1
|
Reinoso-Pérez MT, Díaz Ávila LE, García Jacobo S, Rodríguez-García VM, Dhondt AA. Emerging genetic diversity of Mycoplasma gallisepticum in Mexican house finches: Evidence of possible independent spillover events. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 132:105761. [PMID: 40349939 DOI: 10.1016/j.meegid.2025.105761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 05/01/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
In a previous study, we reported for the first time the detection of Mycoplasma gallisepticum (MG) in Mexican house finches (Haemorhous mexicanus). Building on this finding, we explored the genetic diversity of MG, addressing the potential independent spillover events. Samples from 247 wild finches across Mexico revealed MG infection in 72 % of choanal swabs and 24 % of conjunctival swabs, with no clinical signs observed. Phylogenetic analysis identified two novel MG clades distinct from U.S. house finch-associated and poultry-associated MG strains, suggesting independent evolution within Mexico. Coinfections with diverse haplotypes were common, raising concerns about recombination and shifts in virulence. This research highlights the asymptomatic carrier state of Mexican house finches, their potential as reservoirs, and the ecological implications of pathogen spread and adaptation. These findings underscore the need for enhanced surveillance and further study on MG's dynamics in Mexican avifauna.
Collapse
Affiliation(s)
| | | | | | | | - André A Dhondt
- Laboratory of Ornithology, Cornell University. Ithaca, New York, USA; Department of Ecology and Evolutionary Biology, Cornell University. Ithaca, New York, USA.
| |
Collapse
|
2
|
Yacoub E, Baby V, Sirand-Pugnet P, Arfi Y, Mardassi H, Blanchard A, Chibani S, Ben Abdelmoumen Mardassi B. A sweeping view of avian mycoplasmas biology drawn from comparative genomic analyses. BMC Genomics 2025; 26:24. [PMID: 39789465 PMCID: PMC11720521 DOI: 10.1186/s12864-024-11201-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Avian mycoplasmas are small bacteria associated with several pathogenic conditions in many wild and poultry bird species. Extensive genomic data are available for many avian mycoplasmas, yet no comparative studies focusing on this group of mycoplasmas have been undertaken so far. RESULTS Here, based on the comparison of forty avian mycoplasma genomes belonging to ten different species, we provide insightful information on the phylogeny, pan/core genome, energetic metabolism, and virulence of these avian pathogens. Analyses disclosed considerable inter- and intra-species genomic variabilities, with genome sizes that can vary by twice as much. Phylogenetic analysis based on concatenated orthologous genes revealed that avian mycoplasmas fell into either Hominis or Pneumoniae groups within the Mollicutes and could split into various clusters. No host co-evolution of avian mycoplasmas can be inferred from the proposed phylogenetic scheme. With 3,237 different gene clusters, the avian mycoplasma group under study proved diverse enough to have an open pan genome. However, a set of 150 gene clusters was found to be shared between all avian mycoplasmas, which is likely encoding essential functions. Comparison of energy metabolism pathways showed that avian mycoplasmas rely on various sources of energy. Superposition between phylogenetic and energy metabolism groups revealed that the glycolytic mycoplasmas belong to two distinct phylogenetic groups (Hominis and Pneumoniae), while all the arginine-utilizing mycoplasmas belong only to Hominis group. This can stand for different evolutionary strategies followed by avian mycoplasmas and further emphasizes the diversity within this group. Virulence determinants survey showed that the involved gene arsenals vary significantly within and between species, and could even be found in species often reported apathogenic. Immunoglobulin-blocking proteins were detected in almost all avian mycoplasmas. Although these systems are not exclusive to this group, they seem to present some particular features making them unique among mycoplasmas. CONCLUSION This comparative genomic study uncovered the significant variable nature of avian mycoplasmas, furthering our knowledge on their biological attributes and evoking new hallmarks.
Collapse
Affiliation(s)
- Elhem Yacoub
- Unit of Mycoplasmas, Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Vincent Baby
- Centre de Diagnostic Vétérinaire de L'Université de Montréal (CDVUM), Faculty of Veterinary Medecine, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | | | - Yonathan Arfi
- Univ. Bordeaux, INRAE, UMR BFP, 33882, Villenave d'Ornon, France
| | - Helmi Mardassi
- Unit of Typing and Genetics of Mycobacteria, Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Alain Blanchard
- Univ. Bordeaux, INRAE, UMR BFP, 33882, Villenave d'Ornon, France
| | - Salim Chibani
- Unit of Mycoplasmas, Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Boutheina Ben Abdelmoumen Mardassi
- Unit of Mycoplasmas, Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Institut Pasteur de Tunis, University Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
3
|
Ipoutcha T, Tsarmpopoulos I, Gourgues G, Baby V, Dubos P, Hill GE, Arfi Y, Lartigue C, Thébault P, Bonneaud C, Sirand-Pugnet P. Evolution of the CRISPR-Cas9 defence system in Mycoplasma gallisepticum following colonization of a novel bird host. Microb Genom 2024; 10:001320. [PMID: 39556419 PMCID: PMC11893278 DOI: 10.1099/mgen.0.001320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems are bacterial defences that target bacteriophages and mobile genetic elements. How these defences evolve in novel host environments remains largely unknown. We studied the evolution of the CRISPR-Cas system in Mycoplasma gallisepticum (also named Mycoplasmoides gallisepticum), a bacterial pathogen of poultry that jumped into a passerine host ~30 years ago. Over the decade following the host shift, all isolates displaying a functional CRISPR-Cas system were found not only to harbour completely new sets of spacers, but the DNA protospacer adjacent motif recognized by the main effector M. gallisepticum Cas9 (MgCas9) was also different. These changes in CRISPR-Cas diversity and specificity are consistent with a change in the community of phages and mobile elements infecting M. gallisepticum as it colonized the novel host. In the years following the host shift, we also detected a gradual rise in isolates displaying non-functional MgCas9. After 12 years, all circulating isolates harboured inactive forms only. This loss of CRISPR-Cas function comes at a time when the passerine host is known to have evolved widespread resistance, which in turn drove the evolution of increasing M. gallisepticum virulence through antagonistic coevolution. Such striking concordance in the rise of inactivated forms of CRISPR-Cas and the evolution of host resistance suggests that the inactivation of the CRISPR-Cas system was necessary for enabling adaptive bacterial responses to host-driven selection. We highlight the need to consider both host and pathogen selection pressures on bacteria for understanding the evolution of CRISPR-Cas systems and the key factors driving the emergence of a pathogenic bacterium in a novel host.
Collapse
Affiliation(s)
- Thomas Ipoutcha
- Univ. Bordeaux, INRAE, UMR BFP, F-33882, Villenave d’Ornon, France
| | | | | | - Vincent Baby
- Univ. Bordeaux, INRAE, UMR BFP, F-33882, Villenave d’Ornon, France
| | - Paul Dubos
- Univ. Bordeaux, INRAE, UMR BFP, F-33882, Villenave d’Ornon, France
| | - Geoffrey E. Hill
- Department of Biological Sciences, Auburn University, Auburn, Alabama, 36849-5414, USA
| | - Yonathan Arfi
- Univ. Bordeaux, INRAE, UMR BFP, F-33882, Villenave d’Ornon, France
| | - Carole Lartigue
- Univ. Bordeaux, INRAE, UMR BFP, F-33882, Villenave d’Ornon, France
| | - Patricia Thébault
- Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400 Talence, France
| | - Camille Bonneaud
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK
- Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK
| | | |
Collapse
|
4
|
Wu S, Wang M, Yang X, Zhao L, Lan Z, Sun S. Research Progress in the Development of Vaccines against Mycoplasma gallisepticum and Mycoplasma synoviae. Microorganisms 2024; 12:1699. [PMID: 39203540 PMCID: PMC11356929 DOI: 10.3390/microorganisms12081699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Mycoplasma gallisepticum (MG) and Mycoplasma synoviae (MS) are the primary agents responsible for mycoplasma disease in poultry. MG has been identified as a significant cause of chronic respiratory disease in chickens, while MS has been linked to the development of tenosynovitis, joint swelling and other symptoms in chickens, leading to considerable economic losses for the poultry industry. Unfortunately, there is no specific drug for treatment and vaccination is the most important way to control the disease. There are some different types of vaccines, including live vaccines, inactivated vaccines, sub-unit vaccines and vector vaccines. This paper provides a comprehensive review of the development of vaccines for MG and MS.
Collapse
Affiliation(s)
- Shaopeng Wu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China;
| | - Miaoli Wang
- Shandong Provincial Center for Animal Disease Control, Jinan 250010, China; (M.W.); (X.Y.); (L.Z.)
| | - Xiaoxue Yang
- Shandong Provincial Center for Animal Disease Control, Jinan 250010, China; (M.W.); (X.Y.); (L.Z.)
| | - Lu Zhao
- Shandong Provincial Center for Animal Disease Control, Jinan 250010, China; (M.W.); (X.Y.); (L.Z.)
| | - Zouran Lan
- Shandong Provincial Center for Animal Disease Control, Jinan 250010, China; (M.W.); (X.Y.); (L.Z.)
| | - Shuhong Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China;
| |
Collapse
|
5
|
Maya-Rodríguez LM, Gómez-Verduzco G, Trigo-Tavera FJ, Moreno-Fierros L, Miranda-Morales RE. Variability of pMGA/vlhA sequences among Mycoplasma gallisepticum field strains isolated from laying hens and their deformed eggs. Access Microbiol 2024; 6:000681.v5. [PMID: 39045249 PMCID: PMC11261720 DOI: 10.1099/acmi.0.000681.v5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 04/23/2024] [Indexed: 07/25/2024] Open
Abstract
Mycoplasmosis, attributed to Mycoplasma gallisepticum, poses a significant challenge to poultry farming, leading to substantial economic losses and persistent infections within flocks. This bacterium harbours various surface proteins that are crucial for adhesion, transporter activity and evasion of the host immune response, facilitating its pathogenicity. One such key surface lipoprotein, referred to as pMGA or vlhA haemagglutinin, plays a pivotal role in adhesion processes. In this study, the clonal regions pMGA1.2 and pMGA1.3, as reported by Markham (M83178.1), were investigated to elucidate differences or similarities in the whole DNA sequences of M. gallisepticum field strains. The aim was to analyse sequence diversity within this region. Six internal primers were designed to amplify the target sequence, and isolates were obtained from both eggs and chickens sourced from laying hen flocks. Identification revealed 17 strains of M. gallisepticum and four strains of Mycoplasma synoviae, which were confirmed through the mgc2 and 16S rRNA genes, respectively. Positive and negative controls were established using the MGS6 and MSWUV1853 strains. Amplification results indicated a higher frequency of amplification proximal to the C-terminal region, with segments 4 (33.3 %) and 6 (27.8 %) being the most prevalent. Notably, none of the field strains exhibited the same amplification pattern as MGS6, and none of the strains characterized as M. synoviae amplified any primer set. Upon translation, the amino acid sequences from segments 4 and 6 were found to be compatible with conserved sequences within the Myco_haema protein domains of the genus Mycoplasma, specifically corresponding to Q7NAP3_MYCGA VlhA.3.04. The observed homology suggests a potential genetic transfer, while the variability identified in the pMGA or vlhA gene region of the field strains may have significant implications for protection against M. gallisepticum infection in chickens.
Collapse
Affiliation(s)
- Linda M. Maya-Rodríguez
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Ciudad Universitaria, Universidad Nacional Autónoma de México, CDMX, 04510, México
| | - Gabriela Gómez-Verduzco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Ciudad Universitaria, Universidad Nacional Autónoma de México, CDMX, 04510, México
| | - Francisco J. Trigo-Tavera
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Ciudad Universitaria, Universidad Nacional Autónoma de México, CDMX, 04510, México
| | - Leticia Moreno-Fierros
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina (UBIMED), Los Reyes Ixtacala, Universidad Nacional Autónoma de México, Tlanepantla de Baz, 54090, México
| | - Rosa E. Miranda-Morales
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Ciudad Universitaria, Universidad Nacional Autónoma de México, CDMX, 04510, México
| |
Collapse
|
6
|
Ramírez AS, Poveda JB, Dijkman R, Poveda C, Suárez-Pérez A, Rosales RS, Feberwee A, Szostak MP, Ressel L, Viver T, Calabuig P, Catania S, Gobbo F, Timofte D, Spergser J. Mycoplasma bradburyae sp. nov. isolated from the trachea of sea birds. Syst Appl Microbiol 2023; 46:126472. [PMID: 37839385 DOI: 10.1016/j.syapm.2023.126472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
In the search for mollicutes in wild birds, six Mycoplasma strains were isolated from tracheal swabs taken from four different species of seabirds. Four strains originated from three Yellow-legged gulls (Larus michahellis) and a Cory's shearwater (Calonectris borealis) from Spain, one from a South African Kelp gull (Larus dominicanus), and one from an Italian Black-headed gull (Chroicocephalus ridibundus). These Mycoplasma strains presented 99 % 16S rRNA gene sequence similarity values with Mycoplasma (M.) gallisepticum. Phylogenetic analyses of marker genes (16S rRNA gene and rpoB) confirmed the close relationship of the strains to M. gallisepticum and M. tullyi. The seabirds' strains grew well in modified Hayflick medium, and colonies showed typical fried egg morphology. They produced acid from glucose and mannose but did not hydrolyze arginine or urea. Transmission electron microscopy revealed a cell morphology characteristic of mycoplasmas, presenting spherical to flask-shaped cells with an attachment organelle. Gliding motility was also observed. Furthermore, serological tests, MALDI-ToF mass spectrometry and genomic studies demonstrated that the strains were different to any known Mycoplasma species, for which the name Mycoplasma bradburyae sp. nov. is proposed; the type strain is T158T (DSM 110708 = NCTC 14398).
Collapse
Affiliation(s)
- Ana S Ramírez
- Unidad de Epidemiología y Medicina Preventiva, IUSA, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, C/Trasmontaña s/n, Arucas, 35413, Canary Islands, Spain
| | - José B Poveda
- Unidad de Epidemiología y Medicina Preventiva, IUSA, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, C/Trasmontaña s/n, Arucas, 35413, Canary Islands, Spain.
| | - Remco Dijkman
- GD Animal Health, Arnsbergstraat 7, 7418 EZ, Deventer, the Netherlands
| | - Carlos Poveda
- Unidad de Epidemiología y Medicina Preventiva, IUSA, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, C/Trasmontaña s/n, Arucas, 35413, Canary Islands, Spain
| | - Alejandro Suárez-Pérez
- Unidad de Epidemiología y Medicina Preventiva, IUSA, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, C/Trasmontaña s/n, Arucas, 35413, Canary Islands, Spain
| | - Rubén S Rosales
- Unidad de Epidemiología y Medicina Preventiva, IUSA, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, C/Trasmontaña s/n, Arucas, 35413, Canary Islands, Spain
| | - Anneke Feberwee
- GD Animal Health, Arnsbergstraat 7, 7418 EZ, Deventer, the Netherlands
| | - Michael P Szostak
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, A-1210 Vienna, Austria
| | - Lorenzo Ressel
- University of Liverpool, Institute of Veterinary Science, Leahurst Campus, Neston CH64 7TE, UK
| | - Tomeu Viver
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), 07190, Esporles, Spain
| | - Pascual Calabuig
- Centro de Recuperación de Fauna Silvestre, Cabildo de Gran Canaria, Spain
| | - Salvatore Catania
- Mycoplasma Unit - SCT1-Verona, WOAH Reference Laboratory for Avian Mycoplasmosis, Istituto Zooprofilattico Sperimentale delle Venezie, 37060 Buttapietra (VR), Italy
| | - Federica Gobbo
- Mycoplasma Unit - SCT1-Verona, WOAH Reference Laboratory for Avian Mycoplasmosis, Istituto Zooprofilattico Sperimentale delle Venezie, 37060 Buttapietra (VR), Italy
| | - Dorina Timofte
- University of Liverpool, Institute of Veterinary Science, Leahurst Campus, Neston CH64 7TE, UK
| | - Joachim Spergser
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine, A-1210 Vienna, Austria
| |
Collapse
|
7
|
Nakane D. Rheotaxis in Mycoplasma gliding. Microbiol Immunol 2023; 67:389-395. [PMID: 37430383 DOI: 10.1111/1348-0421.13090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
This review describes the upstream-directed movement in the small parasitic bacterium Mycoplasma. Many Mycoplasma species exhibit gliding motility, a form of biological motion over surfaces without the aid of general surface appendages such as flagella. The gliding motility is characterized by a constant unidirectional movement without changes in direction or backward motion. Unlike flagellated bacteria, Mycoplasma lacks the general chemotactic signaling system to control their moving direction. Therefore, the physiological role of directionless travel in Mycoplasma gliding remains unclear. Recently, high-precision measurements under an optical microscope have revealed that three species of Mycoplasma exhibited rheotaxis, that is, the direction of gliding motility is lead upstream by the water flow. This intriguing response appears to be optimized for the flow patterns encountered at host surfaces. This review provides a comprehensive overview of the morphology, behavior, and habitat of Mycoplasma gliding, and discusses the possibility that the rheotaxis is ubiquitous among them.
Collapse
Affiliation(s)
- Daisuke Nakane
- Department of Engineering Science, Graduate School of Informatics and Engineering, Tokyo, Japan
| |
Collapse
|
8
|
Yehia N, Salem HM, Mahmmod Y, Said D, Samir M, Mawgod SA, Sorour HK, AbdelRahman MAA, Selim S, Saad AM, El-Saadony MT, El-Meihy RM, Abd El-Hack ME, El-Tarabily KA, Zanaty AM. Common viral and bacterial avian respiratory infections: an updated review. Poult Sci 2023; 102:102553. [PMID: 36965253 PMCID: PMC10064437 DOI: 10.1016/j.psj.2023.102553] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Many pathogens that cause chronic diseases in birds use the respiratory tract as a primary route of infection, and respiratory disorders are the main leading source of financial losses in the poultry business. Respiratory infections are a serious problem facing the poultry sector, causing severe economic losses. Avian influenza virus, Newcastle disease virus, infectious bronchitis virus, and avian pneumovirus are particularly serious viral respiratory pathogens. Mycoplasma gallisepticum, Staphylococcus, Bordetella avium, Pasteurella multocida, Riemerella anatipestifer, Chlamydophila psittaci, and Escherichia coli have been identified as the most serious bacterial respiratory pathogens in poultry. This review gives an updated summary, incorporating the latest data, about the evidence for the circulation of widespread, economically important poultry respiratory pathogens, with special reference to possible methods for the control and prevention of these pathogens.
Collapse
Affiliation(s)
- Nahed Yehia
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Yasser Mahmmod
- Department of Veterinary Sciences, Faculty of Health Sciences, Higher Colleges of Technology, Al Ain 17155, United Arab Emirates
| | - Dalia Said
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Mahmoud Samir
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Sara Abdel Mawgod
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Hend K Sorour
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Mona A A AbdelRahman
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Rasha M El-Meihy
- Department of Agricultural Microbiology, Faculty of Agriculture, Benha University, Moshtohor, Qaluybia 13736, Egypt
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates; Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain 15551, United Arab Emirates; Harry Butler Institute, Murdoch University, Murdoch 6150, Western Australia, Australia.
| | - Ali M Zanaty
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza 12618, Egypt
| |
Collapse
|
9
|
Yadav JP, Tomar P, Singh Y, Khurana SK. Insights on Mycoplasma gallisepticum and Mycoplasma synoviae infection in poultry: a systematic review. Anim Biotechnol 2022; 33:1711-1720. [PMID: 33840372 DOI: 10.1080/10495398.2021.1908316] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Avian mycoplasmosis mainly caused by Mycoplasma gallisepticum and M. synoviae is an economically important disease of poultry industry. It causes huge economic losses in terms of decrease in weight gain, feed conversion efficiency, egg production, hatchability; increase in embryo mortality, carcass condemnation, prophylaxis and treatment cost in broiler, layer and breeder flocks. The disease is caused by four major pathogenic mycoplasmas viz., M. gallisepticum (MG), M. synoviae (MS), M. meleagradis (MM) and M. iowae (MI). The MG and MS are World Organization for Animal Health listed respiratory pathogens. MG causes chronic respiratory disease in chicken and infectious sinusitis in turkey; however, MS causes synovitis and airsacculitis in birds. The infection is transmitted both horizontally and vertically. Prevention and control measures of avian mycoplasmosis mainly comprises of biosecurity, treatment and vaccination. For vaccination of birds, inactivated bacterins, live attenuated and/or recombinant live poxvirus vaccines are commercially available against MG and MS infection. The present systematic review summarizes the different epidemiological studies carried out on MG and MS infection in poultry in different geographical locations of India and abroad over the last decade (2010-2020), economic impact, diagnosis and prevention and control.
Collapse
Affiliation(s)
- Jay Prakash Yadav
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Piyush Tomar
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Yarvendra Singh
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | | |
Collapse
|
10
|
Rüger N, Szostak MP, Rautenschlein S. The expression of GapA and CrmA correlates with the Mycoplasma gallisepticum in vitro infection process in chicken TOCs. Vet Res 2022; 53:66. [PMID: 36056451 PMCID: PMC9440553 DOI: 10.1186/s13567-022-01085-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/03/2022] [Indexed: 11/10/2022] Open
Abstract
Mycoplasma (M.) gallisepticum is the most pathogenic mycoplasma species in poultry. Infections cause mild to severe clinical symptoms associated with respiratory epithelial lesion development. Adherence, biofilm formation, and cell invasion of M. gallisepticum contribute to successful infection, immune evasion, and survival within the host. The important M. gallisepticum membrane-bound proteins, GapA and CrmA, are key factors for host cell interaction and the bacterial life-cycle, including its gliding motility, although their precise role in the individual infection step is not yet fully understood. In this study, we investigated the correlation between the host-pathogen interaction and the GapA/CrmA expression in an environment that represents the natural host's multicellular compartment. We used an in vitro tracheal organ culture (TOC) model, allowing the investigation of the M. gallisepticum variants, Rlow, RCL1, RCL2, and Rhigh, under standardised conditions. In this regard, we examined the bacterial adherence, motility and colonisation pattern, host lesion development and alterations of mucociliary clearance. Compared to low virulent RCL2 and Rhigh, the high virulent Rlow and RCL1 were more efficient in adhering to TOCs and epithelium colonisation, including faster movement from the cilia tips to the apical membrane and subsequent cell invasion. RCL2 and Rhigh showed a more localised invasion pattern, accompanied by significantly fewer lesions than Rlow and RCL1. Unrelated to virulence, comparable mucus production was observed in all M. gallisepticum infected TOCs. Overall, the present study demonstrates the role of GapA/CrmA in virulence factors from adherence to colonisation, as well as the onset and severity of lesion development in the tracheal epithelium.
Collapse
Affiliation(s)
- Nancy Rüger
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Michael P Szostak
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
11
|
Targeted sequencing analysis of Mycoplasma gallisepticum isolates in chicken layer and breeder flocks in Thailand. Sci Rep 2022; 12:9900. [PMID: 35701517 PMCID: PMC9198072 DOI: 10.1038/s41598-022-14066-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/31/2022] [Indexed: 12/03/2022] Open
Abstract
Mycoplasma gallisepticum (MG) is one of the most economically important pathogens worldwide. MG affects the respiratory system and impairs growth performance in poultry. In developing countries, the most widely used technique to identify MG is the conventional PCR assay. In this study, 24 MG isolates collected from Thailand farms with unvaccinated chickens during 2002–2020 were characterized by gene-targeted sequencing (GTS), followed by phylogenetic analysis using unweighted pair group method with arithmetic mean. These 24 Thai MG isolates differed from vaccine strains, including the F, ts-11 and 6/85 strains. One isolate showed 99.5–100% genetic similarity to the F strain with 4 partial gene analyses. This result may have been due to contamination from vaccinated flocks because the F strain is the most commonly used vaccine strain in Thailand. However, the GTS analysis using the partial MG genes in this study showed that the isolates could be grouped into different patterns based on individual gene sequences. The phylogenetic analysis of partial mgc2, gapA, pvpA and lp gene sequences classified the Thai MG isolates into 7, 11, 7 and 2 groups, respectively. In conclusion, at least 2 partial MG genes, especially partial gapA and mgc2 genes, are needed to differentiate MG isolates.
Collapse
|
12
|
Klose SM, Wawegama N, Sansom FM, Marenda MS, Browning GF. Efficient disruption of the function of the mnuA nuclease gene using the endogenous CRISPR/Cas system in Mycoplasma gallisepticum. Vet Microbiol 2022; 269:109436. [DOI: 10.1016/j.vetmic.2022.109436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 12/20/2022]
|
13
|
MANIMARAN K, MISHRA ADARSH, HARINI V, SHIVACHANDRA SATHISHB, MEENAMBIGAI TV, RAJ GDHINAKAR. Cloning of cytadhesin protein gene (pvpA) and expression analysis of recombinant fusion protein of Mycoplasma gallisepticum. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v91i2.113814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chronic respiratory disease (CRD) caused by Mycoplasma gallisepticum (MG) is one of the major respiratory tract infections of the poultry, resulting in significant economic loss to the poultry farmers. Diagnosis of such ailment is highly necessary for effective control measures. In addition, promising molecular tools are warranted for efficient epidemiological tracing of the outbreaks. The study was focused on the elucidation of phase variable cytadhesin protein gene (pvpA) of MG through cloning and expression analysis. A set of primers targeting the pvpA gene of MG was designed. The complete pvpA gene was amplified and cloned into pUC-derived expression vector pRSETA. Finally, the recombinant clones were examined through colony PCR and restriction endonuclease (RE) analysis with EcoR1 and BamH1 enzymes followed by sequencing. The expression of the recombinant pvpA gene was optimized at 1.4mM/μl concentration of Isopropyl-β-D-thiogalactoside induction at 30°C. The recombinant fusion protein was purified by immobilized metal affinity chromatography and characterized by SDS-PAGE followed by confirmation of recombinant cytadhesin fusion protein through western blot analysis. The pvpA gene was successfully cloned and expressed. The deduced amino acid sequence analysis had shown the presence of two direct repeats (DR1 and DR2) along with predicted PRP motifs repeatedly with high proline encoding regions at the carboxy-terminal of pvpA gene indicating its scope for epidemiological studies.
Collapse
|
14
|
A Mycoplasma gallisepticum Glycerol ABC Transporter Involved in Pathogenicity. Appl Environ Microbiol 2021; 87:AEM.03112-20. [PMID: 33741628 DOI: 10.1128/aem.03112-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/02/2021] [Indexed: 11/20/2022] Open
Abstract
MalF has been shown to be required for virulence in the important avian pathogen Mycoplasma gallisepticum To characterize the function of MalF, predicted to be part of a putative ABC transporter, we compared metabolite profiles of a mutant with a transposon inserted in malF (MalF-deficient ST mutant 04-1; ΔmalF) with those of wild-type bacteria using gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry. Of the substrates likely to be transported by an ABC transport system, glycerol was detected at significantly lower abundance in the ΔmalF mutant, compared to the wild type. Stable isotope labeling using [U-13C]glycerol and reverse transcription-quantitative PCR analysis indicated that MalF was responsible for the import of glycerol into M. gallisepticum and that, in the absence of MalF, the transcription of gtsA, which encodes a second transporter, GtsA, was upregulated, potentially to increase the import of glycerol-3-phosphate into the cell to compensate for the loss of MalF. The loss of MalF appeared to have a global effect on glycerol metabolism, suggesting that it may also play a regulatory role, and cellular morphology was also affected, indicating that the change to glycerol metabolism may have a broader effect on cellular organization. Overall, this study suggests that the reduced virulence of the ΔmalF mutant is due to perturbed glycerol uptake and metabolism and that the operon including malF should be reannotated as golABC to reflect its function in glycerol transport.IMPORTANCE Many mycoplasmas are pathogenic and cause disease in humans and animals. M. gallisepticum causes chronic respiratory disease in chickens and infectious sinusitis in turkeys, resulting in economic losses in poultry industries throughout the world. Expanding our knowledge about the pathogenesis of mycoplasma infections requires better understanding of the specific gene functions of these bacteria. In this study, we have characterized the metabolic function of a protein involved in the pathogenicity of M. gallisepticum, as well as its effect on expression of selected genes, cell phenotype, and H2O2 production. This study is a key step forward in elucidating why this protein plays a key role in virulence in chickens. This study also emphasizes the importance of functional characterization of mycoplasma proteins, using tools such as metabolomics, since prediction of function based on homology to other bacterial proteins is not always accurate.
Collapse
|
15
|
Mahdizadeh S, Sansom FM, Lee SW, Browning GF, Marenda MS. Targeted mutagenesis of Mycoplasma gallisepticum using its endogenous CRISPR/Cas system. Vet Microbiol 2020; 250:108868. [PMID: 33039728 DOI: 10.1016/j.vetmic.2020.108868] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022]
Abstract
New, more efficient methods are needed to facilitate studies of gene function in the mycoplasmas. CRISPR/Cas systems, which provide bacteria with acquired immunity against invading nucleic acids, have been developed as tools for genomic editing in a wide range of organisms. We explored the potential for using the endogenous Mycoplasma gallisepticum CRISPR/Cas system to introduce targeted mutations into the chromosome of this important animal pathogen. Three constructs carrying different CRISPR arrays targeting regions in the ksgA gene (pK1-CRISPR, pK-CRISPR-1 and pK-CRISPR-2) were assembled and introduced into M. gallisepticum on an oriC plasmid. The loss of KsgA prevents ribosomal methylation, which in turn confers resistance to the aminoglycoside antimicrobial kasugamycin, enabling selection for ksgA mutants. Analyses of the complete sequence of the ksgA gene in 78 resistant transformants revealed various modifications of the target region, presumably caused by the directed CRISPR/Cas activity of M. gallisepticum. The analyses suggested that M. gallisepticum may utilize a non-homologous end joining (NHEJ) repair system, which can result in deletion or duplication of a short DNA segment in the presence of double-stranded breaks. This study has generated an improved understanding of the M. gallisepticum CRISPR/Cas system, and may also facilitate further development of tools to genetically modify this important pathogen.
Collapse
Affiliation(s)
- Sara Mahdizadeh
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 3010 VIC, Australia
| | - Fiona M Sansom
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 3010 VIC, Australia
| | - Sang-Won Lee
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 3010 VIC, Australia; College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 3010 VIC, Australia.
| | - Marc S Marenda
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, 3010 VIC, Australia
| |
Collapse
|
16
|
Unraveling the Global Phylodynamic and Phylogeographic Expansion of Mycoplasma gallisepticum: Understanding the Origin and Expansion of This Pathogen in Ecuador. Pathogens 2020; 9:pathogens9090674. [PMID: 32825097 PMCID: PMC7557814 DOI: 10.3390/pathogens9090674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/31/2020] [Accepted: 08/18/2020] [Indexed: 12/17/2022] Open
Abstract
Mycoplasma gallisepticum (MG) is among the most significant problems in the poultry industry worldwide, representing a serious threat to international trade. Despite the fact that the mgc2 gene has been widely used for diagnostic and molecular characterization purposes, there is a lack of evidence supporting the reliability of this gene as a marker for molecular epidemiology approaches. Therefore, the current study aimed to assess the accuracy of the mgc2 gene for phylogenetic, phylodynamic, and phylogeographic evaluations. Furthermore, the global phylodynamic expansion of MG is described, and the origin and extension of the outbreak caused by MG in Ecuador were tracked and characterized. The results obtained strongly supported the use of the mgc2 gene as a reliable phylogenetic marker and accurate estimator for the temporal and phylogeographic structure reconstruction of MG. The phylodynamic analysis denoted the failures in the current policies to control MG and highlighted the imperative need to implement more sensitive methodologies of diagnosis and more efficient vaccines. Framed in Ecuador, the present study provides the first piece of evidence of the circulation of virulent field MG strains in Ecuadorian commercial poultry. The findings derived from the current study provide novel and significant insights into the origin, diversification, and evolutionary process of MG globally.
Collapse
|
17
|
Dowling AJ, Hill GE, Bonneaud C. Multiple differences in pathogen-host cell interactions following a bacterial host shift. Sci Rep 2020; 10:6779. [PMID: 32322086 PMCID: PMC7176683 DOI: 10.1038/s41598-020-63714-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
Novel disease emergence is often associated with changes in pathogen traits that enable pathogen colonisation, persistence and transmission in the novel host environment. While understanding the mechanisms underlying disease emergence is likely to have critical implications for preventing infectious outbreaks, such knowledge is often based on studies of viral pathogens, despite the fact that bacterial pathogens may exhibit very different life histories. Here, we investigate the ability of epizootic outbreak strains of the bacterial pathogen, Mycoplasma gallisepticum, which jumped from poultry into North American house finches (Haemorhous mexicanus), to interact with model avian cells. We found that house finch epizootic outbreak strains of M. gallisepticum displayed a greater ability to adhere to, invade, persist within and exit from cultured chicken embryonic fibroblasts, than the reference virulent (R_low) and attenuated (R_high) poultry strains. Furthermore, unlike the poultry strains, the house finch epizootic outbreak strain HF_1994 displayed a striking lack of cytotoxicity, even exerting a cytoprotective effect on avian cells. Our results suggest that, at epizootic outbreak in house finches, M. gallisepticum was particularly adept at using the intra-cellular environment, which may have facilitated colonisation, dissemination and immune evasion within the novel finch host. Whether this high-invasion phenotype is similarly displayed in interactions with house finch cells, and whether it contributed to the success of the host shift, remains to be determined.
Collapse
Affiliation(s)
- Andrea J Dowling
- Biosciences, College of Life and Environmental Science, Penryn Campus, University of Exeter, Cornwall, TR10 9FE, UK.
| | - Geoffrey E Hill
- Department of Biological Sciences, Auburn University, Auburn, AL36849-5414, USA
| | - Camille Bonneaud
- Biosciences, College of Life and Environmental Science, Penryn Campus, University of Exeter, Cornwall, TR10 9FE, UK.
| |
Collapse
|
18
|
GroEL Protein (Heat Shock Protein 60) of Mycoplasma gallisepticum Induces Apoptosis in Host Cells by Interacting with Annexin A2. Infect Immun 2019; 87:IAI.00248-19. [PMID: 31235640 DOI: 10.1128/iai.00248-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/17/2019] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma gallisepticum is an avian respiratory and reproductive tract pathogen that has a significant economic impact on the poultry industry worldwide. Although membrane proteins of Mycoplasma spp. are thought to play crucial roles in host interactions, very few have had their biochemical function defined. In this study, we found that the GroEL protein (heat shock protein 60) of Mycoplasma gallisepticum could induce apoptosis in peripheral blood mononuclear cells, and the underlying molecular mechanism was further determined. The GroEL gene from Mycoplasma gallisepticum was cloned and expressed in Escherichia coli to facilitate the functional analysis of recombinant protein. The purified GroEL protein was shown to adhere to peripheral blood mononuclear cells (PBMCs) and DF-1 cells and cause apoptosis in PBMCs. A protein pulldown assay coupled with mass spectrometry identified that annexin A2 possibly interacted with GroEL protein. Coimmunoprecipitation assays confirmed that GroEL proteins could bind to annexin A2, and confocal analysis further demonstrated that GroEL colocolized with annexin A2 in HEK293T cells and PBMCs. Moreover, annexin A2 expression was significantly induced by a recombinant GroEL protein in PBMCs, and knocking down annexin A2 expression resulted in significantly reduced apoptosis. Taken together, these data suggest that GroEL induces apoptosis in host cells by interacting with annexin A2, a novel virulence mechanism in Mycoplasma gallisepticum Our findings lead to a better understanding of molecular pathogenesis in Mycoplasma gallisepticum.
Collapse
|
19
|
Orlov M, Garanina I, Fisunov GY, Sorokin A. Comparative Analysis of Mycoplasma gallisepticum vlhA Promoters. Front Genet 2018; 9:569. [PMID: 30519256 PMCID: PMC6258824 DOI: 10.3389/fgene.2018.00569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/06/2018] [Indexed: 12/15/2022] Open
Abstract
Mycoplasma gallisepticum is an intracellular parasite affecting respiratory tract of poultry that belongs to class Mollicutes. M. gallisepticum features numerous variable lipoprotein hemagglutinin genes (vlhA) that play a role in immune escape. The vlhA promoters have a set of distinct properties in comparison to promoters of the other genes. The vlhA promoters carry a variable GAA repeats region at approximately 40 nts upstream of transcription start site. The promoters have been considered active only in the presence of exactly 12 GAA repeats. The mechanisms of vlhA expression regulation and GAA number variation are not described. Here we tried to understand these mechanisms using different computational methods. We conducted a comparative analysis among several M. gallisepticum strains. Nucleotide sequences analysis showed the presence of highly conserved regions flanking repeated trinucleotides that are not linked to GAA number variation. VlhA genes with 12 GAA repeats and their orthologs in 12 M. gallisepticum strains are more conserved than other vlhA genes and have narrower GAA number distribution. We conducted comparative analysis of physicochemical profiles of M. gallisepticum vlhA and sigma-70 promoters. Stress-induced duplex destabilization (SIDD) profiles showed that sigma-70 group is characterized by the common to prokaryotic promoters sharp maxima while vlhA promoters are hardly destabilized with the region between GAA repeats and transcription start site having zero opening probability. Electrostatic potential profiles of vlhA promoters indicate the presence of the distinct patterns that appear to govern initial stages of specific DNA-protein recognition. Open state dynamics profiles of vlhA demonstrate the pattern that might facilitate transcription bubble formation. Obtained data could be the basis for experimental identification of mechanisms of phase variation in M. gallisepticum.
Collapse
Affiliation(s)
- Mikhail Orlov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Irina Garanina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency, Moscow, Russia
| | - Gleb Y Fisunov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency, Moscow, Russia
| | - Anatoly Sorokin
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
20
|
Variable Lipoprotein Hemagglutinin A Gene ( vlhA) Expression in Variant Mycoplasma gallisepticum Strains In Vivo. Infect Immun 2018; 86:IAI.00524-18. [PMID: 30181349 DOI: 10.1128/iai.00524-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/26/2018] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma gallisepticum, the primary etiologic agent of chronic respiratory disease, is a significant poultry pathogen, causing severe inflammation and leading to economic losses worldwide. Immunodominant proteins encoded by the variable lipoprotein and hemagglutinin (vlhA) gene family are thought to be important for M. gallisepticum-host interaction, pathogenesis, and immune evasion, but their exact role remains unknown. Previous work has demonstrated that vlhA phase variation is dynamic throughout the earliest stages of infection, with vlhA 3.03 being the predominant vlhA expressed during the initial infection, and that the pattern of dominant vlhA expression may be nonrandom and regulated by previously unrecognized mechanisms. To further investigate this gene family, we assessed the vlhA profile of two well-characterized vaccine strains, GT5 and Mg7, a vlhA 3.03 mutant strain, and an M. gallisepticum population expressing an alternative immunodominant vlhA Here, we report that two M. gallisepticum vaccine strains show different vlhA profiles over the first 2 days of infection compared to that of wild-type Rlow, while the population expressing an alternative immunodominant vlhA gene reverted to a profile indistinguishable from that of wild-type Rlow Additionally, we observed a slight shift in the vlhA gene expression profile but no reduction in virulence in a vlhA 3.03 mutant. Taken together, these data further support the hypothesis that M. gallisepticum vlhA genes change in a nonstochastic temporal progression of expression and that vlhA 3.03, while preferred, is not required for virulence. Collectively, these data may be important in elucidating mechanisms of colonization and overall pathogenesis of M. gallisepticum.
Collapse
|
21
|
Masukagami Y, Nijagal B, Tseng CW, Dayalan S, Tivendale KA, Markham PF, Browning GF, Sansom FM. Metabolite profiling of Mycoplasma gallisepticum mutants, combined with bioinformatic analysis, can reveal the likely functions of virulence-associated genes. Vet Microbiol 2018; 223:160-167. [PMID: 30173742 DOI: 10.1016/j.vetmic.2018.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/01/2018] [Accepted: 08/01/2018] [Indexed: 11/18/2022]
Abstract
Mycoplasma gallisepticum is an economically important pathogen of commercial poultry. An improved understanding of M. gallisepticum pathogenesis is required to develop better control methods. We recently identified a number of M. gallisepticum mutants with defects in colonization and persistence in chickens using signature-tagged transposon mutagenesis. Loss of virulence was associated with mutations in a putative oligopeptide/dipeptide (opp/dpp) ATP-binding cassette (ABC) transporter (where the transposon was inserted into the MGA_0220 (oppD1) gene and two hypothetical proteins (encoded by MGA_1102 and MGA_0588), one of which (MGA_1102) contains a putative peptidase motif. To further characterise the function of these proteins, we compared the metabolome of each transposon mutant with that of wild type bacteria. Two independent LC/MS analyses revealed consistent significant decreases in the abundances of several amino acids and the dipeptide alanyl-glycine (Ala-Gly) in the MGA_0220 mutant, consistent with this protein being a peptide transporter. Similarly, lysine and Ala-Gly were significantly decreased in the MGA_1102 mutant, consistent with our bioinformatic analysis suggesting that MGA_1102 encodes a membrane-located peptidase. Few differences were observed in metabolite levels in the MGA_0588 mutant, suggesting that the disrupted protein has a non-metabolic role. Overall, this study indicates that metabolomics is a useful tool in the functional analysis of mutants.
Collapse
Affiliation(s)
- Yumiko Masukagami
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia
| | - Brunda Nijagal
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria, Australia
| | - Chi-Wen Tseng
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia
| | - Saravanan Dayalan
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kelly A Tivendale
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia
| | - Philip F Markham
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia
| | - Fiona M Sansom
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
22
|
Hashemi S, Mahzounieh M, Sheikhi N, Ebrahimi A. Application of high-resolution melting-curve analysis on pvpA gene for detection and classification of Mycoplasma gallisepticum strains. Microb Pathog 2018; 124:365-371. [PMID: 29959042 DOI: 10.1016/j.micpath.2018.06.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 11/25/2022]
Abstract
Mycoplasma gallisepticum (MG) is an avian species pathogen which causes heavy economic losses in the poultry industry. The purpose of this study was to determine genomic diversity of 14 MG field strains from chicken, Chuker partridge and peacock collected during 2009-2012 in Iran by polymerase chain reaction and partial sequencing of the pvpA gene. A High-Resolution Melting (HRM) technique was also developed and applied to differentiate between field and vaccine strains. Sequencing of the pvpA gene revealed a 51 nucleotide deletion, within DR-1 and DR-2, among MG strains from chicken and partridge whilst 63 nucleotides were deleted in MG strain from peacock. One nucleotide substitution was also observed among chicken MG strains. Phylogenetic analysis of the sequences clustered all of the Iranian MG strains into two clades or phylogeny groups; the strains from chicken and partridge in one group (group 1) and the strain from peacock into another group (group 4). HRM analysis has also produced comparable outcome to those of sequencing; four distinct melting curves which correspond to the three MG strains from chicken, Chukar partridge and peacock and ts-11 vaccine strain. Overall, findings of this study point towards a single source of infection for the chicken and partridge MG strains and likelihood of the strains being native and endemic in Iran. Peacock considered as an exotic species in Iran, hence the genetic distance for the pvpA gene. MG can be transmitted easily among different avian species and this distinct peacock strain may pose a threat to poultry industry. Our findings also show that molecular variation among pvpA gene of MG strains could be revealed using the relatively rapid and affordable HRM technique.
Collapse
Affiliation(s)
- Shabnam Hashemi
- Research Institute for Zoonotic Diseases and Department of Pathobiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.
| | - Mohammadreza Mahzounieh
- Research Institute for Zoonotic Diseases and Department of Pathobiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Nariman Sheikhi
- Department of Clinical Sciences, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azizollah Ebrahimi
- Research Institute for Zoonotic Diseases and Department of Pathobiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
23
|
Ma XX, Cao X, Ma P, Chang QY, Li LJ, Zhou XK, Zhang DR, Li MS, Ma ZR. Comparative genomic analysis for nucleotide, codon, and amino acid usage patterns of mycoplasmas. J Basic Microbiol 2018. [PMID: 29537653 DOI: 10.1002/jobm.201700490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The evolutionary factors in influencing the genetic characteristics of nucleotide, synonymous codon, and amino acid usage of 18 mycoplasma species were analyzed. The nucleotide usage at the 1st and 2nd codon position which determines amino acid composition of proteins has a significant correlation with the total nucleotide composition of gene population of these mycoplasma species, however, the nucleotide usage at the 3rd codon position which affects synonymous codon usage patterns has a slight correlation with either the total nucleotide composition or the nucleotide usage at the 1st and 2nd codon position. Other evolutionary factors join in the evolutionary process of mycoplasma apart from mutation pressure caused by nucleotide usage constraint based on the relationships between effective number of codons/codon adaptation index and nucleotide usage at the 3rd codon position. Although nucleotide usage of gene population in mycoplasma dominates in forming the overall codon usage trends, the relative abundance of codon with nucleotide context and amino acid usage pattern show that translation selection involved in translation accuracy and efficiency play an important role in synonymous codon usage patterns. In addition, synonymous codon usage patterns of gene population have a bigger power to represent genetic diversity among different species than amino acid usage. These results suggest that although the mycoplasmas reduce its genome size during the evolutionary process and shape the form, which is opposite to their hosts, of AT usages at high levels, this kind organism still depends on nucleotide usage at the 1st and 2nd codon positions to control syntheses of the requested proteins for surviving in their hosts and nucleotide usage at the 3rd codon position to develop genetic diversity of different mycoplasma species. This systemic analysis with 18 mycoplasma species may provide useful clues for further in vivo genetic studies on the related species.
Collapse
Affiliation(s)
- Xiao-Xia Ma
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| | - Xin Cao
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| | - Peng Ma
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| | - Qiu-Yan Chang
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| | - Lin-Jie Li
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| | - Xiao-Kai Zhou
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| | - De-Rong Zhang
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| | - Ming-Sheng Li
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| | - Zhong-Ren Ma
- Key Laboratory of Bioengineering & Biotechnology of State Ethnic Affairs Commission, Engineering and Technology Research Center for Animal Cell, College of Life Science and Engineering, Northwest Minzu University, Lanzhou, Gansu, P.R. China
| |
Collapse
|
24
|
Bacterial Pathogen Emergence Requires More than Direct Contact with a Novel Passerine Host. Infect Immun 2018; 86:IAI.00863-17. [PMID: 29311238 PMCID: PMC5820954 DOI: 10.1128/iai.00863-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022] Open
Abstract
While direct contact may sometimes be sufficient to allow a pathogen to jump into a new host species, in other cases, fortuitously adaptive mutations that arise in the original donor host are also necessary. Viruses have been the focus of most host shift studies, so less is known about the importance of ecological versus evolutionary processes to successful bacterial host shifts. Here we tested whether direct contact with the novel host was sufficient to enable the mid-1990s jump of the bacterium Mycoplasma gallisepticum from domestic poultry to house finches (Haemorhous mexicanus). We experimentally inoculated house finches with two genetically distinct M. gallisepticum strains obtained either from poultry (Rlow) or from house finches (HF1995) during an epizootic outbreak. All 15 house finches inoculated with HF1995 became infected, whereas Rlow successfully infected 12 of 15 (80%) inoculated house finches. Comparisons among infected birds showed that, relative to HF1995, Rlow achieved substantially lower bacterial loads in the host respiratory mucosa and was cleared faster. Furthermore, Rlow-infected finches were less likely to develop clinical symptoms than HF1995-infected birds and, when they did, displayed milder conjunctivitis. The lower infection success of Rlow relative to HF1995 was not, however, due to a heightened host antibody response to Rlow. Taken together, our results indicate that contact between infected poultry and house finches was not, by itself, sufficient to explain the jump of M. gallisepticum to house finches. Instead, mutations arising in the original poultry host would have been necessary for successful pathogen emergence in the novel finch host.
Collapse
|
25
|
Cleary DFR, Polónia ARM. Bacterial and archaeal communities inhabiting mussels, sediment and water in Indonesian anchialine lakes. Antonie Van Leeuwenhoek 2017; 111:237-257. [PMID: 29027059 DOI: 10.1007/s10482-017-0944-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/13/2017] [Indexed: 11/24/2022]
Abstract
Anchialine lakes are a globally rare and unique ecosystem consisting of saline lakes surrounded by land and isolated from the surrounding marine environment. These lakes host a unique flora and fauna including numerous endemic species. Relatively few studies have, however, studied the prokaryote communities present in these lakes and compared them with the surrounding 'open water' marine environment. In the present study, we used a 16S rRNA gene barcoded pyrosequencing approach to examine prokaryote (Bacteria and Archaea) composition in three distinct biotopes (sediment, water and the mussel Brachidontes sp.) inhabiting four habitats, namely, three marine lakes and the surrounding marine environment of Berau, Indonesia. Biotope and habitat proved significant predictors of variation in bacterial and archaeal composition and higher taxon abundance. Most bacterial sequences belonged to OTUs assigned to the Proteobacteria. Compared to sediment and water, mussels had relatively high abundances of the classes Mollicutes and Epsilonproteobacteria. Most archaeal sequences, in turn, belonged to OTUs assigned to the Crenarchaeota with the relative abundance of crenarchaeotes highest in mussel samples. For both Bacteria and Archaea, the main variation in composition was between water samples on the one hand and sediment and mussel samples on the other. Sediment and mussels also shared much more OTUs than either shared with water. Abundant bacterial OTUs in mussels were related to organisms previously obtained from corals, oysters and the deepsea mussel Bathymodiolus manusensis. Abundant archaeal OTUs in mussels, in contrast, were closely related to organisms previously obtained from sediment.
Collapse
Affiliation(s)
- D F R Cleary
- CESAM and Department of Biology, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - A R M Polónia
- CESAM and Department of Biology, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
26
|
Yavari CA, Ramírez AS, Nicholas RAJ, Radford AD, Darby AC, Bradbury JM. Mycoplasma tullyi sp. nov., isolated from penguins of the genus Spheniscus. Int J Syst Evol Microbiol 2017; 67:3692-3698. [PMID: 28895509 DOI: 10.1099/ijsem.0.002052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A mycoplasma isolated from the liver of a dead Humboldt penguin (Spheniscus humboldti) and designated strain 56A97T, was investigated to determine its taxonomic status. Complete 16S rRNA gene sequence analysis indicated that the organism was most closely related to Mycoplasma gallisepticum and Mycoplasma imitans(99.7 and 99.9 % similarity, respectively). The average DNA-DNA hybridization values between strain 56A97T and M. gallisepticum and M. imitans were 39.5 and 30 %, respectively and the Genome to Genome Distance Calculator gave results of 29.10 and 23.50 %, respectively. The 16S-23S rRNA intergenic spacer was 72-73 % similar to M. gallisepticum strains and 52.2 % to M. imitans. A partial sequence of rpoB was 91.1-92 % similar to M. gallisepticum strains and 84.7 % to M. imitans. Colonies possessed a typical fried-egg appearance and electron micrographs revealed the lack of a cell wall and a nearly spherical morphology, with an electron-dense tip-like structure on some flask-shaped cells. The isolate required sterol for growth, fermented glucose, adsorbed and haemolysed erythrocytes, but did not hydrolyse arginine or urea. The strain was compared serologically against 110 previously described Mycoplasma reference strains, showing that, except for M. gallisepticum, strain 56A97T is not related to any of the previously described species, although weak cross-reactions were evident. Genomic information, serological reactions and phenotypic properties demonstrate that this organism represents a novel species of the genus Mycoplasma, for which the name Mycoplasma tullyi sp. nov. is proposed; the type strain is 56A97T (ATCC BAA-1432T, DSM 21909T, NCTC 11747T).
Collapse
Affiliation(s)
- Christine A Yavari
- University of Liverpool, Institute of Infection and Global Health, Leahurst Campus, Neston, CH64 7TE, UK
| | - Ana S Ramírez
- Unidad de Epidemiología y Medicina Preventiva, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, C/Trasmontaña s/n, Arucas, 35413, Islas Canarias, Spain
| | | | - Alan D Radford
- University of Liverpool, Institute of Infection and Global Health, Leahurst Campus, Neston, CH64 7TE, UK
| | - Alistair C Darby
- University of Liverpool, Institute of Integrative Biology, Liverpool, L69 7ZB, UK
| | - Janet M Bradbury
- University of Liverpool, Institute of Infection and Global Health, Leahurst Campus, Neston, CH64 7TE, UK
| |
Collapse
|
27
|
The oppD Gene and Putative Peptidase Genes May Be Required for Virulence in Mycoplasma gallisepticum. Infect Immun 2017; 85:IAI.00023-17. [PMID: 28348054 DOI: 10.1128/iai.00023-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/19/2017] [Indexed: 11/20/2022] Open
Abstract
Relatively few virulence genes have been identified in pathogenic mycoplasmas, so we used signature-tagged mutagenesis to identify mutants of the avian pathogen Mycoplasma gallisepticum with a reduced capacity to persist in vivo and compared the levels of virulence of selected mutants in experimentally infected chickens. Four mutants had insertions in one of the two incomplete oppABCDF operons, and a further three had insertions in distinct hypothetical genes, two containing peptidase motifs and one containing a member of a gene family. The three hypothetical gene mutants and the two with insertions in oppD1 were used to infect chickens, and all five were shown to have a reduced capacity to induce respiratory tract lesions. One oppD1 mutant and the MGA_1102 and MGA_1079 mutants had a greatly reduced capacity to persist in the respiratory tract and to induce systemic antibody responses against M. gallisepticum The other oppD1 mutant and the MGA_0588 mutant had less capacity than the wild type to persist in the respiratory tract but did elicit systemic antibody responses. Although M. gallisepticum carries two incomplete opp operons, one of which has been acquired by horizontal gene transfer, our results suggest that one of the copies of oppD may be required for full expression of virulence. We have also shown that three hypothetical genes, two of which encode putative peptidases, may be required for full expression of virulence in M. gallisepticum. None of these genes has previously been shown to influence virulence in pathogenic mycoplasmas.
Collapse
|
28
|
Identification of Strain-Specific Sequences That Distinguish a Mycoplasma gallisepticum Vaccine Strain from Field Isolates. J Clin Microbiol 2016; 55:244-252. [PMID: 27847370 PMCID: PMC5228237 DOI: 10.1128/jcm.00833-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/21/2016] [Indexed: 11/20/2022] Open
Abstract
Despite attempts to control avian mycoplasmosis through management, vaccination, and surveillance, Mycoplasma gallisepticum continues to cause significant morbidity, mortality, and economic losses in poultry production. Live attenuated vaccines are commonly used in the poultry industry to control avian mycoplasmosis; unfortunately, some vaccines may revert to virulence and vaccine strains are generally difficult to distinguish from natural field isolates. In order to identify genome differences among vaccine revertants, vaccine strains, and field isolates, whole-genome sequencing of the M. gallisepticum vaccine strain ts-11 and several “ts-11-like” strains isolated from commercial flocks was performed using Illumina and 454 pyrosequencing and the sequenced genomes compared to the M. gallisepticum Rlow reference genome. The collective contigs for each strain were annotated using the fully annotated Mycoplasma reference genome. The analysis revealed genetic differences among vlhA alleles, as well as among genes annotated as coding for a cell wall surface anchor protein (mg0377) and a hypothetical protein gene, mg0359, unique to M. gallisepticum ts-11 vaccine strain. PCR protocols were designed to target 5 sequences unique to the M. gallisepticum ts-11 strain: vlhA3.04a, vlhA3.04b, vlhA3.05, mg0377, and mg0359. All ts-11 isolates were positive for the five gene alleles tested by PCR; however, 5 to 36% of field isolates were also positive for at least one of the alleles tested. A combination of PCR tests for vlhA3.04a, vlhA3.05, and mg0359 was able to distinguish the M. gallisepticum ts-11 vaccine strain from field isolates. This method will further supplement current approaches to quickly distinguish M. gallisepticum vaccine strains from field isolates.
Collapse
|
29
|
Yacoub E, Ben Abdelmoumen Mardassi B. Mm19, a Mycoplasma meleagridis Major Surface Nuclease that Is Related to the RE_AlwI Superfamily of Endonucleases. PLoS One 2016; 11:e0152171. [PMID: 27010566 PMCID: PMC4807054 DOI: 10.1371/journal.pone.0152171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/09/2016] [Indexed: 11/19/2022] Open
Abstract
Mycoplasma meleagridis infection is widespread in turkeys, causing poor growth and feathering, airsacculitis, osteodystrophy, and reduction in hatchability. Like most mycoplasma species, M. meleagridis is characterized by its inability to synthesize purine and pyrimidine nucleotides de novo. Consistent with this intrinsic deficiency, we here report the cloning, expression, and characterization of a M. meleagridis gene sequence encoding a major surface nuclease, referred to as Mm19. Mm19 consists of a 1941-bp ORF encoding a 646-amino-acid polypeptide with a predicted molecular mass of 74,825 kDa. BLASTP analysis revealed a significant match with the catalytic/dimerization domain of type II restriction enzymes of the RE_AlwI superfamily. This finding is consistent with the genomic location of Mm19 sequence, which dispalys characteristics of a typical type II restriction-modification locus. Like intact M. meleagridis cells, the E. coli-expressed Mm19 fusion product was found to exhibit a nuclease activity against plasmid DNA, double-stranded DNA, single-stranded DNA, and RNA. The Mm19-associated nuclease activity was consistently enhanced with Mg2+ divalent cations, a hallmark of type II restriction enzymes. A rabbit hyperimmune antiserum raised against the bacterially expressed Mm19 strongly reacted with M. meleagridis intact cells and fully neutralized the surface-bound nuclease activity. Collectively, the results show that M. meleagridis expresses a strong surface-bound nuclease activity, which is the product of a single gene sequence that is related to the RE_AlwI superfamily of endonucleases.
Collapse
Affiliation(s)
- Elhem Yacoub
- Unit of Mycoplasmas, Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Institut Pasteur de Tunis, University of Tunis, El Manar, Tunisia
| | - Boutheina Ben Abdelmoumen Mardassi
- Unit of Mycoplasmas, Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Institut Pasteur de Tunis, University of Tunis, El Manar, Tunisia
- * E-mail:
| |
Collapse
|
30
|
Klubal R, Kopecky J, Nesvorna M, Sparagano OAE, Thomayerova J, Hubert J. Prevalence of pathogenic bacteria in Ixodes ricinus ticks in Central Bohemia. EXPERIMENTAL & APPLIED ACAROLOGY 2016; 68:127-137. [PMID: 26612395 DOI: 10.1007/s10493-015-9988-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/31/2015] [Indexed: 06/05/2023]
Abstract
Bacteria associated with the tick Ixodes ricinus were assessed in specimens unattached or attached to the skin of cats, dogs and humans, collected in the Czech Republic. The bacteria were detected by PCR in 97 of 142 pooled samples including 204 ticks, i.e. 1-7 ticks per sample, collected at the same time from one host. A fragment of the bacterial 16S rRNA gene was amplified, cloned and sequenced from 32 randomly selected samples. The most frequent sequences were those related to Candidatus Midichloria midichlori (71% of cloned sequences), followed by Diplorickettsia (13%), Spiroplasma (3%), Rickettsia (3%), Pasteurella (3%), Morganella (3%), Pseudomonas (2%), Bacillus (1%), Methylobacterium (1%) and Phyllobacterium (1%). The phylogenetic analysis of Spiroplasma 16S rRNA gene sequences showed two groups related to Spiroplasma eriocheiris and Spiroplasma melliferum, respectively. Using group-specific primers, the following potentially pathogenic bacteria were detected: Borellia (in 20% of the 142 samples), Rickettsia (12%), Spiroplasma (5%), Diplorickettsia (5%) and Anaplasma (2%). In total, 68% of I. ricinus samples (97/142) contained detectable bacteria and 13% contained two or more putative pathogenic groups. The prevalence of tick-borne bacteria was similar to the observations in other European countries.
Collapse
Affiliation(s)
| | - Jan Kopecky
- Crop Research Institute, Drnovska 507/73, Ruzyne, 16106, Prague 6, Czech Republic
| | - Marta Nesvorna
- Crop Research Institute, Drnovska 507/73, Ruzyne, 16106, Prague 6, Czech Republic
| | | | | | - Jan Hubert
- Medical Centre Prague, Prague, Czech Republic.
- Crop Research Institute, Drnovska 507/73, Ruzyne, 16106, Prague 6, Czech Republic.
| |
Collapse
|
31
|
Nakane D, Kenri T, Matsuo L, Miyata M. Systematic Structural Analyses of Attachment Organelle in Mycoplasma pneumoniae. PLoS Pathog 2015; 11:e1005299. [PMID: 26633540 PMCID: PMC4669176 DOI: 10.1371/journal.ppat.1005299] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 11/02/2015] [Indexed: 02/01/2023] Open
Abstract
Mycoplasma pneumoniae, a human pathogenic bacterium, glides on host cell surfaces by a unique and unknown mechanism. It forms an attachment organelle at a cell pole as a membrane protrusion composed of surface and internal structures, with a highly organized architecture. In the present study, we succeeded in isolating the internal structure of the organelle by sucrose-gradient centrifugation. The negative-staining electron microscopy clarified the details and dimensions of the internal structure, which is composed of terminal button, paired plates, and bowl complex from the end of cell front. Peptide mass fingerprinting of the structure suggested 25 novel components for the organelle, and 3 of them were suggested for their involvement in the structure through their subcellular localization determined by enhanced yellow fluorescent protein (EYFP) tagging. Thirteen component proteins including the previously reported ones were mapped on the organelle systematically for the first time, in nanometer order by EYFP tagging and immunoelectron microscopy. Two, three, and six specific proteins localized specifically to the terminal button, the paired plates, and the bowl, respectively and interestingly, HMW2 molecules were aligned parallel to form the plate. The integration of these results gave the whole image of the organelle and allowed us to discuss possible gliding mechanisms. Human mycoplasma pneumonia, an epidemic of which occurred around the world a few years ago, is caused by a pathogenic bacterium, Mycoplasma pneumoniae. This tiny bacterium, about 2 μm long, infects humans by gliding on the surface of the trachea through binding to sialylated oligosaccharides, which are also the binding targets of influenza viruses. The mechanism underlying Mycoplasma "gliding motility" is not related to any other well-studied motility systems, such as bacterial flagella and eukaryotic motor proteins. Here, we isolated the internal structure of “attachment organelle", a cellular architecture, and suggested novel component proteins. The organelle was analyzed systematically by focusing on the protein components under fluorescence and electron microscopy, and a possible gliding mechanism was suggested.
Collapse
Affiliation(s)
- Daisuke Nakane
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan
- Department of Physics, Faculty of Science, Gakushuin University, Tokyo, Japan
| | - Tsuyoshi Kenri
- Department of Bacteriology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Lisa Matsuo
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan
| | - Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Sumiyoshi, Osaka, Japan
- * E-mail:
| |
Collapse
|
32
|
Nikolaeva AY, Timofeev VI, Boiko KM, Korzhenevskii DA, Rakitina TV, Dorovatovskii PV, Lipkin AV. Isolation, purification, crystallization, and preliminary X-ray diffraction study of the crystals of HU protein from M. gallisepticum. CRYSTALLOGR REP+ 2015. [DOI: 10.1134/s1063774515060231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Global Changes in Mycoplasma gallisepticum Phase-Variable Lipoprotein Gene vlhA Expression during In Vivo Infection of the Natural Chicken Host. Infect Immun 2015; 84:351-5. [PMID: 26553465 DOI: 10.1128/iai.01092-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/02/2015] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma gallisepticum is the primary etiologic agent of chronic respiratory disease in poultry, a disease largely affecting the respiratory tract and causing significant economic losses worldwide. Immunodominant proteins encoded by members of the variable lipoprotein and hemagglutinin (vlhA) gene family are thought to be important for mechanisms of M. gallisepticum-host interaction, pathogenesis, and immune evasion, but their exact role and the overall nature of their phase variation are unknown. To better understand these mechanisms, we assessed global transcriptomic vlhA gene expression directly from M. gallisepticum populations present on tracheal mucosae during a 7-day experimental infection in the natural chicken host. Here we report differences in both dominant and minor vlhA gene expression levels throughout the first week of infection and starting as early as day 1 postinfection, consistent with a functional role not dependent on adaptive immunity for driving phase variation. Notably, data indicated that, at given time points, specific vlhA genes were similarly dominant in multiple independent hosts, suggesting a nonstochastic temporal progression of dominant vlhA gene expression in the colonizing bacterial population. The dominant expression of a given vlhA gene was not dependent on the presence of 12-copy GAA trinucleotide repeats in the promoter region and did not revert to the predominate vlhA gene when no longer faced with host pressures. Overall, these data indicate that vlhA phase variation is dynamic throughout the earliest stages of infection and that the pattern of dominant vlhA expression may be nonrandom and regulated by previously unrecognized mechanisms.
Collapse
|
34
|
Bao S, Chen D, Yu S, Chen H, Tan L, Hu M, Qiu X, Song C, Ding C. Characterization of triosephosphate isomerase from Mycoplasma gallisepticum. FEMS Microbiol Lett 2015; 362:fnv140. [PMID: 26319024 DOI: 10.1093/femsle/fnv140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2015] [Indexed: 11/12/2022] Open
Abstract
Triosephosphate isomerase (Tpi) is a glycolytic enzyme that is essential for efficient energy production in many pathogens. However, its function in Mycoplasma gallisepticum has not been fully elucidated. In this study, the mga0357 gene of M. gallisepticum, which encodes TpiA (MGTpiA), was amplified and expressed in Escherichia coli by IPTG induction. The purified recombinant MGTpiA protein exhibited catalytic activity that was similar to TPI from rabbit muscle, reducing NAD(+) to NADH. The MGTpiA was also found to be a surface-exposed protein by western blotting and immunofluorescence assays. In addition, cytadherence inhibition assays confirmed that the cytadherence of M. gallisepticum to the DF-1 cells was significantly inhibited by the anti-MGTpiA serum. The results of the study suggested that MGTpiA plays an important role in the metabolism and closely related to the M. gallisepticum pathogenicity.
Collapse
Affiliation(s)
- Shijun Bao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, P.R. China
| | - Danqing Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Meirong Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R. China Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, P.R. China
| |
Collapse
|
35
|
Pritchard RE, Balish MF. Mycoplasma iowae: relationships among oxygen, virulence, and protection from oxidative stress. Vet Res 2015; 46:36. [PMID: 25880161 PMCID: PMC4367981 DOI: 10.1186/s13567-015-0170-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/05/2015] [Indexed: 12/20/2022] Open
Abstract
The poultry-associated bacterium Mycoplasma iowae colonizes multiple sites in embryos, with disease or death resulting. Although M. iowae accumulates in the intestinal tract, it does not cause disease at that site, but rather only in tissues that are exposed to atmospheric O2. The activity of M. iowae catalase, encoded by katE, is capable of rapid removal of damaging H2O2 from solution, and katE confers a substantial reduction in the amount of H2O2 produced by Mycoplasma gallisepticum katE transformants in the presence of glycerol. As catalase-producing bacteria are often beneficial to hosts with inflammatory bowel disease, we explored whether M. iowae was exclusively protective against H2O2-producing bacteria in a Caenorhabditis elegans model, whether its protectiveness changed in response to O2 levels, and whether expression of genes involved in H2O2 metabolism and virulence changed in response to O2 levels. We observed that M. iowae was in fact protective against H2O2-producing Streptococcus pneumoniae, but not HCN-producing Pseudomonas aeruginosa, and that M. iowae cells grown in 1% O2 promoted survival of C. elegans to a greater extent than M. iowae cells grown in atmospheric O2. Transcript levels of an M. iowae gene encoding a homolog of Mycoplasma pneumoniae CARDS toxin were 5-fold lower in cells grown in low O2. These data suggest that reduced O2, representing the intestinal environment, triggers M. iowae to reduce its virulence capabilities, effecting a change from a pathogenic mode to a potentially beneficial one.
Collapse
Affiliation(s)
- Rachel E Pritchard
- Department of Microbiology, Miami University, Oxford, OH, 45056, USA. .,Present address: Division of Natural Sciences and Mathematics, Kentucky Wesleyan College, Owensboro, KY, 42301, USA.
| | - Mitchell F Balish
- Department of Microbiology, Miami University, Oxford, OH, 45056, USA.
| |
Collapse
|
36
|
Atalla H, Lysnyansky I, Raviv Y, Rottem S. Mycoplasma gallisepticum inactivated by targeting the hydrophobic domain of the membrane preserves surface lipoproteins and induces a strong immune response. PLoS One 2015; 10:e0120462. [PMID: 25781939 PMCID: PMC4363144 DOI: 10.1371/journal.pone.0120462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/22/2015] [Indexed: 11/18/2022] Open
Abstract
An innovative approach for inactivation of Mycoplasma gallisepticum using the hydrophobic photoinduced alkylating probe 1, 5-iodonaphthylazide (INA) is described. Treatment of washed M. gallisepticum mid-exponential culture (0.2 mg cell protein /mL) with INA followed by irradiation with far-ultraviolet light (310–380 nm) completely abolished viability. Transmission electron microscopy showed that the majority of the inactivated M. gallisepticum were comparable in size to intact cells, but that part of the INA-treated M. gallisepticum preparation also contained low density cells and membrane vesicles. Confocal microscopy revealed that untreated M. gallisepticum cells were internalized by chicken red blood cells (c-RBCs), whereas the INA-inactivated cells remained attached to the outer surface of the c-RBCs. INA treatment of M. gallisepticum resulted in a complete inactivation of F0F1 –ATPase and of the L-arginine uptake system, but the cytoplasmatic soluble NADH2 dehydrogenase was only partially affected. Western blot analysis of the lipoprotein fraction showed that the INA-treated M. gallisepticum retained their lipoproteins. Following subcutaneous injection of M. gallisepticum INA-bacterin, 100% and 68.8% of chickens were positive by the rapid serum agglutination test and enzyme-linked immunosorbent assay respectively, 2 weeks post-injection. These data suggest that the photoinducible alkylating agent INA inactivates M. gallisepticum but preserves its surface lipoproteins and thus has the potential to be used as a general approach for the inactivation of mycoplasmas for vaccine development.
Collapse
Affiliation(s)
- Hazem Atalla
- Department of Microbiology and Molecular Genetics, The Hebrew University—Hadassah Medical School, Jerusalem, Israel
| | - Inna Lysnyansky
- Division of Avian and Aquatic Diseases, Kimron Veterinary Institute, Beit Dagan, Israel
- * E-mail:
| | - Yossef Raviv
- SAIC-Frederick Inc, National Cancer Institute, Frederick, Maryland, United States of America
| | - Shlomo Rottem
- Department of Microbiology and Molecular Genetics, The Hebrew University—Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
37
|
Composition and predicted functional ecology of mussel-associated bacteria in Indonesian marine lakes. Antonie van Leeuwenhoek 2015; 107:821-34. [PMID: 25563637 DOI: 10.1007/s10482-014-0375-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
Abstract
In the present study, we sampled bacterial communities associated with mussels inhabiting two distinct coastal marine ecosystems in Kalimantan, Indonesia, namely, marine lakes and coastal mangroves. We used 16S rRNA gene pyrosequencing and predicted metagenomic analysis to compare microbial composition and function. Marine lakes are small landlocked bodies of seawater isolated to varying degrees from the open sea environment. They contain numerous endemic taxa and represent natural laboratories of speciation. Our primary goals were to (1) use BLAST search to identify closely related organisms to dominant bacterial OTUs in our mussel dataset and (2) to compare bacterial communities and enrichment in the predicted bacterial metagenome among lakes. Our sequencing effort yielded 3553 OTUs belonging to 44 phyla, 99 classes and 121 orders. Mussels in the largest marine lake (Kakaban) and the coastal mangrove habitat were dominated by bacteria belonging to the phylum Proteobacteria whereas smaller lakes, located on the island of Maratua, were dominated by bacteria belonging to the phyla Firmicutes and Tenericutes. The single most abundant OTU overall was assigned to the genus Mycoplasma. There were several significant differences among locations with respect to metabolic pathways. These included enrichment of xenobiotic biodegradation pathways in the largest marine lake and coastal mangrove. These locations were also the most enriched with respect to nitrogen metabolism. The presence of genes related to isoquinoline alkaloids, polyketides, hydrolases, mono and dioxygenases in the predicted analysis of functional pathways is an indication that the bacterial communities of Brachidontes mussels may be potentially important sources of new marine medicines and enzymes of industrial interest. Future work should focus on measuring how mussel microbial communities influence nutrient dynamics within the marine lake environment and isolating microbes with potential biotechnological applications.
Collapse
|
38
|
Ron M, Gorelick-Ashkenazi A, Levisohn S, Nir-Paz R, Geary SJ, Tulman E, Lysnyansky I, Yogev D. Mycoplasma gallisepticum in vivo induced antigens expressed during infection in chickens. Vet Microbiol 2014; 175:265-74. [PMID: 25575879 DOI: 10.1016/j.vetmic.2014.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 11/17/2022]
Abstract
Until now only a few genes encoding virulence factors have been characterized in the avian pathogen Mycoplasma gallisepticum. In order to identify candidate targets associated with infection we applied an immunoscreening technique-in vivo induced antigen technology (IVIAT)-to detect immunogens of M. gallisepticum strain Rlow expressed preferentially during in vivo infection. We identified 13 in vivo-induced (IVI) proteins that correspond to different functional categories including: previously reported putative virulence factors (GapA, PlpA, Hlp3, VlhA 1.07 and VlhA 4.01), transport (PotE, MGA_0241 and 0654), translation (L2, L23, ValS), chaperone (GroEL) and a protein with unknown function (MGA_0042). To validate the in vivo antigenic reactivity, 10 IVI proteins were tested by Western blot analysis using serum samples collected from chickens experimentally (with strain Rlow) and naturally (outbreaks, N=3) infected with M. gallisepticum. All IVI proteins tested were immunogenic. To corroborate these results, we tested expression of IVI genes in chickens experimentally infected with M. gallisepticum Rlow, and in MRC-5 human lung fibroblasts cell culture by using relative real time reverse-transcription PCR (RT-PCR). With the exception of MGA_0338, all six genes tested (MGA_1199, 0042, 0654, 0712, 0928 and 0241) were upregulated at least at one time point during experimental infection (2-4 week post-infection). In contrast, the expression of seven out of eight IVI genes (MGA_1199, 0152, 0338, 0042, 0654, 0712, 0928) were downregulated in MRC-5 cell culture at both 2 and 4h PI; MGA_0241 was upregulated 2h PI. Our data suggest that the identified IVI antigens may have important roles in the pathogenesis of M. gallisepticum infection in vivo.
Collapse
Affiliation(s)
- Merav Ron
- Department of Molecular Genetics and Microbiology, The Hebrew University-Haddassah Medical School, Jerusalem 91120, Israel
| | - Anna Gorelick-Ashkenazi
- Department of Molecular Genetics and Microbiology, The Hebrew University-Haddassah Medical School, Jerusalem 91120, Israel
| | - Sharon Levisohn
- Mycoplasma Unit, Department of Avian and Aquatic Diseases, Kimron Veterinary Institute, Beit Dagan 50250, Israel
| | - Ran Nir-Paz
- Department of Clinical Microbiology and Infectious Diseases, Hadassah Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Steven J Geary
- Department of Pathobiology and Veterinary Science and the Center of Excellence for Vaccine Research, University of Connecticut, Storrs, CT, USA
| | - Edan Tulman
- Department of Pathobiology and Veterinary Science and the Center of Excellence for Vaccine Research, University of Connecticut, Storrs, CT, USA
| | - Inna Lysnyansky
- Mycoplasma Unit, Department of Avian and Aquatic Diseases, Kimron Veterinary Institute, Beit Dagan 50250, Israel.
| | - David Yogev
- Department of Molecular Genetics and Microbiology, The Hebrew University-Haddassah Medical School, Jerusalem 91120, Israel
| |
Collapse
|
39
|
Mycoplasma gallisepticum lipid associated membrane proteins up-regulate inflammatory genes in chicken tracheal epithelial cells via TLR-2 ligation through an NF-κB dependent pathway. PLoS One 2014; 9:e112796. [PMID: 25401327 PMCID: PMC4234737 DOI: 10.1371/journal.pone.0112796] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/20/2014] [Indexed: 01/20/2023] Open
Abstract
Mycoplasma gallisepticum-mediated respiratory inflammation in chickens is associated with accumulation of leukocytes in the tracheal submucosa. However the molecular mechanisms underpinning these changes have not been well described. We hypothesized that the initial inflammatory events are initiated upon ligation of mycoplasma lipid associated membrane proteins (LAMP) to TLRs expressed on chicken tracheal epithelial cells (TEC). To test this hypothesis, live bacteria or LAMPs isolated from a virulent (Rlow) or a non-virulent (Rhigh) strain were incubated with primary TECs or chicken tracheae ex vivo. Microarray analysis identified up-regulation of several inflammatory and chemokine genes in TECs as early as 1.5 hours post-exposure. Kinetic analysis using RT-qPCR identified the peak of expression for most genes to be at either 1.5 or 6 hours. Ex-vivo exposure also showed up-regulation of inflammatory genes in epithelial cells by 1.5 hours. Among the commonly up-regulated genes were IL-1β, IL-6, IL-8, IL-12p40, CCL-20, and NOS-2, all of which are important immune-modulators and/or chemo-attractants of leukocytes. While these inflammatory genes were up-regulated in all four treatment groups, Rlow exposed epithelial cells both in vitro and ex vivo showed the most dramatic up-regulation, inducing over 100 unique genes by 5-fold or more in TECs. Upon addition of a TLR-2 inhibitor, LAMP-mediated gene expression of IL-1β and CCL-20 was reduced by almost 5-fold while expression of IL-12p40, IL-6, IL-8 and NOS-2 mRNA was reduced by about 2–3 fold. Conversely, an NF-κB inhibitor abrogated the response entirely for all six genes. miRNA-146a, a negative regulator of TLR-2 signaling, was up-regulated in TECs in response to either Rlow or Rhigh exposure. Taken together we conclude that LAMPs isolated from both Rhigh and Rlow induced rapid, TLR-2 dependent but transient up-regulation of inflammatory genes in primary TECs through an NF-κB dependent pathway.
Collapse
|
40
|
Bradl M, Lassmann H. Experimental models of neuromyelitis optica. Brain Pathol 2014; 24:74-82. [PMID: 24345221 PMCID: PMC4065348 DOI: 10.1111/bpa.12098] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 04/11/2013] [Indexed: 12/11/2022] Open
Abstract
For a long time, the most important inflammatory demyelinating diseases of the central nervous system (CNS), for example, multiple sclerosis (MS) and neuromyelitis optica (NMO), were extremely hard to differentiate, often with severe consequences for affected patients. This changed with the discovery of NMO‐immunoglobulin G (IgG), a specific autoantibody which was detected in the vast majority of NMO patients, and with the demonstration that this autoantibody targets aquaporin 4 (AQP4), a water channel found on astrocytes in the CNS. These findings paved the way for the generation of experimental models of NMO. This chapter will discuss the contribution of experimental models to NMO research and what key questions remain to be addressed.
Collapse
Affiliation(s)
- Monika Bradl
- Department Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | | |
Collapse
|
41
|
Hydrogen peroxide production from glycerol metabolism is dispensable for virulence of Mycoplasma gallisepticum in the tracheas of chickens. Infect Immun 2014; 82:4915-20. [PMID: 25156740 DOI: 10.1128/iai.02208-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydrogen peroxide (H2O2) is a by-product of glycerol metabolism in mycoplasmas and has been shown to cause cytotoxicity for cocultured eukaryotic cells. There appears to be selective pressure for mycoplasmas to retain the genes needed for glycerol metabolism. This has generated interest and speculation as to their function during infection. However, the actual effects of glycerol metabolism and H2O2 production on virulence in vivo have never been assessed in any Mycoplasma species. To this end, we determined that the wild-type (WT) R(low) strain of the avian pathogen Mycoplasma gallisepticum is capable of producing H2O2 when grown in glycerol and is cytotoxic to eukaryotic cells in culture. Transposon mutants with mutations in the genes present in the glycerol transport and utilization pathway, namely, glpO, glpK, and glpF, were identified. All mutants assessed were incapable of producing H2O2 and were not cytotoxic when grown in glycerol. We also determined that vaccine strains ts-11 and 6/85 produce little to no H2O2 when grown in glycerol, while the naturally attenuated F strain does produce H2O2. Chickens were infected with one of two glpO mutants, a glpK mutant, R(low), or growth medium, and tracheal mucosal thickness and lesion scores were assessed. Interestingly, all glp mutants were reproducibly virulent in the respiratory tracts of the chickens. Thus, there appears to be no link between glycerol metabolism/H2O2 production/cytotoxicity and virulence for this Mycoplasma species in its natural host. However, it is possible that glycerol metabolism is required by M. gallisepticum in a niche that we have yet to study.
Collapse
|
42
|
Pritchard RE, Prassinos AJ, Osborne JD, Raviv Z, Balish MF. Reduction of hydrogen peroxide accumulation and toxicity by a catalase from Mycoplasma iowae. PLoS One 2014; 9:e105188. [PMID: 25127127 PMCID: PMC4134286 DOI: 10.1371/journal.pone.0105188] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/19/2014] [Indexed: 12/02/2022] Open
Abstract
Mycoplasma iowae is a well-established avian pathogen that can infect and damage many sites throughout the body. One potential mediator of cellular damage by mycoplasmas is the production of H2O2 via a glycerol catabolic pathway whose genes are widespread amongst many mycoplasma species. Previous sequencing of M. iowae serovar I strain 695 revealed the presence of not only genes for H2O2 production through glycerol catabolism but also the first documented mycoplasma gene for catalase, which degrades H2O2. To test the activity of M. iowae catalase in degrading H2O2, we studied catalase activity and H2O2 accumulation by both M. iowae serovar K strain DK-CPA, whose genome we sequenced, and strains of the H2O2-producing species Mycoplasma gallisepticum engineered to produce M. iowae catalase by transformation with the M. iowae putative catalase gene, katE. H2O2-mediated virulence by M. iowae serovar K and catalase-producing M. gallisepticum transformants were also analyzed using a Caenorhabditis elegans toxicity assay, which has never previously been used in conjunction with mycoplasmas. We found that M. iowae katE encodes an active catalase that, when expressed in M. gallisepticum, reduces both the amount of H2O2 produced and the amount of damage to C. elegans in the presence of glycerol. Therefore, the correlation between the presence of glycerol catabolism genes and the use of H2O2 as a virulence factor by mycoplasmas might not be absolute.
Collapse
Affiliation(s)
- Rachel E. Pritchard
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
| | | | - John D. Osborne
- Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ziv Raviv
- Department of Veterinary Preventative Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Mitchell F. Balish
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
- * E-mail:
| |
Collapse
|
43
|
Balenger SL, Zuk M. Testing the Hamilton-Zuk hypothesis: past, present, and future. Integr Comp Biol 2014; 54:601-13. [PMID: 24876194 DOI: 10.1093/icb/icu059] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hamilton and Zuk proposed a good-genes model of sexual selection in which genetic variation can be maintained when females prefer ornaments that indicate resistance to parasites. When trait expression depends on a male's resistance, the co-adaptive cycles between host resistance and parasite virulence provide a mechanism in which genetic variation for fitness is continually renewed. The model made predictions at both the intraspecific and interspecific levels. In the three decades since its publication, these predictions have been theoretically examined in models of varying complexity, and empirically tested across many vertebrate and invertebrate taxa. Despite such prolonged interest, however, it has turned out to be extremely difficult to empirically demonstrate the process described, in part because we have not been able to test the underlying mechanisms that would unequivocally identify how parasites act as mediators of sexual selection. Here, we discuss how the use of high-throughput sequencing datasets available from modern genomic approaches might improve our ability to test this model. We expect that important contributions will come through the ability to identify and quantify the suite of parasites likely to influence the evolution of hosts' resistance, to confidently reconstruct phylogenies of both host and parasite taxa, and, perhaps most exciting, to detect generational cycles of heritable variants in populations of hosts and parasites. Integrative approaches, building on systems undergoing parasite-mediated selection with genomic resources already available, will be particularly useful in moving toward robust tests of this hypothesis. We finish by presenting case studies of well-studied host-parasite relationships that represent promising avenues for future research.
Collapse
Affiliation(s)
- Susan L Balenger
- Department of Ecology, Evolution and Behavior, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Marlene Zuk
- Department of Ecology, Evolution and Behavior, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| |
Collapse
|
44
|
Vanyushkina AA, Fisunov GY, Gorbachev AY, Kamashev DE, Govorun VM. Metabolomic analysis of three Mollicute species. PLoS One 2014; 9:e89312. [PMID: 24595068 PMCID: PMC3942410 DOI: 10.1371/journal.pone.0089312] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 01/22/2014] [Indexed: 01/19/2023] Open
Abstract
We present a systematic study of three bacterial species that belong to the class Mollicutes, the smallest and simplest bacteria, Spiroplasma melliferum, Mycoplasma gallisepticum, and Acholeplasma laidlawii. To understand the difference in the basic principles of metabolism regulation and adaptation to environmental conditions in the three species, we analyzed the metabolome of these bacteria. Metabolic pathways were reconstructed using the proteogenomic annotation data provided by our lab. The results of metabolome, proteome and genome profiling suggest a fundamental difference in the adaptation of the three closely related Mollicute species to stress conditions. As the transaldolase is not annotated in Mollicutes, we propose variants of the pentose phosphate pathway catalyzed by annotated enzymes for three species. For metabolite detection we employed high performance liquid chromatography coupled with mass spectrometry. We used liquid chromatography method - hydrophilic interaction chromatography with silica column - as it effectively separates highly polar cellular metabolites prior to their detection by mass spectrometer.
Collapse
Affiliation(s)
| | - Gleb Y. Fisunov
- Russian Institute of Physico-Chemical Medicine, Moscow, Russian Federation
| | | | - Dmitri E. Kamashev
- Russian Institute of Physico-Chemical Medicine, Moscow, Russian Federation
- Russian Research Center Kurchatov Institute, Moscow, Russian Federation
- * E-mail:
| | - Vadim M. Govorun
- Russian Institute of Physico-Chemical Medicine, Moscow, Russian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russian Federation
| |
Collapse
|
45
|
Khalifa R, Eissa S, El-Hariri M, Refai M. Sequencing Analysis of Mycoplasma gallisepticum Wild Strains in Vaccinated Chicken Breeder Flocks. J Mol Microbiol Biotechnol 2014; 24:98-104. [DOI: 10.1159/000357733] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
46
|
Nieszner I, Vronka M, Indikova I, Szostak MP. Development of a site-directed integration plasmid for heterologous gene expression in Mycoplasma gallisepticum. PLoS One 2013; 8:e81481. [PMID: 24278444 PMCID: PMC3835672 DOI: 10.1371/journal.pone.0081481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 10/21/2013] [Indexed: 11/19/2022] Open
Abstract
Deciphering the molecular basis of the interactions between the parasite Mycoplasma gallisepticum and its avian hosts suffers from the lack of genetic tools available for the pathogen. In the absence of well established methods for targeted disruption of relevant M. gallisepticum genes, we started to develop suicide vectors and equipped them with a short fragment of M. gallisepticum origin or replication (oriC MG). We failed to create a disruption vector, although by adding a further short fragment of the M. gallisepticum tufB upstream region we created a "Trojan horse" plasmid. This is fully integrated into the genomic DNA of M. gallisepticum, always at the same site, oriC MG, and is able to carry and express any gene of interest in the genetic background of M. gallisepticum. Successful expression of a heterologous gene was shown with the lacZ gene of E. coli. When used for gene complementation or expression of hybrid genes in M. gallisepticum, a site-specific combined integration/expression vector constitutes an improvement on randomly integrating transposons, which might have unexpected effects on the expression of chromosomal genes.
Collapse
Affiliation(s)
- Isolde Nieszner
- Institute of Bacteriology, Mycology and Hygiene, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Martin Vronka
- Institute of Bacteriology, Mycology and Hygiene, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ivana Indikova
- Institute of Bacteriology, Mycology and Hygiene, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Michael P. Szostak
- Institute of Bacteriology, Mycology and Hygiene, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
47
|
Comparison of multiple genes and 16S-23S rRNA intergenic space region for their capacity in high resolution melt curve analysis to differentiate Mycoplasma gallisepticum vaccine strain ts-11 from field strains. Vet Microbiol 2013; 167:440-7. [PMID: 24238667 DOI: 10.1016/j.vetmic.2013.09.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 09/23/2013] [Accepted: 09/25/2013] [Indexed: 11/23/2022]
Abstract
Mycoplasma gallisepticum (MG) is an important avian pathogen causing significant economic losses in the global poultry industry. In an attempt to compare and evaluate existing genotyping methods for differentiation of MG strains/isolates, high resolution melt (HRM) curve analysis was applied to 5 different PCR methods targeting vlhA, pvpA, gapA, mgc2 genes and 16S-23S rRNA intergenic space region (IGSR). To assess the discriminatory power of PCR-HRM of examined genes and IGSR, MG strains ts-11, F, 6/85 and S6, and, initially, 8 field isolates were tested. All MG strains/isolates were differentiated using PCR-HRM curve analysis and genotype confidence percentage (GCP) values of vlhA and pvpA genes, while only 0, 3 and 4 out of 12 MG strains/isolates were differentiated using gapA, mgc2 genes and IGSR, respectively. The HRM curve analysis of vlhA and pvpA genes was found to be highly correlated with the genetic diversity of the targeted genes confirmed by sequence analysis of amplicons generated from MG strains. The potential of the vlhA and pvpA genes was also demonstrated for genotyping of 12 additional MG strains from Europe and the USA. Results from this study provide a direct comparison between genes previously used in sequencing-based genotyping methods for MG strain identification and highlight the usefulness of vlhA and pvpA HRM curve analyses as rapid and reliable tools specially for diagnosis and differentiation of MG strains used here.
Collapse
|
48
|
Firrao G, Martini M, Ermacora P, Loi N, Torelli E, Foissac X, Carle P, Kirkpatrick BC, Liefting L, Schneider B, Marzachì C, Palmano S. Genome wide sequence analysis grants unbiased definition of species boundaries in "Candidatus Phytoplasma". Syst Appl Microbiol 2013; 36:539-48. [PMID: 24034865 DOI: 10.1016/j.syapm.2013.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 07/08/2013] [Accepted: 07/18/2013] [Indexed: 10/26/2022]
Abstract
The phytoplasmas are currently named using the Candidatus category, as the inability to grow them in vitro prevented (i) the performance of tests, such as DNA-DNA hybridization, that are regarded as necessary to establish species boundaries, and (ii) the deposition of type strains in culture collections. The recent accession to complete or nearly complete genome sequence information disclosed the opportunity to apply to the uncultivable phytoplasmas the same taxonomic approaches used for other bacteria. In this work, the genomes of 14 strains, belonging to the 16SrI, 16SrIII, 16SrV and 16SrX groups, including the species "Ca. P. asteris", "Ca. P. mali", "Ca. P. pyri", "Ca. P. pruni", and "Ca. P. australiense" were analyzed along with Acholeplasma laidlawi, to determine their taxonomic relatedness. Average nucleotide index (ANIm), tetranucleotide signature frequency correlation index (Tetra), and multilocus sequence analysis of 107 shared genes using both phylogenetic inference of concatenated (DNA and amino acid) sequences and consensus networks, were carried out. The results were in large agreement with the previously established 16S rDNA based classification schemes. Moreover, the taxonomic relationships within the 16SrI, 16SrIII and 16SrX groups, that represent clusters of strains whose relatedness could not be determined by 16SrDNA analysis, could be comparatively evaluated with non-subjective criteria. "Ca. P. mali" and "Ca. P. pyri" were found to meet the genome characteristics for the retention into two different, yet strictly related species; representatives of subgroups 16SrI-A and 16SrI-B were also found to meet the standards used in other bacteria to distinguish separate species; the genomes of the strains belonging to 16SrIII were found more closely related, suggesting that their subdivision into Candidatus species should be approached with caution.
Collapse
Affiliation(s)
- Giuseppe Firrao
- Dipartimento di Scienze Agrarie ed Ambientali, Università di Udine, Udine, Italy; Istituto Nazionale di Biostrutture e Biosistemi, Interuniversity Consortium, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hochachka WM, Dhondt AA, Dobson A, Hawley DM, Ley DH, Lovette IJ. Multiple host transfers, but only one successful lineage in a continent-spanning emergent pathogen. Proc Biol Sci 2013; 280:20131068. [PMID: 23843387 DOI: 10.1098/rspb.2013.1068] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Emergence of a new disease in a novel host is thought to be a rare outcome following frequent pathogen transfers between host species. However, few opportunities exist to examine whether disease emergence stems from a single successful pathogen transfer, and whether this successful lineage represents only one of several pathogen transfers between hosts. We examined the successful host transfer and subsequent evolution of the bacterial pathogen Mycoplasma gallisepticum, an emergent pathogen of house finches (Haemorhous (formerly Carpodacus) mexicanus). Our principal goals were to assess whether host transfer has been a repeated event between the original poultry hosts and house finches, whether only a single host transfer was ultimately responsible for the emergence of M. gallisepticum in these finches, and whether the spread of the pathogen from east to west across North America has resulted in spatial structuring in the pathogen. Using a phylogeny of M. gallisepticum based on 107 isolates from domestic poultry, house finches and other songbirds, we infer that the bacterium has repeatedly jumped between these two groups of hosts but with only a single lineage of M. gallisepticum persisting and evolving in house finches; bacterial evolution has produced monophyletic eastern and western North American subclades.
Collapse
|
50
|
Semi-automated curation of metabolic models via flux balance analysis: a case study with Mycoplasma gallisepticum. PLoS Comput Biol 2013; 9:e1003208. [PMID: 24039564 PMCID: PMC3764002 DOI: 10.1371/journal.pcbi.1003208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/19/2013] [Indexed: 11/19/2022] Open
Abstract
Primarily used for metabolic engineering and synthetic biology, genome-scale metabolic modeling shows tremendous potential as a tool for fundamental research and curation of metabolism. Through a novel integration of flux balance analysis and genetic algorithms, a strategy to curate metabolic networks and facilitate identification of metabolic pathways that may not be directly inferable solely from genome annotation was developed. Specifically, metabolites involved in unknown reactions can be determined, and potentially erroneous pathways can be identified. The procedure developed allows for new fundamental insight into metabolism, as well as acting as a semi-automated curation methodology for genome-scale metabolic modeling. To validate the methodology, a genome-scale metabolic model for the bacterium Mycoplasma gallisepticum was created. Several reactions not predicted by the genome annotation were postulated and validated via the literature. The model predicted an average growth rate of 0.358±0.12, closely matching the experimentally determined growth rate of M. gallisepticum of 0.244±0.03. This work presents a powerful algorithm for facilitating the identification and curation of previously known and new metabolic pathways, as well as presenting the first genome-scale reconstruction of M. gallisepticum. Flux balance analysis (FBA) is a powerful approach for genome-scale metabolic modeling. It provides metabolic engineers with a tool for manipulating, predicting, and optimizing metabolism for biotechnological and biomedical purposes. However, we posit that it can also be used as tool for fundamental research in understanding and curating metabolic networks. Specifically, by using a genetic algorithm integrated with FBA, we developed a curation approach to identify missing reactions, incomplete reactions, and erroneous reactions. Additionally, it was possible to take advantage of the ensemble information from the genetic algorithm to identify the most critical reactions for curation. We tested our strategy using Mycoplasma gallisepticum as our model organism. Using the genome annotation as the basis, the preliminary genome-scale metabolic model consisted of 446 metabolites involved in 380 reactions. Carrying out our analysis, we found over 80 incorrect reactions and 16 missing reactions. Based upon the guidance of the algorithm, we were able to curate and resolve all discrepancies. The model predicted an average bacterial growth rate of 0.358±0.12 h−1 compared to the experimentally observed 0.244±0.03 h−1. Thus, our approach facilitated the curation of a genome-scale metabolic network and generated a high quality metabolic model.
Collapse
|