1
|
Boyle AK, Tetorou K, Suff N, Beecroft L, Mazzaschi M, Karda R, Hristova M, Waddington SN, Peebles D. Ascending Vaginal Infection in Mice Induces Preterm Birth and Neonatal Morbidity. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:891-906. [PMID: 39892780 DOI: 10.1016/j.ajpath.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 12/06/2024] [Accepted: 01/10/2025] [Indexed: 02/04/2025]
Abstract
Preterm birth (PTB; delivery before 37 weeks), the main cause of neonatal death worldwide, can lead to adverse neurodevelopmental outcomes, as well as lung and gut pathology. PTB can be associated with ascending vaginal infection. Ascending Escherichia coli infection in pregnant mice induces PTB and reduces pup survival. The current study demonstrated that this model recapitulates the pathology observed in human preterm neonates (namely, neuroinflammation, lung injury, and gut inflammation). In neonatal brains, there is widespread cell death, microglial activation, astrogliosis, and reduced neuronal density. The utility of this model was validated by assessing the efficacy of maternal cervical gene therapy with an adeno-associated viral vector containing human β defensin 3. This improved pup survival and reduced tumor necrosis factor alpha mRNA expression in perinatal pup brains exposed to E. coli. This model provides a unique opportunity to evaluate the therapeutic benefit of preterm labor interventions on perinatal pathology.
Collapse
Affiliation(s)
- Ashley K Boyle
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom.
| | - Konstantina Tetorou
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Natalie Suff
- Department of Women and Children's Health, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Laura Beecroft
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Margherita Mazzaschi
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Rajvinder Karda
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Mariya Hristova
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Simon N Waddington
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom; Faculty of Health Sciences, Wits/South African Medical Research Council Antiviral Gene Therapy Research Unit, Johannesburg, South Africa
| | - Donald Peebles
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
2
|
Arredondo-Alonso S, Blundell-Hunter G, Fu Z, Gladstone RA, Fillol-Salom A, Loraine J, Cloutman-Green E, Johnsen PJ, Samuelsen Ø, Pöntinen AK, Cléon F, Chavez-Bueno S, De la Cruz MA, Ares MA, Vongsouvath M, Chmielarczyk A, Horner C, Klein N, McNally A, Reis JN, Penadés JR, Thomson NR, Corander J, Taylor PW, McCarthy AJ. Evolutionary and functional history of the Escherichia coli K1 capsule. Nat Commun 2023; 14:3294. [PMID: 37322051 PMCID: PMC10272209 DOI: 10.1038/s41467-023-39052-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023] Open
Abstract
Escherichia coli is a leading cause of invasive bacterial infections in humans. Capsule polysaccharide has an important role in bacterial pathogenesis, and the K1 capsule has been firmly established as one of the most potent capsule types in E. coli through its association with severe infections. However, little is known about its distribution, evolution and functions across the E. coli phylogeny, which is fundamental to elucidating its role in the expansion of successful lineages. Using systematic surveys of invasive E. coli isolates, we show that the K1-cps locus is present in a quarter of bloodstream infection isolates and has emerged in at least four different extraintestinal pathogenic E. coli (ExPEC) phylogroups independently in the last 500 years. Phenotypic assessment demonstrates that K1 capsule synthesis enhances E. coli survival in human serum independent of genetic background, and that therapeutic targeting of the K1 capsule re-sensitizes E. coli from distinct genetic backgrounds to human serum. Our study highlights that assessing the evolutionary and functional properties of bacterial virulence factors at population levels is important to better monitor and predict the emergence of virulent clones, and to also inform therapies and preventive medicine to effectively control bacterial infections whilst significantly lowering antibiotic usage.
Collapse
Affiliation(s)
- Sergio Arredondo-Alonso
- Department of Biostatistics, University of Oslo, 0317, Oslo, Norway
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | | | - Zuyi Fu
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Rebecca A Gladstone
- Department of Biostatistics, University of Oslo, 0317, Oslo, Norway
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | - Alfred Fillol-Salom
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | | | - Elaine Cloutman-Green
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Pål J Johnsen
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ørjan Samuelsen
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Anna K Pöntinen
- Department of Biostatistics, University of Oslo, 0317, Oslo, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - François Cléon
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Susana Chavez-Bueno
- University of Missouri Kansas City, Kansas City, USA
- Division of Infectious Diseases, Children's Mercy Hospital Kansas City, UMKC School of Medicine, Kansas City, USA
| | - Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Manivanh Vongsouvath
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Agnieszka Chmielarczyk
- Faculty of Medicine, Chair of Microbiology, Jagiellonian University Medical College, Czysta str. 18, 31-121, Kraków, Poland
| | - Carolyne Horner
- British Society for Antimicrobial Chemotherapy, Birmingham, UK
| | - Nigel Klein
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Joice N Reis
- Laboratory of Pathology and Molecular Biology (LPBM), Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation, Salvador, Brazil
- Faculdade de Farmácia, Universidade Federal da Bahia, Salvador, Brazil
| | - José R Penadés
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Nicholas R Thomson
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, 0317, Oslo, Norway.
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK.
- Helsinki Institute of Information Technology, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland.
| | - Peter W Taylor
- School of Pharmacy, University College London, London, UK.
| | - Alex J McCarthy
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, UK.
| |
Collapse
|
3
|
Barichello T, Rocha Catalão CH, Rohlwink UK, van der Kuip M, Zaharie D, Solomons RS, van Toorn R, Tutu van Furth M, Hasbun R, Iovino F, Namale VS. Bacterial meningitis in Africa. Front Neurol 2023; 14:822575. [PMID: 36864913 PMCID: PMC9972001 DOI: 10.3389/fneur.2023.822575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/18/2023] [Indexed: 02/16/2023] Open
Abstract
Bacterial meningitis differs globally, and the incidence and case fatality rates vary by region, country, pathogen, and age group; being a life-threatening disease with a high case fatality rate and long-term complications in low-income countries. Africa has the most significant prevalence of bacterial meningitis illness, and the outbreaks typically vary with the season and the geographic location, with a high incidence in the meningitis belt of the sub-Saharan area from Senegal to Ethiopia. Streptococcus pneumoniae (pneumococcus) and Neisseria meningitidis (meningococcus) are the main etiological agents of bacterial meningitis in adults and children above the age of one. Streptococcus agalactiae (group B Streptococcus), Escherichia coli, and Staphylococcus aureus are neonatal meningitis's most common causal agents. Despite efforts to vaccinate against the most common causes of bacterial neuro-infections, bacterial meningitis remains a significant cause of mortality and morbidity in Africa, with children below 5 years bearing the heaviest disease burden. The factors attributed to this continued high disease burden include poor infrastructure, continued war, instability, and difficulty in diagnosis of bacterial neuro-infections leading to delay in treatment and hence high morbidity. Despite having the highest disease burden, there is a paucity of African data on bacterial meningitis. In this article, we discuss the common etiologies of bacterial neuroinfectious diseases, diagnosis and the interplay between microorganisms and the immune system, and the value of neuroimmune changes in diagnostics and therapeutics.
Collapse
Affiliation(s)
- Tatiana Barichello
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Carlos Henrique Rocha Catalão
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Neuroscience and Behavioral Science, Ribeirao Preto Medical School, University of São Paulo (USP), Ribeirao Preto, SP, Brazil
| | - Ursula K. Rohlwink
- Pediatric Neurosurgery Unit, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
- Division of Neurosurgery, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Martijn van der Kuip
- Department of Pediatric Infectious Diseases and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
| | - Dan Zaharie
- Department of Anatomical Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- National Health Laboratory Services, Tygerberg Hospital, Cape Town, South Africa
| | - Regan S. Solomons
- Department of Pediatric and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ronald van Toorn
- Department of Pediatric and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marceline Tutu van Furth
- Department of Pediatric Infectious Diseases and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, Netherlands
| | - Rodrigo Hasbun
- Division of Infectious Diseases, Department of Internal Medicine, UT Health, McGovern Medical School, Houston, TX, United States
| | - Federico Iovino
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Vivian Ssonko Namale
- Columbia University Irving Medical Center and New York Presbyterian Hospital, New York, NY, United States
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
4
|
O-Acetylation of Capsular Polysialic Acid Enables Escherichia coli K1 Escaping from Siglec-Mediated Innate Immunity and Lysosomal Degradation of E. coli-Containing Vacuoles in Macrophage-Like Cells. Microbiol Spectr 2021; 9:e0039921. [PMID: 34878295 PMCID: PMC8653822 DOI: 10.1128/spectrum.00399-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli K1 causes bacteremia and meningitis in human neonates. The K1 capsule, an α2,8-linked polysialic acid (PSA) homopolymer, is its essential virulence factor. PSA is usually partially modified by O-acetyl groups. It is known that O-acetylation alters the antigenicity of PSA, but its impact on the interactions between E. coli K1 and host cells is unclear. In this study, a phase variant was obtained by passage of E. coli K1 parent strain, which expressed a capsule with 44% O-acetylation whereas the capsule of the parent strain has only 3%. The variant strain showed significantly reduced adherence and invasion to macrophage-like cells in comparison to the parent strain. Furthermore, we found that O-acetylation of PSA enhanced the modulation of trafficking of E. coli-containing vacuoles (ECV), enabling them to avoid fusing with lysosomes in these cells. Intriguingly, by using quartz crystal microbalance, we demonstrated that the PSA purified from the parent strain interacted with human sialic acid-binding immunoglobulin-like lectins (Siglecs), including Siglec-5, Siglec-7, Siglec-11, and Siglec-14. However, O-acetylated PSA from the variant interacted much less and also suppressed the production of Siglec-mediated proinflammatory cytokines. The adherence of the parent strain to human macrophage-like cells was significantly blocked by monoclonal antibodies against Siglec-11 and Siglec-14. Furthermore, the variant strain caused increased bacteremia and higher lethality in neonatal mice compared to the parent strain. These data elucidate that O-acetylation of K1 capsule enables E. coli to escape from Siglec-mediated innate immunity and lysosomal degradation; therefore, it is a strategy used by E. coli K1 to regulate its virulence. IMPORTANCEEscherichia coli K1 is a leading cause of neonatal meningitis. The mortality and morbidity of this disease remain significantly high despite antibiotic therapy. One major limitation on advances in prevention and therapy for meningitis is an incomplete understanding of its pathogenesis. E. coli K1 is surrounded by PSA, which is observed to have high-frequency variation of O-acetyl modification. Here, we present an in-depth study of the function of O-acetylation in PSA at each stage of host-pathogen interaction. We found that a high level of O-acetylation significantly interfered with Siglec-mediated bacterial adherence to macrophage-like cells, and blunted the proinflammatory response. Furthermore, the O-acetylation of PSA modulated the trafficking of ECVs to prevent them from fusing with lysosomes, enabling them to escape degradation by lysozymes within these cells. Elucidating how subtle modification of the capsule enhances bacterial defenses against host innate immunity will enable the future development of effective drugs or vaccines against infection by E. coli K1.
Collapse
|
5
|
Polysialylation and disease. Mol Aspects Med 2020; 79:100892. [PMID: 32863045 DOI: 10.1016/j.mam.2020.100892] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/31/2022]
Abstract
Polysialic acid (polySia, PSA) is a unique constituent of the glycocalyx on the surface of bacterial and vertebrate cells. In vertebrates, its biosynthesis is highly regulated, not only in quantity and quality, but also in time and location, which allows polySia to be involved in various important biological phenomena. Therefore, impairments in the expression and structure of polySia sometimes relate to diseases, such as schizophrenia, bipolar disorder, and cancer. Some bacteria express polySia as a tool for protecting themselves from the host immune system during invasion. PolySia is proven to be a biosafe material; polySia, as well as polySia-recognizing molecules, are key therapeutic agents. This review first comprehensive outlines the occurrence, features, biosynthesis, and functions of polySia and subsequently focuses on the related diseases.
Collapse
|
6
|
Non-Typeable Haemophilus influenzae Invade Choroid Plexus Epithelial Cells in a Polar Fashion. Int J Mol Sci 2020; 21:ijms21165739. [PMID: 32785145 PMCID: PMC7461124 DOI: 10.3390/ijms21165739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 11/17/2022] Open
Abstract
Non-typeable Haemophilus influenzae (NTHI) is a pathogen of the human respiratory tract causing the majority of invasive H. influenzae infections. Severe invasive infections such as septicemia and meningitis occur rarely, but the lack of a protecting vaccine and the increasing antibiotic resistance of NTHI impede treatment and emphasize its relevance as a potential meningitis causing pathogen. Meningitis results from pathogens crossing blood-brain barriers and invading the immune privileged central nervous system (CNS). In this study, we addressed the potential of NTHI to enter the brain by invading cells of the choroid plexus (CP) prior to meningeal inflammation to enlighten NTHI pathophysiological mechanisms. A cell culture model of human CP epithelial cells, which form the blood-cerebrospinal fluid barrier (BCSFB) in vivo, was used to analyze adhesion and invasion by immunofluorescence and electron microscopy. NTHI invade CP cells in vitro in a polar fashion from the blood-facing side. Furthermore, NTHI invasion rates are increased compared to encapsulated HiB and HiF strains. Fimbriae occurrence attenuated adhesion and invasion. Thus, our findings underline the role of the BCSFB as a potential entry port for NTHI into the brain and provide strong evidence for a function of the CP during NTHI invasion into the CNS during the course of meningitis.
Collapse
|
7
|
Shastry DG, Irudayanathan FJ, Williams A, Koffas M, Linhardt RJ, Nangia S, Karande P. Rational identification and characterisation of peptide ligands for targeting polysialic acid. Sci Rep 2020; 10:7697. [PMID: 32376914 PMCID: PMC7203153 DOI: 10.1038/s41598-020-64088-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/08/2020] [Indexed: 11/09/2022] Open
Abstract
The alpha-2,8-linked form of the polysaccharide polysialic acid (PSA) has widespread implications in physiological and pathological processes, ranging from neurological development to disease progression. Though the high electronegativity and excluded volume of PSA often promotes interference of biomolecular interactions, PSA-binding ligands have important implications for both biological processes and biotechnological applications. As such, the design, identification, and characterisation of novel ligands towards PSA is critical for expanding knowledge of PSA interactions and achieving selective glycan targeting. Here, we report on a rational approach for the identification of alpha-2,8-PSA-binding peptides, involving design from the endogenous ligand Siglec-11 and multi-platform characterisation of peptide binding. Microarray-based examination of peptides revealed charge and sequence characteristics influencing peptide affinity to PSA, and carbohydrate-peptide binding was further quantified with a novel fluorescence anisotropy assay. PSA-binding peptides exhibited specific binding to polymeric SA, as well as different degrees of selective binding in various conditions, including competition with PSA of alternating 2,8/9-linkages and screening with PSA-expressing cells. A computational study of Siglec-11 and Siglec-11-derived peptides offered synergistic insight into ligand binding. These results demonstrate the potential of PSA-binding peptides for selective targeting and highlight the importance of the approaches described herein for the study of carbohydrate interactions.
Collapse
Affiliation(s)
- Divya G Shastry
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA. .,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | | | - Asher Williams
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Mattheos Koffas
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.,Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.,Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.,Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.,Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, USA
| | - Pankaj Karande
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA. .,Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
8
|
Meurer M, de Buhr N, Unger LM, Bonilla MC, Seele J, Nau R, Baums CG, Gutsmann T, Schwarz S, von Köckritz-Blickwede M. Comparing Cathelicidin Susceptibility of the Meningitis Pathogens Streptococcus suis and Escherichia coli in Culture Medium in Contrast to Porcine or Human Cerebrospinal Fluid. Front Microbiol 2020; 10:2911. [PMID: 31993024 PMCID: PMC6971174 DOI: 10.3389/fmicb.2019.02911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/03/2019] [Indexed: 01/09/2023] Open
Abstract
Host defense peptides or antimicrobial peptides (AMPs), e.g., cathelicidins, have recently been discussed as a potential new treatment option against bacterial infections. To test the efficacy of AMPs, standardized methods that closely mimic the physiological conditions at the site of infection are still needed. The aim of our study was to test the meningitis-causing bacteria Streptococcus suis and Escherichia coli for their susceptibility to cathelicidins in culture medium versus cerebrospinal fluid (CSF). Susceptibility testing was performed in analogy to the broth microdilution method described by the Clinical and Laboratory Standard Institute (CLSI) to determine minimum inhibitory concentrations (MICs) of antimicrobial agents. MICs were determined using cation-adjusted Mueller-Hinton broth (CA-MHB), lysogeny broth (LB), Roswell Park Memorial Institute medium (RPMI) or Dulbecco's Modified Eagle's Medium (DMEM) (the latter two supplemented with 5% CA-MHB or blood) and compared with MICs obtained in porcine or human CSF. Our data showed that MICs obtained in CA-MHB as recommended by CLSI do not reflect the MICs obtained in the physiological body fluid CSF. However, the MICs of clinical isolates of S. suis tested in RPMI medium supplemented with CA-MHB, were similar to those of the same strains tested in CSF. In contrast, the MICs in the human CSF for the tested E. coli K1 strain were higher compared to the RPMI medium and showed even higher values than in CA-MHB. This highlights the need for susceptibility testing of AMPs in a medium that closely mimics the clinically relevant conditions.
Collapse
Affiliation(s)
- Marita Meurer
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Nicole de Buhr
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Linn Meret Unger
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Marta C. Bonilla
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Jana Seele
- Department of Neuropathology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
- Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany
| | - Roland Nau
- Department of Neuropathology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
- Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany
| | - Christoph G. Baums
- Institute of Bacteriology and Mycology, Center for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Thomas Gutsmann
- Research Group Biophysics, Research Center Borstel, Borstel, Germany
| | - Stefan Schwarz
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Center for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Maren von Köckritz-Blickwede
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| |
Collapse
|
9
|
Rose R, Häuser S, Stump-Guthier C, Weiss C, Rohde M, Kim KS, Ishikawa H, Schroten H, Schwerk C, Adam R. Virulence factor-dependent basolateral invasion of choroid plexus epithelial cells by pathogenic Escherichia coli in vitro. FEMS Microbiol Lett 2019; 365:5195518. [PMID: 30476042 DOI: 10.1093/femsle/fny274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/20/2018] [Indexed: 12/18/2022] Open
Abstract
Escherichia coli is the most common Gram-negative causative agent of neonatal meningitis and E. coli meningitis is associated with high morbidity and mortality. Previous research has been carried out with regard to the blood-brain barrier and thereby unveiled an assortment of virulence factors involved in E. coli meningitis. Little, however, is known about the role of the blood-cerebrospinal fluid (CSF) barrier (BCSFB), in spite of several studies suggesting that the choroid plexus (CP) is a possible entry point for E. coli into the CSF spaces. Here, we used a human CP papilloma (HIBCPP) cell line that was previously established as valid model for the study of the BCSFB. We show that E. coli invades HIBCPP cells in a polar fashion preferentially from the physiologically relevant basolateral side. Moreover, we demonstrate that deletion of outer membrane protein A, ibeA or neuDB genes results in decreased cell infection, while absence of fimH enhances invasion, although causing reduced adhesion to the apical side of HIBCPP cells. Our findings suggest that the BCSFB might constitute an entry point for E. coli into the central nervous system, and HIBCPP cells are a valuable tool for investigating E. coli entry of the BCSFB.
Collapse
Affiliation(s)
- Rebekah Rose
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Svenja Häuser
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Carolin Stump-Guthier
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Christel Weiss
- Department of Medical Statistics and Biomathematics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | - Kwang Sik Kim
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | - Rüdiger Adam
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| |
Collapse
|
10
|
Loss of Trefoil Factor 2 Sensitizes Rat Pups to Systemic Infection with the Neonatal Pathogen Escherichia coli K1. Infect Immun 2019; 87:IAI.00878-18. [PMID: 30833331 DOI: 10.1128/iai.00878-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/22/2019] [Indexed: 11/20/2022] Open
Abstract
Gastrointestinal (GI) colonization of 2-day-old (P2) rat pups with Escherichia coli K1 results in translocation of the colonizing bacteria across the small intestine, bacteremia, and invasion of the meninges, with animals frequently succumbing to lethal infection. Infection, but not colonization, is strongly age dependent; pups become progressively less susceptible to infection over the P2-to-P9 period. Colonization leads to strong downregulation of the gene encoding trefoil factor 2 (Tff2), preventing maturation of the protective mucus barrier in the small intestine. Trefoil factors promote mucosal homeostasis. We investigated the contribution of Tff2 to protection of the neonatal rat from E. coli K1 bacteremia and tissue invasion. Deletion of tff2, using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, sensitized P9 pups to E. coli K1 bacteremia. There were no differences between tff2-/ - homozygotes and the wild type with regard to the dynamics of GI colonization. Loss of the capacity to elaborate Tff2 did not impact GI tract integrity or the thickness of the small-intestinal mucus layer but, in contrast to P9 wild-type pups, enabled E. coli K1 bacteria to gain access to epithelial surfaces in the distal region of the small intestine and exploit an intracellular route across the epithelial monolayer to enter the blood circulation via the mesenteric lymphatic system. Although primarily associated with the mammalian gastric mucosa, we conclude that loss of Tff2 in the developing neonatal small intestine enables the opportunistic neonatal pathogen E. coli K1 to enter the compromised mucus layer in the distal small intestine prior to systemic invasion and infection.
Collapse
|
11
|
Fu J, Li L, Yang X, Yang R, Amjad N, Liu L, Tan C, Chen H, Wang X. Transactivated Epidermal Growth Factor Receptor Recruitment of α-actinin-4 From F-actin Contributes to Invasion of Brain Microvascular Endothelial Cells by Meningitic Escherichia coli. Front Cell Infect Microbiol 2019; 8:448. [PMID: 30687645 PMCID: PMC6333852 DOI: 10.3389/fcimb.2018.00448] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 12/18/2018] [Indexed: 01/05/2023] Open
Abstract
Bacterial penetration of the blood-brain barrier requires its successful invasion of brain microvascular endothelial cells (BMECs), and host actin cytoskeleton rearrangement in these cells is a key prerequisite for this process. We have reported previously that meningitic Escherichia coli can induce the activation of host's epidermal growth factor receptor (EGFR) to facilitate its invasion of BMECs. However, it is unknown how EGFR specifically functions during this invasion process. Here, we identified an important EGFR-interacting protein, α-actinin-4 (ACTN4), which is involved in maintaining and regulating the actin cytoskeleton. We observed that transactivated-EGFR competitively recruited ACTN4 from intracellular F-actin fibers to disrupt the cytoskeleton, thus facilitating bacterial invasion of BMECs. Strikingly, this mechanism operated not only for meningitic E. coli, but also for infections with Streptococcus suis, a Gram-positive meningitis-causing bacterial pathogen, thus revealing a common mechanism hijacked by these meningitic pathogens where EGFR competitively recruits ACTN4. Ever rising levels of antibiotic-resistant bacteria and the emergence of their extended-spectrum antimicrobial-resistant counterparts remind us that EGFR could act as an alternative non-antibiotic target to better prevent and control bacterial meningitis.
Collapse
Affiliation(s)
- Jiyang Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xiaopei Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ruicheng Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Nouman Amjad
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lu Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China.,International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| |
Collapse
|
12
|
Taylor PW, Francis KP. Can 3D imaging provide insights into spatial variations in bacterial infection patterns? Future Microbiol 2018; 13:897-901. [DOI: 10.2217/fmb-2017-0272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recently developed 3D noninvasive in vivo optical imaging is providing fresh insights into the understanding of the pathogenesis of invasive bacteria in small animal experimental models. Here, we describe the advantages of 3D diffuse light imaging tomography with integrated micro-computed tomography (DLIT-μCT) over more traditional 2D systems, in particular with regard to precise localization of infectious foci within tissues in 3D space. We highlight data from rodent studies that employ experimental infections replicating the course of naturally occurring bacterial disease, such as invasive Escherichia coli infections that arise following colonization of the GI tract in neonatal rats. It is argued that this technology will find increasing utility in the study and diagnosis of infectious disease.
Collapse
Affiliation(s)
- Peter W Taylor
- School of Pharmacy, University College London, London WC1N 1AX, UK
| | | |
Collapse
|
13
|
Genome-Wide Identification by Transposon Insertion Sequencing of Escherichia coli K1 Genes Essential for In Vitro Growth, Gastrointestinal Colonizing Capacity, and Survival in Serum. J Bacteriol 2018; 200:JB.00698-17. [PMID: 29339415 PMCID: PMC5847654 DOI: 10.1128/jb.00698-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/09/2018] [Indexed: 12/18/2022] Open
Abstract
Escherichia coli K1 strains are major causative agents of invasive disease of newborn infants. The age dependency of infection can be reproduced in neonatal rats. Colonization of the small intestine following oral administration of K1 bacteria leads rapidly to invasion of the blood circulation; bacteria that avoid capture by the mesenteric lymphatic system and evade antibacterial mechanisms in the blood may disseminate to cause organ-specific infections such as meningitis. Some E. coli K1 surface constituents, in particular the polysialic acid capsule, are known to contribute to invasive potential, but a comprehensive picture of the factors that determine the fully virulent phenotype has not emerged so far. We constructed a library and constituent sublibraries of ∼775,000 Tn5 transposon mutants of E. coli K1 strain A192PP and employed transposon-directed insertion site sequencing (TraDIS) to identify genes required for fitness for infection of 2-day-old rats. Transposon insertions were lacking in 357 genes following recovery on selective agar; these genes were considered essential for growth in nutrient-replete medium. Colonization of the midsection of the small intestine was facilitated by 167 E. coli K1 gene products. Restricted bacterial translocation across epithelial barriers precluded TraDIS analysis of gut-to-blood and blood-to-brain transits; 97 genes were required for survival in human serum. This study revealed that a large number of bacterial genes, many of which were not previously associated with systemic E. coli K1 infection, are required to realize full invasive potential. IMPORTANCEEscherichia coli K1 strains cause life-threatening infections in newborn infants. They are acquired from the mother at birth and colonize the small intestine, from where they invade the blood and central nervous system. It is difficult to obtain information from acutely ill patients that sheds light on physiological and bacterial factors determining invasive disease. Key aspects of naturally occurring age-dependent human infection can be reproduced in neonatal rats. Here, we employ transposon-directed insertion site sequencing to identify genes essential for the in vitro growth of E. coli K1 and genes that contribute to the colonization of susceptible rats. The presence of bottlenecks to invasion of the blood and cerebrospinal compartments precluded insertion site sequencing analysis, but we identified genes for survival in serum.
Collapse
|
14
|
Cole BK, Scott E, Ilikj M, Bard D, Akins DR, Dyer DW, Chavez-Bueno S. Route of infection alters virulence of neonatal septicemia Escherichia coli clinical isolates. PLoS One 2017; 12:e0189032. [PMID: 29236742 PMCID: PMC5728477 DOI: 10.1371/journal.pone.0189032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/05/2017] [Indexed: 12/03/2022] Open
Abstract
Escherichia coli is the leading cause of Gram-negative neonatal septicemia in the United States. Invasion and passage across the neonatal gut after ingestion of maternal E. coli strains produce bacteremia. In this study, we compared the virulence properties of the neonatal E. coli bacteremia clinical isolate SCB34 with the archetypal neonatal E. coli meningitis strain RS218. Whole-genome sequencing data was used to compare the protein coding sequences among these clinical isolates and 33 other representative E. coli strains. Oral inoculation of newborn animals with either strain produced septicemia, whereas intraperitoneal injection caused septicemia only in pups infected with RS218 but not in those injected with SCB34. In addition to being virulent only through the oral route, SCB34 demonstrated significantly greater invasion and transcytosis of polarized intestinal epithelial cells in vitro as compared to RS218. Protein coding sequences comparisons highlighted the presence of known virulence factors that are shared among several of these isolates, and revealed the existence of proteins exclusively encoded in SCB34, many of which remain uncharacterized. Our study demonstrates that oral acquisition is crucial for the virulence properties of the neonatal bacteremia clinical isolate SCB34. This characteristic, along with its enhanced ability to invade and transcytose intestinal epithelium are likely determined by the specific virulence factors that predominate in this strain.
Collapse
Affiliation(s)
- Bryan K. Cole
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Edgar Scott
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Marko Ilikj
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - David Bard
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Darrin R. Akins
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - David W. Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Susana Chavez-Bueno
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
15
|
Lauer AN, Tenenbaum T, Schroten H, Schwerk C. The diverse cellular responses of the choroid plexus during infection of the central nervous system. Am J Physiol Cell Physiol 2017; 314:C152-C165. [PMID: 29070490 DOI: 10.1152/ajpcell.00137.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The choroid plexus (CP) is responsible for the production of a large amount of the cerebrospinal fluid (CSF). As a highly vascularized structure, the CP also presents a significant frontier between the blood and the central nervous system (CNS). To seal this border, the epithelium of the CP forms the blood-CSF barrier, one of the most important barriers separating the CNS from the blood. During the course of infectious disease, cells of the CP can experience interactions with intruding pathogens, especially when the CP is used as gateway for entry into the CNS. In return, the CP answers to these encounters with diverse measures. Here, we will review the distinct responses of the CP during infection of the CNS, which include engaging of signal transduction pathways, the regulation of gene expression in the host cells, inflammatory cell response, alterations of the barrier, and, under certain circumstances, cell death. Many of these actions may contribute to stage an immunological response against the pathogen and subsequently help in the clearance of the infection.
Collapse
Affiliation(s)
- Alexa N Lauer
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University , Mannheim , Germany
| | - Tobias Tenenbaum
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University , Mannheim , Germany
| | - Horst Schroten
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University , Mannheim , Germany
| | - Christian Schwerk
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University , Mannheim , Germany
| |
Collapse
|
16
|
Loh LN, McCarthy EMC, Narang P, Khan NA, Ward TH. Escherichia coli K1 utilizes host macropinocytic pathways for invasion of brain microvascular endothelial cells. Traffic 2017; 18:733-746. [PMID: 28799243 DOI: 10.1111/tra.12508] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 01/06/2023]
Abstract
Eukaryotic cells utilize multiple endocytic pathways for specific uptake of ligands or molecules, and these pathways are commonly hijacked by pathogens to enable host cell invasion. Escherichia coli K1, a pathogenic bacterium that causes neonatal meningitis, invades the endothelium of the blood-brain barrier, but the entry route remains unclear. Here, we demonstrate that the bacteria trigger an actin-mediated uptake route, stimulating fluid phase uptake, membrane ruffling and macropinocytosis. The route of uptake requires intact lipid rafts as shown by cholesterol depletion. Using a variety of perturbants we demonstrate that small Rho GTPases and their downstream effectors have a significant effect on bacterial invasion. Furthermore, clathrin-mediated endocytosis appears to play an indirect role in E. coli K1 uptake. The data suggest that the bacteria effect a complex interplay between the Rho GTPases to increase their chances of uptake by macropinocytosis into human brain microvascular endothelial cells.
Collapse
Affiliation(s)
- Lip Nam Loh
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Elizabeth M C McCarthy
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Priyanka Narang
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Naveed A Khan
- Department of Biological Sciences, Faculty of Science and Technology, Sunway University, Selangor, Malaysia
| | - Theresa H Ward
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
17
|
Witcomb LA, Czupryna J, Francis KP, Frankel G, Taylor PW. Non-invasive three-dimensional imaging of Escherichia coli K1 infection using diffuse light imaging tomography combined with micro-computed tomography. Methods 2017; 127:62-68. [PMID: 28522324 DOI: 10.1016/j.ymeth.2017.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/11/2017] [Accepted: 05/10/2017] [Indexed: 01/08/2023] Open
Abstract
In contrast to two-dimensional bioluminescence imaging, three dimensional diffuse light imaging tomography with integrated micro-computed tomography (DLIT-μCT) has the potential to realise spatial variations in infection patterns when imaging experimental animals dosed with derivatives of virulent bacteria carrying bioluminescent reporter genes such as the lux operon from the bacterium Photorhabdus luminescens. The method provides an opportunity to precisely localise the bacterial infection sites within the animal and enables the generation of four-dimensional movies of the infection cycle. Here, we describe the use of the PerkinElmer IVIS SpectrumCT in vivo imaging system to investigate progression of lethal systemic infection in neonatal rats following colonisation of the gastrointestinal tract with the neonatal pathogen Escherichia coli K1. We confirm previous observations that these bacteria stably colonize the colon and small intestine following feeding of the infectious dose from a micropipette; invading bacteria migrate across the gut epithelium into the blood circulation and establish foci of infection in major organs, including the brain. DLIT-μCT revealed novel multiple sites of colonisation within the alimentary canal, including the tongue, oesophagus and stomach, with penetration of the non-keratinised oesophageal epithelial surface, providing strong evidence of a further major site for bacterial dissemination. We highlight technical issues associated with imaging of infections in new born rat pups and show that the whole-body and organ bioburden correlates with disease severity.
Collapse
Affiliation(s)
- Luci A Witcomb
- University College London School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | | | | | - Gad Frankel
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Peter W Taylor
- University College London School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
18
|
Birchenough GMH, Dalgakiran F, Witcomb LA, Johansson MEV, McCarthy AJ, Hansson GC, Taylor PW. Postnatal development of the small intestinal mucosa drives age-dependent, regio-selective susceptibility to Escherichia coli K1 infection. Sci Rep 2017; 7:83. [PMID: 28250440 PMCID: PMC5427930 DOI: 10.1038/s41598-017-00123-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/08/2017] [Indexed: 12/22/2022] Open
Abstract
The strong age dependency of neonatal systemic infection with Escherichia coli K1 can be replicated in the neonatal rat. Gastrointestinal (GI) colonization of two-day-old (P2) rats leads to invasion of the blood within 48 h of initiation of colonization; pups become progressively less susceptible to infection over the P2-P9 period. We show that, in animals colonized at P2 but not at P9, E. coli K1 bacteria gain access to the enterocyte surface in the mid-region of the small intestine and translocate through the epithelial cell monolayer by an intracellular pathway to the submucosa. In this region of the GI tract, the protective mucus barrier is poorly developed but matures to full thickness over P2-P9, coincident with the development of resistance to invasion. At P9, E. coli K1 bacteria are physically separated from villi by the mucus layer and their numbers controlled by mucus-embedded antimicrobial peptides, preventing invasion of host tissues.
Collapse
Affiliation(s)
- George M H Birchenough
- Department of Medical Biochemistry, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Fatma Dalgakiran
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Luci A Witcomb
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Malin E V Johansson
- Department of Medical Biochemistry, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Alex J McCarthy
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Gunnar C Hansson
- Department of Medical Biochemistry, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Peter W Taylor
- School of Pharmacy, University College London, London, WC1N 1AX, UK.
| |
Collapse
|
19
|
A journey into the brain: insight into how bacterial pathogens cross blood-brain barriers. Nat Rev Microbiol 2017; 15:149-159. [PMID: 28090076 DOI: 10.1038/nrmicro.2016.178] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The blood-brain barrier, which is one of the tightest barriers in the body, protects the brain from insults, such as infections. Indeed, only a few of the numerous blood-borne bacteria can cross the blood-brain barrier to cause meningitis. In this Review, we focus on invasive extracellular pathogens, such as Neisseria meningitidis, Streptococcus pneumoniae, group B Streptococcus and Escherichia coli, to review the obstacles that bacteria have to overcome in order to invade the meninges from the bloodstream, and the specific skills they have developed to bypass the blood-brain barrier. The medical importance of understanding how these barriers can be circumvented is underlined by the fact that we need to improve drug delivery into the brain.
Collapse
|
20
|
Pathoadaptive Mutations of Escherichia coli K1 in Experimental Neonatal Systemic Infection. PLoS One 2016; 11:e0166793. [PMID: 27861552 PMCID: PMC5115809 DOI: 10.1371/journal.pone.0166793] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/03/2016] [Indexed: 12/04/2022] Open
Abstract
Although Escherichia coli K1 strains are benign commensals in adults, their acquisition at birth by the newborn may result in life-threatening systemic infections, most commonly sepsis and meningitis. Key features of these infections, including stable gastrointestinal (GI) colonization and age-dependent invasion of the bloodstream, can be replicated in the neonatal rat. We previously increased the capacity of a septicemia isolate of E. coli K1 to elicit systemic infection following colonization of the small intestine by serial passage through two-day-old (P2) rat pups. The passaged strain, A192PP (belonging to sequence type 95), induces lethal infection in all pups fed 2–6 x 106 CFU. Here we use whole-genome sequencing to identify mutations responsible for the threefold increase in lethality between the initial clinical isolate and the passaged derivative. Only four single nucleotide polymorphisms (SNPs), in genes (gloB, yjgV, tdcE) or promoters (thrA) involved in metabolic functions, were found: no changes were detected in genes encoding virulence determinants associated with the invasive potential of E. coli K1. The passaged strain differed in carbon source utilization in comparison to the clinical isolate, most notably its inability to metabolize glucose for growth. Deletion of each of the four genes from the E. coli A192PP chromosome altered the proteome, reduced the number of colonizing bacteria in the small intestine and increased the number of P2 survivors. This work indicates that changes in metabolic potential lead to increased colonization of the neonatal GI tract, increasing the potential for translocation across the GI epithelium into the systemic circulation.
Collapse
|
21
|
Witcomb LA, Collins JW, McCarthy AJ, Frankel G, Taylor PW. Bioluminescent imaging reveals novel patterns of colonization and invasion in systemic Escherichia coli K1 experimental infection in the neonatal rat. Infect Immun 2015; 83:4528-40. [PMID: 26351276 PMCID: PMC4645386 DOI: 10.1128/iai.00953-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/03/2015] [Indexed: 11/20/2022] Open
Abstract
Key features of Escherichia coli K1-mediated neonatal sepsis and meningitis, such as a strong age dependency and development along the gut-mesentery-blood-brain course of infection, can be replicated in the newborn rat. We examined temporal and spatial aspects of E. coli K1 infection following initiation of gastrointestinal colonization in 2-day-old (P2) rats after oral administration of E. coli K1 strain A192PP and a virulent bioluminescent derivative, E. coli A192PP-lux2. A combination of bacterial enumeration in the major organs, two-dimensional bioluminescence imaging, and three-dimensional diffuse light imaging tomography with integrated micro-computed tomography indicated multiple sites of colonization within the alimentary canal; these included the tongue, esophagus, and stomach in addition to the small intestine and colon. After invasion of the blood compartment, the bacteria entered the central nervous system, with restricted colonization of the brain, and also invaded the major organs, in line with increases in the severity of symptoms of infection. Both keratinized and nonkeratinized surfaces of esophagi were colonized to a considerably greater extent in susceptible P2 neonates than in corresponding tissues from infection-resistant 9-day-old rat pups; the bacteria appeared to damage and penetrate the nonkeratinized esophageal epithelium of infection-susceptible P2 animals, suggesting the esophagus represents a portal of entry for E. coli K1 into the systemic circulation. Thus, multimodality imaging of experimental systemic infections in real time indicates complex dynamic patterns of colonization and dissemination that provide new insights into the E. coli K1 infection of the neonatal rat.
Collapse
Affiliation(s)
- Luci A Witcomb
- University College London School of Pharmacy, London, United Kingdom
| | - James W Collins
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Alex J McCarthy
- University College London School of Pharmacy, London, United Kingdom
| | - Gadi Frankel
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Peter W Taylor
- University College London School of Pharmacy, London, United Kingdom
| |
Collapse
|
22
|
The Genotoxin Colibactin Is a Determinant of Virulence in Escherichia coli K1 Experimental Neonatal Systemic Infection. Infect Immun 2015; 83:3704-11. [PMID: 26150540 DOI: 10.1128/iai.00716-15] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/30/2015] [Indexed: 02/03/2023] Open
Abstract
Escherichia coli strains expressing the K1 capsule are a major cause of sepsis and meningitis in human neonates. The development of these diseases is dependent on the expression of a range of virulence factors, many of which remain uncharacterized. Here, we show that all but 1 of 34 E. coli K1 neonatal isolates carried clbA and clbP, genes contained within the pks pathogenicity island and required for the synthesis of colibactin, a polyketide-peptide genotoxin that causes genomic instability in eukaryotic cells by induction of double-strand breaks in DNA. Inactivation of clbA and clbP in E. coli A192PP, a virulent strain of serotype O18:K1 that colonizes the gastrointestinal tract and translocates to the blood compartment with very high frequency in experimental infection of the neonatal rat, significantly reduced the capacity of A192PP to colonize the gut, engender double-strand breaks in DNA, and cause invasive, lethal disease. Mutation of clbA, which encodes a pleiotropic enzyme also involved in siderophore synthesis, impacted virulence to a greater extent than mutation of clbP, encoding an enzyme specific to colibactin synthesis. Restoration of colibactin gene function by complementation reestablished the fully virulent phenotype. We conclude that colibactin contributes to the capacity of E. coli K1 to colonize the neonatal gastrointestinal tract and to cause invasive disease in the susceptible neonate.
Collapse
|
23
|
Host-like carbohydrates promote bloodstream survival of Vibrio vulnificus in vivo. Infect Immun 2015; 83:3126-36. [PMID: 26015477 PMCID: PMC4496609 DOI: 10.1128/iai.00345-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/13/2015] [Indexed: 01/15/2023] Open
Abstract
Sialic acids are found on all vertebrate cell surfaces and are part of a larger class of molecules known as nonulosonic acids. Many bacterial pathogens synthesize related nine-carbon backbone sugars; however, the role(s) of these non-sialic acid molecules in host-pathogen interactions is poorly understood. Vibrio vulnificus is the leading cause of seafood-related death in the United States due to its ability to quickly access the host bloodstream, which it can accomplish through gastrointestinal or wound infection. However, little is known about how this organism persists systemically. Here we demonstrate that sialic acid-like molecules are present on the lipopolysaccharide of V. vulnificus, are required for full motility and biofilm formation, and also contribute to the organism's natural resistance to polymyxin B. Further experiments in a murine model of intravenous V. vulnificus infection demonstrated that expression of nonulosonic acids had a striking benefit for bacterial survival during bloodstream infection and dissemination to other tissues in vivo. In fact, levels of bacterial persistence in the blood corresponded to the overall levels of these molecules expressed by V. vulnificus isolates. Taken together, these results suggest that molecules similar to sialic acids evolved to facilitate the aquatic lifestyle of V. vulnificus but that their emergence also resulted in a gain of function with life-threatening potential in the human host.
Collapse
|
24
|
Dalgakiran F, Witcomb LA, McCarthy AJ, Birchenough GMH, Taylor PW. Non-invasive model of neuropathogenic Escherichia coli infection in the neonatal rat. J Vis Exp 2014:e52018. [PMID: 25408299 PMCID: PMC4353393 DOI: 10.3791/52018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Investigation of the interactions between animal host and bacterial pathogen is only meaningful if the infection model employed replicates the principal features of the natural infection. This protocol describes procedures for the establishment and evaluation of systemic infection due to neuropathogenic Escherichia coli K1 in the neonatal rat. Colonization of the gastrointestinal tract leads to dissemination of the pathogen along the gut-lymph-blood-brain course of infection and the model displays strong age dependency. A strain of E. coli O18:K1 with enhanced virulence for the neonatal rat produces exceptionally high rates of colonization, translocation to the blood compartment and invasion of the meninges following transit through the choroid plexus. As in the human host, penetration of the central nervous system is accompanied by local inflammation and an invariably lethal outcome. The model is of proven utility for studies of the mechanism of pathogenesis, for evaluation of therapeutic interventions and for assessment of bacterial virulence.
Collapse
|
25
|
Dando SJ, Mackay-Sim A, Norton R, Currie BJ, St John JA, Ekberg JAK, Batzloff M, Ulett GC, Beacham IR. Pathogens penetrating the central nervous system: infection pathways and the cellular and molecular mechanisms of invasion. Clin Microbiol Rev 2014; 27:691-726. [PMID: 25278572 PMCID: PMC4187632 DOI: 10.1128/cmr.00118-13] [Citation(s) in RCA: 300] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The brain is well protected against microbial invasion by cellular barriers, such as the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB). In addition, cells within the central nervous system (CNS) are capable of producing an immune response against invading pathogens. Nonetheless, a range of pathogenic microbes make their way to the CNS, and the resulting infections can cause significant morbidity and mortality. Bacteria, amoebae, fungi, and viruses are capable of CNS invasion, with the latter using axonal transport as a common route of infection. In this review, we compare the mechanisms by which bacterial pathogens reach the CNS and infect the brain. In particular, we focus on recent data regarding mechanisms of bacterial translocation from the nasal mucosa to the brain, which represents a little explored pathway of bacterial invasion but has been proposed as being particularly important in explaining how infection with Burkholderia pseudomallei can result in melioidosis encephalomyelitis.
Collapse
Affiliation(s)
- Samantha J Dando
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Alan Mackay-Sim
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Robert Norton
- Townsville Hospital, Townsville, Queensland, Australia
| | - Bart J Currie
- Menzies School of Health Research and Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - James A St John
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Jenny A K Ekberg
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Michael Batzloff
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Glen C Ulett
- School of Medical Science and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Ifor R Beacham
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
26
|
Neonatal immunology: responses to pathogenic microorganisms and epigenetics reveal an "immunodiverse" developmental state. Immunol Res 2014; 57:246-57. [PMID: 24214026 DOI: 10.1007/s12026-013-8439-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neonatal animals have heightened susceptibility to infectious agents and are at increased risk for the development of allergic diseases, such as asthma. Experimental studies using animal models have been quite useful for beginning to identify the cellular and molecular mechanisms underlying these sensitivities. In particular, results from murine neonatal models indicate that developmental regulation of multiple immune cell types contributes to the typically poor responses of neonates to pathogenic microorganisms. Surprisingly, however, animal studies have also revealed that responses at mucosal surfaces in early life may be protective against primary or secondary disease. Our understanding of the molecular events underlying these processes is less well developed. Emerging evidence indicates that the functional properties of neonatal immune cells and the subsequent maturation of the immune system in ontogeny may be regulated by epigenetic phenomena. Here, we review recent findings from our group and others describing cellular responses to infection and developmentally regulated epigenetic processes in the newborn.
Collapse
|
27
|
Wang Y, Kasper LH. The role of microbiome in central nervous system disorders. Brain Behav Immun 2014; 38:1-12. [PMID: 24370461 PMCID: PMC4062078 DOI: 10.1016/j.bbi.2013.12.015] [Citation(s) in RCA: 537] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 12/12/2022] Open
Abstract
Mammals live in a co-evolutionary association with the plethora of microorganisms that reside at a variety of tissue microenvironments. The microbiome represents the collective genomes of these co-existing microorganisms, which is shaped by host factors such as genetics and nutrients but in turn is able to influence host biology in health and disease. Niche-specific microbiome, prominently the gut microbiome, has the capacity to effect both local and distal sites within the host. The gut microbiome has played a crucial role in the bidirectional gut-brain axis that integrates the gut and central nervous system (CNS) activities, and thus the concept of microbiome-gut-brain axis is emerging. Studies are revealing how diverse forms of neuro-immune and neuro-psychiatric disorders are correlated with or modulated by variations of microbiome, microbiota-derived products and exogenous antibiotics and probiotics. The microbiome poises the peripheral immune homeostasis and predisposes host susceptibility to CNS autoimmune diseases such as multiple sclerosis. Neural, endocrine and metabolic mechanisms are also critical mediators of the microbiome-CNS signaling, which are more involved in neuro-psychiatric disorders such as autism, depression, anxiety, stress. Research on the role of microbiome in CNS disorders deepens our academic knowledge about host-microbiome commensalism in central regulation and in practicality, holds conceivable promise for developing novel prognostic and therapeutic avenues for CNS disorders.
Collapse
Affiliation(s)
- Yan Wang
- Departments of Microbiology/Immunology and Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Lloyd H. Kasper
- Departments of Microbiology/Immunology and Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
28
|
Birchenough GMH, Johansson MEV, Stabler RA, Dalgakiran F, Hansson GC, Wren BW, Luzio JP, Taylor PW. Altered innate defenses in the neonatal gastrointestinal tract in response to colonization by neuropathogenic Escherichia coli. Infect Immun 2013; 81:3264-75. [PMID: 23798529 PMCID: PMC3754193 DOI: 10.1128/iai.00268-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/14/2013] [Indexed: 01/06/2023] Open
Abstract
Two-day-old (P2), but not 9-day-old (P9), rat pups are susceptible to systemic infection following gastrointestinal colonization by Escherichia coli K1. Age dependency reflects the capacity of colonizing K1 to translocate from gastrointestinal (GI) tract to blood. A complex GI microbiota developed by P2, showed little variation over P2 to P9, and did not prevent stable K1 colonization. Substantial developmental expression was observed over P2 to P9, including upregulation of genes encoding components of the small intestinal (α-defensins Defa24 and Defa-rs1) and colonic (trefoil factor Tff2) mucus barrier. K1 colonization modulated expression of these peptides: developmental expression of Tff2 was dysregulated in P2 tissues and was accompanied by a decrease in mucin Muc2. Conversely, α-defensin genes were upregulated in P9 tissues. We propose that incomplete development of the mucus barrier during early neonatal life and the capacity of colonizing K1 to interfere with mucus barrier maturation provide opportunities for neuropathogen translocation into the bloodstream.
Collapse
Affiliation(s)
| | | | | | - Fatma Dalgakiran
- University College London School of Pharmacy, London, United Kingdom
| | | | - Brendan W. Wren
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - J. Paul Luzio
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Peter W. Taylor
- University College London School of Pharmacy, London, United Kingdom
| |
Collapse
|
29
|
Willis LM, Whitfield C. Structure, biosynthesis, and function of bacterial capsular polysaccharides synthesized by ABC transporter-dependent pathways. Carbohydr Res 2013; 378:35-44. [PMID: 23746650 DOI: 10.1016/j.carres.2013.05.007] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/06/2013] [Accepted: 05/11/2013] [Indexed: 12/11/2022]
Abstract
Bacterial capsules are formed primarily from long-chain polysaccharides with repeat-unit structures. A given bacterial species can produce a range of capsular polysaccharides (CPSs) with different structures and these help distinguish isolates by serotyping, as is the case with Escherichia coli K antigens. Capsules are important virulence factors for many pathogens and this review focuses on CPSs synthesized via ATP-binding cassette (ABC) transporter-dependent processes in Gram-negative bacteria. Bacteria utilizing this pathway are often associated with urinary tract infections, septicemia, and meningitis, and E. coli and Neisseria meningitidis provide well-studied examples. CPSs from ABC transporter-dependent pathways are synthesized at the cytoplasmic face of the inner membrane through the concerted action of glycosyltransferases before being exported across the inner membrane and translocated to the cell surface. A hallmark of these CPSs is a conserved reducing terminal glycolipid composed of phosphatidylglycerol and a poly-3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) linker. Recent discovery of the structure of this conserved lipid terminus provides new insights into the early steps in CPS biosynthesis.
Collapse
Affiliation(s)
- Lisa M Willis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
30
|
Jakobsson E, Schwarzer D, Jokilammi A, Finne J. Endosialidases: Versatile Tools for the Study of Polysialic Acid. Top Curr Chem (Cham) 2012; 367:29-73. [PMID: 22851159 DOI: 10.1007/128_2012_349] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polysialic acid is an α2,8-linked N-acetylneuraminic acid polymer found on the surface of both bacterial and eukaryotic cells. Endosialidases are bacteriophage-borne glycosyl hydrolases that specifically cleave polysialic acid. The crystal structure of an endosialidase reveals a trimeric mushroom-shaped molecule which, in addition to the active site, harbors two additional polysialic acid binding sites. Folding of the protein crucially depends on an intramolecular C-terminal chaperone domain that is proteolytically released in an intramolecular reaction. Based on structural data and previous considerations, an updated catalytic mechanism is discussed. Endosialidases degrade polysialic acid in a processive mode of action, and a model for its mechanism is suggested. The review summarizes the structural and biochemical elucidations of the last decade and the importance of endosialidases in biochemical and medical applications. Active endosialidases are important tools in studies on the biological roles of polysialic acid, such as the pathogenesis of septicemia and meningitis by polysialic acid-encapsulated bacteria, or its role as a modulator of the adhesion and interactions of neural and other cells. Endosialidase mutants that have lost their polysialic acid cleaving activity while retaining their polysialic acid binding capability have been fused to green fluorescent protein to provide an efficient tool for the specific detection of polysialic acid.
Collapse
Affiliation(s)
- Elina Jakobsson
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | | | | | | |
Collapse
|
31
|
Schwerk C, Adam R, Borkowski J, Schneider H, Klenk M, Zink S, Quednau N, Schmidt N, Stump C, Sagar A, Spellerberg B, Tenenbaum T, Koczan D, Klein-Hitpass L, Schroten H. In vitro transcriptome analysis of porcine choroid plexus epithelial cells in response to Streptococcus suis: release of pro-inflammatory cytokines and chemokines. Microbes Infect 2011; 13:953-62. [DOI: 10.1016/j.micinf.2011.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 05/19/2011] [Accepted: 05/24/2011] [Indexed: 01/12/2023]
|
32
|
Zelmer A, Martin MJ, Gundogdu O, Birchenough G, Lever R, Wren BW, Luzio JP, Taylor PW. Administration of capsule-selective endosialidase E minimizes upregulation of organ gene expression induced by experimental systemic infection with Escherichia coli K1. MICROBIOLOGY-SGM 2010; 156:2205-2215. [PMID: 20395269 DOI: 10.1099/mic.0.036145-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Many neurotropic strains of Escherichia coli cause potentially lethal bacteraemia and meningitis in newborn infants by virtue of their capacity to elaborate the protective polysialic acid (polySia) K1 capsule. Recombinant capsule depolymerase, endosialidase E (endoE), selectively removes polySia from the bacterial surface; when administered intraperitoneally to infected neonatal rats, the enzyme interrupts the transit of E. coli K1 from gut to brain via the blood circulation and prevents death from systemic infection. We now show that experimental E. coli K1 infection is accompanied by extensive modulation of host gene expression in the liver, spleen and brain tissues of neonatal rats. Bacterial invasion of the brain resulted in a threefold or greater upregulation of approximately 400 genes, a large number of which were associated with the induction of inflammation and the immune and stress responses: these included genes encoding C-X-C and C-C chemokines, lipocalins, cytokines, apolipoproteins and enzymes involved in the synthesis of low-molecular-mass inflammatory mediators. Administration of a single dose of endoE, 24 h after initiation of systemic infection, markedly reduced, but did not completely abrogate, these changes in gene expression, suggesting that attenuation of E. coli K1 virulence by removal of the polySia capsule may minimize the attendant inflammatory processes that contribute to poor outcome in these severe systemic infections.
Collapse
Affiliation(s)
- Andrea Zelmer
- School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Melissa J Martin
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Ozan Gundogdu
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | | | - Rebecca Lever
- School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Brendan W Wren
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - J Paul Luzio
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Peter W Taylor
- School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| |
Collapse
|
33
|
Ferrero MA, Aparicio LR. Biosynthesis and production of polysialic acids in bacteria. Appl Microbiol Biotechnol 2010; 86:1621-35. [PMID: 20349183 DOI: 10.1007/s00253-010-2531-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 02/25/2010] [Accepted: 02/25/2010] [Indexed: 01/30/2023]
Abstract
Polysialic acids (PA) are protective capsular sialohomopolymers present in some bacteria which can invade the mammalian host and cause lethal bacteremia and meningitis. Biosynthesis and translocation of PA to the cell surface are equivalent in different species and bacterial strains which are produced. The diversity in PA structure is derived from the PA linkages and is a consequence of the specific sialyltransferase activities. The monomer acetylation and the polymer length could be important factors in the potential virulence. In vivo PA production is affected by different physical and chemical factors. The temperature of cellular growth strictly regulates PA genesis through a molecular complex and multifactorial mechanism that operate to transcription level.
Collapse
Affiliation(s)
- Miguel Angel Ferrero
- Departamento de Biología Molecular, Universidad de León, Campus de Vegazana, 24071, León, Spain.
| | | |
Collapse
|
34
|
Glonti T, Chanishvili N, Taylor P. Bacteriophage-derived enzyme that depolymerizes the alginic acid capsule associated with cystic fibrosis isolates ofPseudomonas aeruginosa. J Appl Microbiol 2010; 108:695-702. [DOI: 10.1111/j.1365-2672.2009.04469.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Mordhorst IL, Claus H, Ewers C, Lappann M, Schoen C, Elias J, Batzilla J, Dobrindt U, Wieler LH, Bergfeld AK, Mühlenhoff M, Vogel U. O-acetyltransferase geneneuOis segregated according to phylogenetic background and contributes to environmental desiccation resistance inEscherichia coliK1. Environ Microbiol 2009; 11:3154-65. [DOI: 10.1111/j.1462-2920.2009.02019.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|