1
|
Ni H, Hou X, Tian S, Liu C, Zhang G, Peng Y, Chen L, Wang J, Chen Q, Xin D. Insights into the Early Steps of the Symbiotic Interaction between Soybean ( Glycine max) and Sinorhizobium fredii Symbiosis Using Transcriptome, Small RNA, and Degradome Sequencing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17084-17098. [PMID: 39013023 PMCID: PMC11299180 DOI: 10.1021/acs.jafc.4c02312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024]
Abstract
Symbiotic nitrogen fixation carried out by the soybean-rhizobia symbiosis increases soybean yield and reduces the amount of nitrogen fertilizer that has been applied. MicroRNAs (miRNAs) are crucial in plant growth and development, prompting an investigation into their role in the symbiotic interaction of soybean with partner rhizobia. Through integrated small RNA, transcriptome, and degradome sequencing analysis, 1215 known miRNAs, 314 of them conserved, and 187 novel miRNAs were identified, with 44 differentially expressed miRNAs in soybean roots inoculated with Sinorhizobium fredii HH103 and a ttsI mutant. The study unveiled that the known miRNA gma-MIR398a-p5 was downregulated in the presence of the ttsI mutation, while the target gene of gma-MIR398a-p5, Glyma.06G007500, associated with nitrogen metabolism, was upregulated. The results of this study offer insights for breeding high-efficiency nitrogen-fixing soybean varieties, enhancing crop yield and quality.
Collapse
Affiliation(s)
| | | | - Siyi Tian
- Key Laboratory of Soybean
Biology of the Chinese Ministry of Education, Key Laboratory of Soybean
Biology and Breeding, Genetics of Chinese Agriculture Ministry, College
of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Chunyan Liu
- Key Laboratory of Soybean
Biology of the Chinese Ministry of Education, Key Laboratory of Soybean
Biology and Breeding, Genetics of Chinese Agriculture Ministry, College
of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Guoqing Zhang
- Key Laboratory of Soybean
Biology of the Chinese Ministry of Education, Key Laboratory of Soybean
Biology and Breeding, Genetics of Chinese Agriculture Ministry, College
of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Yang Peng
- Key Laboratory of Soybean
Biology of the Chinese Ministry of Education, Key Laboratory of Soybean
Biology and Breeding, Genetics of Chinese Agriculture Ministry, College
of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Lin Chen
- Key Laboratory of Soybean
Biology of the Chinese Ministry of Education, Key Laboratory of Soybean
Biology and Breeding, Genetics of Chinese Agriculture Ministry, College
of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Jinhui Wang
- Key Laboratory of Soybean
Biology of the Chinese Ministry of Education, Key Laboratory of Soybean
Biology and Breeding, Genetics of Chinese Agriculture Ministry, College
of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Qingshan Chen
- Key Laboratory of Soybean
Biology of the Chinese Ministry of Education, Key Laboratory of Soybean
Biology and Breeding, Genetics of Chinese Agriculture Ministry, College
of Agriculture, Northeast Agricultural University, Harbin 150036, China
| | - Dawei Xin
- Key Laboratory of Soybean
Biology of the Chinese Ministry of Education, Key Laboratory of Soybean
Biology and Breeding, Genetics of Chinese Agriculture Ministry, College
of Agriculture, Northeast Agricultural University, Harbin 150036, China
| |
Collapse
|
2
|
Navarro-Gómez P, Fuentes-Romero F, Pérez-Montaño F, Jiménez-Guerrero I, Alías-Villegas C, Ayala-García P, Almozara A, Medina C, Ollero FJ, Rodríguez-Carvajal MÁ, Ruiz-Sainz JE, López-Baena FJ, Vinardell JM, Acosta-Jurado S. A complex regulatory network governs the expression of symbiotic genes in Sinorhizobium fredii HH103. FRONTIERS IN PLANT SCIENCE 2023; 14:1322435. [PMID: 38186594 PMCID: PMC10771577 DOI: 10.3389/fpls.2023.1322435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024]
Abstract
Introduction The establishment of the rhizobium-legume nitrogen-fixing symbiosis relies on the interchange of molecular signals between the two symbionts. We have previously studied by RNA-seq the effect of the symbiotic regulators NodD1, SyrM, and TtsI on the expression of the symbiotic genes (the nod regulon) of Sinorhizobium fredii HH103 upon treatment with the isoflavone genistein. In this work we have further investigated this regulatory network by incorporating new RNA-seq data of HH103 mutants in two other regulatory genes, nodD2 and nolR. Both genes code for global regulators with a predominant repressor effect on the nod regulon, although NodD2 acts as an activator of a small number of HH103 symbiotic genes. Methods By combining RNA-seq data, qPCR experiments, and b-galactosidase assays of HH103 mutants harbouring a lacZ gene inserted into a regulatory gene, we have analysed the regulatory relations between the nodD1, nodD2, nolR, syrM, and ttsI genes, confirming previous data and discovering previously unknown relations. Results and discussion Previously we showed that HH103 mutants in the nodD2, nolR, syrM, or ttsI genes gain effective nodulation with Lotus japonicus, a model legume, although with different symbiotic performances. Here we show that the combinations of mutations in these genes led, in most cases, to a decrease in symbiotic effectiveness, although all of them retained the ability to induce the formation of nitrogen-fixing nodules. In fact, the nodD2, nolR, and syrM single and double mutants share a set of Nod factors, either overproduced by them or not generated by the wild-type strain, that might be responsible for gaining effective nodulation with L. japonicus.
Collapse
Affiliation(s)
- Pilar Navarro-Gómez
- Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
| | | | | | | | - Cynthia Alías-Villegas
- Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
| | | | - Andrés Almozara
- Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain
| | - Carlos Medina
- Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain
| | | | | | | | | | | | - Sebastián Acosta-Jurado
- Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, Sevilla, Spain
| |
Collapse
|
3
|
Non-Ionic Osmotic Stress Induces the Biosynthesis of Nodulation Factors and Affects Other Symbiotic Traits in Sinorhizobium fredii HH103. BIOLOGY 2023; 12:biology12020148. [PMID: 36829427 PMCID: PMC9952627 DOI: 10.3390/biology12020148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
(1) Background: Some rhizobia, such as Rhizobium tropici CIAT 899, activate nodulation genes when grown under osmotic stress. This work aims to determine whether this phenomenon also takes place in Sinorhizobium fredii HH103. (2) Methods: HH103 was grown with and without 400 mM mannitol. β-galactosidase assays, nodulation factor extraction, purification and identification by mass spectrometry, transcriptomics by RNA sequencing, motility assays, analysis of acyl-homoserine lactones, and indole acetic acid quantification were performed. (3) Results: Non-ionic osmotic stress induced the production of nodulation factors. Forty-two different factors were detected, compared to 14 found in the absence of mannitol. Transcriptomics indicated that hundreds of genes were either activated or repressed upon non-ionic osmotic stress. The presence of 400 mM mannitol induced the production of indole acetic acid and acyl homoserine lactones, abolished swimming, and promoted surface motility. (4) Conclusions: In this work, we show that non-ionic stress in S. fredii HH103, caused by growth in the presence of 400 mM mannitol, provokes notable changes not only in gene expression but also in various bacterial traits, including the production of nodulation factors and other symbiotic signals.
Collapse
|
4
|
Meena M, Nagda A, Mehta T, Yadav G, Sonigra P. Mechanistic basis of the symbiotic signaling pathway between the host and the pathogen. PLANT-MICROBE INTERACTION - RECENT ADVANCES IN MOLECULAR AND BIOCHEMICAL APPROACHES 2023:375-387. [DOI: 10.1016/b978-0-323-91875-6.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
5
|
Ghantasala S, Roy Choudhury S. Nod factor perception: an integrative view of molecular communication during legume symbiosis. PLANT MOLECULAR BIOLOGY 2022; 110:485-509. [PMID: 36040570 DOI: 10.1007/s11103-022-01307-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Compatible interaction between rhizobial Nod factors and host receptors enables initial recognition and signaling events during legume-rhizobia symbiosis. Molecular communication is a new paradigm of information relay, which uses chemical signals or molecules as dialogues for communication and has been witnessed in prokaryotes, plants as well as in animal kingdom. Understanding this fascinating relay of signals between plants and rhizobia during the establishment of a synergistic relationship for biological nitrogen fixation represents one of the hotspots in plant biology research. Predominantly, their interaction is initiated by flavonoids exuding from plant roots, which provokes changes in the expression profile of rhizobial genes. Compatible interactions promote the secretion of Nod factors (NFs) from rhizobia, which are recognised by cognate host receptors. Perception of NFs by host receptors initiates the symbiosis and ultimately leads to the accommodation of rhizobia within root nodules via a series of mutual exchange of signals. This review elucidates the bacterial and plant perspectives during the early stages of symbiosis, explicitly emphasizing the significance of NFs and their cognate NF receptors.
Collapse
Affiliation(s)
- Swathi Ghantasala
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India
| | - Swarup Roy Choudhury
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India.
| |
Collapse
|
6
|
Jiménez-Guerrero I, Medina C, Vinardell JM, Ollero FJ, López-Baena FJ. The Rhizobial Type 3 Secretion System: The Dr. Jekyll and Mr. Hyde in the Rhizobium–Legume Symbiosis. Int J Mol Sci 2022; 23:ijms231911089. [PMID: 36232385 PMCID: PMC9569860 DOI: 10.3390/ijms231911089] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 01/14/2023] Open
Abstract
Rhizobia are soil bacteria that can establish a symbiotic association with legumes. As a result, plant nodules are formed on the roots of the host plants where rhizobia differentiate to bacteroids capable of fixing atmospheric nitrogen into ammonia. This ammonia is transferred to the plant in exchange of a carbon source and an appropriate environment for bacterial survival. This process is subjected to a tight regulation with several checkpoints to allow the progression of the infection or its restriction. The type 3 secretion system (T3SS) is a secretory system that injects proteins, called effectors (T3E), directly into the cytoplasm of the host cell, altering host pathways or suppressing host defense responses. This secretion system is not present in all rhizobia but its role in symbiosis is crucial for some symbiotic associations, showing two possible faces as Dr. Jekyll and Mr. Hyde: it can be completely necessary for the formation of nodules, or it can block nodulation in different legume species/cultivars. In this review, we compile all the information currently available about the effects of different rhizobial effectors on plant symbiotic phenotypes. These phenotypes are diverse and highlight the importance of the T3SS in certain rhizobium–legume symbioses.
Collapse
|
7
|
Bullones-Bolaños A, Bernal-Bayard J, Ramos-Morales F. The NEL Family of Bacterial E3 Ubiquitin Ligases. Int J Mol Sci 2022; 23:7725. [PMID: 35887072 PMCID: PMC9320238 DOI: 10.3390/ijms23147725] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/16/2022] Open
Abstract
Some pathogenic or symbiotic Gram-negative bacteria can manipulate the ubiquitination system of the eukaryotic host cell using a variety of strategies. Members of the genera Salmonella, Shigella, Sinorhizobium, and Ralstonia, among others, express E3 ubiquitin ligases that belong to the NEL family. These bacteria use type III secretion systems to translocate these proteins into host cells, where they will find their targets. In this review, we first introduce type III secretion systems and the ubiquitination process and consider the various ways bacteria use to alter the ubiquitin ligation machinery. We then focus on the members of the NEL family, their expression, translocation, and subcellular localization in the host cell, and we review what is known about the structure of these proteins, their function in virulence or symbiosis, and their specific targets.
Collapse
Affiliation(s)
| | | | - Francisco Ramos-Morales
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain; (A.B.-B.); (J.B.-B.)
| |
Collapse
|
8
|
Alías-Villegas C, Fuentes-Romero F, Cuéllar V, Navarro-Gómez P, Soto MJ, Vinardell JM, Acosta-Jurado S. Surface Motility Regulation of Sinorhizobium fredii HH103 by Plant Flavonoids and the NodD1, TtsI, NolR, and MucR1 Symbiotic Bacterial Regulators. Int J Mol Sci 2022; 23:7698. [PMID: 35887044 PMCID: PMC9316994 DOI: 10.3390/ijms23147698] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Bacteria can spread on surfaces to colonize new environments and access more resources. Rhizobia, a group of α- and β-Proteobacteria, establish nitrogen-fixing symbioses with legumes that rely on a complex signal interchange between the partners. Flavonoids exuded by plant roots and the bacterial transcriptional activator NodD control the transcription of different rhizobial genes (the so-called nod regulon) and, together with additional bacterial regulatory proteins (such as TtsI, MucR or NolR), influence the production of different rhizobial molecular signals. In Sinorhizobium fredii HH103, flavonoids and NodD have a negative effect on exopolysaccharide production and biofilm production. Since biofilm formation and motility are often inversely regulated, we have analysed whether flavonoids may influence the translocation of S. fredii HH103 on surfaces. We show that the presence of nod gene-inducing flavonoids does not affect swimming but promotes a mode of surface translocation, which involves both flagella-dependent and -independent mechanisms. This surface motility is regulated in a flavonoid-NodD1-TtsI-dependent manner, relies on the assembly of the symbiotic type 3 secretion system (T3SS), and involves the participation of additional modulators of the nod regulon (NolR and MucR1). To our knowledge, this is the first evidence indicating the participation of T3SS in surface motility in a plant-interacting bacterium. Interestingly, flavonoids acting as nod-gene inducers also participate in the inverse regulation of surface motility and biofilm formation, which could contribute to a more efficient plant colonisation.
Collapse
Affiliation(s)
- Cynthia Alías-Villegas
- Centro Andaluz de Biología del Desarrollo, CSIC/Junta de Andalucía, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, 41013 Seville, Spain;
| | - Francisco Fuentes-Romero
- Facultad de Biología, Departamento de Microbiología, Universidad de Sevilla, 41012 Sevilla, Spain; (F.F.-R.); (P.N.-G.)
| | - Virginia Cuéllar
- Estación Experimental del Zaidín, CSIC, Departamento de Biotecnología y Protección Ambiental, 18008 Granada, Spain; (V.C.); (M.J.S.)
| | - Pilar Navarro-Gómez
- Facultad de Biología, Departamento de Microbiología, Universidad de Sevilla, 41012 Sevilla, Spain; (F.F.-R.); (P.N.-G.)
| | - María J. Soto
- Estación Experimental del Zaidín, CSIC, Departamento de Biotecnología y Protección Ambiental, 18008 Granada, Spain; (V.C.); (M.J.S.)
| | - José-María Vinardell
- Facultad de Biología, Departamento de Microbiología, Universidad de Sevilla, 41012 Sevilla, Spain; (F.F.-R.); (P.N.-G.)
| | - Sebastián Acosta-Jurado
- Centro Andaluz de Biología del Desarrollo, CSIC/Junta de Andalucía, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, 41013 Seville, Spain;
| |
Collapse
|
9
|
Ferreira EGC, Gomes DF, Delai CV, Barreiros MAB, Grange L, Rodrigues EP, Henning LMM, Barcellos FG, Hungria M. Revealing potential functions of hypothetical proteins induced by genistein in the symbiosis island of Bradyrhizobium japonicum commercial strain SEMIA 5079 (= CPAC 15). BMC Microbiol 2022; 22:122. [PMID: 35513812 PMCID: PMC9069715 DOI: 10.1186/s12866-022-02527-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/11/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Bradyrhizobium japonicum strain SEMIA 5079 (= CPAC 15) is a nitrogen-fixing symbiont of soybean broadly used in commercial inoculants in Brazil. Its genome has about 50% of hypothetical (HP) protein-coding genes, many in the symbiosis island, raising questions about their putative role on the biological nitrogen fixation (BNF) process. This study aimed to infer functional roles to 15 HP genes localized in the symbiosis island of SEMIA 5079, and to analyze their expression in the presence of a nod-gene inducer. RESULTS A workflow of bioinformatics tools/databases was established and allowed the functional annotation of the HP genes. Most were enzymes, including transferases in the biosynthetic pathways of cobalamin, amino acids and secondary metabolites that may help in saprophytic ability and stress tolerance, and hydrolases, that may be important for competitiveness, plant infection, and stress tolerance. Putative roles for other enzymes and transporters identified are discussed. Some HP proteins were specific to the genus Bradyrhizobium, others to specific host legumes, and the analysis of orthologues helped to predict roles in BNF. CONCLUSIONS All 15 HP genes were induced by genistein and high induction was confirmed in five of them, suggesting major roles in the BNF process.
Collapse
Affiliation(s)
- Everton Geraldo Capote Ferreira
- Londrina State University (UEL), Celso Garcia Cid Road (PR 445), km 380, CEP 86057-970 Londrina, PR Brazil
- Embrapa Soja, Rodovia Carlos João Strass, C.P. 231, CEP 86001-970 Londrina, PR Brazil
| | | | - Caroline Vanzzo Delai
- Federal University of Paraná (UFPR), Estrada dos Pioneiros 2153, CEP 85950-000 Palotina, PR Brazil
| | | | - Luciana Grange
- Federal University of Paraná (UFPR), Estrada dos Pioneiros 2153, CEP 85950-000 Palotina, PR Brazil
| | - Elisete Pains Rodrigues
- Londrina State University (UEL), Celso Garcia Cid Road (PR 445), km 380, CEP 86057-970 Londrina, PR Brazil
| | | | - Fernando Gomes Barcellos
- Londrina State University (UEL), Celso Garcia Cid Road (PR 445), km 380, CEP 86057-970 Londrina, PR Brazil
| | - Mariangela Hungria
- Londrina State University (UEL), Celso Garcia Cid Road (PR 445), km 380, CEP 86057-970 Londrina, PR Brazil
- Embrapa Soja, Rodovia Carlos João Strass, C.P. 231, CEP 86001-970 Londrina, PR Brazil
| |
Collapse
|
10
|
Teulet A, Camuel A, Perret X, Giraud E. The Versatile Roles of Type III Secretion Systems in Rhizobia-Legume Symbioses. Annu Rev Microbiol 2022; 76:45-65. [PMID: 35395168 DOI: 10.1146/annurev-micro-041020-032624] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To suppress plant immunity and promote the intracellular infection required for fixing nitrogen for the benefit of their legume hosts, many rhizobia use type III secretion systems (T3SSs) that deliver effector proteins (T3Es) inside host cells. As reported for interactions between pathogens and host plants, the immune system of legume hosts and the cocktail of T3Es secreted by rhizobia determine the symbiotic outcome. If they remain undetected, T3Es may reduce plant immunity and thus promote infection of legumes by rhizobia. If one or more of the secreted T3Es are recognized by the cognate plant receptors, defense responses are triggered and rhizobial infection may abort. However, some rhizobial T3Es can also circumvent the need for nodulation (Nod) factors to trigger nodule formation. Here we review the multifaceted roles played by rhizobial T3Es during symbiotic interactions with legumes. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Albin Teulet
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), IRD, Institut Agro, INRAE, Université de Montpellier, and CIRAD, Montpellier, France;
| | - Alicia Camuel
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), IRD, Institut Agro, INRAE, Université de Montpellier, and CIRAD, Montpellier, France; .,PHIM Plant Health Institute, IRD, Institut Agro, INRAE, Université de Montpellier, and CIRAD, Montpellier, France
| | - Xavier Perret
- Laboratory of Microbial Genetics, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Eric Giraud
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), IRD, Institut Agro, INRAE, Université de Montpellier, and CIRAD, Montpellier, France; .,PHIM Plant Health Institute, IRD, Institut Agro, INRAE, Université de Montpellier, and CIRAD, Montpellier, France
| |
Collapse
|
11
|
Fuentes-Romero F, Navarro-Gómez P, Ayala-García P, Moyano-Bravo I, López-Baena FJ, Pérez-Montaño F, Ollero-Márquez FJ, Acosta-Jurado S, Vinardell JM. The nodD1 Gene of Sinorhizobium fredii HH103 Restores Nodulation Capacity on Bean in a Rhizobium tropici CIAT 899 nodD1/ nodD2 Mutant, but the Secondary Symbiotic Regulators nolR, nodD2 or syrM Prevent HH103 to Nodulate with This Legume. Microorganisms 2022; 10:microorganisms10010139. [PMID: 35056588 PMCID: PMC8780172 DOI: 10.3390/microorganisms10010139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
Rhizobial NodD proteins and appropriate flavonoids induce rhizobial nodulation gene expression. In this study, we show that the nodD1 gene of Sinorhizobium fredii HH103, but not the nodD2 gene, can restore the nodulation capacity of a double nodD1/nodD2 mutant of Rhizobium tropici CIAT 899 in bean plants (Phaseolus vulgaris). S. fredii HH103 only induces pseudonodules in beans. We have also studied whether the mutation of different symbiotic regulatory genes may affect the symbiotic interaction of HH103 with beans: ttsI (the positive regulator of the symbiotic type 3 protein secretion system), and nodD2, nolR and syrM (all of them controlling the level of Nod factor production). Inactivation of either nodD2, nolR or syrM, but not that of ttsI, affected positively the symbiotic behavior of HH103 with beans, leading to the formation of colonized nodules. Acetylene reduction assays showed certain levels of nitrogenase activity that were higher in the case of the nodD2 and nolR mutants. Similar results have been previously obtained by our group with the model legume Lotus japonicus. Hence, the results obtained in the present work confirm that repression of Nod factor production, provided by either NodD2, NolR or SyrM, prevents HH103 to effectively nodulate several putative host plants.
Collapse
|
12
|
Liu D, Luo Y, Zheng X, Wang X, Chou M, Wei G. TRAPPC13 Is a Novel Target of Mesorhizobium amorphae Type III Secretion System Effector NopP. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:511-523. [PMID: 33630651 DOI: 10.1094/mpmi-12-20-0354-fi] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Similar to pathogenic bacteria, rhizobia can inject effector proteins into host cells directly to promote infection via the type III secretion system (T3SS). Nodulation outer protein P (NopP), a specific T3SS effector of rhizobia, plays different roles in the establishment of multiple rhizobia-legume symbiotic systems. Mesorhizobium amorphae CCNWGS0123 (GS0123), which infects Robinia pseudoacacia specifically, secretes several T3SS effectors, including NopP. Here, we demonstrate that NopP is secreted through T3SS-I of GS0123 during the early stages of infection, and its deficiency decreases nodule nitrogenase activity of R. pseudoacacia nodules. A trafficking protein particle complex subunit 13-like protein (TRAPPC13) has been identified as a NopP target protein in R. pseudoacacia roots by screening a yeast two-hybrid library. The physical interaction between NopP and TRAPPC13 is verified by bimolecular fluorescence complementation and coimmunoprecipitation assays. In addition, subcellular localization analysis reveals that both NopP and its target, TRAPPC13, are colocalized on the plasma membrane. Compared with GS0123-inoculated R. pseudoacacia roots, some genes associated with cell wall remodeling and plant innate immunity down-regulated in ΔnopP-inoculated roots at 36 h postinoculation. The results suggest that NopP in M. amorphae CCNWGS0123 acts in multiple processes in R. pseudoacacia during the early stages of infection, and TRAPPC13 could participate in the process as a NopP target.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Dongying Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yantao Luo
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaofeng Zheng
- Shaanxi Hydrogeology Engineering Geology and Environmental Geology Survey Center, Shaanxi Institute of Geological Survey, Xi'an, Shaanxi 710054, China
| | - Xinye Wang
- Moutai Institute, Renhuai, Guizhou 564500, China
| | - Minxia Chou
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
13
|
Phour M, Sehrawat A, Sindhu SS, Glick BR. Interkingdom signaling in plant-rhizomicrobiome interactions for sustainable agriculture. Microbiol Res 2020; 241:126589. [DOI: 10.1016/j.micres.2020.126589] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022]
|
14
|
Jiménez-Guerrero I, Acosta-Jurado S, Medina C, Ollero FJ, Alias-Villegas C, Vinardell JM, Pérez-Montaño F, López-Baena FJ. The Sinorhizobium fredii HH103 type III secretion system effector NopC blocks nodulation with Lotus japonicus Gifu. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6043-6056. [PMID: 32589709 DOI: 10.1093/jxb/eraa297] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/19/2020] [Indexed: 05/06/2023]
Abstract
The broad-host-range bacterium Sinorhizobium fredii HH103 cannot nodulate the model legume Lotus japonicus Gifu. This bacterium possesses a type III secretion system (T3SS), a specialized secretion apparatus used to deliver effector proteins (T3Es) into the host cell cytosol to alter host signaling and/or suppress host defence responses to promote infection. However, some of these T3Es are recognized by specific plant receptors and hence trigger a strong defence response to block infection. In rhizobia, T3Es are involved in nodulation efficiency and host-range determination, and in some cases directly activate host symbiosis signalling in a Nod factor-independent manner. In this work, we show that HH103 RifR T3SS mutants, unable to secrete T3Es, gain nodulation with L. japonicus Gifu through infection threads, suggesting that plant recognition of a T3E could block the infection process. To identify the T3E involved, we performed nodulation assays with a collection of mutants that affect secretion of each T3E identified in HH103 RifR so far. The nopC mutant could infect L. japonicus Gifu by infection thread invasion and switch the infection mechanism in Lotus burttii from intercellular infection to infection thread formation. Lotus japonicus gene expression analysis indicated that the infection-blocking event occurs at early stages of the symbiosis.
Collapse
Affiliation(s)
- Irene Jiménez-Guerrero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | - Carlos Medina
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | - Cynthia Alias-Villegas
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - José María Vinardell
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | | |
Collapse
|
15
|
OnfD, an AraC-Type Transcriptional Regulator Encoded by Rhizobium tropici CIAT 899 and Involved in Nod Factor Synthesis and Symbiosis. Appl Environ Microbiol 2020; 86:AEM.01297-20. [PMID: 32709725 PMCID: PMC7499043 DOI: 10.1128/aem.01297-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
Rhizobium tropici CIAT 899 is a broad-host-range rhizobial strain that establishes symbiotic interactions with legumes and tolerates different environmental stresses such as heat, acidity, or salinity. This rhizobial strain produces a wide variety of symbiotically active nodulation factors (NF) induced not only by the presence of plant-released flavonoids but also under osmotic stress conditions through the LysR-type transcriptional regulators NodD1 (flavonoids) and NodD2 (osmotic stress). However, the activation of NodD2 under high-osmotic-stress conditions remains elusive. Here, we have studied the role of a new AraC-type regulator (named as OnfD) in the symbiotic interaction of R. tropici CIAT 899 with Phaseolus vulgaris and Lotus plants. We determined that OnfD is required under salt stress conditions for the transcriptional activation of the nodulation genes and therefore the synthesis and export of NF, which are required for a successful symbiosis with P. vulgaris Moreover, using bacterial two-hybrid analysis, we demonstrated that the OnfD and NodD2 proteins form homodimers and OnfD/NodD2 form heterodimers, which could be involved in the production of NF in the presence of osmotic stress conditions since both regulators are required for NF synthesis in the presence of salt. A structural model of OnfD is presented and discussed.IMPORTANCE The synthesis and export of rhizobial NF are mediated by a conserved group of LysR-type regulators, the NodD proteins. Here, we have demonstrated that a non-LysR-type regulator, an AraC-type protein, is required for the transcriptional activation of symbiotic genes and for the synthesis of symbiotically active NF under salt stress conditions.
Collapse
|
16
|
Deciphering the Symbiotic Significance of Quorum Sensing Systems of Sinorhizobium fredii HH103. Microorganisms 2020; 8:microorganisms8010068. [PMID: 31906451 PMCID: PMC7022240 DOI: 10.3390/microorganisms8010068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/26/2019] [Accepted: 12/31/2019] [Indexed: 01/21/2023] Open
Abstract
Quorum sensing (QS) is a bacterial cell-to-cell signaling mechanism that collectively regulates and synchronizes behaviors by means of small diffusible chemical molecules. In rhizobia, QS systems usually relies on the synthesis and detection of N-acyl-homoserine lactones (AHLs). In the model bacterium Sinorhizobium meliloti functions regulated by the QS systems TraI-TraR and SinI-SinR(-ExpR) include plasmid transfer, production of surface polysaccharides, motility, growth rate and nodulation. These systems are also present in other bacteria of the Sinorhizobium genus, with variations at the species and strain level. In Sinorhizobium fredii NGR234 phenotypes regulated by QS are plasmid transfer, growth rate, sedimentation, motility, biofilm formation, EPS production and copy number of the symbiotic plasmid (pSym). The analysis of the S. fredii HH103 genomes reveal also the presence of both QS systems. In this manuscript we characterized the QS systems of S. fredii HH103, determining that both TraI and SinI AHL-synthases proteins are responsible of the production of short- and long-chain AHLs, respectively, at very low and not physiological concentrations. Interestingly, the main HH103 luxR-type genes, expR and traR, are split into two ORFs, suggesting that in S. fredii HH103 the corresponding carboxy-terminal proteins, which contain the DNA-binding motives, may control target genes in an AHL-independent manner. The presence of a split traR gene is common in other S. fredii strains.
Collapse
|
17
|
Wang J, Wang J, Ma C, Zhou Z, Yang D, Zheng J, Wang Q, Li H, Zhou H, Sun Z, Liu H, Li J, Chen L, Kang Q, Qi Z, Jiang H, Zhu R, Wu X, Liu C, Chen Q, Xin D. QTL Mapping and Data Mining to Identify Genes Associated With the Sinorhizobium fredii HH103 T3SS Effector NopD in Soybean. FRONTIERS IN PLANT SCIENCE 2020; 11:453. [PMID: 32508850 PMCID: PMC7249737 DOI: 10.3389/fpls.2020.00453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/27/2020] [Indexed: 05/10/2023]
Abstract
In some legume-rhizobium symbioses, host specificity is influenced by rhizobial type III effectors-nodulation outer proteins (Nops). However, the genes encoding host proteins that interact with Nops remain unknown. In this study, we aimed to identify candidate soybean genes associated with NopD, one of the type III effectors of Sinorhizobium fredii HH103. The results showed that the expression pattern of NopD was analyzed in rhizobia induced by genistein. We also found NopD can be induced by TtsI, and NopD as a toxic effector can induce tobacco leaf death. In 10 soybean germplasms, NopD played a positively effect on nodule number (NN) and nodule dry weight (NDW) in nine germplasms, but not in Kenjian28. Significant phenotype of NN and NDW were identified between Dongnong594 and Charleston, Suinong14 and ZYD00006, respectively. To map the quantitative trait locus (QTL) associated with NopD, a recombinant inbred line (RIL) population derived from the cross between Dongnong594 and Charleston, and chromosome segment substitution lines (CSSLs) derived from Suinong14 and ZYD00006 were used. Two overlapping conditional QTL associated with NopD on chromosome 19 were identified. Two candidate genes were identified in the confident region of QTL, we found that NopD could influence the expression of Glyma.19g068600 (FBD/LRR) and expression of Glyma.19g069200 (PP2C) after HH103 infection. Haplotype analysis showed that different types of Glyma.19g069200 haplotypes could cause significant nodule phenotypic differences, but Glyma.19g068600 (FBD/LRR) was not. These results suggest that NopD promotes S. fredii HH103 infection via directly or indirectly regulating Glyma.19g068600 and Glyma.19g069200 expression during the establishment of symbiosis between rhizobia and soybean plants.
Collapse
Affiliation(s)
- Jinhui Wang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Jieqi Wang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Chao Ma
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Ziqi Zhou
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Decheng Yang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Junzan Zheng
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Qi Wang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Huiwen Li
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Hongyang Zhou
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Zhijun Sun
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Hanxi Liu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Jianyi Li
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Lin Chen
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Qinglin Kang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Zhaoming Qi
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Hongwei Jiang
- Jilin Academy of Agricultural Sciences, Changchun, China
| | - Rongsheng Zhu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xiaoxia Wu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Chunyan Liu
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
- *Correspondence: Chunyan Liu,
| | - Qingshan Chen
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
- Qingshan Chen,
| | - Dawei Xin
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
- Dawei Xin,
| |
Collapse
|
18
|
Wang X, Huo H, Luo Y, Liu D, Zhao L, Zong L, Chou M, Chen J, Wei G. Type III secretion systems impact Mesorhizobium amorphae CCNWGS0123 compatibility with Robinia pseudoacacia. TREE PHYSIOLOGY 2019; 39:1533-1550. [PMID: 31274160 DOI: 10.1093/treephys/tpz077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/26/2018] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
Rhizobia and legume plants are famous mutualistic symbiosis partners who provide nitrogen nutrition to the natural environment. Rhizobial type III secretion systems (T3SSs) deliver effectors that manipulate the metabolism of eukaryotic host cells. Mesorhizobium amorphae CCNWGS0123 (GS0123) contains two T3SS gene clusters, T3SS-I and T3SS-II. T3SS-I contains all the basal components for an integrated T3SS, and the expression of T3SS-I genes is up-regulated in the presence of flavonoids. In contrast, T3SS-II lacks the primary extracellular elements of T3SSs, and the expression of T3SS-II genes is down-regulated in the presence of flavonoids. Inoculation tests on Robinia pseudoacacia displayed considerable differences in gene expression patterns and levels among roots inoculated with GS0123 and T3SS-deficient mutant (GS0123ΔrhcN1 (GS0123ΔT1), GS0123ΔrhcN2 (GS0123ΔT2) and GS0123ΔrhcN1ΔrhcN2 (GS0123ΔS)). Compared with the GS0123-inoculated plants, GS0123ΔT1-inoculated roots formed very few infection threads and effective nodules, while GS0123ΔT2-inoculated roots formed a little fewer infection threads and effective nodules with increased numbers of bacteroids enclosed in one symbiosome. Moreover, almost no infection threads or effective nodules were observed in GS0123ΔS-inoculated roots. In addition to evaluations of plant immunity signals, we observed that the coexistence of T3SS-I and T3SS-II promoted infection by suppressing host defense response in the reactive oxygen species defense response pathway. Future studies should focus on identifying rhizobial T3SS effectors and their host target proteins.
Collapse
Affiliation(s)
- Xinye Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Haibo Huo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yantao Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Dongying Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Liang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Le Zong
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Minxia Chou
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Juan Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
19
|
Dang X, Xie Z, Liu W, Sun Y, Liu X, Zhu Y, Staehelin C. The genome of Ensifer alkalisoli YIC4027 provides insights for host specificity and environmental adaptations. BMC Genomics 2019; 20:643. [PMID: 31405380 PMCID: PMC6689892 DOI: 10.1186/s12864-019-6004-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022] Open
Abstract
Background Ensifer alkalisoli YIC4027, a recently characterized nitrogen-fixing bacterium of the genus Ensifer, has been isolated from root nodules of the host plant Sesbania cannabina. This plant is widely used as green manure and for soil remediation. E. alkalisoli YIC4027 can grow in saline-alkaline soils and is a narrow-host-range strain that establishes a symbiotic relationship with S. cannabina. The complete genome of this strain was sequenced to better understand the genetic basis of host specificity and adaptation to saline-alkaline soils. Results E. alkalisoli YIC4027 was found to possess a 6.1-Mb genome consisting of three circular replicons: one chromosome (3.7 Mb), a chromid (1.9 Mb) and a plasmid (0.46 Mb). Genome comparisons showed that strain YIC4027 is phylogenetically related to broad-host-range Ensifer fredii strains. Synteny analysis revealed a strong collinearity between chromosomes of E. alkalisoli YIC4027 and those of the E. fredii NGR234 (3.9 Mb), HH103 (4.3 Mb) and USDA257 (6.48 Mb) strains. Notable differences were found for genes required for biosynthesis of nodulation factors and protein secretion systems, suggesting a role of these genes in host-specific nodulation. In addition, the genome analysis led to the identification of YIC4027 genes that are presumably related to adaptation to saline-alkaline soils, rhizosphere colonization and nodulation competitiveness. Analysis of chemotaxis cluster genes and nodulation tests with constructed che gene mutants indicated a role of chemotaxis and flagella-mediated motility in the symbiotic association between YIC4027 and S. cannabina. Conclusions This study provides a basis for a better understanding of host specific nodulation and of adaptation to a saline-alkaline rhizosphere. This information offers the perspective to prepare optimal E. alkalisoli inocula for agriculture use and soil remediation. Electronic supplementary material The online version of this article (10.1186/s12864-019-6004-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoxiao Dang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, People's Republic of China
| | - Zhihong Xie
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China. .,Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, People's Republic of China.
| | - Wei Liu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, People's Republic of China
| | - Yu Sun
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, People's Republic of China
| | - Xiaolin Liu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mag-Science, Chinese Academy of Sciences, Qingdao, People's Republic of China
| | - Yongqiang Zhu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China
| | - Christian Staehelin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
20
|
Wippel K, Long SR. Symbiotic Performance of Sinorhizobium meliloti Lacking ppGpp Depends on the Medicago Host Species. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:717-728. [PMID: 30576265 DOI: 10.1094/mpmi-11-18-0306-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Host specificity in the root-nodule symbiosis between legumes and rhizobia is crucial for the establishment of a successful interaction and ammonia provision to the plant. The specificity is mediated by plant-bacterial signal exchange during early stages of interaction. We observed that a Sinorhizobium meliloti mutant ∆relA, which is deficient in initiating the bacterial stringent response, fails to nodulate Medicago sativa (alfalfa) but successfully infects Medicago truncatula. We used biochemical, histological, transcriptomic, and imaging approaches to compare the behavior of the S. meliloti ∆relA mutant and wild type (WT) on the two plant hosts. ∆relA performed almost WT-like on M. truncatula, except for reduced nitrogen-fixation capacity and a disorganized positioning of bacteroids within nodule cells. In contrast, ∆relA showed impaired root colonization on alfalfa and failed to infect nodule primordia. Global transcriptome analyses of ∆relA cells treated with the alfalfa flavonoid luteolin and of mature nodules induced by the mutant on M. truncatula revealed normal nod gene expression but overexpression of exopolysaccharide biosynthesis genes and a slight suppression of plant defense-like reactions. Many RelA-dependent transcripts overlap with the hypo-osmolarity-related FeuP regulon or are characteristic of stress responses. Based on our findings, we suggest that RelA is not essential until the late stages of symbiosis with M. truncatula, in which it may be involved in processes that optimize nitrogen fixation.
Collapse
Affiliation(s)
- Kathrin Wippel
- Department of Biology, Stanford University, Stanford, CA 94305, U.S.A
| | - Sharon R Long
- Department of Biology, Stanford University, Stanford, CA 94305, U.S.A
| |
Collapse
|
21
|
Acosta-Jurado S, Rodríguez-Navarro DN, Kawaharada Y, Rodríguez-Carvajal MA, Gil-Serrano A, Soria-Díaz ME, Pérez-Montaño F, Fernández-Perea J, Niu Y, Alias-Villegas C, Jiménez-Guerrero I, Navarro-Gómez P, López-Baena FJ, Kelly S, Sandal N, Stougaard J, Ruiz-Sainz JE, Vinardell JM. Sinorhizobium fredii HH103 nolR and nodD2 mutants gain capacity for infection thread invasion of Lotus japonicus Gifu and Lotus burttii. Environ Microbiol 2019; 21:1718-1739. [PMID: 30839140 DOI: 10.1111/1462-2920.14584] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 02/01/2023]
Abstract
Sinorhizobium fredii HH103 RifR , a broad-host-range rhizobial strain, forms ineffective nodules with Lotus japonicus but induces nitrogen-fixing nodules in Lotus burttii roots that are infected by intercellular entry. Here we show that HH103 RifR nolR or nodD2 mutants gain the ability to induce infection thread formation and to form nitrogen-fixing nodules in L. japonicus Gifu. Microscopy studies showed that the mode of infection of L. burttii roots by the nodD2 and nolR mutants switched from intercellular entry to infection threads (ITs). In the presence of the isoflavone genistein, both mutants overproduced Nod-factors. Transcriptomic analyses showed that, in the presence of Lotus japonicus Gifu root exudates, genes related to Nod factors production were overexpressed in both mutants in comparison to HH103 RifR . Complementation of the nodD2 and nolR mutants provoked a decrease in Nod-factor production, the incapacity to form nitrogen-fixing nodules with L. japonicus Gifu and restored the intercellular way of infection in L. burttii. Thus, the capacity of S. fredii HH103 RifR nodD2 and nolR mutants to infect L. burttii and L. japonicus Gifu by ITs and fix nitrogen L. japonicus Gifu might be correlated with Nod-factor overproduction, although other bacterial symbiotic signals could also be involved.
Collapse
Affiliation(s)
- Sebastián Acosta-Jurado
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P., 41012, Sevilla, Spain
| | | | - Yasuyuki Kawaharada
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus, CDK-8000, Denmark.,Department of Plant BioSciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
| | - Miguel A Rodríguez-Carvajal
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Calle Profesor García González 1, C. P, 41012, Sevilla, Spain
| | - Antonio Gil-Serrano
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Calle Profesor García González 1, C. P, 41012, Sevilla, Spain
| | - María E Soria-Díaz
- Servicio de Espectrometría de Masas, Centro de Investigación, Tecnología e Innovación (CITIUS), Universidad de Sevilla, Sevilla, Spain
| | - Francisco Pérez-Montaño
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P., 41012, Sevilla, Spain
| | - Juan Fernández-Perea
- IFAPA, Centro Las Torres-Tomejil, Apartado Oficial 41200, Alcalá del Río, Sevilla, Spain
| | - Yanbo Niu
- Department of Resources and Environmental Microbiology, Institute of Microbiology, Heilongjiang Academy of Sciences, No. 68, Zhaolin Street, Daoli District, Harbin, Heilongjiang Province, China
| | - Cynthia Alias-Villegas
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P., 41012, Sevilla, Spain
| | - Irene Jiménez-Guerrero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P., 41012, Sevilla, Spain
| | - Pilar Navarro-Gómez
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P., 41012, Sevilla, Spain
| | - Francisco Javier López-Baena
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P., 41012, Sevilla, Spain
| | - Simon Kelly
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus, CDK-8000, Denmark
| | - Niels Sandal
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus, CDK-8000, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling, Aarhus University, Gustav Wieds Vej 10, Aarhus, CDK-8000, Denmark
| | - José E Ruiz-Sainz
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P., 41012, Sevilla, Spain
| | - José-María Vinardell
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, C.P., 41012, Sevilla, Spain
| |
Collapse
|
22
|
Nguyen HP, Ratu STN, Yasuda M, Göttfert M, Okazaki S. InnB, a Novel Type III Effector of Bradyrhizobium elkanii USDA61, Controls Symbiosis With Vigna Species. Front Microbiol 2018; 9:3155. [PMID: 30619219 PMCID: PMC6305347 DOI: 10.3389/fmicb.2018.03155] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022] Open
Abstract
Bradyrhizobium elkanii USDA61 is incompatible with mung bean (Vigna radiata cv. KPS1) and soybean (Glycine max cv. BARC2) and unable to nodulate either plant. This incompatibility is due to the presence of a functional type III secretion system (T3SS) that translocates effector protein into host cells. We previously identified five genes in B. elkanii that are responsible for its incompatibility with KPS1 plants. Among them, a novel gene designated as innB exhibited some characteristics associated with the T3SS and was found to be responsible for the restriction of nodulation on KPS1. In the present study, we further characterized innB by analysis of gene expression, protein secretion, and symbiotic phenotypes. The innB gene was found to encode a hypothetical protein that is highly conserved among T3SS-harboring rhizobia. Similar to other rhizobial T3SS-associated genes, the expression of innB was dependent on plant flavonoids and a transcriptional regulator TtsI. The InnB protein was secreted via the T3SS and was not essential for secretion of other nodulation outer proteins. In addition, T3SS-dependent translocation of InnB into nodule cells was confirmed by an adenylate cyclase assay. According to inoculation tests using several Vigna species, InnB promoted nodulation of at least one V. mungo cultivar. These results indicate that innB encodes a novel type III effector controlling symbiosis with Vigna species.
Collapse
Affiliation(s)
- Hien P Nguyen
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Safirah T N Ratu
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Michiko Yasuda
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Michael Göttfert
- Institute of Genetics, Technische Universität Dresden, Dresden, Germany
| | - Shin Okazaki
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
23
|
Wang D, Couderc F, Tian CF, Gu W, Liu LX, Poinsot V. Conserved Composition of Nod Factors and Exopolysaccharides Produced by Different Phylogenetic Lineage Sinorhizobium Strains Nodulating Soybean. Front Microbiol 2018; 9:2852. [PMID: 30534119 PMCID: PMC6275314 DOI: 10.3389/fmicb.2018.02852] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/06/2018] [Indexed: 12/31/2022] Open
Abstract
The structural variation of symbiotic signals released by rhizobia determines the specificity of their interaction with legume plants. Previous studies showed that Sinorhizobium strains from different phylogenetic lineages had different symbiotic performance on certain cultivated soybeans. Whether they released similar or different symbiotic signals remained unclear. In this study, we compared their nod and exo gene clusters and made a detailed structural analysis of Nod factors and EPS by ESI-MS/MS and two dimensions NMR. Even if there are some differences among nod or exo gene clusters; they produced much conserved Nod factor and EPS compositions. The Nod factors consist of a cocktail of β-(1, 4)-linked tri-, tetra-, and pentamers of N-acetyl-D-glucosamine (GlcNAc). The C2 position on the non-reducing terminal end is modified by a lipid chain that contains 16 or 18 atoms of carbon–with or without unsaturations-, and the C6 position on the reducing residue is decorated by a fucose or a 2-O-methylfucose. Their EPS are composed of glucose, galactose, glucuronic acid, pyruvic acid in the ratios 5:1:2:1 or 6:1:2:1. These findings indicate that soybean cultivar compatibility of Sinorhizobium strains does not result from Nod factor or EPS structure variations. The structure comparison of the soybean microbionts with other Sinorhizobium strains showed that Nod factor structures of soybean microbionts are much conserved, although there are no specific genes shared by the soybean microsymbionts. EPS produced by Sinorhizobium strains are different from those of Bradyrhizobium. All above is consistent with the previous deduction that Nod factor structures are related to host range, while those of EPS are connected with phylogeny.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, China.,Laboratoire des IMRCP, UMR5623 Université Paul Sabatier, CNRS, Toulouse, France.,State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - François Couderc
- Laboratoire des IMRCP, UMR5623 Université Paul Sabatier, CNRS, Toulouse, France
| | - Chang Fu Tian
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenjie Gu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou, China
| | - Li Xue Liu
- State Key Laboratory of Agrobiotechnology, and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Verena Poinsot
- Laboratoire des IMRCP, UMR5623 Université Paul Sabatier, CNRS, Toulouse, France
| |
Collapse
|
24
|
Durán D, Imperial J, Palacios J, Ruiz-Argüeso T, Göttfert M, Zehner S, Rey L. Characterization of a novel MIIA domain-containing protein (MdcE) in Bradyrhizobium spp. FEMS Microbiol Lett 2018; 365:4769627. [PMID: 29281013 DOI: 10.1093/femsle/fnx276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/20/2017] [Indexed: 11/14/2022] Open
Abstract
Several genes coding for proteins with metal ion-inducible autocleavage (MIIA) domains were identified in type III secretion system tts gene clusters from draft genomes of recently isolated Bradyrhizobium spp. MIIA domains have been first described in the effectors NopE1 and NopE2 of Bradyrhizobium diazoefficiens USDA 110. All identified genes are preceded by tts box promoter motifs. The identified proteins contain one or two MIIA domains. A phylogenetic analysis of 35 MIIA domain sequences from 16 Bradyrhizobium strains revealed four groups. The protein from Bradyrhizobium sp. LmjC strain contains a single MIIA domain and was designated MdcE (MdcELmjC). It was expressed as a fusion to maltose-binding protein (MalE) in Escherichia coli and subsequently purified by affinity chromatography. Recombinant MalE-MdcELmjC-Strep protein exhibited autocleavage in the presence of Ca2+, Cu2+, Cd2+ and Mn2+, but not in the presence of Mg2+, Ni2+ or Co2+. Site-directed mutagenesis at the predicted cleavage site abolished autocleavage activity of MdcELmjC. An LmjC mdcE- mutant was impaired in the ability to nodulate Lupinus angustifolius and Macroptilium atropurpureum.
Collapse
Affiliation(s)
- David Durán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain and Departamento de Biotecnología y Biología Vegetal, ETSI Agrómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain and Departamento de Biotecnología y Biología Vegetal, ETSI Agrómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid.,Instituto de Ciencias Agrarias (ICA), Consejo Superior Investigaciones Científicas, Serrano 115, bis, 28006 Madrid, Spain
| | - José Palacios
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain and Departamento de Biotecnología y Biología Vegetal, ETSI Agrómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid
| | - Tomás Ruiz-Argüeso
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain and Departamento de Biotecnología y Biología Vegetal, ETSI Agrómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid
| | - Michael Göttfert
- Institute of Genetics, Technische Universität Dresden, Helmholtzstrasse 10, 01062 Dresden, Germany
| | - Susanne Zehner
- Institute of Genetics, Technische Universität Dresden, Helmholtzstrasse 10, 01062 Dresden, Germany
| | - Luis Rey
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Spain and Departamento de Biotecnología y Biología Vegetal, ETSI Agrómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid
| |
Collapse
|
25
|
Transcriptomic Studies of the Effect of nod Gene-Inducing Molecules in Rhizobia: Different Weapons, One Purpose. Genes (Basel) 2017; 9:genes9010001. [PMID: 29267254 PMCID: PMC5793154 DOI: 10.3390/genes9010001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/07/2017] [Accepted: 12/15/2017] [Indexed: 12/16/2022] Open
Abstract
Simultaneous quantification of transcripts of the whole bacterial genome allows the analysis of the global transcriptional response under changing conditions. RNA-seq and microarrays are the most used techniques to measure these transcriptomic changes, and both complement each other in transcriptome profiling. In this review, we exhaustively compiled the symbiosis-related transcriptomic reports (microarrays and RNA sequencing) carried out hitherto in rhizobia. This review is specially focused on transcriptomic changes that takes place when five rhizobial species, Bradyrhizobium japonicum (=diazoefficiens) USDA 110, Rhizobium leguminosarum biovar viciae 3841, Rhizobium tropici CIAT 899, Sinorhizobium (=Ensifer) meliloti 1021 and S. fredii HH103, recognize inducing flavonoids, plant-exuded phenolic compounds that activate the biosynthesis and export of Nod factors (NF) in all analysed rhizobia. Interestingly, our global transcriptomic comparison also indicates that each rhizobial species possesses its own arsenal of molecular weapons accompanying the set of NF in order to establish a successful interaction with host legumes.
Collapse
|
26
|
Liu Y, Jiang X, Guan D, Zhou W, Ma M, Zhao B, Cao F, Li L, Li J. Transcriptional analysis of genes involved in competitive nodulation in Bradyrhizobium diazoefficiens at the presence of soybean root exudates. Sci Rep 2017; 7:10946. [PMID: 28887528 PMCID: PMC5591287 DOI: 10.1038/s41598-017-11372-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/23/2017] [Indexed: 01/22/2023] Open
Abstract
Nodulation competition is a key factor that limits symbiotic nitrogen fixation between rhizobia and their host legumes. Soybean root exudates (SREs) are thought to act as signals that influence Bradyrhizobium ability to colonize roots and to survive in the rhizosphere, and thus they act as a key determinant of nodulation competitiveness. In order to find the competitiveness-related genes in B. diazoefficiens, the transcriptome of two SREs treated B. diazoefficiens with completely different nodulation abilities (B. diazoefficiens 4534 and B. diazoefficiens 4222) were sequenced and compared. In SREs treated strain 4534 (SREs-4534), 253 unigenes were up-regulated and 204 unigenes were down-regulated. In SREs treated strain 4534 (SREs-4222), the numbers of up- and down-regulated unigenes were 108 and 185, respectively. There were considerable differences between the SREs-4534 and SREs-4222 gene expression profiles. Some differentially expressed genes are associated with a two-component system (i.g., nodW, phyR-σEcfG), bacterial chemotaxis (i.g., cheA, unigene04832), ABC transport proteins (i.g., unigene02212), IAA (indole-3-acetic acid) metabolism (i.g., nthA, nthB), and metabolic fitness (i.g., put.), which may explain the higher nodulation competitiveness of B. diazoefficiens in the rhizosphere. Our results provide a comprehensive transcriptomic resource for SREs treated B. diazoefficiens and will facilitate further studies on competitiveness-related genes in B. diazoefficiens.
Collapse
Affiliation(s)
- Yao Liu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Jiang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Laboratory of Quality&Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, China.
| | - Dawei Guan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Zhou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mingchao Ma
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Laboratory of Quality&Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, China
| | - Baisuo Zhao
- Laboratory of Quality&Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, China
| | - Fengming Cao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Laboratory of Quality&Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, China
| | - Li Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jun Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Laboratory of Quality&Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, China.
| |
Collapse
|
27
|
Jiménez-Guerrero I, Pérez-Montaño F, Medina C, Ollero FJ, López-Baena FJ. The Sinorhizobium (Ensifer) fredii HH103 Nodulation Outer Protein NopI Is a Determinant for Efficient Nodulation of Soybean and Cowpea Plants. Appl Environ Microbiol 2017; 83:e02770-16. [PMID: 27986730 PMCID: PMC5311403 DOI: 10.1128/aem.02770-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022] Open
Abstract
The type III secretion system (T3SS) is a specialized secretion apparatus that is commonly used by many plant and animal pathogenic bacteria to deliver proteins, termed effectors, to the interior of the host cells. These effectors suppress host defenses and interfere with signal transduction pathways to promote infection. Some rhizobial strains possess a functional T3SS, which is involved in the suppression of host defense responses, host range determination, and symbiotic efficiency. The analysis of the genome of the broad-host-range rhizobial strain Sinorhizobium fredii HH103 identified eight genes that code for putative T3SS effectors. Three of these effectors, NopL, NopP, and NopI, are Rhizobium specific. In this work, we demonstrate that NopI, whose amino acid sequence shows a certain similarity with NopP, is secreted through the S. fredii HH103 T3SS in response to flavonoids. We also determined that NopL can be considered an effector since it is directly secreted to the interior of the host cell as demonstrated by adenylate cyclase assays. Finally, the symbiotic phenotype of single, double, and triple nopI, nopL, and nopP mutants in soybean and cowpea was assayed, showing that NopI plays an important role in determining the number of nodules formed in both legumes and that the absence of both NopL and NopP is highly detrimental for symbiosis.IMPORTANCE The paper is focused on three Rhizobium-specific T3SS effectors of Sinorhizobium fredii HH103, NopL, NopP, and NopI. We demonstrate that S. fredii HH103 is able to secrete through the T3SS in response to flavonoids the nodulation outer protein NopI. Additionally, we determined that NopL can be considered an effector since it is secreted to the interior of the host cell as demonstrated by adenylate cyclase assays. Finally, nodulation assays of soybean and cowpea indicated that NopI is important for the determination of the number of nodules formed and that the absence of both NopL and NopP negatively affected nodulation.
Collapse
Affiliation(s)
- Irene Jiménez-Guerrero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | | | - Carlos Medina
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Seville, Spain
| | | | | |
Collapse
|
28
|
Pérez-Montaño F, Jiménez-Guerrero I, Acosta-Jurado S, Navarro-Gómez P, Ollero FJ, Ruiz-Sainz JE, López-Baena FJ, Vinardell JM. A transcriptomic analysis of the effect of genistein on Sinorhizobium fredii HH103 reveals novel rhizobial genes putatively involved in symbiosis. Sci Rep 2016; 6:31592. [PMID: 27539649 PMCID: PMC4990936 DOI: 10.1038/srep31592] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 07/19/2016] [Indexed: 01/02/2023] Open
Abstract
Sinorhizobium fredii HH103 is a rhizobial soybean symbiont that exhibits an extremely broad host-range. Flavonoids exuded by legume roots induce the expression of rhizobial symbiotic genes and activate the bacterial protein NodD, which binds to regulatory DNA sequences called nod boxes (NB). NB drive the expression of genes involved in the production of molecular signals (Nod factors) as well as the transcription of ttsI, whose encoded product binds to tts boxes (TB), inducing the secretion of proteins (effectors) through the type 3 secretion system (T3SS). In this work, a S. fredii HH103 global gene expression analysis in the presence of the flavonoid genistein was carried out, revealing a complex regulatory network. Three groups of genes differentially expressed were identified: i) genes controlled by NB, ii) genes regulated by TB, and iii) genes not preceded by a NB or a TB. Interestingly, we have found differentially expressed genes not previously studied in rhizobia, being some of them not related to Nod factors or the T3SS. Future characterization of these putative symbiotic-related genes could shed light on the understanding of the complex molecular dialogue established between rhizobia and legumes.
Collapse
Affiliation(s)
- F Pérez-Montaño
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
| | - I Jiménez-Guerrero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
| | - S Acosta-Jurado
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
| | - P Navarro-Gómez
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
| | - F J Ollero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
| | - J E Ruiz-Sainz
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
| | - F J López-Baena
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
| | - J M Vinardell
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
| |
Collapse
|
29
|
Acosta-Jurado S, Navarro-Gómez P, Murdoch PDS, Crespo-Rivas JC, Jie S, Cuesta-Berrio L, Ruiz-Sainz JE, Rodríguez-Carvajal MÁ, Vinardell JM. Exopolysaccharide Production by Sinorhizobium fredii HH103 Is Repressed by Genistein in a NodD1-Dependent Manner. PLoS One 2016; 11:e0160499. [PMID: 27486751 PMCID: PMC4972438 DOI: 10.1371/journal.pone.0160499] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/20/2016] [Indexed: 11/21/2022] Open
Abstract
In the rhizobia-legume symbiotic interaction, bacterial surface polysaccharides, such as exopolysaccharide (EPS), lipopolysaccharide (LPS), K-antigen polysaccharide (KPS) or cyclic glucans (CG), appear to play crucial roles either acting as signals required for the progression of the interaction and/or preventing host defence mechanisms. The symbiotic significance of each of these polysaccharides varies depending on the specific rhizobia-legume couple. In this work we show that the production of exopolysaccharide by Sinorhizobium fredii HH103, but not by other S. fredii strains such as USDA257 or NGR234, is repressed by nod gene inducing flavonoids such as genistein and that this repression is dependent on the presence of a functional NodD1 protein. In agreement with the importance of EPS for bacterial biofilms, this reduced EPS production upon treatment with flavonoids correlates with decreased biofilm formation ability. By using quantitative RT-PCR analysis we show that expression of the exoY2 and exoK genes is repressed in late stationary cultures of S. fredii HH103 upon treatment with genistein. Results presented in this work show that in S. fredii HH103 EPS production is regulated just in the opposite way than other bacterial signals such as Nod factors and type 3 secreted effectors: it is repressed by flavonoids and NodD1 and enhanced by the nod repressor NolR. These results are in agreement with our previous observations showing that lack of EPS production by S. fredii HH103 is not only non-detrimental but even beneficial for symbiosis with soybean.
Collapse
Affiliation(s)
| | - Pilar Navarro-Gómez
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Piedad del Socorro Murdoch
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | - Shi Jie
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Lidia Cuesta-Berrio
- Departamento of Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | | | | | - José-María Vinardell
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
- * E-mail:
| |
Collapse
|
30
|
López-Baena FJ, Ruiz-Sainz JE, Rodríguez-Carvajal MA, Vinardell JM. Bacterial Molecular Signals in the Sinorhizobium fredii-Soybean Symbiosis. Int J Mol Sci 2016; 17:E755. [PMID: 27213334 PMCID: PMC4881576 DOI: 10.3390/ijms17050755] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 12/20/2022] Open
Abstract
Sinorhizobium (Ensifer) fredii (S. fredii) is a rhizobial species exhibiting a remarkably broad nodulation host-range. Thus, S. fredii is able to effectively nodulate dozens of different legumes, including plants forming determinate nodules, such as the important crops soybean and cowpea, and plants forming indeterminate nodules, such as Glycyrrhiza uralensis and pigeon-pea. This capacity of adaptation to different symbioses makes the study of the molecular signals produced by S. fredii strains of increasing interest since it allows the analysis of their symbiotic role in different types of nodule. In this review, we analyze in depth different S. fredii molecules that act as signals in symbiosis, including nodulation factors, different surface polysaccharides (exopolysaccharides, lipopolysaccharides, cyclic glucans, and K-antigen capsular polysaccharides), and effectors delivered to the interior of the host cells through a symbiotic type 3 secretion system.
Collapse
Affiliation(s)
- Francisco J López-Baena
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida de Reina Mercedes, 6, 41012 Sevilla, Spain.
| | - José E Ruiz-Sainz
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida de Reina Mercedes, 6, 41012 Sevilla, Spain.
| | - Miguel A Rodríguez-Carvajal
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Profesor García González, 1, 41012 Sevilla, Spain.
| | - José M Vinardell
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida de Reina Mercedes, 6, 41012 Sevilla, Spain.
| |
Collapse
|
31
|
del Cerro P, Rolla-Santos AAP, Valderrama-Fernández R, Gil-Serrano A, Bellogín RA, Gomes DF, Pérez-Montaño F, Megías M, Hungría M, Ollero FJ. NrcR, a New Transcriptional Regulator of Rhizobium tropici CIAT 899 Involved in the Legume Root-Nodule Symbiosis. PLoS One 2016; 11:e0154029. [PMID: 27096734 PMCID: PMC4838322 DOI: 10.1371/journal.pone.0154029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/07/2016] [Indexed: 11/19/2022] Open
Abstract
The establishment of nitrogen-fixing rhizobium-legume symbioses requires a highly complex cascade of events. In this molecular dialogue the bacterial NodD transcriptional regulators in conjunction with plant inducers, mostly flavonoids, are responsible for the biosynthesis and secretion of Nod factors which are key molecules for successful nodulation. Other transcriptional regulators related to the symbiotic process have been identified in rhizobial genomes, including negative regulators such as NolR. Rhizobium tropici CIAT 899 is an important symbiont of common bean (Phaseolus vulgaris L.), and its genome encompasses intriguing features such as five copies of nodD genes, as well as other possible transcriptional regulators including the NolR protein. Here we describe and characterize a new regulatory gene located in the non-symbiotic plasmid pRtrCIAT899c, that shows homology (46% identity) with the nolR gene located in the chromosome of CIAT 899. The mutation of this gene, named nrcR (nolR-like plasmid c Regulator), enhanced motility and exopolysaccharide production in comparison to the wild-type strain. Interestingly, the number and decoration of Nod Factors produced by this mutant were higher than those detected in the wild-type strain, especially under salinity stress. The nrcR mutant showed delayed nodulation and reduced competitiveness with P. vulgaris, and reduction in nodule number and shoot dry weight in both P. vulgaris and Leucaena leucocephala. Moreover, the mutant exhibited reduced capacity to induce the nodC gene in comparison to the wild-type CIAT 899. The finding of a new nod-gene regulator located in a non-symbiotic plasmid may reveal the existence of even more complex mechanisms of regulation of nodulation genes in R. tropici CIAT 899 that may be applicable to other rhizobial species.
Collapse
Affiliation(s)
- Pablo del Cerro
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
| | | | | | - Antonio Gil-Serrano
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla. Sevilla, Spain
| | - Ramón A. Bellogín
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
| | | | | | - Manuel Megías
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
| | | | - Francisco Javier Ollero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Sevilla, Spain
- * E-mail:
| |
Collapse
|
32
|
Abstract
Rhizobia are nitrogen-fixing bacteria that establish a nodule symbiosis with legumes. Nodule formation depends on signals and surface determinants produced by both symbiotic partners. Among them, rhizobial Nops (nodulation outer proteins) play a crucial symbiotic role in many strain-host combinations. Nops are defined as proteins secreted via a rhizobial T3SS (type III secretion system). Functional T3SSs have been characterized in many rhizobial strains. Nops have been identified using various genetic, biochemical, proteomic, genomic and experimental approaches. Certain Nops represent extracellular components of the T3SS, which are visible in electron micrographs as bacterial surface appendages called T3 (type III) pili. Other Nops are T3 effector proteins that can be translocated into plant cells. Rhizobial T3 effectors manipulate cellular processes in host cells to suppress plant defence responses against rhizobia and to promote symbiosis-related processes. Accordingly, mutant strains deficient in synthesis or secretion of T3 effectors show reduced symbiotic properties on certain host plants. On the other hand, direct or indirect recognition of T3 effectors by plant cells expressing specific R (resistance) proteins can result in effector triggered defence responses that negatively affect rhizobial infection. Hence Nops are double-edged swords that may promote establishment of symbiosis with one legume (symbiotic factors) and impair symbiotic processes when bacteria are inoculated on another legume species (asymbiotic factors). In the present review, we provide an overview of our current understanding of Nops. We summarize their symbiotic effects, their biochemical properties and their possible modes of action. Finally, we discuss future perspectives in the field of T3 effector research.
Collapse
|
33
|
Jiménez-Guerrero I, Pérez-Montaño F, Medina C, Ollero FJ, López-Baena FJ. NopC Is a Rhizobium-Specific Type 3 Secretion System Effector Secreted by Sinorhizobium (Ensifer) fredii HH103. PLoS One 2015; 10:e0142866. [PMID: 26569401 PMCID: PMC4646503 DOI: 10.1371/journal.pone.0142866] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/27/2015] [Indexed: 12/19/2022] Open
Abstract
Sinorhizobium (Ensifer) fredii HH103 is a broad host-range nitrogen-fixing bacterium able to nodulate many legumes, including soybean. In several rhizobia, root nodulation is influenced by proteins secreted through the type 3 secretion system (T3SS). This specialized secretion apparatus is a common virulence mechanism of many plant and animal pathogenic bacteria that delivers proteins, called effectors, directly into the eukaryotic host cells where they interfere with signal transduction pathways and promote infection by suppressing host defenses. In rhizobia, secreted proteins, called nodulation outer proteins (Nops), are involved in host-range determination and symbiotic efficiency. S. fredii HH103 secretes at least eight Nops through the T3SS. Interestingly, there are Rhizobium-specific Nops, such as NopC, which do not have homologues in pathogenic bacteria. In this work we studied the S. fredii HH103 nopC gene and confirmed that its expression was regulated in a flavonoid-, NodD1- and TtsI-dependent manner. Besides, in vivo bioluminescent studies indicated that the S. fredii HH103 T3SS was expressed in young soybean nodules and adenylate cyclase assays confirmed that NopC was delivered directly into soybean root cells by means of the T3SS machinery. Finally, nodulation assays showed that NopC exerted a positive effect on symbiosis with Glycine max cv. Williams 82 and Vigna unguiculata. All these results indicate that NopC can be considered a Rhizobium-specific effector secreted by S. fredii HH103.
Collapse
Affiliation(s)
- Irene Jiménez-Guerrero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | - Carlos Medina
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Sevilla, Spain
| | | | | |
Collapse
|
34
|
Vinardell JM, Acosta-Jurado S, Zehner S, Göttfert M, Becker A, Baena I, Blom J, Crespo-Rivas JC, Goesmann A, Jaenicke S, Krol E, McIntosh M, Margaret I, Pérez-Montaño F, Schneiker-Bekel S, Serranía J, Szczepanowski R, Buendía AM, Lloret J, Bonilla I, Pühler A, Ruiz-Sainz JE, Weidner S. The Sinorhizobium fredii HH103 Genome: A Comparative Analysis With S. fredii Strains Differing in Their Symbiotic Behavior With Soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:811-24. [PMID: 25675256 DOI: 10.1094/mpmi-12-14-0397-fi] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Sinorhizobium fredii HH103 is a fast-growing rhizobial strain infecting a broad range of legumes including both American and Asiatic soybeans. In this work, we present the sequencing and annotation of the HH103 genome (7.25 Mb), consisting of one chromosome and six plasmids and representing the structurally most complex sinorhizobial genome sequenced so far. Comparative genomic analyses of S. fredii HH103 with strains USDA257 and NGR234 showed that the core genome of these three strains contains 4,212 genes (61.7% of the HH103 genes). Synteny plot analysis revealed that the much larger chromosome of USDA257 (6.48 Mb) is colinear to the HH103 (4.3 Mb) and NGR324 chromosomes (3.9 Mb). An additional region of the USDA257 chromosome of about 2 Mb displays similarity to plasmid pSfHH103e. Remarkable differences exist between HH103 and NGR234 concerning nod genes, flavonoid effect on surface polysaccharide production, and quorum-sensing systems. Furthermore a number of protein secretion systems have been found. Two genes coding for putative type III-secreted effectors not previously described in S. fredii, nopI and gunA, have been located on the HH103 genome. These differences could be important to understand the different symbiotic behavior of S. fredii strains HH103, USDA257, and NGR234 with soybean.
Collapse
Affiliation(s)
- José-María Vinardell
- 1 Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Avda. Reina Mercedes 6, C.P. 41012 Sevilla, Spain
| | - Sebastián Acosta-Jurado
- 1 Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Avda. Reina Mercedes 6, C.P. 41012 Sevilla, Spain
| | - Susanne Zehner
- 2 Technische Universität Dresden, Institut für Genetik, Helmholtzstrasse 10, 01062 Dresden, Germany
| | - Michael Göttfert
- 2 Technische Universität Dresden, Institut für Genetik, Helmholtzstrasse 10, 01062 Dresden, Germany
| | - Anke Becker
- 3 LOEWE Center for Synthetic Microbiology (SYNMIKRO) and Faculty of Biology, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, 35043 Marburg, Germany
| | - Irene Baena
- 4 Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049-Madrid, Spain
| | - Jochem Blom
- 5 Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitaetsstr. 27, 33615 Bielefeld, Germany
| | - Juan Carlos Crespo-Rivas
- 1 Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Avda. Reina Mercedes 6, C.P. 41012 Sevilla, Spain
| | - Alexander Goesmann
- 5 Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitaetsstr. 27, 33615 Bielefeld, Germany
| | - Sebastian Jaenicke
- 5 Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitaetsstr. 27, 33615 Bielefeld, Germany
| | - Elizaveta Krol
- 3 LOEWE Center for Synthetic Microbiology (SYNMIKRO) and Faculty of Biology, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, 35043 Marburg, Germany
| | - Matthew McIntosh
- 3 LOEWE Center for Synthetic Microbiology (SYNMIKRO) and Faculty of Biology, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, 35043 Marburg, Germany
| | - Isabel Margaret
- 1 Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Avda. Reina Mercedes 6, C.P. 41012 Sevilla, Spain
| | - Francisco Pérez-Montaño
- 1 Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Avda. Reina Mercedes 6, C.P. 41012 Sevilla, Spain
| | - Susanne Schneiker-Bekel
- 5 Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitaetsstr. 27, 33615 Bielefeld, Germany
| | - Javier Serranía
- 3 LOEWE Center for Synthetic Microbiology (SYNMIKRO) and Faculty of Biology, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, 35043 Marburg, Germany
| | - Rafael Szczepanowski
- 5 Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitaetsstr. 27, 33615 Bielefeld, Germany
| | - Ana-María Buendía
- 1 Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Avda. Reina Mercedes 6, C.P. 41012 Sevilla, Spain
| | - Javier Lloret
- 4 Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049-Madrid, Spain
| | - Ildefonso Bonilla
- 4 Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049-Madrid, Spain
| | - Alfred Pühler
- 5 Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitaetsstr. 27, 33615 Bielefeld, Germany
| | - José-Enrique Ruiz-Sainz
- 1 Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla. Avda. Reina Mercedes 6, C.P. 41012 Sevilla, Spain
| | - Stefan Weidner
- 5 Centrum für Biotechnologie (CeBiTec), Universität Bielefeld, Universitaetsstr. 27, 33615 Bielefeld, Germany
| |
Collapse
|
35
|
Jiménez-Guerrero I, Pérez-Montaño F, Monreal JA, Preston GM, Fones H, Vioque B, Ollero FJ, López-Baena FJ. The Sinorhizobium (Ensifer) fredii HH103 Type 3 Secretion System Suppresses Early Defense Responses to Effectively Nodulate Soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:790-9. [PMID: 25775271 DOI: 10.1094/mpmi-01-15-0020-r] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plants that interact with pathogenic bacteria in their natural environments have developed barriers to block or contain the infection. Phytopathogenic bacteria have evolved mechanisms to subvert these defenses and promote infection. Thus, the type 3 secretion system (T3SS) delivers bacterial effectors directly into the plant cells to alter host signaling and suppress defenses, providing an appropriate environment for bacterial multiplication. Some rhizobial strains possess a symbiotic T3SS that seems to be involved in the suppression of host defenses to promote nodulation and determine the host range. In this work, we show that the inactivation of the Sinorhizobium (Ensifer) fredii HH103 T3SS negatively affects soybean nodulation in the early stages of the symbiotic process, which is associated with a reduction of the expression of early nodulation genes. This symbiotic phenotype could be the consequence of the bacterial triggering of soybean defense responses associated with the production of salicylic acid (SA) and the impairment of the T3SS mutant to suppress these responses. Interestingly, the early induction of the transcription of GmMPK4, which negatively regulates SA accumulation and defense responses in soybean via WRKY33, could be associated with the differential defense responses induced by the parental and the T3SS mutant strain.
Collapse
Affiliation(s)
| | | | - José Antonio Monreal
- 2 Departamento de Fisiología Vegetal, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, 6, 41012, Sevilla, Spain
| | - Gail M Preston
- 3 Department of Plant Sciences, University of Oxford, OX1 3RB, Oxford, United Kingdom; and
| | - Helen Fones
- 3 Department of Plant Sciences, University of Oxford, OX1 3RB, Oxford, United Kingdom; and
| | - Blanca Vioque
- 4 Departamento de Fitoquímica de Alimentos, Instituto de la Grasa (CSIC), Avda. Padre García Tejero, 4, 41012, Sevilla, Spain
| | | | | |
Collapse
|
36
|
del Cerro P, Rolla-Santos AAP, Gomes DF, Marks BB, Pérez-Montaño F, Rodríguez-Carvajal MÁ, Nakatani AS, Gil-Serrano A, Megías M, Ollero FJ, Hungria M. Regulatory nodD1 and nodD2 genes of Rhizobium tropici strain CIAT 899 and their roles in the early stages of molecular signaling and host-legume nodulation. BMC Genomics 2015; 16:251. [PMID: 25880529 PMCID: PMC4393855 DOI: 10.1186/s12864-015-1458-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/09/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Nodulation and symbiotic nitrogen fixation are mediated by several genes, both of the host legume and of the bacterium. The rhizobial regulatory nodD gene plays a critical role, orchestrating the transcription of the other nodulation genes. Rhizobium tropici strain CIAT 899 is an effective symbiont of several legumes-with an emphasis on common bean (Phaseolus vulgaris)-and is unusual in carrying multiple copies of nodD, the roles of which remain to be elucidated. RESULTS Phenotypes, Nod factors and gene expression of nodD1 and nodD2 mutants of CIAT 899 were compared with those of the wild type strain, both in the presence and in the absence of the nod-gene-inducing molecules apigenin and salt (NaCl). Differences between the wild type and mutants were observed in swimming motility and IAA (indole acetic acid) synthesis. In the presence of both apigenin and salt, large numbers of Nod factors were detected in CIAT 899, with fewer detected in the mutants. nodC expression was lower in both mutants; differences in nodD1 and nodD2 expression were observed between the wild type and the mutants, with variation according to the inducing molecule, and with a major role of apigenin with nodD1 and of salt with nodD2. In the nodD1 mutant, nodulation was markedly reduced in common bean and abolished in leucaena (Leucaena leucocephala) and siratro (Macroptilium atropurpureum), whereas a mutation in nodD2 reduced nodulation in common bean, but not in the other two legumes. CONCLUSION Our proposed model considers that full nodulation of common bean by R. tropici requires both nodD1 and nodD2, whereas, in other legume species that might represent the original host, nodD1 plays the major role. In general, nodD2 is an activator of nod-gene transcription, but, in specific conditions, it can slightly repress nodD1. nodD1 and nodD2 play other roles beyond nodulation, such as swimming motility and IAA synthesis.
Collapse
Affiliation(s)
- Pablo del Cerro
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, 6 Apdo Postal 41012, Sevilla, Spain.
| | | | | | | | - Francisco Pérez-Montaño
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, 6 Apdo Postal 41012, Sevilla, Spain.
| | | | | | - Antonio Gil-Serrano
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apdo Postal 553, 41071, Sevilla, Spain.
| | - Manuel Megías
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, 6 Apdo Postal 41012, Sevilla, Spain.
| | - Francisco Javier Ollero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, 6 Apdo Postal 41012, Sevilla, Spain.
| | | |
Collapse
|
37
|
Pérez-Montaño F, Jiménez-Guerrero I, Del Cerro P, Baena-Ropero I, López-Baena FJ, Ollero FJ, Bellogín R, Lloret J, Espuny R. The symbiotic biofilm of Sinorhizobium fredii SMH12, necessary for successful colonization and symbiosis of Glycine max cv Osumi, is regulated by Quorum Sensing systems and inducing flavonoids via NodD1. PLoS One 2014; 9:e105901. [PMID: 25166872 PMCID: PMC4148318 DOI: 10.1371/journal.pone.0105901] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/25/2014] [Indexed: 11/18/2022] Open
Abstract
Bacterial surface components, especially exopolysaccharides, in combination with bacterial Quorum Sensing signals are crucial for the formation of biofilms in most species studied so far. Biofilm formation allows soil bacteria to colonize their surrounding habitat and survive common environmental stresses such as desiccation and nutrient limitation. This mode of life is often essential for survival in bacteria of the genera Mesorhizobium, Sinorhizobium, Bradyrhizobium, and Rhizobium. The role of biofilm formation in symbiosis has been investigated in detail for Sinorhizobium meliloti and Bradyrhizobium japonicum. However, for S. fredii this process has not been studied. In this work we have demonstrated that biofilm formation is crucial for an optimal root colonization and symbiosis between S. fredii SMH12 and Glycine max cv Osumi. In this bacterium, nod-gene inducing flavonoids and the NodD1 protein are required for the transition of the biofilm structure from monolayer to microcolony. Quorum Sensing systems are also required for the full development of both types of biofilms. In fact, both the nodD1 mutant and the lactonase strain (the lactonase enzyme prevents AHL accumulation) are defective in soybean root colonization. The impairment of the lactonase strain in its colonization ability leads to a decrease in the symbiotic parameters. Interestingly, NodD1 together with flavonoids activates certain quorum sensing systems implicit in the development of the symbiotic biofilm. Thus, S. fredii SMH12 by means of a unique key molecule, the flavonoid, efficiently forms biofilm, colonizes the legume roots and activates the synthesis of Nod factors, required for successfully symbiosis.
Collapse
Affiliation(s)
| | - Irene Jiménez-Guerrero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Pablo Del Cerro
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Irene Baena-Ropero
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | - Ramón Bellogín
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Javier Lloret
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rosario Espuny
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
38
|
Structural basis for regulation of rhizobial nodulation and symbiosis gene expression by the regulatory protein NolR. Proc Natl Acad Sci U S A 2014; 111:6509-14. [PMID: 24733893 DOI: 10.1073/pnas.1402243111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The symbiosis between rhizobial microbes and host plants involves the coordinated expression of multiple genes, which leads to nodule formation and nitrogen fixation. As part of the transcriptional machinery for nodulation and symbiosis across a range of Rhizobium, NolR serves as a global regulatory protein. Here, we present the X-ray crystal structures of NolR in the unliganded form and complexed with two different 22-base pair (bp) double-stranded operator sequences (oligos AT and AA). Structural and biochemical analysis of NolR reveals protein-DNA interactions with an asymmetric operator site and defines a mechanism for conformational switching of a key residue (Gln56) to accommodate variation in target DNA sequences from diverse rhizobial genes for nodulation and symbiosis. This conformational switching alters the energetic contributions to DNA binding without changes in affinity for the target sequence. Two possible models for the role of NolR in the regulation of different nodulation and symbiosis genes are proposed. To our knowledge, these studies provide the first structural insight on the regulation of genes involved in the agriculturally and ecologically important symbiosis of microbes and plants that leads to nodule formation and nitrogen fixation.
Collapse
|
39
|
Tampakaki AP. Commonalities and differences of T3SSs in rhizobia and plant pathogenic bacteria. FRONTIERS IN PLANT SCIENCE 2014; 5:114. [PMID: 24723933 PMCID: PMC3973906 DOI: 10.3389/fpls.2014.00114] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/11/2014] [Indexed: 05/19/2023]
Abstract
Plant pathogenic bacteria and rhizobia infect higher plants albeit the interactions with their hosts are principally distinct and lead to completely different phenotypic outcomes, either pathogenic or mutualistic, respectively. Bacterial protein delivery to plant host plays an essential role in determining the phenotypic outcome of plant-bacteria interactions. The involvement of type III secretion systems (T3SSs) in mediating animal- and plant-pathogen interactions was discovered in the mid-80's and is now recognized as a multiprotein nanomachine dedicated to trans-kingdom movement of effector proteins. The discovery of T3SS in bacteria with symbiotic lifestyles broadened its role beyond virulence. In most T3SS-positive bacterial pathogens, virulence is largely dependent on functional T3SSs, while in rhizobia the system is dispensable for nodulation and can affect positively or negatively the mutualistic associations with their hosts. This review focuses on recent comparative genome analyses in plant pathogens and rhizobia that uncovered similarities and variations among T3SSs in their genetic organization, regulatory networks and type III secreted proteins and discusses the evolutionary adaptations of T3SSs and type III secreted proteins that might account for the distinguishable phenotypes and host range characteristics of plant pathogens and symbionts.
Collapse
Affiliation(s)
- Anastasia P. Tampakaki
- *Correspondence: Anastasia P. Tampakaki, Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855, Athens, Greece e-mail:
| |
Collapse
|
40
|
Sugawara M, Epstein B, Badgley BD, Unno T, Xu L, Reese J, Gyaneshwar P, Denny R, Mudge J, Bharti AK, Farmer AD, May GD, Woodward JE, Médigue C, Vallenet D, Lajus A, Rouy Z, Martinez-Vaz B, Tiffin P, Young ND, Sadowsky MJ. Comparative genomics of the core and accessory genomes of 48 Sinorhizobium strains comprising five genospecies. Genome Biol 2013; 14:R17. [PMID: 23425606 PMCID: PMC4053727 DOI: 10.1186/gb-2013-14-2-r17] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 02/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The sinorhizobia are amongst the most well studied members of nitrogen-fixing root nodule bacteria and contribute substantial amounts of fixed nitrogen to the biosphere. While the alfalfa symbiont Sinorhizobium meliloti RM 1021 was one of the first rhizobial strains to be completely sequenced, little information is available about the genomes of this large and diverse species group. RESULTS Here we report the draft assembly and annotation of 48 strains of Sinorhizobium comprising five genospecies. While S. meliloti and S. medicae are taxonomically related, they displayed different nodulation patterns on diverse Medicago host plants, and have differences in gene content, including those involved in conjugation and organic sulfur utilization. Genes involved in Nod factor and polysaccharide biosynthesis, denitrification and type III, IV, and VI secretion systems also vary within and between species. Symbiotic phenotyping and mutational analyses indicated that some type IV secretion genes are symbiosis-related and involved in nitrogen fixation efficiency. Moreover, there is a correlation between the presence of type IV secretion systems, heme biosynthesis and microaerobic denitrification genes, and symbiotic efficiency. CONCLUSIONS Our results suggest that each Sinorhizobium strain uses a slightly different strategy to obtain maximum compatibility with a host plant. This large genome data set provides useful information to better understand the functional features of five Sinorhizobium species, especially compatibility in legume-Sinorhizobium interactions. The diversity of genes present in the accessory genomes of members of this genus indicates that each bacterium has adopted slightly different strategies to interact with diverse plant genera and soil environments.
Collapse
|
41
|
Fotiadis CT, Dimou M, Georgakopoulos DG, Katinakis P, Tampakaki AP. Functional characterization of NopT1 and NopT2, two type III effectors of Bradyrhizobium japonicum. FEMS Microbiol Lett 2012; 327:66-77. [PMID: 22112296 DOI: 10.1111/j.1574-6968.2011.02466.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/08/2011] [Accepted: 11/15/2011] [Indexed: 12/16/2023] Open
Abstract
NopT1 and NopT2, putative type III effectors from the plant symbiotic bacterium Bradyrhizobium japonicum, are predicted to belong to a family of YopT/AvrPphB effectors, which are cysteine proteases. In the present study, we showed that both NopT1 and NopT2 indeed possess cysteine protease activity. When overexpressed in Escherichia coli, both NopT1 and NopT2 undergo autoproteolytic processing which is largely abolished in the presence of E-64, a papain family-specific inhibitor. Mutations of NopT1 disrupting either the catalytic triad or the putative autoproteolytic site reduce or markedly abolish the protease activity. Autocleavage likely occurs between residues K48 and M49, though another potential cleavage site is also possible. NopT1 also elicitis HR-like cell death when transiently expressed in tobacco plants and its cysteine protease activity is essential for this ability. In contrast, no macroscopic symptoms were observed for NopT2. Furthermore, mutational analysis provided evidence that NopT1 may undergo acylation inside plant cells and that this would be required for its capacity to elicit HR-like cell death in tobacco.
Collapse
Affiliation(s)
- Christos T Fotiadis
- Laboratory of General and Agricultural Microbiology, Department of Agricultural Biotechnology, Agricultural University of Athens, Athens, Greece
| | | | | | | | | |
Collapse
|
42
|
Nodulation-gene-inducing flavonoids increase overall production of autoinducers and expression of N-acyl homoserine lactone synthesis genes in rhizobia. Res Microbiol 2011; 162:715-23. [DOI: 10.1016/j.resmic.2011.05.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Accepted: 04/16/2011] [Indexed: 11/20/2022]
|
43
|
Krishnan HB, Natarajan SS, Kim WS. Distinct cell surface appendages produced by Sinorhizobium fredii USDA257 and S. fredii USDA191, cultivar-specific and nonspecific symbionts of soybean. Appl Environ Microbiol 2011; 77:6240-8. [PMID: 21764962 PMCID: PMC3165413 DOI: 10.1128/aem.05366-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 07/05/2011] [Indexed: 11/20/2022] Open
Abstract
Sinorhizobium fredii USDA257 and S. fredii USDA191 are fast-growing rhizobia that form nitrogen-fixing nodules on soybean roots. In contrast to USDA191, USDA257 exhibits cultivar specificity and can form nodules only on primitive soybean cultivars. In response to flavonoids released from soybean roots, these two rhizobia secrete nodulation outer proteins (Nop) to the extracellular milieu through a type III secretion system. In spite of the fact that Nops are known to regulate legume nodulation in a host-specific manner, very little is known about the differences in the compositions of Nops and surface appendages elaborated by USDA191 and USDA257. In this study we compared the Nop profiles of USDA191 and USDA257 by one-dimensional (1D) and 2D gel electrophoresis and identified several of these proteins by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and liquid chromatography-tandem MS (LC-MS/MS). Examination of the surface appendages elaborated by these two strains of soybean symbionts by transmission electron microscopy revealed distinct differences in their morphologies. Even though the flagella produced by USDA191 and USDA257 were similar in their morphologies, they differed in their flagellin composition. USDA257 pili resembled long thin filaments, while USDA191 pili were short, rod shaped, and much thinner than the flagella. 2D gel electrophoresis of pilus-like appendages of USDA191 and USDA257 followed by mass spectrometry resulted in the identification of several of the Nops along with some proteins previously undetected in these strains. Some of the newly identified proteins show homology to putative zinc protease and a LabA-like protein from Bradyrhizobium sp. ORS278, fimbrial type 4 assembly proteins from Ralstonia solanacearum, and the type III effector Hrp-dependent protein from Rhizobium leguminosarum bv. trifolii.
Collapse
Affiliation(s)
- Hari B Krishnan
- Plant Genetics Research Unit, USDA ARS, 108 Curtis Hall, University of Missouri, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
44
|
Bolzan de Campos S, Deakin WJ, Broughton WJ, Passaglia LMP. Roles of flavonoids and the transcriptional regulator TtsI in the activation of the type III secretion system of Bradyrhizobium elkanii SEMIA587. MICROBIOLOGY (READING, ENGLAND) 2011; 157:627-635. [PMID: 21109563 DOI: 10.1099/mic.0.040873-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Bradyrhizobium elkanii SEMIA587 is a symbiotic nitrogen-fixing bacterium of the group commonly called rhizobia, which induce nodule formation in legumes, and is widely used in Brazilian commercial inoculants of soybean. In response to flavonoid compounds released by plant roots, besides Nod factors, other molecular signals are secreted by rhizobia, such as proteins secreted by type III secretion systems (T3SSs). Rhizobial T3SSs are activated by the transcription regulator TtsI, which binds to sequences present in the promoter regions of T3SS genes via a conserved sequence called the tts box. To study the role of the T3SS of B. elkanii SEMIA587, ttsI was mutated. Protein secretion and flavonoid induction analysis, as well as nodulation tests, were performed with the wild-type and mutant strains. The results obtained showed that B. elkanii SEMIA587 secretes at least two proteins (NopA and NopL, known rhizobial T3SS substrates) after genistein induction, whilst supernatants of the ttsI mutant did not contain these Nops. Unusually for rhizobia, the promoter region of the B. elkanii SEMIA587 ttsI gene contains a tts box, which is responsive to flavonoid induction and to which TtsI can bind. Nodulation tests performed with three different leguminous plants showed that the B. elkanii SEMIA587 ttsI mutant displays host-dependent characteristics; in particular, nodulation of two soybean cultivars, Peking and EMBRAPA 48, was more efficient when TtsI of B. elkanii was functional.
Collapse
Affiliation(s)
- Samanta Bolzan de Campos
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Av. Bento Gonçalves, 9500, Caixa Postal 15.053, CEP 91501-970, Porto Alegre, RS, Brazil
| | - William J Deakin
- Laboratoire de Biologie Moléculaire des Plantes Supérieures (LBMPS), Département de Biologie Végétale, Sciences III, 30 Quai Ernest-Ansermet, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - William J Broughton
- Laboratoire de Biologie Moléculaire des Plantes Supérieures (LBMPS), Département de Biologie Végétale, Sciences III, 30 Quai Ernest-Ansermet, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Luciane M P Passaglia
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Av. Bento Gonçalves, 9500, Caixa Postal 15.053, CEP 91501-970, Porto Alegre, RS, Brazil
| |
Collapse
|
45
|
Downie JA. The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol Rev 2009; 34:150-70. [PMID: 20070373 DOI: 10.1111/j.1574-6976.2009.00205.x] [Citation(s) in RCA: 227] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Rhizobia adopt many different lifestyles including survival in soil, growth in the rhizosphere, attachment to root hairs and infection and growth within legume roots, both in infection threads and in nodules where they fix nitrogen. They are actively involved in extracellular signalling to their host legumes to initiate infection and nodule morphogenesis. Rhizobia also use quorum-sensing gene regulation via N-acyl-homoserine lactone signals and this can enhance their interaction with legumes as well as their survival under stress and their ability to induce conjugation of plasmids and symbiotic islands, thereby spreading their symbiotic capacity. They produce several surface polysaccharides that are critical for attachment and biofilm formation; some of these polysaccharides are specific for their growth on root hairs and can considerably enhance their ability to infect their host legumes. Different rhizobia use several different types of protein secretion mechanisms (Types I, III, IV, V and VI), and many of the secreted proteins play an important role in their interaction with plants. This review summarizes many of the aspects of the extracellular biology of rhizobia, in particular in relation to their symbiotic interaction with legumes.
Collapse
|
46
|
López-Baena FJ, Monreal JA, Pérez-Montaño F, Guasch-Vidal B, Bellogín RA, Vinardell JM, Ollero FJ. The absence of Nops secretion in Sinorhizobium fredii HH103 increases GmPR1 expression in Williams soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1445-54. [PMID: 19810813 DOI: 10.1094/mpmi-22-11-1445] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Sinorhizobium fredii HH103 secretes through the type III secretion system at least eight nodulation outer proteins (Nops), including the effector NopP. These proteins are necessary for an effective nodulation of soybean. In this work, we show that expression of the nopP gene depended on flavonoids and on the transcriptional regulators NodD1 and TtsI. Inactivation of nopP led to an increase in the symbiotic capacity of S. fredii HH103 to nodulate Williams soybean. In addition, we studied whether Nops affect the expression of the pathogenesis-related genes GmPR1, GmPR2, and GmPR3 in soybean roots and shoots. In the presence of S. fredii HH103, expression of pathogenesis-related (PR) gene PR1 was induced in soybean roots 4 days after inoculation and it increased 8 days after inoculation. The absence of Nops provoked a higher induction of PR1 in both soybean roots and shoots, suggesting that Nops function early, diminishing plant defense responses during rhizobial infection. However, the inactivation of nopP led to a decrease in PR1 expression. Therefore, the absence of NopP or that of the complete set of Nops seems to have opposite effects on the symbiotic performance and on the elicitation of soybean defense responses.
Collapse
|
47
|
Abstract
Rhizobia - a diverse group of soil bacteria - induce the formation of nitrogen-fixing nodules on the roots of legumes. Nodulation begins when the roots initiate a molecular dialogue with compatible rhizobia in the soil. Most rhizobia reply by secreting lipochitooligosaccharidic nodulation factors that enable entry into the legume. A molecular exchange continues, which, in compatible interactions, permits rhizobia to invade root cortical cells, differentiate into bacteroids and fix nitrogen. Rhizobia also use additional molecular signals, such as secreted proteins or surface polysaccharides. One group of proteins secreted by rhizobia have homologues in bacterial pathogens and may have been co-opted by rhizobia for symbiotic purposes.
Collapse
|
48
|
Hempel J, Zehner S, Göttfert M, Patschkowski T. Analysis of the secretome of the soybean symbiont Bradyrhizobium japonicum. J Biotechnol 2008; 140:51-8. [PMID: 19095018 DOI: 10.1016/j.jbiotec.2008.11.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 10/20/2008] [Accepted: 11/20/2008] [Indexed: 11/29/2022]
Abstract
Proteins from the supernatant of Bradyrhizobium japonicum were separated by two-dimensional gel electrophoresis and stained with Coomassie. This revealed more than 100 protein spots. Sixty-eight proteins were identified by mass spectrometry. Thirty-five are predicted to contain an N-terminal signal peptide characteristic for proteins transported by the general secretory pathway. Most of these appear to be substrate-binding proteins of the ABC transporter family. Ten proteins were categorized as unclassified conserved or hypothetical. None of the proteins has similarity to proteins transported by a type I secretion system or to autotransporters. Three of the proteins might be located in the outer membrane. The addition of genistein led to changes in the spot pattern of three flagellar proteins and resulted in the identification of the nodulation outer protein Pgl. Moreover, the application of shot-gun mass spectrometry resulted in the first-time identification of NopB, NopH and NopT, which were present only after genistein induction. Replacing genistein with daidzein or coumestrol reduced the amount of the type III-secreted protein GunA2.
Collapse
Affiliation(s)
- Jana Hempel
- Institut für Genetik, Technische Universität Dresden, Dresden, Germany
| | | | | | | |
Collapse
|