1
|
Pavlin A, Fornelos N, Popović M, Praček N, Bajc G, Salas M, Butala M. Autoregulation ensures vertical transmission of the linear prophage GIL01. Commun Biol 2024; 7:1388. [PMID: 39455843 PMCID: PMC11511902 DOI: 10.1038/s42003-024-07082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Betatectiviruses are prophages consisting of linear extrachromosomal genomes without obvious plasmid modules. It remains unclear how betatectiviruses are maintained in low-copy numbers in host cells and how they are vertically transmitted. Phage GIL01 is a model betatectivirus that infects the mosquito pathogen Bacillus thuringiensis serovar israelensis. Previous studies identified two closely spaced promoters, P1 and P2, responsible for the expression of GIL01 genes required for prophage replication and the switch from the lysogenic to lytic cycle. Here, we report that the GIL01-encoded 58-amino acid long gp1 protein forms a large nucleoprotein complex that represses its transcription from the strong promoter P2. Notably, ectopic expression of gp1 resulted in the loss of GIL01 in exponential cultures and immunized cells against infection with GIL01, indicating that gp1 plays a repressive role in the phage cycle. This finding is consistent with mutations in gp1 committing GIL01 to the lytic cycle and we show that maintenance of this phage variant in the bacterial population is contingent on the accumulation of deletions in the P1-P2 region. The fact that gp1 is conserved across most sequenced betatectiviruses suggests that the regulatory mechanism of gp1 that controls prophage maintenance is widespread among these bacteriophages.
Collapse
Affiliation(s)
- Anja Pavlin
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nadine Fornelos
- Harvard Medical School, Office for Research Initiatives and Global Programs, Boston, MA, 02115, USA
| | - Maja Popović
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Neža Praček
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Bajc
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Margarita Salas
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049, Madrid, Spain
| | - Matej Butala
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Jaglan AB, Vashisth M, Sharma P, Verma R, Virmani N, Bera BC, Vaid RK, Singh RK, Anand T. Phage Mediated Biocontrol: A Promising Green Solution for Sustainable Agriculture. Indian J Microbiol 2024; 64:318-327. [PMID: 39011019 PMCID: PMC11246405 DOI: 10.1007/s12088-024-01204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/06/2024] [Indexed: 07/17/2024] Open
Abstract
In the current scenario of growing world population, limited cultivable land resources, plant diseases, and pandemics are some of the major factors responsible for declining global food security. Along with meeting the food demand, the maintenance of food quality is also required to ensure healthy consumption and marketing. In agricultural fields, pest infestations and bacterial diseases are common causes of crop damage, leading to massive yield losses. Conventionally, antibiotics and several pesticides have been used to manage and control these plant pathogens. However, the overuse of antibiotics and pesticides has led to the emergence of resistant strains of pathogenic bacteria. The bacteriophages are the natural predators of bacteria and are host-specific in their action. Therefore, the use of bacteriophages for the biocontrol of pathogenic bacteria is serving as a sustainable and green solution in crop protection and production. In this review, we have discussed the important plant pathogens and their impact on plant health and yield loss. Further, we have abridged the role of bacteriophages in the protection of crops from bacterial disease by discussing various greenhouse and field trials. Finally, we have discussed the impact of bacteriophages on the plant microbiome, phage resistance, and legal challenges in the registration and commercial production of bacteriophage-based biopesticides. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01204-x.
Collapse
Affiliation(s)
- Anu Bala Jaglan
- ICAR - National Research Centre on Equines, Hisar, Haryana 125001 India
- Department of Zoology and Aquaculture, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana 125004 India
| | - Medhavi Vashisth
- ICAR - National Research Centre on Equines, Hisar, Haryana 125001 India
| | - Priya Sharma
- ICAR - National Research Centre on Equines, Hisar, Haryana 125001 India
| | - Ravikant Verma
- Department of Zoology and Aquaculture, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana 125004 India
| | - Nitin Virmani
- ICAR - National Research Centre on Equines, Hisar, Haryana 125001 India
| | - Bidhan C Bera
- ICAR - National Research Centre on Equines, Hisar, Haryana 125001 India
| | - Rajesh K Vaid
- ICAR - National Research Centre on Equines, Hisar, Haryana 125001 India
| | - Raj K Singh
- Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122 India
| | - Taruna Anand
- ICAR - National Research Centre on Equines, Hisar, Haryana 125001 India
| |
Collapse
|
3
|
Tian R, Zhao R, Guo H, Yan K, Wang C, Lu C, Lv X, Li J, Liu L, Du G, Chen J, Liu Y. Engineered bacterial orthogonal DNA replication system for continuous evolution. Nat Chem Biol 2023; 19:1504-1512. [PMID: 37443393 DOI: 10.1038/s41589-023-01387-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
Continuous evolution can generate biomolecules for synthetic biology and enable evolutionary investigation. The orthogonal DNA replication system (OrthoRep) in yeast can efficiently mutate long DNA fragments in an easy-to-operate manner. However, such a system is lacking in bacteria. Therefore, we developed a bacterial orthogonal DNA replication system (BacORep) for continuous evolution. We achieved this by harnessing the temperate phage GIL16 DNA replication machinery in Bacillus thuringiensis with an engineered error-prone orthogonal DNA polymerase. BacORep introduces all 12 types of nucleotide substitution in 15-kilobase genes on orthogonally replicating linear plasmids with a 6,700-fold higher mutation rate than that of the host genome, the mutation rate of which is unchanged. Here we demonstrate the utility of BacORep-based continuous evolution by generating strong promoters applicable to model bacteria, Bacillus subtilis and Escherichia coli, and achieving a 7.4-fold methanol assimilation increase in B. thuringiensis. BacORep is a powerful tool for continuous evolution in prokaryotic cells.
Collapse
Affiliation(s)
- Rongzhen Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Runzhi Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Haoyu Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Kun Yan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Chenyun Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Cheng Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
- Science Center for Future Foods, Jiangnan University, Wuxi, China.
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China.
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China.
| |
Collapse
|
4
|
Pavlin A, Lovše A, Bajc G, Otoničar J, Kujović A, Lengar Ž, Gutierrez-Aguirre I, Kostanjšek R, Konc J, Fornelos N, Butala M. A small bacteriophage protein determines the hierarchy over co-residential jumbo phage in Bacillus thuringiensis serovar israelensis. Commun Biol 2022; 5:1286. [PMID: 36434275 PMCID: PMC9700832 DOI: 10.1038/s42003-022-04238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 11/08/2022] [Indexed: 11/26/2022] Open
Abstract
Bacillus thuringiensis serovar israelensis is the most widely used biopesticide against insects, including vectors of animal and human diseases. Among several extrachromosomal elements, this endospore-forming entomopathogen harbors two bacteriophages: a linear DNA replicon named GIL01 that does not integrate into the chromosome during lysogeny and a circular-jumbo prophage known as pBtic235. Here, we show that GIL01 hinders the induction of cohabiting prophage pBtic235. The GIL01-encoded small protein, gp7, which interacts with the host LexA repressor, is a global transcription regulator and represses the induction of pBtic235 after DNA damage to presumably allow GIL01 to multiply first. In a complex with host LexA in stressed cells, gp7 down-regulates the expression of more than 250 host and pBtic235 genes, many of which are involved in the cellular functions of genome maintenance, cell-wall transport, and membrane and protein stability. We show that gp7 homologs that are found exclusively in bacteriophages act in a similar fashion to enhance LexA's binding to DNA, while likely also affecting host gene expression. Our results provide evidence that GIL01 influences both its host and its co-resident bacteriophage.
Collapse
Affiliation(s)
- Anja Pavlin
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Anže Lovše
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia ,Genialis, Inc., Boston, MA USA
| | - Gregor Bajc
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jan Otoničar
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Amela Kujović
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Živa Lengar
- grid.419523.80000 0004 0637 0790Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ion Gutierrez-Aguirre
- grid.419523.80000 0004 0637 0790Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Rok Kostanjšek
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Janez Konc
- grid.454324.00000 0001 0661 0844Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
| | - Nadine Fornelos
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Matej Butala
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Genome and Ecology of a Novel Alteromonas Podovirus, ZP6, Representing a New Viral Genus, Mareflavirus. Microbiol Spectr 2021; 9:e0046321. [PMID: 34643440 PMCID: PMC8515928 DOI: 10.1128/spectrum.00463-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Alteromonas is a ubiquitous, abundant, copiotrophic and phytoplankton-associated marine member of the Gammaproteobacteria with a range extending from tropical waters to polar regions and including hadal zones. Here, we describe a novel Alteromonas phage, ZP6, that was isolated from surface coastal waters of Qingdao, China. ZP6 contains a linear, double-stranded, 38,080-bp DNA molecule with 50.1% G+C content and 47 putative open reading frames (ORFs). Three auxiliary metabolic genes were identified, encoding metal-dependent phosphohydrolase, diaminopurine synthetase, and nucleotide pyrophosphohydrolase. The first two ORFs facilitate the replacement of adenine (A) by diaminopurine (Z) in phage genomes and help phages to evade attack from host restriction enzymes. The nucleotide pyrophosphohydrolase enables the host cells to stop programmed cell death and improves the survival rate of the host in a nutrient-depleted environment. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analysis revealed that ZP6 is most closely related to Enhodamvirus but with low similarity (shared genes, <30%, and average nucleotide sequence identity, <65%); it is distinct from other bacteriophages. Together, these results suggest that ZP6 could represent a novel viral genus, here named Mareflavirus. Combining its ability to infect Alteromonas, its harboring of a diaminopurine genome-biosynthetic system, and its representativeness of an understudied viral group, ZP6 could be an important and novel model system for marine virus research. IMPORTANCEAlteromonas is an important symbiotic bacterium of phytoplankton, but research on its bacteriophages is still at an elementary level. Our isolation and genome characterization of a novel Alteromonas podovirus, ZP6, identified a new viral genus of podovirus, namely, Mareflavirus. The ZP6 genome, with a diaminopurine genome-biosynthetic system, is different from those of other isolated Alteromonas phages and will bring new impetus to the development of virus classification and provide important insights into novel viral sequences from metagenomic data sets.
Collapse
|
6
|
Unraveling Protein Interactions between the Temperate Virus Bam35 and Its Bacillus Host Using an Integrative Yeast Two Hybrid-High Throughput Sequencing Approach. Int J Mol Sci 2021; 22:ijms222011105. [PMID: 34681765 PMCID: PMC8539640 DOI: 10.3390/ijms222011105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 11/20/2022] Open
Abstract
Bacillus virus Bam35 is the model Betatectivirus and member of the family Tectiviridae, which is composed of tailless, icosahedral, and membrane-containing bacteriophages. Interest in these viruses has greatly increased in recent years as they are thought to be an evolutionary link between diverse groups of prokaryotic and eukaryotic viruses. Additionally, betatectiviruses infect bacteria of the Bacillus cereus group, which are known for their applications in industry and notorious since it contains many pathogens. Here, we present the first protein–protein interactions (PPIs) network for a tectivirus–host system by studying the Bam35–Bacillus thuringiensis model using a novel approach that integrates the traditional yeast two-hybrid system and high-throughput sequencing (Y2H-HTS). We generated and thoroughly analyzed a genomic library of Bam35′s host B. thuringiensis HER1410 and screened interactions with all the viral proteins using different combinations of bait–prey couples. Initial analysis of the raw data enabled the identification of over 4000 candidate interactions, which were sequentially filtered to produce 182 high-confidence interactions that were defined as part of the core virus–host interactome. Overall, host metabolism proteins and peptidases were particularly enriched within the detected interactions, distinguishing this host–phage system from the other reported host–phage PPIs. Our approach also suggested biological roles for several Bam35 proteins of unknown function, including the membrane structural protein P25, which may be a viral hub with a role in host membrane modification during viral particle morphogenesis. This work resulted in a better understanding of the Bam35–B. thuringiensis interaction at the molecular level and holds great potential for the generalization of the Y2H-HTS approach for other virus–host models.
Collapse
|
7
|
Mäntynen S, Laanto E, Oksanen HM, Poranen MM, Díaz-Muñoz SL. Black box of phage-bacterium interactions: exploring alternative phage infection strategies. Open Biol 2021; 11:210188. [PMID: 34520699 PMCID: PMC8440029 DOI: 10.1098/rsob.210188] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The canonical lytic-lysogenic binary has been challenged in recent years, as more evidence has emerged on alternative bacteriophage infection strategies. These infection modes are little studied, and yet they appear to be more abundant and ubiquitous in nature than previously recognized, and can play a significant role in the ecology and evolution of their bacterial hosts. In this review, we discuss the extent, causes and consequences of alternative phage lifestyles, and clarify conceptual and terminological confusion to facilitate research progress. We propose distinct definitions for the terms 'pseudolysogeny' and 'productive or non-productive chronic infection', and distinguish them from the carrier state life cycle, which describes a population-level phenomenon. Our review also finds that phages may change their infection modes in response to environmental conditions or the physiological state of the host cell. We outline known molecular mechanisms underlying the alternative phage-host interactions, including specific genetic pathways and their considerable biotechnological potential. Moreover, we discuss potential implications of the alternative phage lifestyles for microbial biology and ecosystem functioning, as well as applied topics such as phage therapy.
Collapse
Affiliation(s)
- Sari Mäntynen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland,Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Elina Laanto
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland,Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Survontie 9, 40014 Jyväskylä, Finland
| | - Hanna M. Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Samuel L. Díaz-Muñoz
- Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA,Genome Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
8
|
Brady A, Felipe-Ruiz A, Gallego Del Sol F, Marina A, Quiles-Puchalt N, Penadés JR. Molecular Basis of Lysis-Lysogeny Decisions in Gram-Positive Phages. Annu Rev Microbiol 2021; 75:563-581. [PMID: 34343015 DOI: 10.1146/annurev-micro-033121-020757] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Temperate bacteriophages (phages) are viruses of bacteria. Upon infection of a susceptible host, a temperate phage can establish either a lytic cycle that kills the host or a lysogenic cycle as a stable prophage. The life cycle pursued by an infecting temperate phage can have a significant impact not only on the individual host bacterium at the cellular level but also on bacterial communities and evolution in the ecosystem. Thus, understanding the decision processes of temperate phages is crucial. This review delves into the molecular mechanisms behind lysis-lysogeny decision-making in Gram-positive phages. We discuss a variety of molecular mechanisms and the genetic organization of these well-understood systems. By elucidating the strategies used by phages to make lysis-lysogeny decisions, we can improve our understanding of phage-host interactions, which is crucial for a variety of studies including bacterial evolution, community and ecosystem diversification, and phage therapeutics. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Aisling Brady
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom;
| | - Alonso Felipe-Ruiz
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain;
| | - Francisca Gallego Del Sol
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain;
| | - Alberto Marina
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain;
| | - Nuria Quiles-Puchalt
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom;
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom; .,MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom;
| |
Collapse
|
9
|
Gillis A, Hock L, Mahillon J. Comparative Genomics of Prophages Sato and Sole Expands the Genetic Diversity Found in the Genus Betatectivirus. Microorganisms 2021; 9:1335. [PMID: 34205474 PMCID: PMC8234876 DOI: 10.3390/microorganisms9061335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Tectiviruses infecting the Bacillus cereus group represent part of the bacterial "plasmid repertoire" as they behave as linear plasmids during their lysogenic cycle. Several novel tectiviruses have been recently found infecting diverse strains belonging the B. cereus lineage. Here, we report and analyze the complete genome sequences of phages Sato and Sole. The linear dsDNA genome of Sato spans 14,852 bp with 32 coding DNA sequences (CDSs), whereas the one of Sole has 14,444 bp comprising 30 CDSs. Both phage genomes contain inverted terminal repeats and no tRNAs. Genomic comparisons and phylogenetic analyses placed these two phages within the genus Betatectivirus in the family Tectiviridae. Additional comparative genomic analyses indicated that the "gene regulation-genome replication" module of phages Sato and Sole is more diverse than previously observed among other fully sequenced betatectiviruses, displaying very low sequence similarities and containing some ORFans. Interestingly, the ssDNA binding protein encoded in this genomic module in phages Sato and Sole has very little amino acid similarity with those of reference betatectiviruses. Phylogenetic analyses showed that both Sato and Sole represent novel tectivirus species, thus we propose to include them as two novel species in the genus Betatectivirus.
Collapse
Affiliation(s)
- Annika Gillis
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCLouvain, Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium;
| | | | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCLouvain, Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium;
| |
Collapse
|
10
|
Shimamori Y, Pramono AK, Kitao T, Suzuki T, Aizawa SI, Kubori T, Nagai H, Takeda S, Ando H. Isolation and Characterization of a Novel Phage SaGU1 that Infects Staphylococcus aureus Clinical Isolates from Patients with Atopic Dermatitis. Curr Microbiol 2021; 78:1267-1276. [PMID: 33638001 PMCID: PMC7997843 DOI: 10.1007/s00284-021-02395-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/07/2021] [Indexed: 12/11/2022]
Abstract
The bacterium Staphylococcus aureus, which colonizes healthy human skin, may cause diseases, such as atopic dermatitis (AD). Treatment for such AD cases involves antibiotic use; however, alternate treatments are preferred owing to the development of antimicrobial resistance. This study aimed to characterize the novel bacteriophage SaGU1 as a potential agent for phage therapy to treat S. aureus infections. SaGU1 that infects S. aureus strains previously isolated from the skin of patients with AD was screened from sewage samples in Gifu, Japan. Its genome was sequenced and analyzed using bioinformatics tools, and the morphology, lytic activity, stability, and host range of the phage were determined. The SaGU1 genome was 140,909 bp with an average GC content of 30.2%. The viral chromosome contained 225 putative protein-coding genes and four tRNA genes, carrying neither toxic nor antibiotic resistance genes. Electron microscopy analysis revealed that SaGU1 belongs to the Myoviridae family. Stability tests showed that SaGU1 was heat-stable under physiological and acidic conditions. Host range testing revealed that SaGU1 can infect a broad range of S. aureus clinical isolates present on the skin of AD patients, whereas it did not kill strains of Staphylococcus epidermidis, which are symbiotic resident bacteria on human skin. Hence, our data suggest that SaGU1 is a potential candidate for developing a phage therapy to treat AD caused by pathogenic S. aureus.
Collapse
Affiliation(s)
- Yuzuki Shimamori
- Department of Microbiology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan.,Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Ajeng K Pramono
- Laboratory of Phage Biologics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Tomoe Kitao
- Department of Microbiology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Tohru Suzuki
- Genome Microbiology Laboratory, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1193, Japan
| | - Shin-Ichi Aizawa
- Prefectural University of Hiroshima, 562 Nanatsuka, Shobara, Hiroshima, 727-0023, Japan
| | - Tomoko Kubori
- Department of Microbiology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan.,G-CHAIN, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Hiroki Nagai
- Department of Microbiology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan.,G-CHAIN, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan
| | - Shigeki Takeda
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Hiroki Ando
- Department of Microbiology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan. .,Laboratory of Phage Biologics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan. .,G-CHAIN, Gifu University, 1-1 Yanagido, Gifu, Gifu, 501-1194, Japan.
| |
Collapse
|
11
|
Cook D, Carrington J, Johnson K, Hare J. Homodimerization and heterodimerization requirements of Acinetobacter baumannii SOS response coregulators UmuDAb and DdrR revealed by two-hybrid analyses. Can J Microbiol 2020; 67:358-371. [PMID: 33180570 DOI: 10.1139/cjm-2020-0219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The multidrug-resistant pathogen Acinetobacter baumannii displays unusual control of its SOS mutagenesis genes, as it does not encode a LexA repressor, but instead employs the UmuDAb repressor and a small protein, DdrR, that is uniquely found in Acinetobacter species. We used bacterial adenylate cyclase two-hybrid analyses to determine if UmuDAb and DdrR coregulation might involve physical interactions. Neither quantitative nor qualitative assays showed UmuDAb interaction with DdrR. DdrR hybrid proteins, however, demonstrated modest head-to-tail interactions in a qualitative assay. The similarity of UmuDAb to the homodimer-forming polymerase manager UmuD and LexA repressor proteins suggested that it may form dimers, which we observed. UmuDAb homodimerization required a free C terminus, and either small truncations or addition of a histidine tag at the C terminus abolished this homodimerization. The amino acid N100, crucial for UmuD dimer formation, was dispensable if both C termini were free to interact. However, mutation of the amino acid G124, necessary for LexA dimerization, yielded significantly less UmuDAb dimerization, even if both C termini were free. This suggests that UmuDAb forms dimers like LexA does, but may not coregulate gene expression involving a physical association with DdrR. The homodimerization of these coregulators provides insight into a LexA-independent, coregulatory process of controlling a conserved bacterial action such as the mutagenic DNA damage response.
Collapse
Affiliation(s)
- Deborah Cook
- Department of Biology and Chemistry, Morehead State University, Morehead, KY 40351, USA
| | - Jordan Carrington
- Department of Biology and Chemistry, Morehead State University, Morehead, KY 40351, USA
| | - Kevin Johnson
- Department of Biology and Chemistry, Morehead State University, Morehead, KY 40351, USA.,Craft Academy for Excellence in Science and Mathematics, Morehead State University, Morehead, KY 40351, USA
| | - Janelle Hare
- Department of Biology and Chemistry, Morehead State University, Morehead, KY 40351, USA
| |
Collapse
|
12
|
Zuo W, Li J, Zheng J, Zhang L, Yang Q, Yu Y, Zhang Z, Ding Q. Whole genome sequencing of a multidrug-resistant Bacillus thuringiensis HM-311 obtained from the Radiation and Heavy metal-polluted soil. J Glob Antimicrob Resist 2020; 21:275-277. [PMID: 32353525 DOI: 10.1016/j.jgar.2020.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 03/06/2020] [Accepted: 04/16/2020] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Bacillus thuringiensis (BT) is distributed widely in the environment and utilised frequently for its highly specific toxins to target insect. However, BT is potentially pathogenic due to the high similarity between BT and Bacillus anthracis (BA). Meanwhile, there are reports that heavy metal pressure can promote the proliferation of antibiotic resistance in microorganisms through the co-selection of metal resistance genes (MRGs) and antibiotic resistance genes (ARGs). The aim of this work was revealed the MRGs and ARGs in a novel heavy metal tolerant and drug-resistant strain - B. thuringiensis HM-311, which was isolated from radiation and heavy metal-contaminated soil in Xinjiang (China). METHODS The genome of B. thuringiensis HM-311 was sequenced using a PacBio RS II platform and Illumina HiSeq 4000 platform at the Beijing Genomics Institute (BGI, Shenzhen, China). RESULTS The total size of B. thuringiensis HM-311 genome was 6,019,481bp with a GC content of 35.85%. 134 genes related to antibiotics resistance and 75 genes related to heavy metal resistance were predicted in the B. thuringiensis HM-311 genome, the main ARGs and MRGs were discussed. Moreover, 30 verified virulence factor genes and 297 predicted virulence factor genes were annotated in the B. thuringiensis HM-311 genome. CONCLUSIONS This genome can be used as a reference sequence for comparative genomic studies, elucidating antibiotic resistance development and the relationship between antibiotic resistance genes and heavy metal resistance genes in B. thuringiensis.
Collapse
Affiliation(s)
- Wenlu Zuo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, People's Republic of China
| | - Jingchen Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, People's Republic of China
| | - Jie Zheng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, People's Republic of China
| | - Lei Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, People's Republic of China
| | - Qi Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, People's Republic of China
| | - Yadong Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, People's Republic of China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Zhidong Zhang
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang Uigur Autonomous Region, People's Republic of China
| | - Qingqing Ding
- Department of Geriatric Oncology, Jiangsu Province Hospital (The First Affiliated Hospital with Nanjing Medical University), Nanjing 210029, People's Republic of China.
| |
Collapse
|
13
|
Fu Y, Deng S, Liang L, Wu Y, Gao M. Complete genome sequence of the novel phage vB_BthS-HD29phi infecting Bacillus thuringiensis. Arch Virol 2019; 164:3089-3093. [PMID: 31595357 DOI: 10.1007/s00705-019-04416-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/26/2019] [Indexed: 11/25/2022]
Abstract
The phage vB_BthS-HD29phi infecting Bacillus thuringiensis strain HD29 was isolated and purified. The morphology of the phage showed that it belongs to the family Siphoviridae. The phage genome was 32,181 bp in length, comprised linear double-stranded DNA with an average G + C content of 34.9%, and exhibited low similarity to known phage genomes. Genomic and phylogenetic analysis revealed that vB_BthS-HD29phi is a novel phage. In total, 50 putative ORFs were predicted in the phage genome, and only 18 ORFs encoded proteins with known functions. This article reports the genome sequence of a new tailed phage and increases the known genetic diversity of tailed phages.
Collapse
Affiliation(s)
- Yajuan Fu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Sangsang Deng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Leiqin Liang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100039, People's Republic of China
| | - Yan Wu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China
| | - Meiying Gao
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
14
|
Fornelos N, Browning DF, Pavlin A, Podlesek Z, Hodnik V, Salas M, Butala M. Lytic gene expression in the temperate bacteriophage GIL01 is activated by a phage-encoded LexA homologue. Nucleic Acids Res 2019; 46:9432-9443. [PMID: 30053203 PMCID: PMC6182141 DOI: 10.1093/nar/gky646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022] Open
Abstract
The GIL01 bacteriophage is a temperate phage that infects the insect pathogen Bacillus thuringiensis. During the lytic cycle, phage gene transcription is initiated from three promoters: P1 and P2, which control the expression of the early phage genes involved in genome replication and P3, which controls the expression of the late genes responsible for virion maturation and host lysis. Unlike most temperate phages, GIL01 lysogeny is not maintained by a dedicated phage repressor but rather by the host's regulator of the SOS response, LexA. Previously we showed that the lytic cycle was induced by DNA damage and that LexA, in conjunction with phage-encoded protein gp7, repressed P1. Here we examine the lytic/lysogenic switch in more detail and show that P3 is also repressed by a LexA-gp7 complex, binding to tandem LexA boxes within the promoter. We also demonstrate that expression from P3 is considerably delayed after DNA damage, requiring the phage-encoded DNA binding protein, gp6. Surprisingly, gp6 is homologous to LexA itself and, thus, is a rare example of a LexA homologue directly activating transcription. We propose that the interplay between these two LexA family members, with opposing functions, ensures the timely expression of GIL01 phage late genes.
Collapse
Affiliation(s)
- Nadine Fornelos
- Instituto de Biología Molecular 'Eladio Viñuela' (CSIC), Centro de Biología Molecular 'Severo Ochoa' (CSIC-Universidad Autónoma de Madrid), Cantoblanco, 28049 Madrid, Spain
| | - Douglas F Browning
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Anja Pavlin
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Zdravko Podlesek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vesna Hodnik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Margarita Salas
- Instituto de Biología Molecular 'Eladio Viñuela' (CSIC), Centro de Biología Molecular 'Severo Ochoa' (CSIC-Universidad Autónoma de Madrid), Cantoblanco, 28049 Madrid, Spain
| | - Matej Butala
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
15
|
Structural Insights into Bacteriophage GIL01 gp7 Inhibition of Host LexA Repressor. Structure 2019; 27:1094-1102.e4. [PMID: 31056420 DOI: 10.1016/j.str.2019.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/04/2019] [Accepted: 03/25/2019] [Indexed: 11/20/2022]
Abstract
Bacteria identify and respond to DNA damage using the SOS response. LexA, a central repressor in the response, has been implicated in the regulation of lysogeny in various temperate bacteriophages. During infection of Bacillus thuringiensis with GIL01 bacteriophage, LexA represses the SOS response and the phage lytic cycle by binding DNA, an interaction further stabilized upon binding of a viral protein, gp7. Here we report the crystallographic structure of phage-borne gp7 at 1.7-Å resolution, and characterize the 4:2 stoichiometry and potential interaction with LexA using surface plasmon resonance, static light scattering, and small-angle X-ray scattering. These data suggest that gp7 stabilizes LexA binding to operator DNA via coordination of the N- and C-terminal domains of LexA. Furthermore, we have found that gp7 can interact with LexA from Staphylococcus aureus, a significant human pathogen. Our results provide structural evidence as to how phage factors can directly associate with LexA to modulate the SOS response.
Collapse
|
16
|
Gillis A, Fayad N, Makart L, Bolotin A, Sorokin A, Kallassy M, Mahillon J. Role of plasmid plasticity and mobile genetic elements in the entomopathogen Bacillus thuringiensis serovar israelensis. FEMS Microbiol Rev 2018; 42:829-856. [PMID: 30203090 PMCID: PMC6199540 DOI: 10.1093/femsre/fuy034] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Bacillus thuringiensis is a well-known biopesticide that has been used for more than 80 years. This spore-forming bacterium belongs to the group of Bacillus cereus that also includes, among others, emetic and diarrheic pathotypes of B. cereus, the animal pathogen Bacillus anthracis and the psychrotolerant Bacillus weihenstephanensis. Bacillus thuringiensis is rather unique since it has adapted its lifestyle as an efficient pathogen of specific insect larvae. One of the peculiarities of B. thuringiensis strains is the extent of their extrachromosomal pool, with strains harbouring more than 10 distinct plasmid molecules. Among the numerous serovars of B. thuringiensis, 'israelensis' is certainly emblematic since its host spectrum is apparently restricted to dipteran insects like mosquitoes and black flies, vectors of human and animal diseases such as malaria, yellow fever, or river blindness. In this review, the putative role of the mobile gene pool of B. thuringiensis serovar israelensis in its pathogenicity and dedicated lifestyle is reviewed, with specific emphasis on the nature, diversity, and potential mobility of its constituents. Variations among the few related strains of B. thuringiensis serovar israelensis will also be reported and discussed in the scope of this specialised insect pathogen, whose lifestyle in the environment remains largely unknown.
Collapse
Affiliation(s)
- Annika Gillis
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Nancy Fayad
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
- Laboratory of Biodiversity and Functional Genomics (BGF), Faculty of Sciences, Université Saint-Joseph, 1107 2050 Beirut, Lebanon
| | - Lionel Makart
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Alexander Bolotin
- UMR1319 Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Alexei Sorokin
- UMR1319 Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, F-78350 Jouy-en-Josas, France
| | - Mireille Kallassy
- Laboratory of Biodiversity and Functional Genomics (BGF), Faculty of Sciences, Université Saint-Joseph, 1107 2050 Beirut, Lebanon
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
17
|
Liu Q, Han Y, Wang D, Wang Q, Liu X, Li Y, Song X, Wang M, Jiang Y, Meng Z, Shao H, McMinn A. Complete genomic sequence of bacteriophage J2-1: A novel Pseudoalteromonas phenolica phage isolated from the coastal water of Qingdao, China. Mar Genomics 2018. [DOI: 10.1016/j.margen.2017.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Extending the hosts of Tectiviridae into four additional genera of Gram-positive bacteria and more diverse Bacillus species. Virology 2018; 518:136-142. [PMID: 29481984 DOI: 10.1016/j.virol.2018.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 11/23/2022]
Abstract
Tectiviridae are composed of tailless bacteriophages with an icosahedral capsid and an inner membrane enclosing a double-stranded 15 kb linear DNA genome. Five of the seven previously studied Tectivirus isolates infect bacteria from Bacillus cereus sensu lato group (Betatectivirus), one distantly related member (PRD1) infect Enterobactericeae (Alpatectivirus) and one recently discovered virus infect Gluconobacter cerinus (Gammatectivirus). Here we expand the host spectrum of Betatectivirus elements to four additional genera (Streptococcus, Exiguobacterium, Clostridium and Brevibacillus) and to more distantly related Bacillus species (B. pumilus and B. flexus) by studying the genomes of fourteen novel tectiviral elements. Overall, the genomes show significant conservation in gene synteny and in modules responsible for genome replication and formation of the virion core (including DNA packaging). Notable variation exists in regions encoding host attachment and lysis along with the surrounding area of a site in which mutations are known to alter phage life cycle.
Collapse
|
19
|
Geng P, Tian S, Yuan Z, Hu X. Identification and genomic comparison of temperate bacteriophages derived from emetic Bacillus cereus. PLoS One 2017; 12:e0184572. [PMID: 28886124 PMCID: PMC5590980 DOI: 10.1371/journal.pone.0184572] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/25/2017] [Indexed: 01/21/2023] Open
Abstract
Cereulide-producing Bacillus cereus isolates can cause serious emetic (vomiting) syndrome and even acute lethality. As mobile genetic elements, the exploration of prophages derived from emetic B. cereus isolates will help in our understanding of the genetic diversity and evolution of these pathogens. In this study, five temperate phages derived from cereulide-producing B. cereus strains were induced, with four of them undergoing genomic sequencing. Sequencing revealed that they all belong to the Siphoviridae family, but presented in different forms in their hosts. PfNC7401 and PfIS075 have typical icosahedral heads, probably existing alone as phagemids in the host with self-replicating capability in the lysogenic state. PfEFR-4, PfEFR-5, and PfATCC7953 have elongated heads, with the genomes of the former two identified as linear dsDNA, which could be integrated into the host genome during the lysogenic state. Genomic comparison of the four phages with others also derived from emetic B. cereus isolates showed similar genome structures and core genes, thus displaying host spectrum specificity. In addition, phylogenic analysis based on the complete genome and conserved tail fiber proteins of 36 Bacillus species-derived phages confirmed that the phages derived from emetic B. cereus strains were highly similar. Furthermore, one endolysin LysPfEFR-4 was cloned and showed lytic activity against all tested emetic B. cereus strains and cross-lytic activity against some other pathogenic bacteria, implying a potential to control bacterial contamination in the food supply.
Collapse
Affiliation(s)
- Peiling Geng
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Shen Tian
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (XH); (ZY)
| | - Xiaomin Hu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (XH); (ZY)
| |
Collapse
|
20
|
Makart L, Commans F, Gillis A, Mahillon J. Horizontal transfer of chromosomal markers mediated by the large conjugative plasmid pXO16 from Bacillus thuringiensis serovar israelensis. Plasmid 2017; 91:76-81. [DOI: 10.1016/j.plasmid.2017.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/13/2017] [Accepted: 04/16/2017] [Indexed: 01/25/2023]
|
21
|
Gao Y, Liu Q, Wang M, Zhao G, Jiang Y, Malin G, Gong Z, Meng X, Liu Z, Lin T, Li Y, Shao H. Characterization and Genome Sequence of Marine Alteromonas gracilis Phage PB15 Isolated from the Yellow Sea, China. Curr Microbiol 2017; 74:821-826. [PMID: 28424938 DOI: 10.1007/s00284-017-1251-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
Abstract
A novel marine Alteromonas gracilis siphovirus, phage PB15, was isolated from the surface water of the Yellow Sea in August 2015. It has a head diameter of 58 ± 5 nm head and a contractile tail approximately 105 ± 10 nm in length, and overall, the morphology suggests that PB15 belongs to the family Siphoviridae. PB15 phage is stable at over the temperature range 0-60 °C. The best MOI of these phage was 0.1, and infectivity decreased above 60 °C. The results suggest that phage is stable at pH value ranging between 3.0 and 11.0. Chloroform test shows that PB15 is not a lipid-containing phage. A one-step growth curve with a strain of A. gracilis gave a latent period of 16 min and rise period of 24 min and burst size of 60 PFU/cell. Genomic analysis of PB15 reveals a genome size of 37,333 bp with 45.52% G+C content, and 61 ORFs. ORF sequences accounted for 30.36% of the genome sequence. There is no obvious similarity between PB15 and other known phages by genomic comparison using the BLASTN tool in the NCBI database.
Collapse
Affiliation(s)
- Yu Gao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Qian Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Min Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. .,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China. .,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003, China.
| | - Guihua Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. .,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China. .,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003, China.
| | - Gill Malin
- Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Zheng Gong
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xue Meng
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zhaoyang Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Tongtong Lin
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yutong Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hongbing Shao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
22
|
Isolation and Genome Sequencing of a Novel Pseudoalteromonas Phage PH1. Curr Microbiol 2016; 74:212-218. [PMID: 27942842 DOI: 10.1007/s00284-016-1175-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022]
Abstract
The family Pseudoalteromonas is highly adaptable to dissimilar ecological habitats and plays an important ecological role in the marine environment. In this study, a new Pseudoalteromonas phage PH1 was isolated from the Yellow Sea. To better understand the bacteriophage, its biological properties, including morphology, host range, growth phenotype, thermal and pH stability, and nucleic acid composition, were investigated in detail. The result showed that the phage PH1 is a Podoviridae-phage with an icosahedral head (60 nm of diameter) and a short tail (26 nm in length). The phage PH1 genome consists of 42,685 bp length double-stranded DNA with a G+C content of 42.24% and is predicted to have 55 open reading frames (ORFs) with an average length of 740 bp nucleotides each. The phage PH1 genome adds a new Podoviridae-phage genome to marine bacteriophage dataset, which will provide useful basic information for further molecular research on interaction mechanisms between bacteriophages and their hosts.
Collapse
|
23
|
Bolotin A, Gillis A, Sanchis V, Nielsen-LeRoux C, Mahillon J, Lereclus D, Sorokin A. Comparative genomics of extrachromosomal elements in Bacillus thuringiensis subsp. israelensis. Res Microbiol 2016; 168:331-344. [PMID: 27810477 DOI: 10.1016/j.resmic.2016.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 06/15/2016] [Accepted: 10/21/2016] [Indexed: 02/04/2023]
Abstract
Bacillus thuringiensis subsp. israelensis is one of the most important microorganisms used against mosquitoes. It was intensively studied following its discovery and became a model bacterium of the B. thuringiensis species. Those studies focused on toxin genes, aggregation-associated conjugation, linear genome phages, etc. Recent announcements of genomic sequences of different strains have not been explicitly related to the biological properties studied. We report data on plasmid content analysis of four strains using ultra-high-throughput sequencing. The strains were commercial product isolates, with their putative ancestor and type B. thuringiensis subsp. israelensis strain sequenced earlier. The assembled contigs corresponding to published and novel data were assigned to plasmids described earlier in B. thuringiensis subsp. israelensis and other B. thuringiensis strains. A new 360 kb plasmid was identified, encoding multiple transporters, also found in most of the earlier sequenced strains. Our genomic data show the presence of two toxin-coding plasmids of 128 and 100 kb instead of the reported 225 kb plasmid, a co-integrate of the former two. In two of the sequenced strains, only a 100 kb plasmid was present. Some heterogeneity exists in the small plasmid content and structure between strains. These data support the perception of active plasmid exchange among B. thuringiensis subsp. israelensis strains in nature.
Collapse
Affiliation(s)
- Alexandre Bolotin
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Annika Gillis
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCL, Croix du, Sud, 2-L7.05.12, B-1348 Louvain-la-Neuve, Belgium.
| | - Vincent Sanchis
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | | | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCL, Croix du, Sud, 2-L7.05.12, B-1348 Louvain-la-Neuve, Belgium.
| | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Alexei Sorokin
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| |
Collapse
|
24
|
Gillis A, Guo S, Bolotin A, Makart L, Sorokin A, Mahillon J. Detection of the cryptic prophage-like molecule pBtic235 in Bacillus thuringiensis subsp. israelensis. Res Microbiol 2016; 168:319-330. [PMID: 27793675 DOI: 10.1016/j.resmic.2016.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/18/2016] [Accepted: 10/17/2016] [Indexed: 11/28/2022]
Abstract
Bacillus thuringiensis has long been recognized to carry numerous extrachromosomal molecules. Of particular interest are the strains belonging to the B. thuringiensis subsp. israelensis lineage, as they can harbor at least seven extrachromosomal molecules. One of these elements seems to be a cryptic molecule that may have been disregarded in strains considered plasmid-less. Therefore, this work focused on this cryptic molecule, named pBtic235. Using different approaches that included transposition-tagging, large plasmid gel electrophoresis and Southern blotting, conjugation and phage-induction experiments, in combination with bioinformatics analyses, it was found that pBtic235 is a hybrid molecule of 235,425 bp whose genome displays potential plasmid- and phage-like modules. The sequence of pBtic235 has been identified in all sequenced genomes of B. thuringiensis subsp. israelensis strains. Here, the pBtic235 sequence was considered identical to that of plasmid pBTHD789-2 from strain HD-789. Despite the fact that the pBtic235 genome possesses 240 putative CDSs, many of them have no homologs in the databases. However, CDSs coding for potential proteins involved in replication, genome packaging and virion structure, cell lysis, regulation of lytic-lysogenic cycles, metabolite transporters, stress and metal resistance, were identified. The candidate plasmidial prophage pBtic235 exemplifies the notable diversity of the extrachromosomal realm found in B. thuringiensis.
Collapse
Affiliation(s)
- Annika Gillis
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCL, Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium.
| | - Suxia Guo
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCL, Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium.
| | - Alexandre Bolotin
- INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France; AgroParisTech, UMR1319 Micalis, F-78350 Jouy-en-Josas, France.
| | - Lionel Makart
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCL, Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium.
| | - Alexei Sorokin
- INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France; AgroParisTech, UMR1319 Micalis, F-78350 Jouy-en-Josas, France.
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCL, Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
25
|
Risks for public health related to the presence of Bacillus cereus and other Bacillus spp. including Bacillus thuringiensis in foodstuffs. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4524] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
26
|
Madeira JP, Omer H, Alpha-Bazin B, Armengaud J, Duport C. Deciphering the interactions between the Bacillus cereus linear plasmid, pBClin15, and its host by high-throughput comparative proteomics. J Proteomics 2016; 146:25-33. [PMID: 27321915 DOI: 10.1016/j.jprot.2016.06.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 04/22/2016] [Accepted: 06/15/2016] [Indexed: 10/21/2022]
Abstract
UNLABELLED The pathogen, Bacillus cereus, is able to adapt its metabolism to various environmental conditions. The reference strain, Bacillus cereus ATCC 14579, harbors a linear plasmid, pBClin15, which displays a cryptic prophage behavior. Here, we studied the impact of pBClin15 on the aerobic respiratory metabolism of B. cereus by curing its host strain. We compared, by means of a high-throughput shotgun proteomic approach, both the cellular proteome and the exoproteome of B. cereus ATCC 14579 in the presence and absence of pBClin15 at the early, late and stationary growth phases. The results were visualized through a hierarchical cluster analysis of proteomic data. We found that pBClin15 contributes significantly to the metabolic efficiency of B. cereus by restricting the production of chromosome-encoded phage proteins in the extracellular milieu. The data also revealed intricate regulatory mechanisms between pBClin15 and its host. Finally, we show that pBClin15 provides benefit to its host to adapt to different ecologic niches. BIOLOGICAL SIGNIFICANCE Bacteria belonging to the Bacillus cereus group include B. cereus, a notorious food borne pathogen which causes gastroenteritis. The B. cereus type, strain ATCC 14579, harbors a linear plasmid, pBClin15, which displays cryptic prophage behavior. Here, we present data supporting the idea that pBClin15 may have a much greater role in B. cereus metabolism that has hitherto been suspected. Specifically, our comparative proteomic analyses reveal that pBClin15 manages B. cereus central metabolism to optimize energy and carbon utilization through the repression of several chromosome-encoded phage proteins. These results suggest that pBClin15 provides benefit to the host for surviving adverse environmental conditions.
Collapse
Affiliation(s)
- Jean-Paul Madeira
- SQPOV, UMR0408, Avignon Université, INRA, F-84914 Avignon, France; CEA, DSV, IBiTec-S, SPI, Li2D, Laboratory "Innovative technologies for Detection and Diagnostics", Bagnols-sur-Cèze F-30200, France
| | - Hélène Omer
- SQPOV, UMR0408, Avignon Université, INRA, F-84914 Avignon, France; CEA, DSV, IBiTec-S, SPI, Li2D, Laboratory "Innovative technologies for Detection and Diagnostics", Bagnols-sur-Cèze F-30200, France
| | - Béatrice Alpha-Bazin
- CEA, DSV, IBiTec-S, SPI, Li2D, Laboratory "Innovative technologies for Detection and Diagnostics", Bagnols-sur-Cèze F-30200, France
| | - Jean Armengaud
- CEA, DSV, IBiTec-S, SPI, Li2D, Laboratory "Innovative technologies for Detection and Diagnostics", Bagnols-sur-Cèze F-30200, France
| | - Catherine Duport
- SQPOV, UMR0408, Avignon Université, INRA, F-84914 Avignon, France.
| |
Collapse
|
27
|
Qin K, Cheng B, Zhang S, Wang N, Fang Y, Zhang Q, Kuang A, Lin L, Ji X, Wei Y. Complete genome sequence of the cold-active bacteriophage VMY22 from Bacillus cereus. Virus Genes 2016; 52:432-5. [PMID: 26941234 DOI: 10.1007/s11262-016-1300-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/25/2016] [Indexed: 11/29/2022]
Abstract
The cold-active bacteriophage VMY22, belonging to the Podoviridae family, was isolated from Mingyong Glacier in China. Sequence analysis revealed that the genome is 18,609 bp long, with an overall G + C content of 36.4 mol%, and 25 open reading frames (ORFs). The sequence contains 46 potential promoters, 6 transcription terminators, and no tRNAs. Most of the ORFs show a high degree of similarity to B103 (NC_004165). Two noteworthy findings were made. First, one of the predicted proteins, ORF 19, shows high sequence similarity to the bacteriocin biosynthesis protein from Bacillus cereus. From this information, we propose that the VMY22 phage is at an intermediate phase in its coevolution with its bacterial host. Second, seven of the hypothetical proteins appear to be unique to this cold-active B. cereus phage (i.e., not found in temperate-active B. cereus phages). These observations add to our current knowledge about the coevolution of bacteriophages and their hosts. The identification of a novel group of gene and protein structures and functions will lead to a better understanding of cold-adaptation mechanisms in bacteria and their bacteriophages.
Collapse
Affiliation(s)
- Kunhao Qin
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Benxu Cheng
- Regional Academic Heath Center, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, 78541, USA
| | - Shengting Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Nan Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yuan Fang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Anxiu Kuang
- Department of Biology, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX, 78539, USA
| | - Lianbing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiuling Ji
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
28
|
Complete Genomic Sequence of Bacteriophage H188: A Novel Vibrio kanaloae Phage Isolated from Yellow Sea. Curr Microbiol 2016; 72:628-33. [DOI: 10.1007/s00284-015-0984-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/04/2015] [Indexed: 11/29/2022]
|
29
|
Wang DB, Li Y, Sun MQ, Huang JP, Shao HB, Xin QL, Wang M. Complete Genome of a Novel Pseudoalteromonas Phage PHq0. Curr Microbiol 2015; 72:81-7. [DOI: 10.1007/s00284-015-0919-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/23/2015] [Indexed: 01/01/2023]
|
30
|
Characterization and Genome Sequencing of a Novel Bacteriophage PH101 Infecting Pseudoalteromonas marina BH101 from the Yellow Sea of China. Curr Microbiol 2015; 71:594-600. [DOI: 10.1007/s00284-015-0896-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
|
31
|
Fornelos N, Butala M, Hodnik V, Anderluh G, Bamford JK, Salas M. Bacteriophage GIL01 gp7 interacts with host LexA repressor to enhance DNA binding and inhibit RecA-mediated auto-cleavage. Nucleic Acids Res 2015; 43:7315-29. [PMID: 26138485 PMCID: PMC4551915 DOI: 10.1093/nar/gkv634] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/05/2015] [Indexed: 01/22/2023] Open
Abstract
The SOS response in Eubacteria is a global response to DNA damage and its activation is increasingly associated with the movement of mobile genetic elements. The temperate phage GIL01 is induced into lytic growth using the host's SOS response to genomic stress. LexA, the SOS transcription factor, represses bacteriophage transcription by binding to a set of SOS boxes in the lysogenic promoter P1. However, LexA is unable to efficiently repress GIL01 transcription unless the small phage-encoded protein gp7 is also present. We found that gp7 forms a stable complex with LexA that enhances LexA binding to phage and cellular SOS sites and interferes with RecA-mediated auto-cleavage of LexA, the key step in the initiation of the SOS response. Gp7 did not bind DNA, alone or when complexed with LexA. Our findings suggest that gp7 induces a LexA conformation that favors DNA binding but disfavors LexA auto-cleavage, thereby altering the dynamics of the cellular SOS response. This is the first account of an accessory factor interacting with LexA to regulate transcription.
Collapse
Affiliation(s)
- Nadine Fornelos
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Centre of Excellence in Biological Interactions, PO Box 35, F-40014 Jyvaskyla, Finland Instituto de Biología Molecular 'Eladio Viñuela' (CSIC), Centro de Biología Molecular 'Severo Ochoa' (CSIC-Universidad Autónoma de Madrid), Cantoblanco, 28049 Madrid, Spain
| | - Matej Butala
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Vesna Hodnik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Jaana K Bamford
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Centre of Excellence in Biological Interactions, PO Box 35, F-40014 Jyvaskyla, Finland
| | - Margarita Salas
- Instituto de Biología Molecular 'Eladio Viñuela' (CSIC), Centro de Biología Molecular 'Severo Ochoa' (CSIC-Universidad Autónoma de Madrid), Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
32
|
Abstract
UNLABELLED Although plasmids and other episomes are recognized as key players in horizontal gene transfer among microbes, their diversity and dynamics among ecologically structured host populations in the wild remain poorly understood. Here, we show that natural populations of marine Vibrionaceae bacteria host large numbers of families of episomes, consisting of plasmids and a surprisingly high fraction of plasmid-like temperate phages. Episomes are unevenly distributed among host populations, and contrary to the notion that high-density communities in biofilms act as hot spots of gene transfer, we identified a strong bias for episomes to occur in free-living as opposed to particle-attached cells. Mapping of episomal families onto host phylogeny shows that, with the exception of all phage and a few plasmid families, most are of recent evolutionary origin and appear to have spread rapidly by horizontal transfer. Such high eco-evolutionary turnover is particularly surprising for plasmids that are, based on previously suggested categorization, putatively nontransmissible, indicating that this type of plasmid is indeed frequently transferred by currently unknown mechanisms. Finally, analysis of recent gene transfer among plasmids reveals a network of extensive exchange connecting nearly all episomes. Genes functioning in plasmid transfer and maintenance are frequently exchanged, suggesting that plasmids can be rapidly transformed from one category to another. The broad distribution of episomes among distantly related hosts and the observed promiscuous recombination patterns show how episomes can offer their hosts rapid assembly and dissemination of novel functions. IMPORTANCE Plasmids and other episomes are an integral part of bacterial biology in all environments, yet their study is heavily biased toward their role as vectors for antibiotic resistance genes. This study presents a comprehensive analysis of all episomes within several coexisting bacterial populations of Vibrionaceae from the coastal ocean and represents the largest-yet genomic survey of episomes from a single bacterial family. The host population framework allows analysis of the eco-evolutionary dynamics at unprecedented resolution, yielding several unexpected results. These include (i) discovery of novel, nonintegrative temperate phages, (ii) revision of a class of episomes, previously termed "nontransmissible," as highly transmissible, and (iii) surprisingly high evolutionary turnover of episomes, manifest as frequent birth, spread, and loss.
Collapse
|
33
|
Octavia S, Sara J, Lan R. Characterization of a large novel phage-like plasmid in Salmonella enterica serovar Typhimurium. FEMS Microbiol Lett 2015; 362:fnv044. [PMID: 25795590 DOI: 10.1093/femsle/fnv044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2015] [Indexed: 11/14/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is a food-borne pathogen and a leading cause of gastroenteritis in humans. Recently, we sequenced a phage-type DT108 strain (L945) and found reads with high similarity to both Salmonella typhi strain CT18 plasmid pHCM2 and bacteriophage SSU5. In this study, we completely sequenced the novel phage-like plasmid which was designated as pSTM_Φ. The presence of this phage-like plasmid was examined in a collection of 284 Salmonella Typhimurium isolates using PCR of the parB gene and only one other isolate (L946) was found to carry the phage-like plasmid suggesting that it is infrequently present amongst Salmonella Typhimurium isolates. pSTM_Φ is a circular phage-like plasmid of 107.7 kb encoding 132 coding regions (ORFs) with the majority of the ORFs encoding hypothetical proteins. Comparative analysis with other closely related phage-like plasmids and the SSU5 phage revealed that there were four divergent lineages of phage-like plasmids found in the family of Enterobacteriaceae. In conclusion, pSTM_Φ is a new member of an emerging family of phage-like plasmids.
Collapse
Affiliation(s)
- Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Josephine Sara
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
34
|
Atanasova NS, Senčilo A, Pietilä MK, Roine E, Oksanen HM, Bamford DH. Comparison of lipid-containing bacterial and archaeal viruses. Adv Virus Res 2015; 92:1-61. [PMID: 25701885 DOI: 10.1016/bs.aivir.2014.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Lipid-containing bacteriophages were discovered late and considered to be rare. After further phage isolations and the establishment of the domain Archaea, several new prokaryotic viruses with lipids were observed. Consequently, the presence of lipids in prokaryotic viruses is reasonably common. The wealth of information about how prokaryotic viruses use their lipids comes from a few well-studied model viruses (PM2, PRD1, and ϕ6). These bacteriophages derive their lipid membranes selectively from the host during the virion assembly process which, in the case of PM2 and PRD1, culminates in the formation of protein capsid with an inner membrane, and for ϕ6 an outer envelope. Several inner membrane-containing viruses have been described for archaea, and their lipid acquisition models are reminiscent to those of PM2 and PRD1. Unselective acquisition of lipids has been observed for bacterial mycoplasmaviruses and archaeal pleolipoviruses, which resemble each other by size, morphology, and life style. In addition to these shared morphotypes of bacterial and archaeal viruses, archaea are infected by viruses with unique morphotypes, such as lemon-shaped, helical, and globular ones. It appears that structurally related viruses may or may not have a lipid component in the virion, suggesting that the significance of viral lipids might be to provide viruses extended means to interact with the host cell.
Collapse
Affiliation(s)
- Nina S Atanasova
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ana Senčilo
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Maija K Pietilä
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Elina Roine
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Hanna M Oksanen
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Dennis H Bamford
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
35
|
Grose JH, Jensen GL, Burnett SH, Breakwell DP. Correction: genomic comparison of 93 Bacillus phages reveals 12 clusters, 14 singletons and remarkable diversity. BMC Genomics 2014; 15:1184. [PMID: 25547158 PMCID: PMC4464726 DOI: 10.1186/1471-2164-15-1184] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/04/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The Bacillus genus of Firmicutes bacteria is ubiquitous in nature and includes one of the best characterized model organisms, B. subtilis, as well as medically significant human pathogens, the most notorious being B. anthracis and B. cereus. As the most abundant living entities on the planet, bacteriophages are known to heavily influence the ecology and evolution of their hosts, including providing virulence factors. Thus, the identification and analysis of Bacillus phages is critical to understanding the evolution of Bacillus species, including pathogenic strains. RESULTS Whole genome nucleotide and proteome comparison of the 83 extant, fully sequenced Bacillus phages revealed 10 distinct clusters, 24 subclusters and 15 singleton phages. Host analysis of these clusters supports host boundaries at the subcluster level and suggests phages as vectors for genetic transfer within the Bacillus cereus group, with B. anthracis as a distant member. Analysis of the proteins conserved among these phages reveals enormous diversity and the uncharacterized nature of these phages, with a total of 4,442 protein families (phams) of which only 894 (20%) had a predicted function. In addition, 2,583 (58%) of phams were orphams (phams containing a single member). The most populated phams were those encoding proteins involved in DNA metabolism, virion structure and assembly, cell lysis, or host function. These included several genes that may contribute to the pathogenicity of Bacillus strains. CONCLUSIONS This analysis provides a basis for understanding and characterizing Bacillus and other related phages as well as their contributions to the evolution and pathogenicity of Bacillus cereus group bacteria. The presence of sparsely populated clusters, the high ratio of singletons to clusters, and the large number of uncharacterized, conserved proteins confirms the need for more Bacillus phage isolation in order to understand the full extent of their diversity as well as their impact on host evolution.
Collapse
Affiliation(s)
- Julianne H Grose
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, UT, USA.
| | | | | | | |
Collapse
|
36
|
Genomic comparison of 93 Bacillus phages reveals 12 clusters, 14 singletons and remarkable diversity. BMC Genomics 2014; 15:855. [PMID: 25280881 PMCID: PMC4197329 DOI: 10.1186/1471-2164-15-855] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 09/24/2014] [Indexed: 01/01/2023] Open
Abstract
Background The Bacillus genus of Firmicutes bacteria is ubiquitous in nature and includes one of the best characterized model organisms, B. subtilis, as well as medically significant human pathogens, the most notorious being B. anthracis and B. cereus. As the most abundant living entities on the planet, bacteriophages are known to heavily influence the ecology and evolution of their hosts, including providing virulence factors. Thus, the identification and analysis of Bacillus phages is critical to understanding the evolution of Bacillus species, including pathogenic strains. Results Whole genome nucleotide and proteome comparison of the 93 extant Bacillus phages revealed 12 distinct clusters, 28 subclusters and 14 singleton phages. Host analysis of these clusters supports host boundaries at the subcluster level and suggests phages as vectors for genetic transfer within the Bacillus cereus group, with B. anthracis as a distant member of the group. Analysis of the proteins conserved among these phages reveals enormous diversity and the uncharacterized nature of these phages, with a total of 4,922 protein families (phams) of which only 951 (19%) had a predicted function. In addition, 3,058 (62%) of phams were orphams (phams containing a gene product from a single phage). The most populated phams were those encoding proteins involved in DNA metabolism, virion structure and assembly, cell lysis, or host function. These included several genes that may contribute to the pathogenicity of Bacillus strains. Conclusions This analysis provides a basis for understanding and characterizing Bacillus phages and other related phages as well as their contributions to the evolution and pathogenicity of Bacillus cereus group bacteria. The presence of sparsely populated clusters, the high ratio of singletons to clusters, and the large number of uncharacterized, conserved proteins confirms the need for more Bacillus phage isolation in order to understand the full extent of their diversity as well as their impact on host evolution.
Collapse
|
37
|
Influence of lysogeny of Tectiviruses GIL01 and GIL16 on Bacillus thuringiensis growth, biofilm formation, and swarming motility. Appl Environ Microbiol 2014; 80:7620-30. [PMID: 25261525 DOI: 10.1128/aem.01869-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus thuringiensis is an entomopathogenic bacterium that has been used as an efficient biopesticide worldwide. Despite the fact that this bacterium is usually described as an insect pathogen, its life cycle in the environment is still largely unknown. B. thuringiensis belongs to the Bacillus cereus group of bacteria, which has been associated with many mobile genetic elements, such as species-specific temperate or virulent bacteriophages (phages). Temperate (lysogenic) phages are able to establish a long-term relationship with their host, providing, in some cases, novel ecological traits to the bacterial lysogens. Therefore, this work focuses on evaluating the potential influence of temperate tectiviruses GIL01 and GIL16 on the development of different life traits of B. thuringiensis. For this purpose, a B. thuringiensis serovar israelensis plasmid-cured (nonlysogenic) strain was used to establish bacterial lysogens for phages GIL01 and GIL16, and, subsequently, the following life traits were compared among the strains: kinetics of growth, metabolic profiles, antibiotics susceptibility, biofilm formation, swarming motility, and sporulation. The results revealed that GIL01 and GIL16 lysogeny has a significant influence on the bacterial growth, sporulation rate, biofilm formation, and swarming motility of B. thuringiensis. No changes in metabolic profiles or antibiotic susceptibilities were detected. These findings provide evidence that tectiviruses have a putative role in the B. thuringiensis life cycle as adapters of life traits with ecological advantages.
Collapse
|
38
|
Gillis A, Mahillon J. Phages preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: past, present and future. Viruses 2014; 6:2623-72. [PMID: 25010767 PMCID: PMC4113786 DOI: 10.3390/v6072623] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/19/2014] [Accepted: 06/18/2014] [Indexed: 01/18/2023] Open
Abstract
Many bacteriophages (phages) have been widely studied due to their major role in virulence evolution of bacterial pathogens. However, less attention has been paid to phages preying on bacteria from the Bacillus cereus group and their contribution to the bacterial genetic pool has been disregarded. Therefore, this review brings together the main information for the B. cereus group phages, from their discovery to their modern biotechnological applications. A special focus is given to phages infecting Bacillus anthracis, B. cereus and Bacillus thuringiensis. These phages belong to the Myoviridae, Siphoviridae, Podoviridae and Tectiviridae families. For the sake of clarity, several phage categories have been made according to significant characteristics such as lifestyles and lysogenic states. The main categories comprise the transducing phages, phages with a chromosomal or plasmidial prophage state, γ-like phages and jumbo-phages. The current genomic characterization of some of these phages is also addressed throughout this work and some promising applications are discussed here.
Collapse
Affiliation(s)
- Annika Gillis
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium.
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
39
|
Gillis A, Mahillon J. Prevalence, genetic diversity, and host range of tectiviruses among members of the Bacillus cereus group. Appl Environ Microbiol 2014; 80:4138-52. [PMID: 24795369 PMCID: PMC4068676 DOI: 10.1128/aem.00912-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 04/25/2014] [Indexed: 11/20/2022] Open
Abstract
GIL01, Bam35, GIL16, AP50, and Wip1 are tectiviruses preying on the Bacillus cereus group. Despite the significant contributions of phages in different biological processes, little is known about the dealings taking place between tectiviruses and their Gram-positive bacterial hosts. Therefore, this work focuses on characterizing the interactions between tectiviruses and the B. cereus group by assessing their occurrence and genetic diversity and evaluating their host range. To study the occurrence of tectiviruses in the B. cereus group, 2,000 isolates were evaluated using primers designed to be specific to two variable regions detected in previously described elements. PCR and propagation tests revealed that tectivirus-like elements occurred in less than 3% of the isolates. Regardless of this limited distribution, several novel tectiviruses were found, and partial DNA sequencing indicated that a greater diversity exists within the family Tectiviridae. Analyses of the selected variable regions, along with their host range, showed that tectiviruses in the B. cereus group can be clustered mainly into two different groups: the ones infecting B. anthracis and those isolated from other B. cereus group members. In order to address the host range of some novel tectiviruses, 120 strains were tested for sensitivity. The results showed that all the tested tectiviruses produced lysis in at least one B. cereus sensu lato strain. Moreover, no simple relationship between the infection patterns of the tectiviruses and their diversity was found.
Collapse
Affiliation(s)
- Annika Gillis
- Laboratory of Food and Environmental Microbiology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
40
|
El-Didamony G. Occurrence of Bacillus thuringiensis and their phages in Yemen soil. Virusdisease 2014; 25:107-13. [PMID: 24426317 PMCID: PMC3889238 DOI: 10.1007/s13337-013-0181-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/11/2013] [Indexed: 10/26/2022] Open
Abstract
Bacillus thuringiensis (Bt) isolates were found in all samples of soil in nine Governorates of Yemen. From 384 isolates of Bacillus recovered from these soil samples after acetate selection, 104 isolates (27.1 %) were Bt. Five isolates of Bt were selected and insecticidal activity was tested against Culex pipiens, Callosobruchus maculatus and Spodoptera littoralis. The Bt isolate YH18 gave toxicity to all tested insects larvae. This study extended to isolate phages active against the selected Bt isolates. Five phages were isolated and classified into two groups of tailed phages. Four phages with long non-contractile tails and hexagonal heads (Siphoviridae) and one phage with very short tail and isometric head (Podoviridae). Susceptibility of selected Bt to infect by these phages was studied by spot-test technique. Also the Bt isolate no YH18 was resistant to all tested phages. This is the first report illustrates the diversity and the abundance of Bt and Bt phage in Yemen soil.
Collapse
Affiliation(s)
- Gamal El-Didamony
- Department of Botany, Faculty of Science, Zagazig University, Zagazig, 44519 Egypt
| |
Collapse
|
41
|
Characterization and comparative genomic analysis of bacteriophages infecting members of the Bacillus cereus group. Arch Virol 2013; 159:871-84. [PMID: 24264384 DOI: 10.1007/s00705-013-1920-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 11/05/2013] [Indexed: 12/11/2022]
Abstract
The Bacillus cereus group phages infecting B. cereus, B. anthracis, and B. thuringiensis (Bt) have been studied at the molecular level and, recently, at the genomic level to control the pathogens B. cereus and B. anthracis and to prevent phage contamination of the natural insect pesticide Bt. A comparative phylogenetic analysis has revealed three different major phage groups with different morphologies (Myoviridae for group I, Siphoviridae for group II, and Tectiviridae for group III), genome size (group I > group II > group III), and lifestyle (virulent for group I and temperate for group II and III). A subsequent phage genome comparison using a dot plot analysis showed that phages in each group are highly homologous, substantiating the grouping of B. cereus phages. Endolysin is a host lysis protein that contains two conserved domains: a cell-wall-binding domain (CBD) and an enzymatic activity domain (EAD). In B. cereus sensu lato phage group I, four different endolysin groups have been detected, according to combinations of two types of CBD and four types of EAD. Group I phages have two copies of tail lysins and one copy of endolysin, but the functions of the tail lysins are still unknown. In the B. cereus sensu lato phage group II, the B. anthracis phages have been studied and applied for typing and rapid detection of pathogenic host strains. In the B. cereus sensu lato phage group III, the B. thuringiensis phages Bam35 and GIL01 have been studied to understand phage entry and lytic switch regulation mechanisms. In this review, we suggest that further study of the B. cereus group phages would be useful for various phage applications, such as biocontrol, typing, and rapid detection of the pathogens B. cereus and B. anthracis and for the prevention of phage contamination of the natural insect pesticide Bt.
Collapse
|
42
|
Vörös A, Simm R, Kroeger JK, Kolstø AB. Gene transcription from the linear plasmid pBClin15 leads to cell lysis and extracellular DNA-dependent aggregation of Bacillus cereus ATCC 14579 in response to quinolone-induced stress. MICROBIOLOGY-SGM 2013; 159:2283-2293. [PMID: 24002748 DOI: 10.1099/mic.0.069674-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Bacillus cereus type strain ATCC 14579 harbours pBClin15, a linear plasmid with similar genome organization to tectiviruses. Since phage morphogenesis is not known to occur it has been suggested that pBClin15 may be a defect relic of a tectiviral prophage without relevance for the bacterial physiology. However, in this paper, we demonstrate that a pBClin15-cured strain is more tolerant to antibiotics interfering with DNA integrity than the WT strain. Growth in the presence of crystal violet or the quinolones nalidixic acid, norfloxacin or ciprofloxacin resulted in aggregation and lysis of the WT strain, whereas the pBClin15-cured strain was unaffected. Microarray analysis comparing the gene expression in the WT and pBClin15-cured strains showed that pBClin15 gene expression was strongly upregulated in response to norfloxacin stress, and coincided with lysis and aggregation of the WT strain. The aggregating bacteria experienced a significant survival benefit compared with the planktonic counterparts in the presence of norfloxacin. There was no difference between the WT and pBClin15-cured strains during growth in the absence of norfloxacin, the pBClin15 genes were moderately expressed, and no effect was observed on chromosomal gene expression. These data demonstrate for the first time that although pBClin15 may be a remnant of a temperate phage, it negatively affects the DNA stress tolerance of B. cereus ATCC 14579. Furthermore, our results warrant a recommendation to always verify the presence of pBClin15 following genetic manipulation of B. cereus ATCC 14579.
Collapse
Affiliation(s)
- Aniko Vörös
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Roger Simm
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, Norwegian Radium Hospital, Oslo, Norway
| | - Jasmin K Kroeger
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Anne-Brit Kolstø
- Laboratory for Microbial Dynamics (LaMDa), Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
43
|
Roh JY, Park JB, Liu Q, Kim SE, Tao X, Choi TW, Choi JY, Kim WJ, Jin BR, Je YH. Existence of lysogenic bacteriophages in Bacillus thuringiensis type strains. J Invertebr Pathol 2013; 113:228-31. [PMID: 23632013 DOI: 10.1016/j.jip.2013.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/16/2013] [Accepted: 04/19/2013] [Indexed: 10/26/2022]
Abstract
We screened the existence of bacteriophages in 67 Bacillus thuringiensis type strains by phage DNA extraction and PCR using phage terminase small subunit (TerS)-specific primers to the supernatants and the precipitated pellets of Bt cultures, and by transmission electron microscopy. The various bacteriophages were observed from the supernatants of 22 type strains. Ten type strains showed the extracted phage DNAs and the amplified fragment by TerS PCR but 12 type strains showed only the phage DNAs. Their morphological characteristic suggests that they belong to Family Siphoviridae which had a long tail and symmetrical head.
Collapse
Affiliation(s)
- Jong Yul Roh
- Department of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Swanson MM, Reavy B, Makarova KS, Cock PJ, Hopkins DW, Torrance L, Koonin EV, Taliansky M. Novel bacteriophages containing a genome of another bacteriophage within their genomes. PLoS One 2012; 7:e40683. [PMID: 22815791 PMCID: PMC3398947 DOI: 10.1371/journal.pone.0040683] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 06/14/2012] [Indexed: 11/24/2022] Open
Abstract
A novel bacteriophage infecting Staphylococus pasteuri was isolated during a screen for phages in Antarctic soils. The phage named SpaA1 is morphologically similar to phages of the family Siphoviridae. The 42,784 bp genome of SpaA1 is a linear, double-stranded DNA molecule with 3' protruding cohesive ends. The SpaA1 genome encompasses 63 predicted protein-coding genes which cluster within three regions of the genome, each of apparently different origin, in a mosaic pattern. In two of these regions, the gene sets resemble those in prophages of Bacillus thuringiensis kurstaki str. T03a001 (genes involved in DNA replication/transcription, cell entry and exit) and B. cereus AH676 (additional regulatory and recombination genes), respectively. The third region represents an almost complete genome (except for the short terminal segments) of a distinct bacteriophage, MZTP02. Nearly the same gene module was identified in prophages of B. thuringiensis serovar monterrey BGSC 4AJ1 and B. cereus Rock4-2. These findings suggest that MZTP02 can be shuttled between genomes of other bacteriophages and prophages, leading to the formation of chimeric genomes. The presence of a complete phage genome in the genome of other phages apparently has not been described previously and might represent a 'fast track' route of virus evolution and horizontal gene transfer. Another phage (BceA1) nearly identical in sequence to SpaA1, and also including the almost complete MZTP02 genome within its own genome, was isolated from a bacterium of the B. cereus/B. thuringiensis group. Remarkably, both SpaA1 and BceA1 phages can infect B. cereus and B. thuringiensis, but only one of them, SpaA1, can infect S. pasteuri. This finding is best compatible with a scenario in which MZTP02 was originally contained in BceA1 infecting Bacillus spp, the common hosts for these two phages, followed by emergence of SpaA1 infecting S. pasteuri.
Collapse
Affiliation(s)
- Maud M. Swanson
- The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Brian Reavy
- The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter J. Cock
- The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | | | - Lesley Torrance
- The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | | |
Collapse
|
45
|
Yuan Y, Gao M, Wu D, Liu P, Wu Y. Genome characteristics of a novel phage from Bacillus thuringiensis showing high similarity with phage from Bacillus cereus. PLoS One 2012; 7:e37557. [PMID: 22649540 PMCID: PMC3359378 DOI: 10.1371/journal.pone.0037557] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Accepted: 04/25/2012] [Indexed: 11/18/2022] Open
Abstract
Bacillus thuringiensis is an important entomopathogenic bacterium belongs to the Bacillus cereus group, which also includes B. anthracis and B. cereus. Several genomes of phages originating from this group had been sequenced, but no genome of Siphoviridae phage from B. thuringiensis has been reported. We recently sequenced and analyzed the genome of a novel phage, BtCS33, from a B. thuringiensis strain, subsp. kurstaki CS33, and compared the gneome of this phage to other phages of the B. cereus group. BtCS33 was the first Siphoviridae phage among the sequenced B. thuringiensis phages. It produced small, turbid plaques on bacterial plates and had a narrow host range. BtCS33 possessed a linear, double-stranded DNA genome of 41,992 bp with 57 putative open reading frames (ORFs). It had a typical genome structure consisting of three modules: the "late" region, the "lysogeny-lysis" region and the "early" region. BtCS33 exhibited high similarity with several phages, B. cereus phage Wβ and some variants of Wβ, in genome organization and the amino acid sequences of structural proteins. There were two ORFs, ORF22 and ORF35, in the genome of BtCS33 that were also found in the genomes of B. cereus phage Wβ and may be involved in regulating sporulation of the host cell. Based on these observations and analysis of phylogenetic trees, we deduced that B. thuringiensis phage BtCS33 and B. cereus phage Wβ may have a common distant ancestor.
Collapse
Affiliation(s)
- Yihui Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Meiying Gao
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Dandan Wu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Pengming Liu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Yan Wu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| |
Collapse
|
46
|
Pathogen detection using engineered bacteriophages. Anal Bioanal Chem 2011; 402:3127-46. [DOI: 10.1007/s00216-011-5555-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/29/2011] [Accepted: 11/02/2011] [Indexed: 12/19/2022]
|
47
|
Abstract
The Bacillus thuringiensis temperate phage GIL01 does not integrate into the host chromosome but exists stably as an independent linear replicon within the cell. Similar to that of the lambdoid prophages, the lytic cycle of GIL01 is induced as part of the cellular SOS response to DNA damage. However, no CI-like maintenance repressor has been detected in the phage genome, suggesting that GIL01 uses a novel mechanism to maintain lysogeny. To gain insights into the GIL01 regulatory circuit, we isolated and characterized a set of 17 clear plaque (cp) mutants that are unable to lysogenize. Two phage-encoded proteins, gp1 and gp7, are required for stable lysogen formation. Analysis of cp mutants also identified a 14-bp palindromic dinBox1 sequence within the P1-P2 promoter region that resembles the known LexA-binding site of Gram-positive bacteria. Mutations at conserved positions in dinBox1 result in a cp phenotype. Genomic analysis identified a total of three dinBox sites within GIL01 promoter regions. To investigate the possibility that the host LexA regulates GIL01, phage induction was measured in a host carrying a noncleavable lexA (Ind(-)) mutation. GIL01 formed stable lysogens in this host, but lytic growth could not be induced by treatment with mitomycin C. Also, mitomycin C induced β-galactosidase expression from GIL01-lacZ promoter fusions, and induction was similarly blocked in the lexA (Ind(-)) mutant host. These data support a model in which host LexA binds to dinBox sequences in GIL01, repressing phage gene expression during lysogeny and providing the switch necessary to enter lytic development.
Collapse
|
48
|
Smeesters PR, Drèze PA, Bousbata S, Parikka KJ, Timmery S, Hu X, Perez-Morga D, Deghorain M, Toussaint A, Mahillon J, Van Melderen L. Characterization of a novel temperate phage originating from a cereulide-producing Bacillus cereus strain. Res Microbiol 2011; 162:446-59. [PMID: 21349326 DOI: 10.1016/j.resmic.2011.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 02/01/2011] [Indexed: 10/18/2022]
Abstract
A novel temperate bacteriophage was isolated from a Bacillus cereus cereulide-producing strain and named vB_BceS-IEBH. vB_BceS-IEBH belongs to the Siphoviridae family. The complete genome sequence (53 kb) was determined and annotated. Eighty-seven ORFs were detected and for 28, a putative function was assigned using the ACLAME database. vB_BceS-IEBH replicates as a plasmid in the prophage state. Accordingly, a 9-kb plasmid-like region composed of 13 ORFs was identified. A fragment of around 2000 bp comprising an ORF encoding a putative plasmid replication protein was shown to be self-replicating in Bacillus thuringiensis. Mass spectrometry analysis of the purified vB_BceS-IEBH particle identified 8 structural proteins and enabled assignment of a supplementary ORF as being part of the morphogenesis module. Genome analysis further illustrates the diversity of mobile genetic elements and their plasticity within the B. cereus group.
Collapse
Affiliation(s)
- Pierre R Smeesters
- Laboratoire de Génétique et Physiologie Bactérienne, IBMM, Faculté des Sciences, Université Libre de Bruxelles, 12 Rue des Professeurs, Jeener et Brachet, 6041 Gosselies, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhong C, Peng D, Ye W, Chai L, Qi J, Yu Z, Ruan L, Sun M. Determination of plasmid copy number reveals the total plasmid DNA amount is greater than the chromosomal DNA amount in Bacillus thuringiensis YBT-1520. PLoS One 2011; 6:e16025. [PMID: 21283584 PMCID: PMC3026805 DOI: 10.1371/journal.pone.0016025] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 12/03/2010] [Indexed: 11/30/2022] Open
Abstract
Bacillus thuringiensis is the most widely used bacterial bio-insecticide, and most insecticidal crystal protein-coding genes are located on plasmids. Most strains of B. thuringiensis harbor numerous diverse plasmids, although the plasmid copy numbers (PCNs) of all native plasmids in this host and the corresponding total plasmid DNA amount remains unknown. In this study, we determined the PCNs of 11 plasmids (ranging from 2 kb to 416 kb) in a sequenced B. thuringiensis subsp. kurstaki strain YBT-1520 using real-time qPCR. PCNs were found to range from 1.38 to 172, and were negatively correlated to plasmid size. The amount of total plasmid DNA (∼8.7 Mbp) was 1.62-fold greater than the amount of chromosomal DNA (∼5.4 Mbp) at the mid-exponential growth stage (OD(600) = 2.0) of the organism. Furthermore, we selected three plasmids with different sizes and replication mechanisms to determine the PCNs over the entire life cycle. We found that the PCNs dynamically shifted at different stages, reaching their maximum during the mid-exponential growth or stationary phases and remaining stable and close to their minimum after the prespore formation stage. The PCN of pBMB2062, which is the smallest plasmid (2062 bp) and has the highest PCN of those tested, varied in strain YBT-1520, HD-1, and HD-136 (172, 115, and 94, respectively). These findings provide insight into both the total plasmid DNA amount of B. thuringiensis and the strong ability of the species to harbor plasmids.
Collapse
Affiliation(s)
- Chunying Zhong
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weixing Ye
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lujun Chai
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Junliang Qi
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lifang Ruan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
50
|
Lynch KH, Stothard P, Dennis JJ. Genomic analysis and relatedness of P2-like phages of the Burkholderia cepacia complex. BMC Genomics 2010; 11:599. [PMID: 20973964 PMCID: PMC3091744 DOI: 10.1186/1471-2164-11-599] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 10/25/2010] [Indexed: 01/24/2023] Open
Abstract
Background The Burkholderia cepacia complex (BCC) is comprised of at least seventeen Gram-negative species that cause infections in cystic fibrosis patients. Because BCC bacteria are broadly antibiotic resistant, phage therapy is currently being investigated as a possible alternative treatment for these infections. The purpose of our study was to sequence and characterize three novel BCC-specific phages: KS5 (vB_BceM-KS5 or vB_BmuZ-ATCC 17616), KS14 (vB_BceM-KS14) and KL3 (vB_BamM-KL3 or vB_BceZ-CEP511). Results KS5, KS14 and KL3 are myoviruses with the A1 morphotype. The genomes of these phages are between 32317 and 40555 base pairs in length and are predicted to encode between 44 and 52 proteins. These phages have over 50% of their proteins in common with enterobacteria phage P2 and so can be classified as members of the Peduovirinae subfamily and the "P2-like viruses" genus. The BCC phage proteins similar to those encoded by P2 are predominantly structural components involved in virion morphogenesis. As prophages, KS5 and KL3 integrate into an AMP nucleosidase gene and a threonine tRNA gene, respectively. Unlike other P2-like viruses, the KS14 prophage is maintained as a plasmid. The P2 E+E' translational frameshift site is conserved among these three phages and so they are predicted to use frameshifting for expression of two of their tail proteins. The lysBC genes of KS14 and KL3 are similar to those of P2, but in KS5 the organization of these genes suggests that they may have been acquired via horizontal transfer from a phage similar to λ. KS5 contains two sequence elements that are unique among these three phages: an ISBmu2-like insertion sequence and a reverse transcriptase gene. KL3 encodes an EcoRII-C endonuclease/methylase pair and Vsr endonuclease that are predicted to function during the lytic cycle to cleave non-self DNA, protect the phage genome and repair methylation-induced mutations. Conclusions KS5, KS14 and KL3 are the first BCC-specific phages to be identified as P2-like. As KS14 has previously been shown to be active against Burkholderia cenocepacia in vivo, genomic characterization of these phages is a crucial first step in the development of these and similar phages for clinical use against the BCC.
Collapse
Affiliation(s)
- Karlene H Lynch
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| | | | | |
Collapse
|