graduate Course in Health Sciences, Pontifical Catholic University of Campinas, R. Prof. Dr. Euryclides de Jesus Zerbini, 1516, Campinas, SP, 13087-571, Brazil.
| |
Collapse
|
8
|
Dick GJ, Duhaime MB, Evans JT, Errera RM, Godwin CM, Kharbush JJ, Nitschky HS, Powers MA, Vanderploeg HA, Schmidt KC, Smith DJ, Yancey CE, Zwiers CC, Denef VJ. The genetic and ecophysiological diversity of Microcystis. Environ Microbiol 2021; 23:7278-7313. [PMID: 34056822 DOI: 10.1111/1462-2920.15615] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 01/30/2023]
Abstract
Microcystis is a cyanobacterium that forms toxic blooms in freshwater ecosystems around the world. Biological variation among taxa within the genus is apparent through genetic and phenotypic differences between strains and via the spatial and temporal distribution of strains in the environment, and this fine-scale diversity exerts strong influence over bloom toxicity. Yet we do not know how varying traits of Microcystis strains govern their environmental distribution, the tradeoffs and links between these traits, or how they are encoded at the genomic level. Here we synthesize current knowledge on the importance of diversity within Microcystis and on the genes and traits that likely underpin ecological differentiation of taxa. We briefly review spatial and environmental patterns of Microcystis diversity in the field and genetic evidence for cohesive groups within Microcystis. We then compile data on strain-level diversity regarding growth responses to environmental conditions and explore evidence for variation of community interactions across Microcystis strains. Potential links and tradeoffs between traits are identified and discussed. The resulting picture, while incomplete, highlights key knowledge gaps that need to be filled to enable new models for predicting strain-level dynamics, which influence the development, toxicity and cosmopolitan nature of Microcystis blooms.
Collapse
Affiliation(s)
- Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Melissa B Duhaime
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jacob T Evans
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Reagan M Errera
- National Oceanographic and Atmospheric Administration Great Lakes Environmental Research Lab, Ann Arbor, MI, USA
| | - Casey M Godwin
- School for Environment and Sustainability, Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, USA
| | - Jenan J Kharbush
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Helena S Nitschky
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - McKenzie A Powers
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Henry A Vanderploeg
- National Oceanographic and Atmospheric Administration Great Lakes Environmental Research Lab, Ann Arbor, MI, USA
| | - Kathryn C Schmidt
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Derek J Smith
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Colleen E Yancey
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Claire C Zwiers
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Vincent J Denef
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
9
|
|
10
|
Götze S, Arp J, Lackner G, Zhang S, Kries H, Klapper M, García-Altares M, Willing K, Günther M, Stallforth P. Structure elucidation of the syringafactin lipopeptides provides insight in the evolution of nonribosomal peptide synthetases. Chem Sci 2019; 10:10979-10990. [PMID: 32953002 PMCID: PMC7472662 DOI: 10.1039/c9sc03633d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/08/2019] [Indexed: 11/21/2022] Open
Abstract
Modular biosynthetic machineries such as polyketide synthases (PKSs) or nonribosomal peptide synthetases (NRPSs) give rise to a vast structural diversity of bioactive metabolites indispensable in the treatment of cancer or infectious diseases. Here, we provide evidence for different evolutionary processes leading to the diversification of modular NRPSs and thus, their respective products. Discovery of a novel lipo-octapeptide family from Pseudomonas, the virginiafactins, and detailed structure elucidation of closely related peptides, the cichofactins and syringafactins, allowed retracing recombinational diversification of the respective NRPS genes. Bioinformatics analyses allowed us to spot an evolutionary snapshot of these processes, where recombination occurred both within the same and between different biosynthetic gene clusters. Our systems feature a recent diversification process, which may represent a typical paradigm to variations in modular biosynthetic machineries.
Collapse
Affiliation(s)
- Sebastian Götze
- Independent Junior Research Group Chemistry of Microbial Communication , Leibniz Institute for Natural Product Research and Infection Biology , Hans Knöll Institute (HKI) , Beutenbergstrasse 11a , 07745 Jena , Germany .
| | - Johannes Arp
- Independent Junior Research Group Chemistry of Microbial Communication , Leibniz Institute for Natural Product Research and Infection Biology , Hans Knöll Institute (HKI) , Beutenbergstrasse 11a , 07745 Jena , Germany .
| | - Gerald Lackner
- Independent Junior Research Group Synthetic Microbiology , Leibniz Institute for Natural Product Research and Infection Biology , Hans Knöll Institute (HKI) , Beutenbergstrasse 11a , 07745 Jena , Germany
| | - Shuaibing Zhang
- Independent Junior Research Group Chemistry of Microbial Communication , Leibniz Institute for Natural Product Research and Infection Biology , Hans Knöll Institute (HKI) , Beutenbergstrasse 11a , 07745 Jena , Germany .
| | - Hajo Kries
- Independent Junior Research Group Biosynthetic Design of Natural Products , Leibniz Institute for Natural Product Research and Infection Biology , Hans Knöll Institute (HKI) , Beutenbergstrasse 11a , 07745 Jena , Germany
| | - Martin Klapper
- Independent Junior Research Group Chemistry of Microbial Communication , Leibniz Institute for Natural Product Research and Infection Biology , Hans Knöll Institute (HKI) , Beutenbergstrasse 11a , 07745 Jena , Germany .
| | - María García-Altares
- Department Biomolecular Chemistry , Leibniz Institute for Natural Product Research and Infection Biology , Hans Knöll Institute (HKI) , Beutenbergstrasse 11a , 07745 Jena , Germany
| | - Karsten Willing
- Department Bio Pilot Plant , Leibniz Institute for Natural Product Research and Infection Biology , Hans Knöll Institute (HKI) , Beutenbergstrasse 11a , 07745 Jena , Germany
| | - Markus Günther
- Independent Junior Research Group Chemistry of Microbial Communication , Leibniz Institute for Natural Product Research and Infection Biology , Hans Knöll Institute (HKI) , Beutenbergstrasse 11a , 07745 Jena , Germany .
| | - Pierre Stallforth
- Independent Junior Research Group Chemistry of Microbial Communication , Leibniz Institute for Natural Product Research and Infection Biology , Hans Knöll Institute (HKI) , Beutenbergstrasse 11a , 07745 Jena , Germany .
| |
Collapse
|
11
|
Bouaïcha N, Miles CO, Beach DG, Labidi Z, Djabri A, Benayache NY, Nguyen-Quang T. Structural Diversity, Characterization and Toxicology of Microcystins. Toxins (Basel) 2019; 11:E714. [PMID: 31817927 PMCID: PMC6950048 DOI: 10.3390/toxins11120714] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 11/22/2022] Open
Abstract
Hepatotoxic microcystins (MCs) are the most widespread class of cyanotoxins and the one that has most often been implicated in cyanobacterial toxicosis. One of the main challenges in studying and monitoring MCs is the great structural diversity within the class. The full chemical structure of the first MC was elucidated in the early 1980s and since then, the number of reported structural analogues has grown steadily and continues to do so, thanks largely to advances in analytical methodology. The structures of some of these analogues have been definitively elucidated after chemical isolation using a combination of techniques including nuclear magnetic resonance, amino acid analysis, and tandem mass spectrometry (MS/MS). Others have only been tentatively identified using liquid chromatography-MS/MS without chemical isolation. An understanding of the structural diversity of MCs, the genetic and environmental controls for this diversity and the impact of structure on toxicity are all essential to the ongoing study of MCs across several scientific disciplines. However, because of the diversity of MCs and the range of approaches that have been taken for characterizing them, comprehensive information on the state of knowledge in each of these areas can be challenging to gather. We have conducted an in-depth review of the literature surrounding the identification and toxicity of known MCs and present here a concise review of these topics. At present, at least 279 MCs have been reported and are tabulated here. Among these, about 20% (55 of 279) appear to be the result of chemical or biochemical transformations of MCs that can occur in the environment or during sample handling and extraction of cyanobacteria, including oxidation products, methyl esters, or post-biosynthetic metabolites. The toxicity of many MCs has also been studied using a range of different approaches and a great deal of variability can be observed between reported toxicities, even for the same congener. This review will help clarify the current state of knowledge on the structural diversity of MCs as a class and the impacts of structure on toxicity, as well as to identify gaps in knowledge that should be addressed in future research.
Collapse
Affiliation(s)
- Noureddine Bouaïcha
- Écologie, Systématique et Évolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91405 Orsay, France; (A.D.); (N.Y.B.)
| | - Christopher O. Miles
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St, Halifax, NS B3H 3Z1, Canada; (C.O.M.); (D.G.B.)
| | - Daniel G. Beach
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St, Halifax, NS B3H 3Z1, Canada; (C.O.M.); (D.G.B.)
| | - Zineb Labidi
- Laboratoire Biodiversité et Pollution des Écosystèmes, Faculté des Sciences de la Nature et de la Vie, Université Chadli Bendjedid d’El Taref, 36000 El Taref, Algeria;
| | - Amina Djabri
- Écologie, Systématique et Évolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91405 Orsay, France; (A.D.); (N.Y.B.)
- Laboratoire Biodiversité et Pollution des Écosystèmes, Faculté des Sciences de la Nature et de la Vie, Université Chadli Bendjedid d’El Taref, 36000 El Taref, Algeria;
| | - Naila Yasmine Benayache
- Écologie, Systématique et Évolution, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91405 Orsay, France; (A.D.); (N.Y.B.)
| | - Tri Nguyen-Quang
- Biofluids and Biosystems Modeling (BBML), Faculty of Agriculture, Dalhousie University, 39 Cox Road, Truro, B2N 5E3 Nova Scotia, Canada;
| |
Collapse
|
12
|
Shishido TK, Jokela J, Humisto A, Suurnäkki S, Wahlsten M, Alvarenga DO, Sivonen K, Fewer DP. The Biosynthesis of Rare Homo-Amino Acid Containing Variants of Microcystin by a Benthic Cyanobacterium. Mar Drugs 2019; 17:md17050271. [PMID: 31067786 PMCID: PMC6562525 DOI: 10.3390/md17050271] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 02/05/2023] Open
Abstract
Microcystins are a family of chemically diverse hepatotoxins produced by distantly related cyanobacteria and are potent inhibitors of eukaryotic protein phosphatases 1 and 2A. Here we provide evidence for the biosynthesis of rare variants of microcystin that contain a selection of homo-amino acids by the benthic cyanobacterium Phormidium sp. LP904c. This strain produces at least 16 microcystin chemical variants many of which contain homophenylalanine or homotyrosine. We retrieved the complete 54.2 kb microcystin (mcy) gene cluster from a draft genome assembly. Analysis of the substrate specificity of McyB1 and McyC adenylation domain binding pockets revealed divergent substrate specificity sequences, which could explain the activation of homo-amino acids which were present in 31% of the microcystins detected and included variants such as MC-LHty, MC-HphHty, MC-LHph and MC-HphHph. The mcy gene cluster did not encode enzymes for the synthesis of homo-amino acids but may instead activate homo-amino acids produced during the synthesis of anabaenopeptins. We observed the loss of microcystin during cultivation of a closely related strain, Phormidium sp. DVL1003c. This study increases the knowledge of benthic cyanobacterial strains that produce microcystin variants and broadens the structural diversity of known microcystins.
Collapse
Affiliation(s)
- Tânia Keiko Shishido
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-0014 Helsinki, Finland.
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Viikinkaari 5D, FI-0014 Helsinki, Finland.
| | - Jouni Jokela
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-0014 Helsinki, Finland.
| | - Anu Humisto
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-0014 Helsinki, Finland.
| | - Suvi Suurnäkki
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-0014 Helsinki, Finland.
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
| | - Matti Wahlsten
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-0014 Helsinki, Finland.
| | - Danillo O Alvarenga
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-0014 Helsinki, Finland.
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-0014 Helsinki, Finland.
| | - David P Fewer
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-0014 Helsinki, Finland.
| |
Collapse
|
13
|
Biosynthesis of microcystin hepatotoxins in the cyanobacterial genus Fischerella. Toxicon 2017; 141:43-50. [PMID: 29154789 DOI: 10.1016/j.toxicon.2017.10.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/18/2017] [Accepted: 10/22/2017] [Indexed: 01/13/2023]
Abstract
Microcystins (MCs) are serine/threonine phosphatase inhibitors synthesized by several members of the phylum Cyanobacteria. Mining the draft genome sequence of the nostocalean MC-producing Fischerella sp. strain CENA161 led to the identification of three contigs containing mcy genes. Subsequent PCR and Sanger sequencing allowed the assembling of its complete biosynthetic mcy gene cluster with 55,016 bases in length. The cluster encoding ten genes (mcyA-J) with a central bidirectional promoter was organized in a similar manner as found in other genera of nostocalean cyanobacteria. However, the nucleotide sequence of the mcy gene cluster of Fischerella sp. CENA161 showed significant differences from all the other MC-producing cyanobacterial genera, sharing only 85.2 to 74.1% identities. Potential MC variants produced by Fischerella sp. CENA161 were predicted by the analysis of the adenylation domain binding pockets and further investigated by LC-MS/MS analysis. To our knowledge, this study presents the first complete mcy cluster characterization from a strain of the genus Fischerella, providing new insight into the distribution and evolution of MCs in the phylum Cyanobacteria.
Collapse
|
14
|
Gaget V, Lau M, Sendall B, Froscio S, Humpage AR. Cyanotoxins: Which detection technique for an optimum risk assessment? WATER RESEARCH 2017; 118:227-238. [PMID: 28433693 DOI: 10.1016/j.watres.2017.04.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/04/2017] [Accepted: 04/08/2017] [Indexed: 05/28/2023]
Abstract
The presence of toxigenic cyanobacteria (blue-green algae) in drinking water reservoirs poses a risk to human and animal health worldwide. Guidelines and health alert levels have been issued in the Australian Drinking Water Guidelines for three major toxins, which are therefore the subject of routine monitoring: microcystin, cylindrospermopsin and saxitoxin. While it is agreed that these toxic compounds should be monitored closely, the routine surveillance of these bioactive chemicals can be done in various ways and deciding which technique to use can therefore be challenging. This study compared several assays available for the detection of these toxins and their producers in environmental samples: microscopy (for identification and enumeration of cyanobacteria), ELISA (Enzyme-Linked ImmunoSorbant Assay), PPIA (Protein phosphatase inhibition assay), PSI (Protein synthesis inhibition), chemical analysis and PCR (Polymerase Chain Reaction). Results showed that there was generally a good correlation between the presence of potentially toxigenic cyanobacteria and the detection of the toxin by ELISA. Nevertheless data suggest that cell numbers and toxin concentrations measured in bioassays do not necessarily correlate and that enumeration of potentially toxic cyanobacteria by microscopy, while commonly used for monitoring and risk assessment, is not the best indicator of real toxin exposure. The concentrations of saxitoxins quantified by ELISA were significantly different than those measured by LC-MS, while results were comparable in both assays for microcystin and cylindrospermopsin. The evaluation of these analytical methods led to the conclusion that there is no "gold standard" technique for the detection of the aforementioned cyanotoxins but that the choice of detection assay depends on cost, practicality, reliability and comparability of results and essentially on the question to be answered, notably on toxin exposure potential.
Collapse
Affiliation(s)
- Virginie Gaget
- South Australia Water Corporation, Australian Water Quality Centre, 250 Victoria Square, Adelaide, SA 5000, Australia.
| | - Melody Lau
- South Australia Water Corporation, Australian Water Quality Centre, 250 Victoria Square, Adelaide, SA 5000, Australia
| | - Barbara Sendall
- Queensland Health Forensic and Scientific Services, 39 Kessels Road, Coopers Plains, QLD 4108, Australia
| | - Suzanne Froscio
- South Australia Water Corporation, Australian Water Quality Centre, 250 Victoria Square, Adelaide, SA 5000, Australia
| | - Andrew R Humpage
- South Australia Water Corporation, Australian Water Quality Centre, 250 Victoria Square, Adelaide, SA 5000, Australia
| |
Collapse
|
15
|
Martínez de la Escalera G, Kruk C, Segura AM, Nogueira L, Alcántara I, Piccini C. Dynamics of toxic genotypes of Microcystis aeruginosa complex (MAC) through a wide freshwater to marine environmental gradient. HARMFUL ALGAE 2017; 62:73-83. [PMID: 28118894 DOI: 10.1016/j.hal.2016.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Bloom-forming species belonging to Microcystis aeruginosa complex (MAC) are the most commonly reported worldwide. MAC blooms are composed by toxic and non-toxic genotypes and the environmental conditions favouring the dominance of toxic genotypes are still a matter of debate among the scientific community. In this study, we evaluated the distribution of toxic MAC genotypes along a seasonal cycle and over an environmental gradient spanning 800km, from a eutrophic freshwater reservoir in Río Uruguay to marine water in the outer limit of Río de la Plata. Abundance of four mcy genes, mcyB, mcyD, mcyE and mcyJ was determined by qPCR and used as a proxy of abundance of toxic MAC genotypes. All the mcy genes were detected through the seasonal cycle at all sampling sites, being systematically higher in the freshwater reservoir and decreasing towards the marine site. The highest toxic genotype abundance was found during the austral summer months. According to generalized linear regressions and random forest models, temperature and conductivity were the most relevant explanatory variables. This suggests that although toxic MAC genotypes grow optimally in freshwater, they are also able to tolerate the high-salinity and low temperature conditions found in estuarine and marine waters. This ability to resist harsh conditions impose a health risk and a management challenge. To our knowledge, this is the first report addressing several mcy genes in a broad gradient that includes a wide array of different environmental conditions.
Collapse
Affiliation(s)
| | - Carla Kruk
- Ecología Funcional de Sistemas Acuáticos, CURE, Rocha, Universidad de la República, Uruguay; Sección Limnología, IECA, Facultad de Ciencias, Universidad de la República, Uruguay
| | - Angel M Segura
- Polo de Desarrollo Universitario, Modelización y Análisis de Recursos Naturales, CURE, Rocha, Universidad de la República, Uruguay
| | - Lucía Nogueira
- Sección Limnología, IECA, Facultad de Ciencias, Universidad de la República, Uruguay
| | - Ignacio Alcántara
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay; Sección Limnología, IECA, Facultad de Ciencias, Universidad de la República, Uruguay
| | - Claudia Piccini
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay.
| |
Collapse
|
16
|
Liaimer A, Jensen JB, Dittmann E. A Genetic and Chemical Perspective on Symbiotic Recruitment of Cyanobacteria of the Genus Nostoc into the Host Plant Blasia pusilla L. Front Microbiol 2016; 7:1693. [PMID: 27847500 PMCID: PMC5088731 DOI: 10.3389/fmicb.2016.01693] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/10/2016] [Indexed: 12/04/2022] Open
Abstract
Liverwort Blasia pusilla L. recruits soil nitrogen-fixing cyanobacteria of genus Nostoc as symbiotic partners. In this work we compared Nostoc community composition inside the plants and in the soil around them from two distant locations in Northern Norway. STRR fingerprinting and 16S rDNA phylogeny reconstruction showed a remarkable local diversity among isolates assigned to several Nostoc clades. An extensive web of negative allelopathic interactions was recorded at an agricultural site, but not at the undisturbed natural site. The cell extracts of the cyanobacteria did not show antimicrobial activities, but four isolates were shown to be cytotoxic to human cells. The secondary metabolite profiles of the isolates were mapped by MALDI-TOF MS, and the most prominent ions were further analyzed by Q-TOF for MS/MS aided identification. Symbiotic isolates produced a great variety of small peptide-like substances, most of which lack any record in the databases. Among identified compounds we found microcystin and nodularin variants toxic to eukaryotic cells. Microcystin producing chemotypes were dominating as symbiotic recruits but not in the free-living community. In addition, we were able to identify several novel aeruginosins and banyaside-like compounds, as well as nostocyclopeptides and nosperin.
Collapse
Affiliation(s)
- Anton Liaimer
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of NorwayTromsø, Norway
| | - John B. Jensen
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of NorwayTromsø, Norway
| | - Elke Dittmann
- Department of Microbiology, Institute for Biochemistry and Biology, University of PotsdamPotsdam, Germany
| |
Collapse
|
17
|
Unraveling the Physiological Roles of the Cyanobacterium Geitlerinema sp. BBD and Other Black Band Disease Community Members through Genomic Analysis of a Mixed Culture. PLoS One 2016; 11:e0157953. [PMID: 27336619 PMCID: PMC4918915 DOI: 10.1371/journal.pone.0157953] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/07/2016] [Indexed: 11/19/2022] Open
Abstract
Black band disease (BBD) is a cyanobacterial-dominated polymicrobial mat that propagates on and migrates across coral surfaces, necrotizing coral tissue. Culture-based laboratory studies have investigated cyanobacteria and heterotrophic bacteria isolated from BBD, but the metabolic potential of various BBD microbial community members and interactions between them remain poorly understood. Here we report genomic insights into the physiological and metabolic potential of the BBD-associated cyanobacterium Geitlerinema sp. BBD 1991 and six associated bacteria that were also present in the non-axenic culture. The essentially complete genome of Geitlerinema sp. BBD 1991 contains a sulfide quinone oxidoreductase gene for oxidation of sulfide, suggesting a mechanism for tolerating the sulfidic conditions of BBD mats. Although the operon for biosynthesis of the cyanotoxin microcystin was surprisingly absent, potential relics were identified. Genomic evidence for mixed-acid fermentation indicates a strategy for energy metabolism under the anaerobic conditions present in BBD during darkness. Fermentation products may supply carbon to BBD heterotrophic bacteria. Among the six associated bacteria in the culture, two are closely related to organisms found in culture-independent studies of diseased corals. Their metabolic pathways for carbon and sulfur cycling, energy metabolism, and mechanisms for resisting coral defenses suggest adaptations to the coral surface environment and biogeochemical roles within the BBD mat. Polysulfide reductases were identified in a Flammeovirgaceae genome (Bacteroidetes) and the sox pathway for sulfur oxidation was found in the genome of a Rhodospirillales bacterium (Alphaproteobacteria), revealing mechanisms for sulfur cycling, which influences virulence of BBD. Each genomic bin possessed a pathway for conserving energy from glycerol degradation, reflecting adaptations to the glycerol-rich coral environment. The presence of genes for detoxification of reactive oxygen species and resistance to antibiotics suggest mechanisms for combating coral defense strategies. This study builds upon previous research on BBD and provides new insights into BBD disease etiology.
Collapse
|
18
|
Nishizawa T, Neagari Y, Miura T, Asayama M, Murata K, Harada KI, Shirai M. Molecular Analysis of the Cyanobacterial Community in Gastric Contents of Egrets with Symptoms of Steatitis. Open Microbiol J 2015; 9:160-6. [PMID: 26668668 PMCID: PMC4676040 DOI: 10.2174/1874285801509010160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 05/03/2015] [Accepted: 08/01/2015] [Indexed: 11/22/2022] Open
Abstract
Many deaths of wild birds that have drunk water contaminated with hepatotoxic microcystin-producing cyanobacteria have been reported. A mass death of egrets and herons with steatitis were found at the agricultural reservoir occurring cyanobacterial waterblooms. This study aimed to verify a hypothesis that the egrets and herons which died in the reservoir drink microcystin-producing cyanobacteria and microcystin involves in the cause of death as well as the symptoms of steatitis. The cyanobacterial community in gastric contents of egrets and herons that died from steatitis was assessed using cyanobacterial 16S rRNA-based terminal-restriction fragment length polymorphism (T-RFLP) profiling and a cyanobacterial 16S rRNA-based clone library analysis. In addition, PCR amplification of the mcyB-C region and the mcyG gene, involved in microcystin biosynthesis, was examined. The cyanobacterial community in the gastric contents of two birds showed a simplistic composition. A comparison of cyanobacterial T-RFLP profiling and cloned sequences suggested that the genus Microcystis predominated in both samples of egrets died. Although we confirmed that two egrets which died in the reservoir have taken in cyanobacterial waterblooms containing the genus Microcystis, no mcy gene was detected in both samples according to the mcy gene-based PCR analysis. This study is the first to show the profiling and traceability of a cyanobacterial community in the gastric contents of wild birds by molecular analysis. Additionally, we consider causing symptoms of steatitis in the dead egrets.
Collapse
Affiliation(s)
| | - Yasuko Neagari
- Laboratory for Intellectual Fundamentals for Environmental Studies, National Institute for Environmental Studies, Ibaraki 305-8506, Japan
| | - Takamasa Miura
- College of Agriculture, Ibaraki University, Ibaraki 300-0393, Japan
| | - Munehiko Asayama
- College of Agriculture, Ibaraki University, Ibaraki 300-0393, Japan
| | - Koichi Murata
- College of Bioresource Sciences, Nihon University, Kanagawa 252-0880, Japan
| | - Ken-Ichi Harada
- Graduate School of Environmental and Human Science and Faculty of Pharmacy, Meijo University, Aichi 468-8503, Japan
| | - Makoto Shirai
- College of Agriculture, Ibaraki University, Ibaraki 300-0393, Japan
| |
Collapse
|
19
|
Kurmayer R, Blom JF, Deng L, Pernthaler J. Integrating phylogeny, geographic niche partitioning and secondary metabolite synthesis in bloom-forming Planktothrix. THE ISME JOURNAL 2015; 9:909-21. [PMID: 25325384 PMCID: PMC4349496 DOI: 10.1038/ismej.2014.189] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/15/2014] [Accepted: 08/21/2014] [Indexed: 11/09/2022]
Abstract
Toxic freshwater cyanobacteria form harmful algal blooms that can cause acute toxicity to humans and livestock. Globally distributed, bloom-forming cyanobacteria Planktothrix either retain or lose the mcy gene cluster (encoding the synthesis of the secondary metabolite hepatotoxin microcystin or MC), resulting in a variable spatial/temporal distribution of (non)toxic genotypes. Despite their importance to human well-being, such genotype diversity is not being mapped at scales relevant to nature. We aimed to reveal the factors influencing the dispersal of those genotypes by analyzing 138 strains (from Europe, Russia, North America and East Africa) for their (i) mcy gene cluster composition, (ii) phylogeny and adaptation to their habitat and (iii) ribosomally and nonribosomally synthesized oligopeptide products. Although all the strains from different species contained at least remnants of the mcy gene cluster, various phylogenetic lineages evolved and adapted to rather specific ecological niches (for example, through pigmentation and gas vesicle protein size). No evidence for an increased abundance of specific peptides in the absence of MC was found. MC and peptide distribution rather depended on phylogeny, ecophysiological adaptation and geographic distance. Together, these findings provide evidence that MC and peptide production are primarily related to speciation processes, while within a phylogenetic lineage the probability that strains differ in peptide composition increases with geographic distance.
Collapse
Affiliation(s)
- Rainer Kurmayer
- Research Institute for Limnology, University of Innsbruck Mondsee, Austria
| | - Judith F Blom
- Limnological Station, Institute of Plant Biology, University of Zürich Kilchberg, Switzerland
| | - Li Deng
- Research Institute for Limnology, University of Innsbruck Mondsee, Austria
| | - Jakob Pernthaler
- Limnological Station, Institute of Plant Biology, University of Zürich Kilchberg, Switzerland
| |
Collapse
|
20
|
Grabowska M, Kobos J, Toruńska-Sitarz A, Mazur-Marzec H. Non-ribosomal peptides produced by Planktothrix agardhii from Siemianówka Dam Reservoir SDR (northeast Poland). Arch Microbiol 2014; 196:697-707. [PMID: 24972671 PMCID: PMC4168019 DOI: 10.1007/s00203-014-1008-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 06/12/2014] [Accepted: 06/12/2014] [Indexed: 10/31/2022]
Abstract
Planktothtrix agardhii (Oscillatoriales) is a filamentous cyanobacterium, which frequently forms blooms in shallow, polymictic and eutrophicated waters. This species is also a rich source of unique linear and cyclic peptides. In the current study, the profile of the peptides in samples from the P. agardhii-dominated Siemianówka Dam Reservoir (SDR) (northeast Poland) was analyzed for four subsequent years (2009-2012). The LC-MS/MS analyses revealed the presence of 33 peptides. Twelve of the most abundant ones, including five microcystins, five anabaenopeptins, one aeruginosin and one planktocyclin, were present in all field samples collected during the study. The detection of different peptides in two P. agardhii isolates indicated that the SDR population was composed of several chemotypes, characterized by different peptide patterns. The total concentration of microcystins (MCs) positively correlated with the biomass of P. agardhii. Between subsequent years, the changes in the ratio of the total MCs concentration to the biomass of P. agardhii were noticed, but they were less than threefold. This is the first study on the production of different classes of non-ribosomal peptides by freshwater cyanobacteria in Poland.
Collapse
Affiliation(s)
- Magdalena Grabowska
- Department of Hydrobiology, University of Białystok, Świerkowa 20B, 15-950 Białystok, Poland
| | - Justyna Kobos
- Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Anna Toruńska-Sitarz
- Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Hanna Mazur-Marzec
- Institute of Oceanography, University of Gdańsk, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
21
|
Elucidation of insertion elements carried on plasmids and in vitro construction of shuttle vectors from the toxic cyanobacterium Planktothrix. Appl Environ Microbiol 2014; 80:4887-97. [PMID: 24907328 DOI: 10.1128/aem.01188-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several gene clusters that are responsible for toxin synthesis in bloom-forming cyanobacteria have been found to be associated with transposable elements (TEs). In particular, insertion sequence (IS) elements were shown to play a role in the inactivation or recombination of the genes responsible for cyanotoxin synthesis. Plasmids have been considered important vectors of IS element distribution to the host. In this study, we aimed to elucidate the IS elements propagated on the plasmids and the chromosome of the toxic cyanobacterium Planktothrix agardhii NIVA-CYA126/8 by means of high-throughput sequencing. In total, five plasmids (pPA5.5, pPA14, pPA50, pPA79, and pPA115, of 5, 6, 50, 79, and 120 kbp, respectively) were elucidated, and two plasmids (pPA5.5, pPA115) were found to propagate full IS element copies. Large stretches of shared DNA information between plasmids were constituted of TEs. Two plasmids (pPA5.5, pPA14) were used as candidates to engineer shuttle vectors (named pPA5.5SV and pPA14SV, respectively) in vitro by PCR amplification and the subsequent transposition of the Tn5 cat transposon containing the R6Kγ origin of replication of Escherichia coli. While pPA5.5SV was found to be fully segregated, pPA14SV consistently co-occurred with its wild-type plasmid even under the highest selective pressure. Interestingly, the Tn5 cat transposon became transferred by homologous recombination into another plasmid, pPA50. The availability of shuttle vectors is considered to be of relevance in investigating genome plasticity as a consequence of homologous recombination events. Combining the potential of high-throughput sequencing and in vitro production of shuttle vectors makes it simple to produce species-specific shuttle vectors for many cultivable prokaryotes.
Collapse
|
22
|
Ostermaier V, Christiansen G, Schanz F, Kurmayer R. Genetic variability of microcystin biosynthesis genes in Planktothrix as elucidated from samples preserved by heat desiccation during three decades. PLoS One 2013; 8:e80177. [PMID: 24265798 PMCID: PMC3827215 DOI: 10.1371/journal.pone.0080177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/09/2013] [Indexed: 11/23/2022] Open
Abstract
Historic samples of phytoplankton can provide information on the abundance of the toxigenic genotypes of cyanobacteria in dependence on increased or decreased eutrophication. The analysis of a time-series from preserved phytoplankton samples by quantitative PCR (qPCR) extends observation periods considerably. The analysis of DNA from heat-desiccated samples by qPCR can be aggravated by point substitutions or the fragmentation of DNA introduced by the high temperature. In this study, we analyzed whether the heat desiccation of the cellular material of the cyanobacterium Planktothrix sp. introduced potential errors to the template DNA that is used for qPCR within (i) 16S rDNA and phycocyanin genes and (ii) the mcyA gene indicative of the incorporation of either dehydrobutyrine (Dhb) or N-methyl-dehydroalanine (Mdha) in position 7, and (ii) the mcyB gene, which is indicative of homotyrosine (Hty) in position 2 of the microcystin (MC) molecule. Due to high temperature desiccation, the deterioration of the DNA template quality was rather due to fragmentation than due to nucleotide substitutions. By using the heat-desiccated samples of Lake Zürich, Switzerland the abundance of the Dhb, Mdha and Hty genotypes was determined during three decades (1977-2008). Despite major changes in the trophic state of the lake resulting in a major increase of the total Planktothrix population density, the proportion of these genotypes encoding the synthesis of different MC congeners showed high stability. Nevertheless, a decline of the most abundant mcyA genotype indicative of the synthesis of Dhb in position 7 of the MC molecule was observed. This decline could be related to the gradual incline in the proportion of a mutant genotype carrying a 1.8kbp deletion of this gene region. The increase of this mcyA (Dhb) gene deletion mutant has been minor so far, however, and likely did not affect the overall toxicity of the population.
Collapse
Affiliation(s)
| | | | - Ferdinand Schanz
- Limnological Station, Institute of Plant Biology, University of Zürich, Kilchberg, Switzerland
| | - Rainer Kurmayer
- Research Institute for Limnology, University of Innsbruck, Mondsee, Austria
- * E-mail:
| |
Collapse
|
23
|
Sabart M, Misson B, Descroix A, Duffaud E, Combourieu B, Salençon MJ, Latour D. The importance of small colonies in sustaining Microcystis population exposed to mixing conditions: an exploration through colony size, genotypic composition and toxic potential. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:747-756. [PMID: 24115626 DOI: 10.1111/1758-2229.12077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/13/2013] [Indexed: 06/02/2023]
Abstract
Microcystis is a toxic colony-forming cyanobacterium, which can bloom in a wide range of freshwater ecosystems. Despite the ecological advantage of the colonial form, few studies have paid attention to the size of Microcystis colonies in the field. With the aim of evaluating the impact of a fluctuating physical environment on the colony size, the genotypic composition and the toxic potential of a Microcystis population, we investigated five different colony size classes of a Microcystis bloom in the Grangent reservoir (France). By sequencing the internal transcribed spacer of the ribosomal operon, we evidenced changes in the genetic structure among size classes in response to environmental change. While similar genotypes were seen in every size class in stable conditions, new dominant genotypes appeared in the smallest colonies (< 160 μm) concomitantly with mixing conditions, strongly suggesting the importance of these colonies in response to disturbances. Moreover, these small colonies played a major role in microcystin production during this bloom, since very high microcystin contents (> 1 pg.cell.(-1)) were found in their cells. These findings indicate that the colony size distribution of a Microcystis population in response to disturbance could be an adaptive strategy that may explain its ecological success in freshwater ecosystems.
Collapse
Affiliation(s)
- Marion Sabart
- Clermont Université, Laboratoire Microorganismes: Génome et Environnement, Université Blaise Pascal, BP 10448, F-63000, Clermont Ferrand, France; UMR 6023, LMGE, CNRS, BP 80026, F-63171, Aubière Cedex, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Jiang Y, Yu G, Chai W, Song G, Li R. Congruence between mcy based genetic type and microcystin composition within the populations of toxic Microcystis in a Plateau Lake, China. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:637-647. [PMID: 24115613 DOI: 10.1111/1758-2229.12062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 04/03/2013] [Indexed: 06/02/2023]
Abstract
Genetic diversity and differential microcystin contributions within the populations of toxic Microcystis in freshwater ecosystems have not been fully discussed. To illustrate this issue, we sequenced clone libraries of the first adenylation domain of mcyB (mcyBA1) from Microcystis populations in a plateau lake. Phylogenetic analysis revealed two divergent groups of McyBA1 with two closely related subgroups within Group I. While neutral evolution was indicated on the whole McyBA1 domain, 1-5 recombination breakpoints and several codons under positive or negative selections were found. Significant seasonal changes of McyBA1 diversity were observed. Group I composed the major proportion of the McyBA1 pool throughout the growing season in the whole lake. Group IA and Group II denominated Microcystis strains isolated from this lake were characterized by preference production of microcystin-RR (62-85%) and microcystin-LR (> 98%) respectively. We detected the intracellular microcystins in lake water and microcystin-RR was a main variant (mostly > 50%). In summary, McyBA1 subgroups were dominant within the population of toxic Microcystis and contributed the predominance of microcystin-RR in the lake. The differences of substrate preference in microcystin biosynthesis among groups were caused by neutral evolution and homologous recombination.
Collapse
Affiliation(s)
- Yongguang Jiang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | | | | | | |
Collapse
|
25
|
From green to red: horizontal gene transfer of the phycoerythrin gene cluster between Planktothrix strains. Appl Environ Microbiol 2013; 79:6803-12. [PMID: 23995927 DOI: 10.1128/aem.01455-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Horizontal gene transfer is common in cyanobacteria, and transfer of large gene clusters may lead to acquisition of new functions and conceivably niche adaption. In the present study, we demonstrate that horizontal gene transfer between closely related Planktothrix strains can explain the production of the same oligopeptide isoforms by strains of different colors. Comparison of the genomes of eight Planktothrix strains revealed that strains producing the same oligopeptide isoforms are closely related, regardless of color. We have investigated genes involved in the synthesis of the photosynthetic pigments phycocyanin and phycoerythrin, which are responsible for green and red appearance, respectively. Sequence comparisons suggest the transfer of a functional phycoerythrin gene cluster generating a red phenotype in a strain that is otherwise more closely related to green strains. Our data show that the insertion of a DNA fragment containing the 19.7-kb phycoerythrin gene cluster has been facilitated by homologous recombination, also replacing a region of the phycocyanin operon. These findings demonstrate that large DNA fragments spanning entire functional gene clusters can be effectively transferred between closely related cyanobacterial strains and result in a changed phenotype. Further, the results shed new light on the discussion of the role of horizontal gene transfer in the sporadic distribution of large gene clusters in cyanobacteria, as well as the appearance of red and green strains.
Collapse
|
26
|
Shishido TK, Kaasalainen U, Fewer DP, Rouhiainen L, Jokela J, Wahlsten M, Fiore MF, Yunes JS, Rikkinen J, Sivonen K. Convergent evolution of [D-Leucine(1)] microcystin-LR in taxonomically disparate cyanobacteria. BMC Evol Biol 2013; 13:86. [PMID: 23601305 PMCID: PMC3640908 DOI: 10.1186/1471-2148-13-86] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 04/09/2013] [Indexed: 11/24/2022] Open
Abstract
Background Many important toxins and antibiotics are produced by non-ribosomal biosynthetic pathways. Microcystins are a chemically diverse family of potent peptide toxins and the end-products of a hybrid NRPS and PKS secondary metabolic pathway. They are produced by a variety of cyanobacteria and are responsible for the poisoning of humans as well as the deaths of wild and domestic animals around the world. The chemical diversity of the microcystin family is attributed to a number of genetic events that have resulted in the diversification of the pathway for microcystin assembly. Results Here, we show that independent evolutionary events affecting the substrate specificity of the microcystin biosynthetic pathway have resulted in convergence on a rare [D-Leu1] microcystin-LR chemical variant. We detected this rare microcystin variant from strains of the distantly related genera Microcystis, Nostoc, and Phormidium. Phylogenetic analysis performed using sequences of the catalytic domains within the mcy gene cluster demonstrated a clear recombination pattern in the adenylation domain phylogenetic tree. We found evidence for conversion of the gene encoding the McyA2 adenylation domain in strains of the genera Nostoc and Phormidium. However, point mutations affecting the substrate-binding sequence motifs of the McyA2 adenylation domain were associated with the change in substrate specificity in two strains of Microcystis. In addition to the main [D-Leu1] microcystin-LR variant, these two strains produced a new microcystin that was identified as [Met1] microcystin-LR. Conclusions Phylogenetic analysis demonstrated that both point mutations and gene conversion result in functional mcy gene clusters that produce the same rare [D-Leu1] variant of microcystin in strains of the genera Microcystis, Nostoc, and Phormidium. Engineering pathways to produce recombinant non-ribosomal peptides could provide new natural products or increase the activity of known compounds. Our results suggest that the replacement of entire adenylation domains could be a more successful strategy to obtain higher specificity in the modification of the non-ribosomal peptides than point mutations.
Collapse
Affiliation(s)
- Tânia Keiko Shishido
- Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, University of Helsinki, Viikki Biocenter (Viikinkaari 9), PO Box 56, Helsinki, FIN-00014, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Crüsemann M, Kohlhaas C, Piel J. Evolution-guided engineering of nonribosomal peptide synthetase adenylation domains. Chem Sci 2013. [DOI: 10.1039/c2sc21722h] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
28
|
Gene flow, recombination, and selection in cyanobacteria: population structure of geographically related Planktothrix freshwater strains. Appl Environ Microbiol 2012; 79:508-15. [PMID: 23124237 DOI: 10.1128/aem.02417-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several Planktothrix strains, each producing a distinct oligopeptide profile, have been shown to coexist within Lake Steinsfjorden (Norway). Using nonribosomal peptide synthetase (NRPS) genes as markers, it has been shown that the Planktothrix community comprises distinct genetic variants displaying differences in bloom dynamics, suggesting a Planktothrix subpopulation structure. Here, we investigate the Planktothrix variants inhabiting four lakes in southeast of Norway utilizing both NRPS and non-NRPS genes. Phylogenetic analyses showed similar topologies for both NRPS and non-NRPS genes, and the lakes appear to have similar structuring of Planktothrix genetic variants. The structure of distinct variants was also supported by very low genetic diversity within variants compared to the between-variant diversity. Incongruent topologies and split decomposition revealed recombination events between Planktothrix variants. In several strains the gene variants seem to be a result of recombination. Both NRPS and non-NRPS genes are dominated by purifying selection; however, sites subjected to positive selection were also detected. The presence of similar and well-separated Planktothrix variants with low internal genetic diversity indicates gene flow within Planktothrix populations. Further, the low genetic diversity found between lakes (similar range as within lakes) indicates gene flow also between Planktothrix populations and suggests recent, or recurrent, dispersals. Our data also indicate that recombination has resulted in new genetic variants. Stability within variants and the development of new variants are likely to be influenced by selection patterns and within-variant homologous recombination.
Collapse
|
29
|
Bittencourt-Oliveira MDC, Piccin-Santos V, Gouvêa-Barros S. Microcystin-producing genotypes from cyanobacteria in Brazilian reservoirs. ENVIRONMENTAL TOXICOLOGY 2012; 27:461-471. [PMID: 22764076 DOI: 10.1002/tox.20659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 08/11/2010] [Accepted: 08/15/2010] [Indexed: 06/01/2023]
Abstract
The aim of this study was to evaluate the use of new oligonucleotide primers (mcyB-F/R, mcyB-F/R-A, and mcyB-F/R-B) designed from Brazilian cyanobacteria for the detection of microcystin-producing genotypes in 27 environmental samples from water reservoirs and 11 strains of Microcystis. Microcystins were found using HPLC in all 11 strains and 19 of the environmental samples. The new oligonucleotide primers amplified fragments of microcystin-producing genes, including the eight environmental samples in which no microcystins were detected by HPLC, but which presented amplified fragments, thereby demonstrating the existence of microcystin-producing genes. The new oligonucleotide primers exhibited better specificity when used with environmental samples and were more reliable in comparison with those described in the literature (mcyB-FAA/RAA and mcyA-Cd/FR), which generate false-negative results. The better performance of these new oligonucleotide primers underline the need for designing molecular markers that are well fitted to the regional biological diversity. As this is a fast predictive technique for determining the presence or absence of microcystins, it could be used either alone or in conjunction with other techniques, such as the screening of samples to be sent for quantitative toxicological analysis using HPLC, thereby reducing monitoring cost and time. © 2010 Wiley Periodicals, Inc. Environ Toxicol, 2012.
Collapse
|
30
|
Höfer I, Crüsemann M, Radzom M, Geers B, Flachshaar D, Cai X, Zeeck A, Piel J. Insights into the biosynthesis of hormaomycin, an exceptionally complex bacterial signaling metabolite. ACTA ACUST UNITED AC 2011; 18:381-91. [PMID: 21439483 DOI: 10.1016/j.chembiol.2010.12.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/26/2010] [Accepted: 12/02/2010] [Indexed: 11/19/2022]
Abstract
Hormaomycin produced by Streptomyces griseoflavus is a structurally highly modified depsipeptide that contains several unique building blocks with cyclopropyl, nitro, and chlorine moieties. Within the genus Streptomyces, it acts as a bacterial hormone that induces morphological differentiation and the production of bioactive secondary metabolites. In addition, hormaomycin is an extremely potent narrow-spectrum antibiotic. In this study, we shed light on hormaomycin biosynthesis by a combination of feeding studies, isolation of the biosynthetic nonribosomal peptide synthetase (NRPS) gene cluster, and in vivo and in vitro functional analysis of enzymes. In addition, several nonnatural hormaomycin congeners were generated by feeding-induced metabolic rerouting. The NRPS contains numerous highly repetitive regions that suggest an evolutionary scenario for this unusual bacterial hormone, providing new opportunities for evolution-inspired metabolic engineering of novel nonribosomal peptides.
Collapse
Affiliation(s)
- Ivonne Höfer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Nishizawa T, Ueda A, Nakano T, Nishizawa A, Miura T, Asayama M, Fujii K, Harada KI, Shirai M. Characterization of the locus of genes encoding enzymes producing heptadepsipeptide micropeptin in the unicellular cyanobacterium Microcystis. J Biochem 2011; 149:475-85. [PMID: 21212071 DOI: 10.1093/jb/mvq150] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The gene cluster involved in producing the cyclic heptadepsipeptide micropeptin was cloned from the genome of the unicellular cyanobacterium Microcystis aeruginosa K-139. Sequencing revealed four genes encoding non-ribosomal peptide synthetases (NRPSs) that are highly similar to the gene cluster involved in cyanopeptolins biosynthesis. According to predictions based on the non-ribosomal consensus code, the order of the mcnABCE NPRS modules was well consistent with that of the biosynthetic assembly of cyclic peptides. The biochemical analysis of a McnB(K-139) adenylation domain and the knock-out of mcnC in a micropeptin-producing strain, M. viridis S-70, revealed that the mcn gene clusters were responsible for the production of heptadepsipeptide micropeptins. A detailed comparison of nucleotide sequences also showed that the regions between the mcnC and mcnE genes of M. aeruginosa K-139 retained short stretches of DNA homologous to halogenase genes involved in the synthesis of halogenated cyclic peptides of the cyanopeptolin class including anabaenopeptilides. This suggests that the mcn clusters of M. aeruginosa K-139 have lost the halogenase genes during evolution. Finally, a comparative bioinformatics analysis of the congenial gene cluster for depsipetide biosynthesis suggested the diversification and propagation of the NRPS genes in cyanobacteria.
Collapse
Affiliation(s)
- Tomoyasu Nishizawa
- Laboratory of Molecular Genetics, College of Agriculture, Ibaraki University, Ami, Ibaraki 300-0393, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Liu Y, Tan W, Wu X, Wu Z, Yu G, Li R. First report of microcystin production in Microcystis smithii Komárek and Anagnostidis (Cyanobacteria) from a water bloom in Eastern China. J Environ Sci (China) 2011; 23:102-107. [PMID: 21476347 DOI: 10.1016/s1001-0742(10)60379-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A water bloom sample collected from Lake Dishui in Shanghai was characterized. The morphological identification showed that Micorcystis wesenbergii and Micorcystis smithii were the main component of the bloom. Five strains of M. smithii were successfully isolated. Their 16S rRNA gene sequences based phylogenetic tree showed that the five strains of M. smithii intermixed with strains of other morphospecies in Microcystis. A fragment of mcy gene encoding for microcystin synthetase was detected in one of the five M. smithii strains (CHAB 2183), indicating its potential of microcystin production. High performance liquid chromatography analysis confirmed M. smithii CHAB 2183 to produce microcystin-RR as 1550 microg per gram dry weight cells. The present investigation, for the first time, reported the isolated strains of M. smithii and microcystin production from M. smithii.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Aquatic Biodiversity and Conservation Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | | | | | | | | | | |
Collapse
|
33
|
Kim SG, Joung SH, Ahn CY, Ko SR, Boo SM, Oh HM. Annual variation of Microcystis genotypes and their potential toxicity in water and sediment from a eutrophic reservoir. FEMS Microbiol Ecol 2010; 74:93-102. [DOI: 10.1111/j.1574-6941.2010.00947.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
34
|
Pearson L, Mihali T, Moffitt M, Kellmann R, Neilan B. On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Mar Drugs 2010; 8:1650-80. [PMID: 20559491 PMCID: PMC2885083 DOI: 10.3390/md8051650] [Citation(s) in RCA: 337] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 05/02/2010] [Accepted: 05/06/2010] [Indexed: 11/16/2022] Open
Abstract
The cyanobacteria or "blue-green algae", as they are commonly termed, comprise a diverse group of oxygenic photosynthetic bacteria that inhabit a wide range of aquatic and terrestrial environments, and display incredible morphological diversity. Many aquatic, bloom-forming species of cyanobacteria are capable of producing biologically active secondary metabolites, which are highly toxic to humans and other animals. From a toxicological viewpoint, the cyanotoxins span four major classes: the neurotoxins, hepatotoxins, cytotoxins, and dermatoxins (irritant toxins). However, structurally they are quite diverse. Over the past decade, the biosynthesis pathways of the four major cyanotoxins: microcystin, nodularin, saxitoxin and cylindrospermopsin, have been genetically and biochemically elucidated. This review provides an overview of these biosynthesis pathways and additionally summarizes the chemistry and toxicology of these remarkable secondary metabolites.
Collapse
Affiliation(s)
- Leanne Pearson
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia; E-Mails:
(L.P.);
(T.M.)
| | - Troco Mihali
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia; E-Mails:
(L.P.);
(T.M.)
| | - Michelle Moffitt
- School of Biomedical and Health Sciences, The University of Western Sydney, Campbelltown, NSW, 2560, Australia; E-Mail:
(M.M.)
| | - Ralf Kellmann
- Department of Molecular Biology, The University of Bergen, P.O. Box 7803, 5020 Bergen, Norway; E-Mail:
(R.K.)
| | - Brett Neilan
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia; E-Mails:
(L.P.);
(T.M.)
| |
Collapse
|
35
|
Stüken A, Jakobsen KS. The cylindrospermopsin gene cluster of Aphanizomenon sp. strain 10E6: organization and recombination. MICROBIOLOGY-SGM 2010; 156:2438-2451. [PMID: 20430808 DOI: 10.1099/mic.0.036988-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cylindrospermopsin (CYN), a potent hepatoxin, occurs in freshwaters worldwide. Several cyanobacterial species produce the toxin, but the producing species vary between geographical regions. Aphanizomenon flos-aquae, a common algae species in temperate fresh and brackish waters, is one of the three well-documented CYN producers in European waters. So far, no genetic information on the CYN genes of this species has been available. Here, we describe the complete CYN gene cluster, including flanking regions from the German Aphanizomenon sp. strain 10E6 using a full genome sequencing approach by 454 pyrosequencing and bioinformatic identification of the gene cluster. In addition, we have sequenced a approximately 7 kb fragment covering the genes cyrC (partially), cyrA and cyrB (partially) of the same gene cluster in the CYN-producing Aphanizomenon sp. strains 10E9 and 22D11. Comparisons with the orthologous gene clusters of the Australian Cylindrospermopsis raciborskii strains AWT205 and CS505 and the partial gene cluster of the Israeli Aphanizomenon ovalisporum strain ILC-146 revealed a high gene sequence similarity, but also extensive rearrangements of gene order. The high sequence similarity (generally higher than that of 16S rRNA gene fragments from the same strains), atypical GC-content and signs of transposase activities support the suggestion that the CYN genes have been horizontally transferred.
Collapse
Affiliation(s)
- Anke Stüken
- Department of Biology, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, 0316 Oslo, Norway.,Department of Biology, Microbial Evolution Research Group (MERG), University of Oslo, 0316 Oslo, Norway
| | - Kjetill S Jakobsen
- Department of Biology, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
36
|
Genuário DB, Silva-Stenico ME, Welker M, Beraldo Moraes LA, Fiore MF. Characterization of a microcystin and detection of microcystin synthetase genes from a Brazilian isolate of Nostoc. Toxicon 2010; 55:846-54. [DOI: 10.1016/j.toxicon.2009.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 10/20/2022]
|
37
|
Sierosławska A, Rymuszka A, Kalinowska R, Skowroński T, Bownik A, Pawlik-Skowrońska B. Toxicity of cyanobacterial bloom in the eutrophic dam reservoir (Southeast Poland). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2010; 29:556-560. [PMID: 20821478 DOI: 10.1002/etc.86] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cyanobacterial bloom was observed in a highly eutrophic dam reservoir, Zemborzycki, near Lublin (SE Poland) over a warm period in the year 2007. The water bloom consisted of several cyanobacterial taxa: Anabaena circinalis, Anabaena spiroides, Anabaena flos-aquae, Planktothrix agardhii, Aphanizomenon flos-aquae, Aphanizomenon gracile, and Microcystis flos-aquae. Anabaena spp., and Aphanizomenon spp., potential producers of neurotoxic anatoxin-a, quantitatively predominated in the studied bloom. High-performance liquid chromatography (HPLC) analysis of surface scum sampled during Anabaena circinalis domination revealed the presence of anatoxin-a at a high concentration (1,035.59 microg per liter of surface scum). At the same time, neither gas chromatography/mass spectrometry (GC/MS) nor microcystin enzyme-linked immunosorbent assay (ELISA) test showed the presence of other frequently found cyanotoxins, microcystins. Toxicity of cyanobacterial bloom was assessed by the crustacean acute toxicity test Daphtoxkit F pulex using Daphnia pulex, and by the chronic toxicity test Protoxkit F with a ciliate protozoan Tetrahymena thermophila. The crude extract of cyanobacterial scum showed high toxicity for Daphnia pulex, with 24-h median effective concentration (EC50) value of 90.3 microg/L of anatoxin-a, which corresponded to the cyanobacterial density in the scum of 1.01 g dry weight/L. For Tetrahymena thermophila, 24-h EC50 was lower, evaluated to be 60.48 microg/L of anatoxin-a, which corresponded to a cyanobacterial density of 0.68 g dry weight/L of the scum. On the basis of evaluated toxicity units, the cyanobacterial extract was classified at class IV toxicity, which means high toxic hazard.
Collapse
Affiliation(s)
- Anna Sierosławska
- The John Paul II Catholic University of Lublin, Department of Physiology and Ecotoxicology, Norwida 4, Lublin, Poland.
| | | | | | | | | | | |
Collapse
|
38
|
Berlinck RGS, Burtoloso ACB, Trindade-Silva AE, Romminger S, Morais RP, Bandeira K, Mizuno CM. The chemistry and biology of organic guanidine derivatives. Nat Prod Rep 2010; 27:1871-907. [DOI: 10.1039/c0np00016g] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
39
|
Noguchi T, Shinohara A, Nishizawa A, Asayama M, Nakano T, Hasegawa M, Harada KI, Nishizawa T, Shirai M. Genetic analysis of the microcystin biosynthesis gene cluster in Microcystis strains from four bodies of eutrophic water in Japan. J GEN APPL MICROBIOL 2009; 55:111-23. [PMID: 19436128 DOI: 10.2323/jgam.55.111] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The highly conserved organization of microcystin biosynthesis (mcy) gene clusters, which includes nonribosomal peptide synthetase (NRPS) genes, polyketide synthase (PKS) genes, and fused NRPS-PKS genes, has been characterized in the genus Microcystis. In this study, a total of 135 cyanobacterial strains from four different geographical locations in Japan were isolated. Fourteen mcy-possessing (mcy+) strains were identified according to PCR amplification between two genes from domestic mcy+ strains and the mcy gene's organization was classified into five types. Phylogenetic relationships of the 16S-23S internal transcribed spacer region indicated that the five types of mcy gene cluster structure classified into two groups of the genus Microcystis. HPLC of the isolated mcy+ strain containing a partial deletion of mcyI (DeltamcyI) revealed that microcystin production disappeared. A transcriptional analysis of the Delta mcyI-strain and an assay of recombinant McyI dehydrogenase activity showed that McyI is responsible for microcystin biosynthesis. Based on patterns of the PCR amplicons and analyses of nucleotide sequences in the mcy gene cluster of Microcystis, we confirmed the presence of inserts at three specific loci, between mcyA and mcyD, and downstream of mcyC and mcyJ. Our study is the first investigation of the mcy gene cluster structure in the genus Microcystis from environmental samples.
Collapse
|
40
|
Kurmayer R, Christiansen G. The Genetic Basis of Toxin Production in Cyanobacteria. ACTA ACUST UNITED AC 2009. [DOI: 10.1608/frj-2.1.2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Tooming-Klunderud A, Fewer DP, Rohrlack T, Jokela J, Rouhiainen L, Sivonen K, Kristensen T, Jakobsen KS. Evidence for positive selection acting on microcystin synthetase adenylation domains in three cyanobacterial genera. BMC Evol Biol 2008; 8:256. [PMID: 18808704 PMCID: PMC2564945 DOI: 10.1186/1471-2148-8-256] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 09/22/2008] [Indexed: 11/30/2022] Open
Abstract
Background Cyanobacteria produce a wealth of secondary metabolites, including the group of small cyclic heptapeptide hepatotoxins that constitutes the microcystin family. The enzyme complex that directs the biosynthesis of microcystin is encoded in a single large gene cluster (mcy). mcy genes have a widespread distribution among cyanobacteria and are likely to have an ancient origin. The notable diversity within some of the Mcy modules is generated through various recombination events including horizontal gene transfer. Results A comparative analysis of the adenylation domains from the first module of McyB (McyB1) and McyC in the microcystin synthetase complex was performed on a large number of microcystin-producing strains from the Anabaena, Microcystis and Planktothrix genera. We found no decisive evidence for recombination between strains from different genera. However, we detected frequent recombination events in the mcyB and mcyC genes between strains within the same genus. Frequent interdomain recombination events were also observed between mcyB and mcyC sequences in Anabaena and Microcystis. Recombination and mutation rate ratios suggest that the diversification of mcyB and mcyC genes is driven by recombination events as well as point mutations in all three genera. Sequence analysis suggests that generally the adenylation domains of the first domain of McyB and McyC are under purifying selection. However, we found clear evidence for positive selection acting on a number of amino acid residues within these adenylation domains. These include residues important for active site selectivity of the adenylation domain, strongly suggesting selection for novel microcystin variants. Conclusion We provide the first clear evidence for positive selection acting on amino acid residues involved directly in the recognition and activation of amino acids incorporated into microcystin, indicating that the microcystin complement of a given strain may influence the ability of a particular strain to interact with its environment.
Collapse
Affiliation(s)
- Ave Tooming-Klunderud
- University of Oslo, Department of Biology, Centre for Ecological and Evolutionary Synthesis, 0316 Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|