1
|
Kumar R, Singh A, Srivastava A. Xenosiderophores: bridging the gap in microbial iron acquisition strategies. World J Microbiol Biotechnol 2025; 41:69. [PMID: 39939429 DOI: 10.1007/s11274-025-04287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Microorganisms acquire iron from surrounding environment through specific iron chelators known as siderophores that can be of self-origin or synthesized by neighboring microbes. The latter are termed as xenosiderophores. The acquired iron supports their growth, survival, and pathogenesis. Various microorganisms possess the ability to utilize xenosiderophores, a mechanism popularly termed as 'siderophore piracy' besides synthesizing their own siderophores. This adaptability allows microorganisms to conserve energy by reducing the load of siderogenesis. Owing to the presence of xenosiderophore transport machinery, these microbial systems can be used for targeting antibiotics-siderophore conjugates to control pathogenesis and combat antimicrobial resistance. This review outlines the significance of xenosiderophore utilization for growth, stress management and virulence. Siderogenesis and the molecular mechanism of its uptake by related organisms have been discussed vividly. It focuses on potential applications like disease diagnostics, drug delivery, and combating antibiotic resistance. In brief, this review highlights the importance of xenosiderophores projecting them beyond their role as mere iron chelators.
Collapse
Affiliation(s)
- Ravinsh Kumar
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India
| | - Ashutosh Singh
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India
| | - Amrita Srivastava
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India.
| |
Collapse
|
2
|
Li Y, Yu X, Li P, Li X, Wang L. Characterization of the Vibrio anguillarum VaRyhB regulon and role in pathogenesis. Front Cell Infect Microbiol 2025; 14:1531176. [PMID: 39906211 PMCID: PMC11790442 DOI: 10.3389/fcimb.2024.1531176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/30/2024] [Indexed: 02/06/2025] Open
Abstract
Background The marine Gram-negative bacterium Vibrio anguillarum is one of the major pathogens in aquaculture. Iron uptake is a prerequisite for virulence and is strictly controlled by a global iron uptake regulator, Fur, which acts as a repressor under iron-replete conditions. When iron is depleted, Fur also functions as an activator, playing an important role in pathogenesis. It is unclear whether this upregulation model is mediated by a small RNA, RyhB. Methods The small RNA, VaryhB, was deleted in V. anguillarum strain 775, and its regulon was investigated using transcriptomic analysis. The roles of VaRyhB in siderophore synthesis, chemotaxis and motility, and oxidative stress were evaluated using chrome azurol S (CAS) liquid assay, swimming motility assay, and intracellular reactive oxygen species (ROS) assay, respectively. The virulence of VaRyhB was evaluated by challenging turbot larvae intraperitoneally. Results The small RNA called VaRyhB identified in V. anguillarum strain 775 is significantly longer than that in Escherichia coli. Transcriptomic analysis revealed that VaRyhB is critical for iron homeostasis under limited iron conditions, and deletion of VaRyhB resulted in lower expression levels of certain genes for siderophore biosynthesis and transport, thereby leading to impaired growth, reduced siderophore production, and decreased pathogenesis. The virulence factor motility is also upregulated by VaRyhB, and reduced motility capability was observed in the ΔVaryhB mutant, which may be another reason resulting in weak pathogenesis. The sensitivity toward H2O2 in the ΔVafur mutant could be restored by the loss of VaRyhB, suggesting that the role of Fur in oxidative stress is mediated by VaRyhB. VaRyhB also functions to inhibit the expression of genes involved in Fe-S assembly and the TCA cycle. In addition, two aspects of the type VI secretion system and molybdenum cofactor biosynthesis were first identified as being regulated by VaRyhB. Conclusion In V. anguillarum, the sRNA VaRyhB plays a critical role in the inhibition of genes involved in the TCA cycle, Fe-S assembly, and the type VI secretion system. It is also essential for the activation of siderophore synthesis, chemotaxis and motility, and anaerobic denitrification. Our work provides the first evidence of the VaRyhB regulon and its role in the pathogenesis of V. anguillarum.
Collapse
Affiliation(s)
- Yingjie Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xinran Yu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Peng Li
- Research and Development Department, China Rongtong Agricultural Development Group Co., Ltd., Hangzhou, China
| | - Xin Li
- Research and Development Department, China Rongtong Agricultural Development Group Co., Ltd., Hangzhou, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
3
|
Li Y, Yu X, Li P, Li X, Wang L. Characterization of the ferric uptake regulator VaFur regulon and its role in Vibrio anguillarum pathogenesis. Appl Environ Microbiol 2024; 90:e0150824. [PMID: 39382293 PMCID: PMC11577842 DOI: 10.1128/aem.01508-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024] Open
Abstract
The Gram-negative marine bacterium Vibrio anguillarum is able to cause vibriosis with hemorrhagic septicemia in many fish species, and iron acquisition is a critical step for virulence. Despite the fact that genes specific to certain processes of iron transport have been studied, the iron-regulated circuits of the V. anguillarum strains remain poorly understood. In this study, we showed that in V. anguillarum strain 775, iron could affect the expression of a number of critical metabolic pathways and virulence factors. The global iron uptake regulator VaFur is the major actor to control these processes for the bacterium to respond to different iron conditions. A VaFur binding motif was identified to distinguish directly and indirectly regulated targets. The absence of VaFur resulted in the aberrant expression of most iron acquisition determinants under rich-iron conditions. A similar regulation pattern was also observed in the transcription of genes coding for the type VI secretion system. The expression of peroxidase genes is positively controlled by VaFur to prevent iron toxicity, and the deletion of Vafur caused impaired growth in the presence of iron and H2O2. VaFur also upregulates some virulence factors under limited-iron conditions, including metalloprotease EmpA and motility, which are likely critical for the high virulence of V. anguillarum 775. The deletion of VaFur led to reduced swimming motility and decreased extracellular protease activity under limited-iron conditions, thereby leading to attenuated pathogenicity. Our study provides more evidence to better understand the VaFur regulon and its role in the pathogenesis of V. anguillarum.IMPORTANCEVibriosis, the most common disease caused by marine bacteria belonging to the genus Vibrio, leads to massive mortality of economical aquatic organisms in Asia. Iron is one of the most important trace elements, and its acquisition is a critical battle occurring between the host and the pathogen. However, excess iron is harmful to cells, so iron utilization needs to be strictly controlled to adapt to different conditions. This process is mediated by the global iron uptake regulator Fur, which acts as a repressor when iron is replete. On the other hand, free iron in the host is limited, so the reduced virulence of the Δfur mutant should not be directly caused by abnormally regulated iron uptake. The significance of this work lies in uncovering the mechanism by which the deletion of Fur causes reduced virulence in Vibrio anguillarum and identifying the critical virulence factors that function under limited-iron conditions.
Collapse
Affiliation(s)
- Yingjie Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xinran Yu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Peng Li
- China Rongtong Agricultural Development Group Co. Ltd., Hangzhou, China
| | - Xin Li
- China Rongtong Agricultural Development Group Co. Ltd., Hangzhou, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Rey-Varela D, Balado M, Lemos ML. The Sigma Factor AsbI Is Required for the Expression of Acinetobactin Siderophore Transport Genes in Aeromonas salmonicida. Int J Mol Sci 2023; 24:ijms24119672. [PMID: 37298622 DOI: 10.3390/ijms24119672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Aeromonas salmonicida subsp. salmonicida (A. salmonicida), a Gram-negative bacterium causing furunculosis in fish, produces the siderophores acinetobactin and amonabactins in order to extract iron from its hosts. While the synthesis and transport of both systems is well understood, the regulation pathways and conditions necessary for the production of each one of these siderophores are not clear. The acinetobactin gene cluster carries a gene (asbI) encoding a putative sigma factor belonging to group 4 σ factors, or, the ExtraCytoplasmic Function (ECF) group. By generating a null asbI mutant, we demonstrate that AsbI is a key regulator that controls acinetobactin acquisition in A. salmonicida, since it directly regulates the expression of the outer membrane transporter gene and other genes necessary for Fe-acinetobactin transport. Furthermore, AsbI regulatory functions are interconnected with other iron-dependent regulators, such as the Fur protein, as well as with other sigma factors in a complex regulatory network.
Collapse
Affiliation(s)
- Diego Rey-Varela
- Departmento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Miguel Balado
- Departmento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Manuel L Lemos
- Departmento de Microbiología y Parasitología, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
5
|
Identification of Key Functions Required for Production and Utilization of the Siderophore Piscibactin Encoded by the High-Pathogenicity Island irp-HPI in Vibrionaceae. Int J Mol Sci 2022; 23:ijms23168865. [PMID: 36012135 PMCID: PMC9408133 DOI: 10.3390/ijms23168865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Piscibactin is a widespread siderophore system present in many different bacteria, especially within the Vibrionaceae family. Previous works showed that most functions required for biosynthesis and transport of this siderophore are encoded by the high-pathogenicity island irp-HPI. In the present work, using Vibrio anguillarum as a model, we could identify additional key functions encoded by irp-HPI that are necessary for piscibactin production and transport and that have remained unknown. Allelic exchange mutagenesis, combined with cross-feeding bioassays and LC-MS analysis, were used to demonstrate that Irp4 protein is an essential component for piscibactin synthesis since it is the thioesterase required for nascent piscibactin be released from the NRPS Irp1. We also show that Irp8 is a MFS-type protein essential for piscibactin secretion. In addition, after passage through the outer membrane transporter FrpA, the completion of ferri-piscibactin internalization through the inner membrane would be achieved by the ABC-type transporter FrpBC. The expression of this transporter is coordinated with the expression of FrpA and with the genes encoding biosynthetic functions. Since piscibactin is a major virulence factor of some pathogenic vibrios, the elements of biosynthesis and transport described here could be additional interesting targets for the design of novel antimicrobials against these bacterial pathogens.
Collapse
|
6
|
Mekasha S, Linke D. Secretion Systems in Gram-Negative Bacterial Fish Pathogens. Front Microbiol 2022; 12:782673. [PMID: 34975803 PMCID: PMC8714846 DOI: 10.3389/fmicb.2021.782673] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial fish pathogens are one of the key challenges in the aquaculture industry, one of the fast-growing industries worldwide. These pathogens rely on arsenal of virulence factors such as toxins, adhesins, effectors and enzymes to promote colonization and infection. Translocation of virulence factors across the membrane to either the extracellular environment or directly into the host cells is performed by single or multiple dedicated secretion systems. These secretion systems are often key to the infection process. They can range from simple single-protein systems to complex injection needles made from dozens of subunits. Here, we review the different types of secretion systems in Gram-negative bacterial fish pathogens and describe their putative roles in pathogenicity. We find that the available information is fragmented and often descriptive, and hope that our overview will help researchers to more systematically learn from the similarities and differences between the virulence factors and secretion systems of the fish-pathogenic species described here.
Collapse
Affiliation(s)
- Sophanit Mekasha
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Garber AI, Nealson KH, Okamoto A, McAllister SM, Chan CS, Barco RA, Merino N. FeGenie: A Comprehensive Tool for the Identification of Iron Genes and Iron Gene Neighborhoods in Genome and Metagenome Assemblies. Front Microbiol 2020; 11:37. [PMID: 32082281 PMCID: PMC7005843 DOI: 10.3389/fmicb.2020.00037] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/09/2020] [Indexed: 01/15/2023] Open
Abstract
Iron is a micronutrient for nearly all life on Earth. It can be used as an electron donor and electron acceptor by iron-oxidizing and iron-reducing microorganisms and is used in a variety of biological processes, including photosynthesis and respiration. While it is the fourth most abundant metal in the Earth's crust, iron is often limiting for growth in oxic environments because it is readily oxidized and precipitated. Much of our understanding of how microorganisms compete for and utilize iron is based on laboratory experiments. However, the advent of next-generation sequencing and surge in publicly available sequence data has made it possible to probe the structure and function of microbial communities in the environment. To bridge the gap between our understanding of iron acquisition, iron redox cycling, iron storage, and magnetosome formation in model microorganisms and the plethora of sequence data available from environmental studies, we have created a comprehensive database of hidden Markov models (HMMs) based on genes related to iron acquisition, storage, and reduction/oxidation in Bacteria and Archaea. Along with this database, we present FeGenie, a bioinformatics tool that accepts genome and metagenome assemblies as input and uses our comprehensive HMM database to annotate provided datasets with respect to iron-related genes and gene neighborhood. An important contribution of this tool is the efficient identification of genes involved in iron oxidation and dissimilatory iron reduction, which have been largely overlooked by standard annotation pipelines. We validated FeGenie against a selected set of 28 isolate genomes and showcase its utility in exploring iron genes present in 27 metagenomes, 4 isolate genomes from human oral biofilms, and 17 genomes from candidate organisms, including members of the candidate phyla radiation. We show that FeGenie accurately identifies iron genes in isolates. Furthermore, analysis of metagenomes using FeGenie demonstrates that the iron gene repertoire and abundance of each environment is correlated with iron richness. While this tool will not replace the reliability of culture-dependent analyses of microbial physiology, it provides reliable predictions derived from the most up-to-date genetic markers. FeGenie's database will be maintained and continually updated as new genes are discovered. FeGenie is freely available: https://github.com/Arkadiy-Garber/FeGenie.
Collapse
Affiliation(s)
- Arkadiy I. Garber
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
- Department of Earth Sciences, University of Delaware, Newark, DE, United States
| | - Kenneth H. Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Akihiro Okamoto
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Sean M. McAllister
- School of Marine Science and Policy, University of Delaware, Newark, DE, United States
| | - Clara S. Chan
- Department of Earth Sciences, University of Delaware, Newark, DE, United States
- School of Marine Science and Policy, University of Delaware, Newark, DE, United States
| | - Roman A. Barco
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Nancy Merino
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
8
|
Chemistry and Biology of Siderophores from Marine Microbes. Mar Drugs 2019; 17:md17100562. [PMID: 31569555 PMCID: PMC6836290 DOI: 10.3390/md17100562] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/22/2019] [Accepted: 09/29/2019] [Indexed: 12/30/2022] Open
Abstract
Microbial siderophores are multidentate Fe(III) chelators used by microbes during siderophore-mediated assimilation. They possess high affinity and selectivity for Fe(III). Among them, marine siderophore-mediated microbial iron uptake allows marine microbes to proliferate and survive in the iron-deficient marine environments. Due to their unique iron(III)-chelating properties, delivery system, structural diversity, and therapeutic potential, marine microbial siderophores have great potential for further development of various drug conjugates for antibiotic-resistant bacteria therapy or as a target for inhibiting siderophore virulence factors to develop novel broad-spectrum antibiotics. This review covers siderophores derived from marine microbes.
Collapse
|
9
|
Guanhua Y, Wang C, Wang X, Ma R, Zheng H, Liu Q, Zhang Y, Ma Y, Wang Q. Complete genome sequence of the marine fish pathogen Vibrio anguillarum and genome-wide transposon mutagenesis analysis of genes essential for in vivo infection. Microbiol Res 2018; 216:97-107. [DOI: 10.1016/j.micres.2018.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 12/14/2022]
|
10
|
Adeniji AA, Aremu OS, Babalola OO. Selecting lipopeptide-producing, Fusarium-suppressing Bacillus spp.: Metabolomic and genomic probing of Bacillus velezensis NWUMFkBS10.5. Microbiologyopen 2018; 8:e00742. [PMID: 30358165 PMCID: PMC6562122 DOI: 10.1002/mbo3.742] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/03/2018] [Accepted: 09/10/2018] [Indexed: 12/29/2022] Open
Abstract
The results of this study indicate that the maize rhizosphere remains a reservoir for microbial strains with unique beneficial properties. The study sought to provide an indigenous Bacillus strain with a bioprotective potential to alleviate maize fusariosis in South Africa. We selected seven Bacillus isolates (MORWBS1.1, MARBS2.7, VERBS5.5, MOREBS6.3, MOLBS8.5, MOLBS8.6, and NWUMFkBS10.5) with biosuppressive effects against two maize fungal pathogens (Fusarium graminearum and Fusarium culmorum) based on 16S rDNA gene characterization and lipopeptide gene analysis. The PCR analysis revealed that lipopeptide genes encoding the synthesis of iturin, surfactin, and fengycin might be responsible for their antifungal activities. Few of the isolates also showed possible biosurfactant capability, and their susceptibility to known antibiotics is indicative of their eco‐friendly attributes. In addition, in silico genomic analysis of our best isolate (Bacillus velezensis NWUMFkBS10.5) and characterization of its active metabolite with FTIR, NMR, and ESI‐Micro‐Tof MS confirmed the presence of valuable genes clusters and metabolic pathways. The versatile genomic potential of our Bacillus isolate emphasizes the continued relevance of Bacillus spp. in biological management of plant diseases.
Collapse
Affiliation(s)
- Adetomiwa Ayodele Adeniji
- Department of Biological Sciences, Faculty of Natural and Agriculture Science, North-West University, Mmabatho, South Africa.,Food Security and Safety Niche Area, Faculty of Natural and Agriculture Science, North-West University, Mmabatho, South Africa
| | - Oluwole Samuel Aremu
- Department of Chemistry, Faculty of Natural and Agriculture Science, North-West University, Mmabatho, South Africa
| | - Olubukola Oluranti Babalola
- Department of Biological Sciences, Faculty of Natural and Agriculture Science, North-West University, Mmabatho, South Africa.,Food Security and Safety Niche Area, Faculty of Natural and Agriculture Science, North-West University, Mmabatho, South Africa
| |
Collapse
|
11
|
Balado M, Lages MA, Fuentes-Monteverde JC, Martínez-Matamoros D, Rodríguez J, Jiménez C, Lemos ML. The Siderophore Piscibactin Is a Relevant Virulence Factor for Vibrio anguillarum Favored at Low Temperatures. Front Microbiol 2018; 9:1766. [PMID: 30116232 PMCID: PMC6083037 DOI: 10.3389/fmicb.2018.01766] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/16/2018] [Indexed: 11/13/2022] Open
Abstract
Vibrio anguillarum causes vibriosis, a hemorrhagic septicaemia that affects many cultured marine fish species worldwide. Two catechol siderophores, vanchrobactin and anguibactin, were previously identified in this bacterium. While vanchrobactin is a chromosomally encoded system widespread in all pathogenic and environmental strains, anguibactin is a plasmid-encoded system restricted to serotype O1 strains. In this work, we have characterized, from a serotype O2 strain producing vanchrobactin, a novel genomic island containing a cluster of genes that would encode the synthesis of piscibactin, a siderophore firstly described in the fish pathogen Photobacterium damselae subsp. piscicida. The chemical characterization of this siderophore confirmed that some strains of V. anguillarum produce piscibactin. An in silico analysis of the available genomes showed that this genomic island is present in many of the highly pathogenic V. anguillarum strains lacking the anguibactin system. The construction of single and double biosynthetic mutants for vanchrobactin and piscibactin allowed us to study the contribution of each siderophore to iron uptake, cell fitness, and virulence. Although both siderophores are simultaneously produced, piscibactin constitute a key virulence factor to infect fish, while vanchrobactin seems to have a secondary role in virulence. In addition, a transcriptional analysis of the gene cluster encoding piscibactin in V. anguillarum showed that synthesis of this siderophore is favored at low temperatures, being the transcriptional activity of the biosynthetic genes three-times higher at 18°C than at 25°C. We also show that iron levels and temperature contribute to balance the synthesis of both siderophores.
Collapse
Affiliation(s)
- Miguel Balado
- Department of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Marta A Lages
- Department of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan C Fuentes-Monteverde
- Department of Chemistry, Faculty of Sciences and Center for Advanced Scientific Research (CICA), Universidade da Coruña, A Coruña, Spain
| | - Diana Martínez-Matamoros
- Department of Chemistry, Faculty of Sciences and Center for Advanced Scientific Research (CICA), Universidade da Coruña, A Coruña, Spain
| | - Jaime Rodríguez
- Department of Chemistry, Faculty of Sciences and Center for Advanced Scientific Research (CICA), Universidade da Coruña, A Coruña, Spain
| | - Carlos Jiménez
- Department of Chemistry, Faculty of Sciences and Center for Advanced Scientific Research (CICA), Universidade da Coruña, A Coruña, Spain
| | - Manuel L Lemos
- Department of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
12
|
A Complex Mechanism Involving LysR and TetR/AcrR That Regulates Iron Scavenger Biosynthesis in Pseudomonas donghuensis HYS. J Bacteriol 2018; 200:JB.00087-18. [PMID: 29686142 DOI: 10.1128/jb.00087-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/18/2018] [Indexed: 11/20/2022] Open
Abstract
7-Hydroxytropolone (7-HT) is a symmetrical seven-membered heteroatomic ring with a carboxyl group and two hydroxyl groups and was recently reported to be an iron scavenger of Pseudomonas donghuensis HYS. Cluster 1 includes 12 genes related to the synthesis of 7-HT; among these genes, those for two regulators, Orf1 and Orf12, were predicted to regulate 7-HT biosynthesis and to be LysR-type transcriptional regulators (LTTRs) and TetR/AcrR family transcriptional regulators, respectively. Data from real-time quantitative PCR and β-galactosidase and classical siderophore assays indicated that the transcription levels of orf1 and orf12, as well as those of crucial genes orf6 to orf9, were repressed under high-iron conditions. The deletion of orf1 and orf12 led to an absence of 7-HT and a decrease in orf6-orf9 expression. Orf1 and Orf12 were essential for the production of 7-HT through orf6-orf9 These two regulators are regulated by the Gac/Rsm system; Orf1 facilitates the expression of Orf12, and Orf12 concomitantly stimulates the expression of orf6-orf9 to synthesize 7-HT. The overexpression of Orf12 decreased 7-HT yields, possibly through decreased orf6-orf9 expression. This work thus outlines a complex mechanism regulating the biosynthesis of the iron scavenger 7-HT in P. donghuensis HYS. The synergy between Orf1 and Orf12 ensures that 7-HT acts as an iron chelator despite being toxic to bacteria and provides new ideas for the novel regulation of dual-functional secondary metabolism and research on 7-HT and its derivates in other bacteria.IMPORTANCE A complex regulation mechanism including two regulators, LysR and TetR/AcrR, in the biosynthesis of the novel iron scavenger 7-hydroxytropolone (7-HT) was verified in Pseudomonas donghuensis HYS. The coaction of LysR Orf1 and TetR/AcrR Orf12 may balance the toxicity and iron chelation of 7-HT in P. donghuensis HYS to overcome iron deficiency, as well as improve the bacterial competitiveness under iron-scarce conditions because of the toxicity of 7-HT toward other bacteria, making the accurate regulation of 7-HT biosynthesis indispensable. This regulation mechanism may be ubiquitous in the Pseudomonas putida group but may better explain the group's strong adaptability.
Collapse
|
13
|
Li Y, Ma Q. Iron Acquisition Strategies of Vibrio anguillarum. Front Cell Infect Microbiol 2017; 7:342. [PMID: 28791260 PMCID: PMC5524678 DOI: 10.3389/fcimb.2017.00342] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/11/2017] [Indexed: 12/03/2022] Open
Abstract
The hemorrhagic septicemic disease vibriosis caused by Vibrio anguillarum shows noticeable similarities to invasive septicemia in humans, and in this case, the V. anguillarum–host system has the potential to serve as a model for understanding native eukaryotic host–pathogen interactions. Iron acquisition, as a fierce battle occurring between pathogenic V. anguillarum and the fish host, is a pivotal step for virulence. In this article, advances in defining the roles of iron uptake pathways in growth and virulence of V. anguillarum have been summarized, divided into five aspects, including siderophore biosynthesis and secretion, iron uptake, iron release, and regulation of iron uptake. Understanding the molecular mechanisms of iron acquisition will have important implications for the pathogenicity of this organism.
Collapse
Affiliation(s)
- Yingjie Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of SciencesQingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| | - Qingjun Ma
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of SciencesQingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| |
Collapse
|
14
|
Ruiz P, Balado M, Toranzo AE, Poblete-Morales M, Lemos ML, Avendaño-Herrera R. Iron assimilation and siderophore production by Vibrio ordalii strains isolated from diseased Atlantic salmon Salmo salar in Chile. DISEASES OF AQUATIC ORGANISMS 2016; 118:217-226. [PMID: 27025309 DOI: 10.3354/dao02976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Vibrio ordalii is the causative agent of vibriosis in several cultured salmonid species worldwide. Despite its impact on aquaculture, relatively little information is available about its virulence factors. The present study demonstrates for the first time that V. ordalii possesses different systems of iron acquisition, one involving siderophore synthesis and another one that uses direct binding of heme to use iron. Using 6 strains of V. ordalii from Atlantic salmon Salmo salar and the V. ordalii type strain, we could demonstrate that all strains could grow in presence of the chelating agent 2,2'-dipyridyl and produced siderophores in solid and liquid media. Cross-feeding assays among V. ordalii strains evidenced variability in the siderophores produced. Bioassays and PCR data suggest that V. ordalii could produce a siderophore with a structure similar to piscibactin, although the production of a second siderophore in certain strains cannot be discarded. Furthermore, all strains were able to use hemin and hemoglobin as the only iron sources, although the cell yield was higher when using hemoglobin. A hemin-binding assay indicated the presence of constitutive heme-binding molecules at the cell surface of V. ordalii. Virulence tests using rainbow trout as a model of infection revealed a clear relationship between iron-uptake ability and pathogenicity in V. ordalii.
Collapse
Affiliation(s)
- Pamela Ruiz
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Viña del Mar, Chile
| | | | | | | | | | | |
Collapse
|
15
|
A Transmissible Plasmid-Borne Pathogenicity Island Confers Piscibactin Biosynthesis in the Fish Pathogen Photobacterium damselae subsp. piscicida. Appl Environ Microbiol 2015; 81:5867-79. [PMID: 26092457 DOI: 10.1128/aem.01580-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/15/2015] [Indexed: 11/20/2022] Open
Abstract
The fish pathogen Photobacterium damselae subsp. piscicida produces the siderophore piscibactin. A gene cluster that resembles the Yersinia high-pathogenicity island (HPI) encodes piscibactin biosynthesis. Here, we report that this HPI-like cluster is part of a hitherto-uncharacterized 68-kb plasmid dubbed pPHDP70. This plasmid lacks homologs of genes that mediate conjugation, but we found that it could be transferred at low frequencies from P. damselae subsp. piscicida to a mollusk pathogenic Vibrio alginolyticus strain and to other Gram-negative bacteria, likely dependent on the conjugative functions of the coresident plasmid pPHDP60. Following its conjugative transfer, pPHDP70 restored the capacity of a vibrioferrin mutant of V. alginolyticus to grow under low-iron conditions, and piscibactin became detectable in its supernatant. Thus, pPHDP70 appears to harbor all the genes required for piscibactin biosynthesis and transport. P. damselae subsp. piscicida strains cured of pPHDP70 no longer produced piscibactin, had impaired growth under iron-limited conditions, and exhibited markedly decreased virulence in fish. Collectively, our findings highlight the importance of pPHDP70, with its capacity for piscibactin-mediated iron acquisition, in the virulence of P. damselae subsp. piscicida. Horizontal transmission of this plasmid-borne piscibactin synthesis gene cluster in the marine environment may facilitate the emergence of new pathogens.
Collapse
|
16
|
Interplay between iron homeostasis and virulence: Fur and RyhB as major regulators of bacterial pathogenicity. Vet Microbiol 2015; 179:2-14. [PMID: 25888312 DOI: 10.1016/j.vetmic.2015.03.024] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 11/21/2022]
Abstract
In bacteria-host interactions, competition for iron is critical for the outcome of the infection. As a result of its redox properties, this metal is essential for the growth and proliferation of most living organisms, including pathogenic bacteria. This metal is also potentially toxic, making the precise maintenance of iron homeostasis necessary for survival. Iron acquisition and storage control is mediated in most bacteria by the global ferric uptake regulator (Fur) and iron-responsive small regulatory non-coding RNAs (RyhB in the model organism Escherichia coli). While the role of these regulators in iron homeostasis is well documented in both pathogenic and non-pathogenic bacteria, many recent studies also demonstrate that these regulators are involved in the virulence of pathogenic bacteria. By sensing iron availability in the environment, Fur and RyhB are able to regulate, either directly or indirectly via other transcriptional regulators or modulation of intracellular iron concentration, many virulence determinants of pathogenic bacteria. Iron is thus both a nutritional and regulatory element, allowing bacteria to adapt to various host environments by adjusting expression of virulence factors. In this review, we present evidences that Fur and RyhB are the major regulators of this adaptation, as they are involved in diverse functions ranging from iron homeostasis to regulation of virulence by mediating key pathogen responses such as invasion of eukaryotic cells, toxin production, motility, quorum sensing, stress resistance or biofilm formation. Therefore, Fur and RyhB play a major role in regulating an adaptative response during bacterial infections, making them important targets in the fight against pathogenic bacteria.
Collapse
|
17
|
Funahashi T, Tanabe T, Maki J, Miyamoto K, Tsujibo H, Yamamoto S. Identification and characterization of Aeromonas hydrophila genes encoding the outer membrane receptor of ferrioxamine B and an AraC-type transcriptional regulator. Biosci Biotechnol Biochem 2014; 78:1777-87. [DOI: 10.1080/09168451.2014.932669] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
We found that, under iron-limiting conditions, Aeromonas hydrophila ATCC 7966T could utilize the xenosiderophore desferrioxamine B (DFOB) for growth by inducing the expression of its own outer membrane receptor. Two consecutive genes, desR and desA, were selected as candidates involved in DFOB utilization. The presence of the ferric-uptake regulator boxes in their promoters suggested that these genes are under iron-dependent regulation. Mutation of desA, a gene that encodes the outer membrane receptor of ferrioxamine B, disrupted the growth of the amonabactin-deficient mutant in the presence of DFOB. β-Galactosidase reporter assays and reverse transcriptase-quantitative PCR demonstrated that desR, a gene that encodes an AraC-like regulator homolog is required for the induction of desA transcription in the presence of DFOB and under iron-limiting conditions. The functions of desA and desR were analyzed using complementation experiments. Our data provided evidence that DesA is powered primarily by the TonB2 system.
Collapse
Affiliation(s)
- Tatsuya Funahashi
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Japan
| | - Tomotaka Tanabe
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Japan
| | - Jun Maki
- Laboratory of Infectious Disease, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Japan
| | - Katsushiro Miyamoto
- Department of Microbiology, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | - Hiroshi Tsujibo
- Department of Microbiology, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | - Shigeo Yamamoto
- Laboratory of Hygienic Chemistry, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Japan
| |
Collapse
|
18
|
Beld J, Sonnenschein EC, Vickery CR, Noel JP, Burkart MD. The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Nat Prod Rep 2014; 31:61-108. [PMID: 24292120 PMCID: PMC3918677 DOI: 10.1039/c3np70054b] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: up to 2013. Although holo-acyl carrier protein synthase, AcpS, a phosphopantetheinyl transferase (PPTase), was characterized in the 1960s, it was not until the publication of the landmark paper by Lambalot et al. in 1996 that PPTases garnered wide-spread attention being classified as a distinct enzyme superfamily. In the past two decades an increasing number of papers have been published on PPTases ranging from identification, characterization, structure determination, mutagenesis, inhibition, and engineering in synthetic biology. In this review, we comprehensively discuss all current knowledge on this class of enzymes that post-translationally install a 4'-phosphopantetheine arm on various carrier proteins.
Collapse
Affiliation(s)
- Joris Beld
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | | | | | | | | |
Collapse
|
19
|
Frans I, Dierckens K, Crauwels S, Van Assche A, Leisner J, Larsen MH, Michiels CW, Willems KA, Lievens B, Bossier P, Rediers H. Does virulence assessment of Vibrio anguillarum using sea bass (Dicentrarchus labrax) larvae correspond with genotypic and phenotypic characterization? PLoS One 2013; 8:e70477. [PMID: 23936439 PMCID: PMC3735585 DOI: 10.1371/journal.pone.0070477] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 06/10/2013] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Vibriosis is one of the most ubiquitous fish diseases caused by bacteria belonging to the genus Vibrio such as Vibrio (Listonella) anguillarum. Despite a lot of research efforts, the virulence factors and mechanism of V. anguillarum are still insufficiently known, in part because of the lack of standardized virulence assays. METHODOLOGY/PRINCIPAL FINDINGS We investigated and compared the virulence of 15 V. anguillarum strains obtained from different hosts or non-host niches using a standardized gnotobiotic bioassay with European sea bass (Dicentrarchus labrax L.) larvae as model hosts. In addition, to assess potential relationships between virulence and genotypic and phenotypic characteristics, the strains were characterized by random amplified polymorphic DNA (RAPD) and repetitive extragenic palindromic PCR (rep-PCR) analyses, as well as by phenotypic analyses using Biolog's Phenotype MicroArray™ technology and some virulence factor assays. CONCLUSIONS/SIGNIFICANCE Virulence testing revealed ten virulent and five avirulent strains. While some relation could be established between serotype, genotype and phenotype, no relation was found between virulence and genotypic or phenotypic characteristics, illustrating the complexity of V. anguillarum virulence. Moreover, the standardized gnotobiotic system used in this study has proven its strength as a model to assess and compare the virulence of different V. anguillarum strains in vivo. In this way, the bioassay contributes to the study of mechanisms underlying virulence in V. anguillarum.
Collapse
Affiliation(s)
- Ingeborg Frans
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Thomas More Mechelen, Campus De Nayer, Department of Microbial and Molecular Systems (M2S), KU Leuven Association, Sint-Katelijne-Waver, Belgium
- Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium
- Centre for Food and Microbial Technology, M2S, KU Leuven, Heverlee, Belgium
- Laboratory of Aquaculture and Artemia Reference Center, Department of Animal Production, Ghent University, Gent, Belgium
| | - Kristof Dierckens
- Laboratory of Aquaculture and Artemia Reference Center, Department of Animal Production, Ghent University, Gent, Belgium
| | - Sam Crauwels
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Thomas More Mechelen, Campus De Nayer, Department of Microbial and Molecular Systems (M2S), KU Leuven Association, Sint-Katelijne-Waver, Belgium
- Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium
| | - Ado Van Assche
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Thomas More Mechelen, Campus De Nayer, Department of Microbial and Molecular Systems (M2S), KU Leuven Association, Sint-Katelijne-Waver, Belgium
- Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium
| | - Jørgen Leisner
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Marianne H. Larsen
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Chris W. Michiels
- Centre for Food and Microbial Technology, M2S, KU Leuven, Heverlee, Belgium
| | - Kris A. Willems
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Thomas More Mechelen, Campus De Nayer, Department of Microbial and Molecular Systems (M2S), KU Leuven Association, Sint-Katelijne-Waver, Belgium
- Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Thomas More Mechelen, Campus De Nayer, Department of Microbial and Molecular Systems (M2S), KU Leuven Association, Sint-Katelijne-Waver, Belgium
- Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium
| | - Peter Bossier
- Laboratory of Aquaculture and Artemia Reference Center, Department of Animal Production, Ghent University, Gent, Belgium
| | - Hans Rediers
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Thomas More Mechelen, Campus De Nayer, Department of Microbial and Molecular Systems (M2S), KU Leuven Association, Sint-Katelijne-Waver, Belgium
- Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium
- * E-mail:
| |
Collapse
|
20
|
Plasmid- and chromosome-encoded siderophore anguibactin systems found in marine vibrios: biosynthesis, transport and evolution. Biometals 2013; 26:537-47. [PMID: 23660776 DOI: 10.1007/s10534-013-9629-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 04/28/2013] [Indexed: 01/04/2023]
Abstract
Vibrio anguillarum is a marine pathogen that causes vibriosis, a hemorrhagic septicemia in aquatic invertebrate as well as vertebrate animals. The siderophore anguibactin system is one of the most important virulence factors of this bacterium. Most of the anguibactin biosynthesis and transport genes are located in the 65-kb pJM1 virulence plasmid although some of them are found in the chromosome of this fish pathogen. Over 30 years of research unveiled the role numerous chromosomal and pJM1 genes play in the synthesis of anguibactin and the transport of cognate ferric complexes into the bacterial cell. Furthermore, these studies showed that pJM1-carrying strains might be originated from pJM1-less strains producing the chromosome-mediated siderophore vanchrobactin. Additionally, we recently identified a chromosome-mediated anguibactin system in V. harveyi suggesting the possible evolutional origin of the V. anguillarum anguibactin system. In this review, we present our current understanding of the mechanisms and evolution hypothesis of the anguibactin system that might have occurred in these pathogenic vibrios.
Collapse
|
21
|
Naka H, Liu M, Crosa JH. Two ABC transporter systems participate in siderophore transport in the marine pathogen Vibrio anguillarum 775 (pJM1). FEMS Microbiol Lett 2013; 341:79-86. [PMID: 23350649 DOI: 10.1111/1574-6968.12092] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 12/25/2012] [Accepted: 01/22/2013] [Indexed: 11/30/2022] Open
Abstract
ORF40 (named fatE) in the Vibrio anguillarum pJM1 plasmid-encoding anguibactin iron transport systems is a homolog of ATPase genes involved in ferric-siderophore transport. Mutation of fatE did not affect ferric-anguibactin transport, indicating that there must be other ATPase gene(s) in addition to fatE. By searching the genomic sequence of V. anguillarum 775(pJM1), we identified a homolog of fatE named fvtE on chromosome 2. It is of interest that in this locus, we also identified homologs of fatB, fatC, and fatD that we named fvtB, fvtC and fvtD, respectively. The fvtE mutant still showed ferric-anguibactin transport, while the double fatE and fvtE mutation completely abolished the ferric-anguibactin transport indicating that fatE and fvtE are functional ATPase homologs for ferric-anguibactin transport. Furthermore, we demonstrate that fvtB, fvtC, fvtD, and fvtE are essential for ferric-vanchrobactin and ferric-enterobactin transport.
Collapse
Affiliation(s)
- Hiroaki Naka
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA.
| | | | | |
Collapse
|
22
|
Naka H, Actis LA, Crosa JH. The anguibactin biosynthesis and transport genes are encoded in the chromosome of Vibrio harveyi: a possible evolutionary origin for the pJM1 plasmid-encoded system of Vibrio anguillarum? Microbiologyopen 2013; 2:182-94. [PMID: 23335587 PMCID: PMC3584223 DOI: 10.1002/mbo3.65] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 11/22/2012] [Accepted: 12/03/2012] [Indexed: 12/31/2022] Open
Abstract
Many Vibrio anguillarum serotype O1 strains carry 65-kb pJM1-type plasmids harboring genes involved in siderophore anguibactin biosynthesis and transport. The anguibactin system is an essential factor for V. anguillarum to survive under iron-limiting conditions, and as a consequence, it is a very important virulence factor of this bacterium. Our comparative analysis of genomic data identified a cluster harboring homologs of anguibactin biosynthesis and transport genes in the chromosome of Vibrio harveyi. We have purified the putative anguibactin siderophore and demonstrated that it is indeed anguibactin by mass spectrometry and specific bioassays. Furthermore, we characterized two genes, angR and fatA, in this chromosome cluster that, respectively, participate in anguibactin biosynthesis and transport as determined by mutagenesis analysis. Furthermore, we found that the V. harveyi FatA protein is located in the outer membrane fractions as previously demonstrated in V. anguillarum. Based on our data, we propose that the anguibactin biosynthesis and transport cluster in the V. anguillarum pJM1 plasmid have likely evolved from the chromosome cluster of V. harveyi or vice versa.
Collapse
Affiliation(s)
- Hiroaki Naka
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA.
| | | | | |
Collapse
|
23
|
Characterization of Vibrio parahaemolyticus genes encoding the systems for utilization of enterobactin as a xenosiderophore. Microbiology (Reading) 2012; 158:2039-2049. [DOI: 10.1099/mic.0.059568-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
24
|
Frans I, Michiels CW, Bossier P, Willems KA, Lievens B, Rediers H. Vibrio anguillarum as a fish pathogen: virulence factors, diagnosis and prevention. JOURNAL OF FISH DISEASES 2011; 34:643-661. [PMID: 21838709 DOI: 10.1111/j.1365-2761.2011.01279.x] [Citation(s) in RCA: 296] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Vibrio anguillarum, also known as Listonella anguillarum, is the causative agent of vibriosis, a deadly haemorrhagic septicaemic disease affecting various marine and fresh/brackish water fish, bivalves and crustaceans. In both aquaculture and larviculture, this disease is responsible for severe economic losses worldwide. Because of its high morbidity and mortality rates, substantial research has been carried out to elucidate the virulence mechanisms of this pathogen and to develop rapid detection techniques and effective disease-prevention strategies. This review summarizes the current state of knowledge pertaining to V. anguillarum, focusing on pathogenesis, known virulence factors, diagnosis, prevention and treatment.
Collapse
Affiliation(s)
- I Frans
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Consortium for Industrial Microbiology and Biotechnology, Department of Microbial and Molecular Systems, K.U. Leuven Association, Lessius Mechelen, Sint-Katelijne-Waver, Belgium
| | | | | | | | | | | |
Collapse
|
25
|
Naka H, Crosa JH. Genetic Determinants of Virulence in the Marine Fish Pathogen Vibrio anguillarum. FISH PATHOLOGY 2011; 46:1-10. [PMID: 21625345 PMCID: PMC3103123 DOI: 10.3147/jsfp.46.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
One of the most studied fish pathogens is Vibrio anguillarum. Development of the genetics and biochemistry of the mechanisms of virulence in this fish pathogen together with clinical and ecologic studies has permitted the intensive development of microbiology in fish diseases. It is the intention of this review to compile the exhaustive knowledge accumulated on this bacterium and its interaction with the host fish by reporting a complete analysis of the V. anguillarum virulence factors and the genetics of their complexity.
Collapse
|
26
|
Sandy M, Han A, Blunt J, Munro M, Haygood M, Butler A. Vanchrobactin and anguibactin siderophores produced by Vibrio sp. DS40M4. JOURNAL OF NATURAL PRODUCTS 2010; 73:1038-43. [PMID: 20521785 PMCID: PMC3065854 DOI: 10.1021/np900750g] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The marine bacterium Vibrio sp. DS40M4 has been found to produce a new triscatechol amide siderophore, trivanchrobactin (1), a related new biscatecholamide compound, divanchrobactin (2), and the previously reported siderophores vanchrobactin (3) and anguibactin (4). Vanchrobactin is comprised of l-serine, d-arginine, and 2,3-dihydroxybenzoic acid, while trivanchrobactin is a linear trimer of vanchrobactin joined by two serine ester linkages. The cyclic trivanchrobactin product was not detected. In addition to siderophore production, extracts of Vibrio sp. DS40M4 were screened for biologically active molecules; anguibactin was found to be cytotoxic against the P388 murine leukemia cell line (IC(50) < 15 microM).
Collapse
Affiliation(s)
| | | | | | | | | | - Alison Butler
- To whom correspondence should be addressed. Tel: 805-893-8178. Fax: 805-893-4120.
| |
Collapse
|
27
|
Lemos ML, Balado M, Osorio CR. Anguibactin- versus vanchrobactin-mediated iron uptake in Vibrio anguillarum: evolution and ecology of a fish pathogen. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:19-26. [PMID: 23765994 DOI: 10.1111/j.1758-2229.2009.00103.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Vibrio anguillarum is a marine bacterium that is present in many marine aquatic environments and that is the main cause of vibriosis in diverse wild and cultured fish species. Two siderophore-mediated iron uptake systems have been described in V. anguillarum. One, mediated by the siderophore anguibactin, is encoded by the pJM1-type plasmids and is restricted to serotype O1 strains. The second one is mediated by the vanchrobactin siderophore and is widespread in many strains belonging to different serotypes. Both siderophores belong to the catecholate group of siderophores, sharing a 2,3-dihydroxybenzoic acid moiety. Vanchrobactin biosynthesis and transport genes are present in all strains examined although the siderophore is not produced in serotype O1 strains harbouring a pJM1-type plasmid. In these strains the insertion of an IS element in the main vanchrobactin biosynthetic gene vabF leads to the fact that only anguibactin is produced. From our current knowledge we can presume that vanchrobactin is the ancestral siderophore in this species and that the anguibactin-mediated system was later acquired during evolution, likely by horizontal transfer. The role of these two different iron uptake mechanisms in the biology, evolution and ecology of V. anguillarum is discussed although they are still far from being completely understood.
Collapse
Affiliation(s)
- Manuel L Lemos
- Department of Microbiology and Parasitology, Institute of Aquaculture, University of Santiago de Compostela, Campus Sur, Santiago de Compostela 15782, Spain
| | | | | |
Collapse
|
28
|
FvtA is the receptor for the siderophore vanchrobactin in Vibrio anguillarum: utility as a route of entry for vanchrobactin analogues. Appl Environ Microbiol 2009; 75:2775-83. [PMID: 19270115 DOI: 10.1128/aem.02897-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Some strains of Vibrio anguillarum, the causative agent of vibriosis in a variety of marine animals, produce a catechol-type siderophore named vanchrobactin. The biosynthetic pathway and regulation of vanchrobactin are quite well understood. However, aspects concerning its entry into the cell have remained uncharacterized. In the present study we characterized two genes, fvtA and orf13, encoding potential TonB-dependent ferric-vanchrobactin receptors in serotype O2 V. anguillarum strain RV22. We found that an fvtA mutant was defective for growth under iron limitation conditions and for utilization of vanchrobactin, suggesting that fvtA encodes the vanchrobactin receptor of V. anguillarum. Interestingly, an orf13 mutant was not significantly affected, and results of reverse transcriptase PCR, as well as analysis of outer membrane proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, suggested that this gene is not expressed. Furthermore, fatA, a plasmid gene coding for the anguibactin receptor in plasmid pJM1-harboring strains, is also present in the chromosome of RV22, although it is inactivated by insertion of transposases. In addition, we found that FvtA is the route of entry for vanchrobactin analogues, and there is evidence that it recognizes primarily the catechol-iron center. These analogues are potential candidate vectors for a Trojan horse strategy aimed at generating antimicrobial compounds exploiting the same route of entry for native siderophores. We found that fvtA and vanchrobactin biosynthesis genes are ubiquitous in both vanchrobactin- and anguibactin-producing V. anguillarum strains, which reinforces the utility of the vanchrobactin route of entry for the design of future strategies for the control of vibriosis.
Collapse
|