1
|
Li H, Bhattarai B, Barber M, Goel R. Stringent Response of Cyanobacteria and Other Bacterioplankton during Different Stages of a Harmful Cyanobacterial Bloom. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16016-16032. [PMID: 37819800 DOI: 10.1021/acs.est.3c03114] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
We conducted a field study to investigate the role of stringent response in cyanobacteria and coexisting bacterioplankton during nutrient-deprived periods at various stages of bloom in a freshwater lake (Utah Lake) for the first time. Using metagenomics and metatranscriptomics analyses, we examined the cyanobacterial ecology and expression of important functional genes related to stringent response, N and P metabolism, and regulation. Our findings mark a significant advancement in understanding the mechanisms by which toxic cyanobacteria survive and proliferate during nitrogen (N) and phosphorus (P) limitations. We successfully identified and analyzed the metagenome-assembled genomes (MAGs) of the dominant bloom-forming cyanobacteria, namely, Dolichospermum circinale, Aphanizomenon flos-aquae UKL13-PB, Planktothrix agardhii, and Microcystis aeruginosa. By mapping RNA-seq data to the coding sequences of the MAGs, we observed that these four prevalent cyanobacteria species activated multiple functions to adapt to the depletion of inorganic nutrients. During and after the blooms, the four dominant cyanobacteria species expressed high levels of transcripts related to toxin production, such as microcystins (mcy), anatoxins (ana), and cylindrospermopsins (cyr). Additionally, genes associated with polyphosphate (poly-P) storage and the stringent response alarmone (p)ppGpp synthesis/hydrolysis, including ppk, relA, and spoT, were highly activated in both cyanobacteria and bacterioplankton. Under N deficiency, the main N pathways shifted from denitrification and dissimilatory nitrate reduction in bacterioplankton toward N2-fixing and assimilatory nitrate reduction in certain cyanobacteria with a corresponding shift in the community composition. P deprivation triggered a stringent response mediated by spoT-dependent (p)ppGpp accumulation and activation of the Pho regulon in both cyanobacteria and bacterioplankton, facilitating inorganic and organic P uptake. The dominant cyanobacterial MAGs exhibited the presence of multiple alkaline phosphatase (APase) transcripts (e.g., phoA in Dolichospermum, phoX in Planktothrix, and Microcystis), suggesting their ability to synthesize and release APase enzymes to convert ambient organic P into bioavailable forms. Conversely, transcripts associated with bacterioplankton-dominated pathways like denitrification were low and did not align with the occurrence of intense cyanoHABs. The strong correlations observed among N, P, stringent response metabolisms and the succession of blooms caused by dominant cyanobacterial species provide evidence that the stringent response, induced by nutrient limitation, may activate unique N and P functions in toxin-producing cyanobacteria, thereby sustaining cyanoHABs.
Collapse
Affiliation(s)
- Hanyan Li
- Institute for Environmental Genomics, The University of Oklahoma, 101 David L Boren Blvd, Norman, Oklahoma 73019, United States
| | - Bishav Bhattarai
- Department of Civil and Environmental Engineering, The University of Utah, 110 S Central Campus, Salt Lake City, Utah 84112, United States
| | - Michael Barber
- Department of Civil and Environmental Engineering, The University of Utah, 110 S Central Campus, Salt Lake City, Utah 84112, United States
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, The University of Utah, 110 S Central Campus, Salt Lake City, Utah 84112, United States
| |
Collapse
|
2
|
Perin G, Fletcher T, Sagi-Kiss V, Gaboriau DCA, Carey MR, Bundy JG, Jones PR. Calm on the surface, dynamic on the inside. Molecular homeostasis of Anabaena sp. PCC 7120 nitrogen metabolism. PLANT, CELL & ENVIRONMENT 2021; 44:1885-1907. [PMID: 33608943 DOI: 10.1111/pce.14034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
Nitrogen sources are all converted into ammonium/ia as a first step of assimilation. It is reasonable to expect that molecular components involved in the transport of ammonium/ia across biological membranes connect with the regulation of both nitrogen and central metabolism. We applied both genetic (i.e., Δamt mutation) and environmental treatments to a target biological system, the cyanobacterium Anabaena sp PCC 7120. The aim was to both perturb nitrogen metabolism and induce multiple inner nitrogen states, respectively, followed by targeted quantification of key proteins, metabolites and enzyme activities. The absence of AMT transporters triggered a substantial whole-system response, affecting enzyme activities and quantity of proteins and metabolites, spanning nitrogen and carbon metabolisms. Moreover, the Δamt strain displayed a molecular fingerprint indicating nitrogen deficiency even under nitrogen replete conditions. Contrasting with such dynamic adaptations was the striking near-complete lack of an externally measurable altered phenotype. We conclude that this species evolved a highly robust and adaptable molecular network to maintain homeostasis, resulting in substantial internal but minimal external perturbations. This analysis provides evidence for a potential role of AMT transporters in the regulatory/signalling network of nitrogen metabolism and the existence of a novel fourth regulatory mechanism controlling glutamine synthetase activity.
Collapse
Affiliation(s)
- Giorgio Perin
- Department of Life Sciences, Imperial College London, London, UK
| | - Tyler Fletcher
- Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - Virag Sagi-Kiss
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - David C A Gaboriau
- Facility for Imaging by Light Microscopy, NHLI, Imperial College London, London, UK
| | - Mathew R Carey
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jacob G Bundy
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Patrik R Jones
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
3
|
Zu Y, Hong S, Xu C, Li W, Chen S, Li J. Cell wall surface layer (S-layer) promotes colony formation in Microcystis: comparison of S-layer characteristics between colonial and unicellular forms of Microcystis and function conformation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42254-42263. [PMID: 32222924 DOI: 10.1007/s11356-020-08254-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Colony is a key to Microcystis becoming a dominant population and forming blooms. To find the mechanism of colony formation, we investigated cell wall structures of colonial and unicellular strains. Results showed that colonial strains had significant surface layer protein (S-layer) on the surface of cells than unicellular strains by transmission electron microscopy. Western blot showed colonial strains had more S-layer than the unicellular strains. When the S-layer gene (GenBank accession number CAO89090.1) of Microcystis aeruginosa PCC7806 was expressed in Synechocystis sp. PCC6803, PCC6803 aggregated into colonial morphology. The results indicated that the S-layer could promote colony formation in Microcystis. Based on the S-layer sequences of PCC6803 and PCC7806, nine S-layer genes in other Microcystis strains were screened from the GenBank. Sequence comparing showed that the S-layers conserved regions were all located in N-terminal. The S-layers contain repeats-in-toxin (RTX) sequences with Ca2+-binding site, and their amino acid composition, hydrophobicity, isoelectric point, etc. were consistent with the characteristics of RTX-type S-layer in bacteria.
Collapse
Affiliation(s)
- Yao Zu
- School of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Sujuan Hong
- School of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Chongxin Xu
- School of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Weiwei Li
- School of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Siyu Chen
- School of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Jianhong Li
- School of Life Sciences, Nanjing Normal University, Nanjing, 210046, China.
| |
Collapse
|
4
|
Rapid Transcriptional Reprogramming Triggered by Alteration of the Carbon/Nitrogen Balance Has an Impact on Energy Metabolism in Nostoc sp. PCC 7120. Life (Basel) 2020; 10:life10110297. [PMID: 33233741 PMCID: PMC7699953 DOI: 10.3390/life10110297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Nostoc (Anabaena) sp. PCC 7120 is a filamentous cyanobacterial species that fixes N2 to nitrogenous compounds using specialised heterocyst cells. Changes in the intracellular ratio of carbon to nitrogen (C/N balance) is known to trigger major transcriptional reprogramming of the cell, including initiating the differentiation of vegetative cells to heterocysts. Substantial transcriptional analysis has been performed on Nostoc sp. PCC 7120 during N stepdown (low to high C/N), but not during C stepdown (high to low C/N). In the current study, we shifted the metabolic balance of Nostoc sp. PCC 7120 cultures grown at 3% CO2 by introducing them to atmospheric conditions containing 0.04% CO2 for 1 h, after which the changes in gene expression were measured using RNAseq transcriptomics. This analysis revealed strong upregulation of carbon uptake, while nitrogen uptake and metabolism and early stages of heterocyst development were downregulated in response to the shift to low CO2. Furthermore, gene expression changes revealed a decrease in photosynthetic electron transport and increased photoprotection and reactive oxygen metabolism, as well a decrease in iron uptake and metabolism. Differential gene expression was largely attributed to change in the abundances of the metabolites 2-phosphoglycolate and 2-oxoglutarate, which signal a rapid shift from fluent photoassimilation to glycolytic metabolism of carbon after transition to low CO2. This work shows that the C/N balance in Nostoc sp. PCC 7120 rapidly adjusts the metabolic strategy through transcriptional reprogramming, enabling survival in the fluctuating environment.
Collapse
|
5
|
Gao X, Zhu Z, Xu H, Liu L, An J, Ji B, Ye S. Cold adaptation in drylands: transcriptomic insights into cold-stressed Nostoc flagelliforme and characterization of a hypothetical gene with cold and nitrogen stress tolerance. Environ Microbiol 2020; 23:713-727. [PMID: 32627309 DOI: 10.1111/1462-2920.15153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 06/11/2020] [Accepted: 07/03/2020] [Indexed: 12/23/2022]
Abstract
Environmental stressors, especially low temperature, are very common on the earth's dryland systems. Terrestrial cyanobacteria have evolved with cold adaptability in addition to extreme dryness and high irradiation resistance. The dryland soil surface-dwelling species, Nostoc flagelliforme, serves as a potential model organism to gain insights into cyanobacterial cold adaptation. In this study, we performed transcriptomic analysis of N. flagelliforme samples in response to low temperature. The results revealed that the biological processes, such as terpenoid biosynthetic process, oxidoreductase activity, carbohydrate metabolism, biosynthesis of secondary metabolites, lipid and nitrogen metabolism, were significantly and dynamically changed during the cold stress. It was noteworthy that the transcription of the denitrification pathway for ammonia accumulation was enhanced, implying an importance for nitrogen utilization in stress resistance. In addition, characterization of a cold-responsive hypothetical gene csrnf1 found that it could greatly improve the cold-resistant performance of cells when it was heterologously expressed in transgenic Nostoc sp. PCC 7120. It was also found that csrnf1 transgenic strain exhibited resistance to nitrogen-deficient environmental stress. Considering that dryland cyanobacteria have to cope with low temperature on infertile soils, this study would enrich our understanding on the importance of multifunction of the genes for environmental cold adaptation in drylands.
Collapse
Affiliation(s)
- Xiang Gao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.,School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Zhaoxia Zhu
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Haiyan Xu
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Litao Liu
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jing An
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Boyang Ji
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, 41296, Sweden
| | - Shuifeng Ye
- Shanghai Agrobiological Gene Center, Shanghai, 201106, China.,College of Life Sciences, Shangrao Normal University, Shangrao, 334001, China
| |
Collapse
|
6
|
Zhang R, Ni S, Kennedy MA. Crystal structure of Alr1298, a pentapeptide repeat protein from the cyanobacterium Nostoc sp. PCC 7120, determined at 2.1 Å resolution. Proteins 2020; 88:1143-1153. [PMID: 32092202 DOI: 10.1002/prot.25882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 02/03/2023]
Abstract
Nostoc sp. PCC 7120 are filamentous cyanobacteria capable of both oxygenic photosynthesis and nitrogen fixation, with the latter taking place in specialized cells known as heterocysts that terminally differentiate from vegetative cells under conditions of nitrogen starvation. Cyanobacteria have existed on earth for more than 2 billion years and are thought to be responsible for oxygenation of the earth's atmosphere. Filamentous cyanobacteria such as Nostoc sp. PCC 7120 may also represent the oldest multicellular organisms on earth that undergo cell differentiation. Pentapeptide repeat proteins (PRPs), which occur most abundantly in cyanobacteria, adopt a right-handed quadrilateral β-helical structure, also referred to as a repeat five residue (Rfr) fold, with four-consecutive pentapeptide repeats constituting a single coil in the β-helical structure. PRPs are predicted to exist in all compartments within cyanobacteria including the thylakoid and cell-wall membranes as well as the cytoplasm and thylakoid periplasmic space. Despite their intriguing structure and importance to understanding ancient cyanobacteria, the biochemical function of PRPs in cyanobacteria remains largely unknown. Here we report the crystal structure of Alr1298, a PRP from Nostoc sp. PCC 7120 predicted to reside in the cytoplasm. The structure displays the typical right-handed quadrilateral β-helical structure and includes a four-α-helix cluster capping the N-terminus and a single α-helix capping the C-terminus. A gene cluster analysis indicated that Alr1298 may belong to an operon linked to cell proliferation and/or thylakoid biogenesis. Elevated alr1298 gene expression following nitrogen starvation indicates that Alr1298 may play a role in response to nitrogen starvation and/or heterocyst differentiation.
Collapse
Affiliation(s)
- Ruojing Zhang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio
| | - Shuisong Ni
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio
| | - Michael A Kennedy
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio
| |
Collapse
|
7
|
patD, a Gene Regulated by NtcA, Is Involved in the Optimization of Heterocyst Frequency in the Cyanobacterium Anabaena sp. Strain PCC 7120. J Bacteriol 2019; 201:JB.00457-19. [PMID: 31405917 DOI: 10.1128/jb.00457-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/04/2019] [Indexed: 11/20/2022] Open
Abstract
In the filamentous multicellular cyanobacterium Anabaena sp. strain PCC 7120, 5 to 10% of the cells differentiate into heterocysts, which are specialized in N2 fixation. Heterocysts and vegetative cells are mutually dependent for filament growth through nutrient exchange. Thus, the heterocyst frequency should be optimized to maintain the cellular carbon and nitrogen (C/N) balance for filament fitness in the environment. Here, we report the identification of patD, whose expression is directly activated in developing cells by the transcription factor NtcA. The inactivation of patD increases heterocyst frequency and promotes the upregulation of the positive regulator of heterocyst development hetR, whereas its overexpression decreases the heterocyst frequency. The change in heterocyst frequency resulting from the inactivation of patD leads to the reduction in competitiveness of the filaments under combined-nitrogen-depleted conditions. These results indicate that patD regulates heterocyst frequency in Anabaena sp. PCC 7120, ensuring its optimal filament growth.IMPORTANCE Microorganisms have evolved various strategies in order to adapt to the environment and compete with other organisms. Heterocyst differentiation is a prokaryotic model for studying complex cellular regulation. The NtcA-regulated gene patD controls the ratio of heterocysts relative to vegetative cells on the filaments of Anabaena sp. strain PCC 7120. Such a regulation provides a mechanism through which carbon fixation by vegetative cells and nitrogen fixation by heterocysts are properly balanced to ensure optimal growth and keep a competitive edge for long-term survival.
Collapse
|
8
|
Zhang CC, Zhou CZ, Burnap RL, Peng L. Carbon/Nitrogen Metabolic Balance: Lessons from Cyanobacteria. TRENDS IN PLANT SCIENCE 2018; 23:1116-1130. [PMID: 30292707 DOI: 10.1016/j.tplants.2018.09.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 05/20/2023]
Abstract
Carbon and nitrogen are the two most abundant nutrient elements for all living organisms, and their metabolism is tightly coupled. What are the signaling mechanisms that cells use to sense and control the carbon/nitrogen (C/N) metabolic balance following environmental changes? Based on studies in cyanobacteria, it was found that 2-phosphoglycolate derived from the oxygenase activity of Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) and 2-oxoglutarate from the Krebs cycle act as the carbon- and nitrogen-starvation signals, respectively, and their concentration ratio likely reflects the status of the C/N metabolic balance. We will present and discuss the regulatory principles underlying the signaling mechanisms, which are likely to be conserved in other photosynthetic organisms. These concepts may also contribute to developments in the field of biofuel engineering or improvements in crop productivity.
Collapse
Affiliation(s)
- Cheng-Cai Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei 430072, People's Republic of China; Aix-Marseille Université, CNRS, LCB, France.
| | - Cong-Zhao Zhou
- School of Life Sciences and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| | - Robert L Burnap
- Department of Microbiology and Molecular Genetics, Henry Bellmon Research Center, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ling Peng
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, Equipe Labellisée Ligue Contre le Cancer, CINaM UMR 7325, 13288 Marseille, France
| |
Collapse
|
9
|
Popova AA, Semashko TA, Kostina NV, Rasmussen U, Govorun VM, Koksharova OA. The Cyanotoxin BMAA Induces Heterocyst Specific Gene Expression in Anabaena sp. PCC 7120 under Repressive Conditions. Toxins (Basel) 2018; 10:toxins10110478. [PMID: 30453523 PMCID: PMC6266585 DOI: 10.3390/toxins10110478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/10/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022] Open
Abstract
Cyanobacteria synthesize neurotoxic β-N-methylamino-l-alanine (BMAA). The roles of this non-protein amino acid in cyanobacterial cells are insufficiently studied. During diazotrophic growth, filamentous cyanobacteria form single differentiated cells, called heterocysts, which are separated by approximately 12–15 vegetative cells. When combined nitrogen is available, heterocyst formation is blocked and cyanobacterial filaments contain only vegetative cells. In the present study, we discovered that exogenous BMAA induces the process of heterocyst formation in filamentous cyanobacteria under nitrogen-replete conditions that normally repress cell differentiation. BMAA treated cyanobacteria form heterocyst-like dark non-fluorescent non-functional cells. It was found that glutamate eliminates the BMAA mediated derepression. Quantitative polymerase chain reaction (qPCR) permitted to detect the BMAA impact on the transcriptional activity of several genes that are implicated in nitrogen assimilation and heterocyst formation in Anabaena sp. PCC 7120. We demonstrated that the expression of several essential genes increases in the BMAA presence under repressive conditions.
Collapse
Affiliation(s)
- Alexandra A Popova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square, 2, 123182 Moscow, Russia.
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Prospekt 60 let Oktyabrya, 7/2, 117312 Moscow, Russia.
| | - Tatiana A Semashko
- Scientific-Research Institute of Physical-Chemical Medicine, 119435 Moscow, Russia.
| | - Natalia V Kostina
- Soil Science Faculty, Lomonosov Moscow State University, Leninskie Gory, 1-12, 119991 Moscow, Russia.
| | - Ulla Rasmussen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden.
| | - Vadim M Govorun
- Scientific-Research Institute of Physical-Chemical Medicine, 119435 Moscow, Russia.
| | - Olga A Koksharova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square, 2, 123182 Moscow, Russia.
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1, 40, 119992 Moscow, Russia.
| |
Collapse
|
10
|
Biosensors-Based In Vivo Quantification of 2-Oxoglutarate in Cyanobacteria and Proteobacteria. Life (Basel) 2018; 8:life8040051. [PMID: 30373229 PMCID: PMC6315671 DOI: 10.3390/life8040051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 01/12/2023] Open
Abstract
2-oxoglutarate (α-ketoglutarate; 2-OG) is an intermediate of the Krebs cycle, and constitutes the carbon skeleton for nitrogen assimilation and the synthesis of a variety of compounds. In addition to being an important metabolite, 2-OG is a signaling molecule with a broad regulatory repertoire in a variety of organisms, including plants, animals, and bacteria. Although challenging, measuring the levels and variations of metabolic signals in vivo is critical to better understand how cells control specific processes. To measure cellular 2-OG concentrations and dynamics, we designed a set of biosensors based on the fluorescence resonance energy transfer (FRET) technology that can be used in vivo in different organisms. For this purpose, we took advantage of the conformational changes of two cyanobacterial proteins induced by 2-OG binding. We show that these biosensors responded immediately and specifically to different 2-OG levels, and hence allowed to measure 2-OG variations in function of environmental modifications in the proteobacterium Escherichia coli and in the cyanobacterium Anabaena sp. PCC 7120. Our results pave the way to study 2-OG dynamics at the cellular level in uni- and multi-cellular organisms.
Collapse
|
11
|
Popova AA, Rasmussen U, Semashko TA, Govorun VM, Koksharova OA. Stress effects of cyanotoxin β-methylamino-L-alanine (BMAA) on cyanobacterial heterocyst formation and functionality. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:369-377. [PMID: 29624906 DOI: 10.1111/1758-2229.12647] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/28/2018] [Accepted: 04/01/2018] [Indexed: 06/08/2023]
Abstract
Various species of cyanobacteria, diatoms and dinoflagellates are capable of synthesizing the non-proteinogenic neurotoxic amino acid β-N-methylamino-L-alanine (BMAA), which is known to be a causative agent of human neurodegeneration. Similar to most cyanotoxins, the biological and ecological functions of BMAA in cyanobacteria are unknown. In this study, we show for the first time that BMAA, in micromolar amounts, inhibits the formation of heterocysts (specialized nitrogen-fixing cells) in heterocystous, diazotrophic cyanobacteria [Anabaena sp. PCC 7120, Nostoc punctiforme PCC 73102 (ATCC 29133), Nostoc sp. strain 8963] under conditions of nitrogen starvation. The inhibitory effect of BMAA is abolished by the addition of glutamate. To understand the genetic reason for the observed phenomenon, we used qPCR to study the expression of key genes involved in cell differentiation and nitrogen metabolism in the model cyanobacterium Anabaena sp. PCC 7120. We observed that in the presence of BMAA, Anabaena sp. PCC 7120 does not express two essential genes associated with heterocyst differentiation, namely, hetR and hepA. We also found that addition of BMAA to cyanobacterial cultures with mature heterocysts inhibits nifH gene expression and nitrogenase activity.
Collapse
Affiliation(s)
- Alexandra A Popova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square, 2, 123182 Moscow, Russia
| | - Ulla Rasmussen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Tatiana A Semashko
- Scientific-Research Institute of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Vadim M Govorun
- Scientific-Research Institute of Physical-Chemical Medicine, Moscow 119435, Russia
| | - Olga A Koksharova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Square, 2, 123182 Moscow, Russia
- Lomonosov Moscow State University, Belozersky Institute of Physical-Chemical Biology, Leninskie Gory, 1, 40, Moscow, 119992, Russia
| |
Collapse
|
12
|
Videau P, Rivers OS, Tom SK, Oshiro RT, Ushijima B, Swenson VA, Philmus B, Gaylor MO, Cozy LM. The hetZ gene indirectly regulates heterocyst development at the level of pattern formation in Anabaena sp. strain PCC 7120. Mol Microbiol 2018; 109:91-104. [PMID: 29676808 DOI: 10.1111/mmi.13974] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2018] [Indexed: 01/08/2023]
Abstract
Multicellular development requires the careful orchestration of gene expression to correctly create and position specialized cells. In the filamentous cyanobacterium Anabaena sp. strain PCC 7120, nitrogen-fixing heterocysts are differentiated from vegetative cells in a reproducibly periodic and physiologically relevant pattern. While many genetic factors required for heterocyst development have been identified, the role of HetZ has remained unclear. Here, we present evidence to clarify the requirement of hetZ for heterocyst production and support a model where HetZ functions in the patterning stage of differentiation. We show that a clean, nonpolar deletion of hetZ fails to express the developmental genes hetR, patS, hetP and hetZ correctly and fails to produce heterocysts. Complementation and overexpression of hetZ in a hetP mutant revealed that hetZ was incapable of bypassing hetP, suggesting that it acts upstream of hetP. Complementation and overexpression of hetZ in a hetR mutant, however, demonstrated bypass of hetR, suggesting that it acts downstream of hetR and is capable of bypassing the need for hetR for differentiation irrespective of nitrogen status. Finally, protein-protein interactions were observed between HetZ and HetR, Alr2902 and HetZ itself. Collectively, this work suggests a regulatory role for HetZ in the patterning phase of cellular differentiation in Anabaena.
Collapse
Affiliation(s)
- Patrick Videau
- Department of Biology, College of Arts and Sciences, Dakota State University, Madison, SD, USA
| | - Orion S Rivers
- Department of Microbiology, University of Hawaii, Honolulu, HI, USA
| | - Sasa K Tom
- Department of Microbiology, University of Hawaii, Honolulu, HI, USA
| | - Reid T Oshiro
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Blake Ushijima
- Department of Microbiology, University of Hawaii, Honolulu, HI, USA
| | - Vaille A Swenson
- Department of Biology, College of Arts and Sciences, Dakota State University, Madison, SD, USA
- Department of Chemistry, College of Arts and Sciences, Dakota State University, Madison, SD, USA
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, USA
| | - Michael O Gaylor
- Department of Chemistry, College of Arts and Sciences, Dakota State University, Madison, SD, USA
| | - Loralyn M Cozy
- Department of Biology, Illinois Wesleyan University, Bloomington, IL, USA
| |
Collapse
|
13
|
Ehira S, Shimmori Y, Watanabe S, Kato H, Yoshikawa H, Ohmori M. The nitrogen-regulated response regulator NrrA is a conserved regulator of glycogen catabolism in β-cyanobacteria. Microbiology (Reading) 2017; 163:1711-1719. [DOI: 10.1099/mic.0.000549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Shigeki Ehira
- Department of Biological Science, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Yuka Shimmori
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Hiroaki Kato
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Masayuki Ohmori
- Department of Biological Science, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
14
|
The heterocyst regulatory protein HetP and its homologs modulate heterocyst commitment in Anabaena sp. strain PCC 7120. Proc Natl Acad Sci U S A 2016; 113:E6984-E6992. [PMID: 27791130 DOI: 10.1073/pnas.1610533113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The commitment of differentiating cells to a specialized fate is fundamental to the correct assembly of tissues within a multicellular organism. Because commitment is often irreversible, entry into and progression through this phase of development must be tightly regulated. Under nitrogen-limiting conditions, the multicellular cyanobacterium Anabaena sp. strain PCC 7120 terminally commits ∼10% of its cells to become specialized nitrogen-fixing heterocysts. Although commitment is known to occur 9-14 h after the induction of differentiation, the factors that regulate the initiation and duration of this phase have yet to be elucidated. Here, we report the identification of four genes that share a functional domain and modulate heterocyst commitment: hetP (alr2818), asl1930, alr2902, and alr3234 Epistatic relationships between all four genes relating to commitment were revealed by deleting them individually and in combination; asl1930 and alr3234 acted most upstream to delay commitment, alr2902 acted next in the pathway to inhibit development, and hetP acted most downstream to drive commitment forward. Possible protein-protein interactions between HetP, its homologs, and the heterocyst master regulator, HetR, were assessed, and interaction partners were defined. Finally, patterns of gene expression for each homolog, as determined by promoter fusions to gfp and reverse transcription-quantitative PCR, were distinct from that of hetP in both spatiotemporal organization and regulation. We posit that a dynamic succession of protein-protein interactions modulates the timing and efficiency of the commitment phase of development and note that this work highlights the utility of a multicellular cyanobacterium as a model for the study of developmental processes.
Collapse
|
15
|
Wang Y, Liu X, Laurini E, Posocco P, Ziarelli F, Fermeglia M, Qu F, Pricl S, Zhang CC, Peng L. Mimicking the 2-oxoglutaric acid signalling function using molecular probes: insights from structural and functional investigations. Org Biomol Chem 2015; 12:4723-9. [PMID: 24869624 DOI: 10.1039/c4ob00630e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
2-Oxoglutaric acid (2-OG) has gained considerable attention because of its newly discovered signalling role in addition to its established metabolic functions. With the aim of further exploring the signalling function of 2-OG, here we present a structure-activity relationship study using 2-OG probes bearing different carbon chain lengths and terminal groups. Our results highlight the importance of the five-membered carbon molecular skeleton and of the two carboxylic terminals in maintaining the signalling functions of the parent molecule 2-OG. These findings provide valuable information for designing new, effective molecular probes able to dissect and discriminate the newly discovered, complex signalling role of 2-OG from its canonical activity in metabolism.
Collapse
Affiliation(s)
- Yang Wang
- Aix-Marseille Université, CNRS, CINaM UMR 7325, 13288, Marseille, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yingping F, Lemeille S, González A, Risoul V, Denis Y, Richaud P, Lamrabet O, Fillat MF, Zhang CC, Latifi A. The Pkn22 Ser/Thr kinase in Nostoc PCC 7120: role of FurA and NtcA regulators and transcript profiling under nitrogen starvation and oxidative stress. BMC Genomics 2015. [PMID: 26220092 PMCID: PMC4518582 DOI: 10.1186/s12864-015-1703-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background The filamentous cyanobacterium Nostoc sp. strain PCC 7120 can fix N2 when combined nitrogen is not available. Furthermore, it has to cope with reactive oxygen species generated as byproducts of photosynthesis and respiration. We have previously demonstrated the synthesis of Ser/Thr kinase Pkn22 as an important survival response of Nostoc to oxidative damage. In this study we wished to investigate the possible involvement of this kinase in signalling peroxide stress and nitrogen deprivation. Results Quantitative RT-PCR experiments revealed that the pkn22 gene is induced in response to peroxide stress and to combined nitrogen starvation. Electrophoretic motility assays indicated that the pkn22 promoter is recognized by the global transcriptional regulators FurA and NtcA. Transcriptomic analysis comparing a pkn22-insertion mutant and the wild type strain indicated that this kinase regulates genes involved in important cellular functions such as photosynthesis, carbon metabolism and iron acquisition. Since metabolic changes may lead to oxidative stress, we investigated whether this is the case with nitrogen starvation. Our results rather invalidate this hypothesis thereby suggesting that the function of Pkn22 under nitrogen starvation is independent of its role in response to peroxide stress. Conclusions Our analyses have permitted a more complete functional description of Ser/Thr kinase in Nostoc. We have decrypted the transcriptional regulation of the pkn22 gene, and analysed the whole set of genes under the control of this kinase in response to the two environmental changes often encountered by cyanobacteria in their natural habitat: oxidative stress and nitrogen deprivation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1703-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fan Yingping
- Aix-Marseille University and CNRS, Laboratoire de Chimie Bactérienne - UMR7283, IMM, 31 Chemin Joseph Aiguier, 13402, Marseille cedex 20, France.
| | - Sylvain Lemeille
- Department of Microbiology and Molecular Medicine, CMU, Medical Faculty, University of Geneva, Genève, 1211, Switzerland.
| | - Andrés González
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009, Zaragoza, Spain.
| | - Véronique Risoul
- Aix-Marseille University and CNRS, Laboratoire de Chimie Bactérienne - UMR7283, IMM, 31 Chemin Joseph Aiguier, 13402, Marseille cedex 20, France.
| | - Yann Denis
- Plate-forme Transcriptome FR3479, IMM-CNRS, Marseille, France.
| | - Pierre Richaud
- CEA, DSV, IBEB, SBVME, Saint-Paul-lez-Durance, F-13108, France. .,CNRS, UMR 7265 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, F-13108, France. .,Aix Marseille Université, BVME UMR7265, Marseille, F-13284, France.
| | - Otmane Lamrabet
- Aix-Marseille University and CNRS, Laboratoire de Chimie Bactérienne - UMR7283, IMM, 31 Chemin Joseph Aiguier, 13402, Marseille cedex 20, France.
| | - Maria F Fillat
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009, Zaragoza, Spain.
| | - Cheng-Cai Zhang
- Aix-Marseille University and CNRS, Laboratoire de Chimie Bactérienne - UMR7283, IMM, 31 Chemin Joseph Aiguier, 13402, Marseille cedex 20, France.
| | - Amel Latifi
- Aix-Marseille University and CNRS, Laboratoire de Chimie Bactérienne - UMR7283, IMM, 31 Chemin Joseph Aiguier, 13402, Marseille cedex 20, France.
| |
Collapse
|
17
|
Ishihara JI, Tachikawa M, Iwasaki H, Mochizuki A. Mathematical study of pattern formation accompanied by heterocyst differentiation in multicellular cyanobacterium. J Theor Biol 2015; 371:9-23. [DOI: 10.1016/j.jtbi.2015.01.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 11/26/2022]
|
18
|
Torres-Sánchez A, Gómez-Gardeñes J, Falo F. An integrative approach for modeling and simulation of heterocyst pattern formation in cyanobacteria filaments. PLoS Comput Biol 2015; 11:e1004129. [PMID: 25816286 PMCID: PMC4376521 DOI: 10.1371/journal.pcbi.1004129] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 01/14/2015] [Indexed: 11/18/2022] Open
Abstract
Heterocyst differentiation in cyanobacteria filaments is one of the simplest examples of cellular differentiation and pattern formation in multicellular organisms. Despite of the many experimental studies addressing the evolution and sustainment of heterocyst patterns and the knowledge of the genetic circuit underlying the behavior of single cyanobacterium under nitrogen deprivation, there is still a theoretical gap connecting these two macroscopic and microscopic processes. As an attempt to shed light on this issue, here we explore heterocyst differentiation under the paradigm of systems biology. This framework allows us to formulate the essential dynamical ingredients of the genetic circuit of a single cyanobacterium into a set of differential equations describing the time evolution of the concentrations of the relevant molecular products. As a result, we are able to study the behavior of a single cyanobacterium under different external conditions, emulating nitrogen deprivation, and simulate the dynamics of cyanobacteria filaments by coupling their respective genetic circuits via molecular diffusion. These two ingredients allow us to understand the principles by which heterocyst patterns can be generated and sustained. In particular, our results point out that, by including both diffusion and noisy external conditions in the computational model, it is possible to reproduce the main features of the formation and sustainment of heterocyst patterns in cyanobacteria filaments as observed experimentally. Finally, we discuss the validity and possible improvements of the model.
Collapse
Affiliation(s)
- Alejandro Torres-Sánchez
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza, Spain
- Laboratori de Càlcul Numèric, Universitat de Politècnica de Catalunya, Barcelona, Spain
| | - Jesús Gómez-Gardeñes
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| | - Fernando Falo
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
19
|
The trpE gene negatively regulates differentiation of heterocysts at the level of induction in Anabaena sp. strain PCC 7120. J Bacteriol 2014; 197:362-70. [PMID: 25384479 DOI: 10.1128/jb.02145-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Levels of 2-oxoglutarate (2-OG) reflect nitrogen status in many bacteria. In heterocystous cyanobacteria, a spike in the 2-OG level occurs shortly after the removal of combined nitrogen from cultures and is an integral part of the induction of heterocyst differentiation. In this work, deletion of one of the two annotated trpE genes in Anabaena sp. strain PCC 7120 resulted in a spike in the 2-OG level and subsequent differentiation of a wild-type pattern of heterocysts when filaments of the mutant were transferred from growth on ammonia to growth on nitrate. In contrast, 2-OG levels were unaffected in the wild type, which did not differentiate under the same conditions. An inverted-repeat sequence located upstream of trpE bound a central regulator of differentiation, HetR, in vitro and was necessary for HetR-dependent transcription of a reporter fusion and complementation of the mutant phenotype in vivo. Functional complementation of the mutant phenotype with the addition of tryptophan suggested that levels of tryptophan, rather than the demonstrated anthranilate synthase activity of TrpE, mediated the developmental response of the wild type to nitrate. A model is presented for the observed increase in 2-OG in the trpE mutant.
Collapse
|
20
|
The regulation of HanA during heterocyst development in cyanobacterium Anabaena sp. PCC 7120. World J Microbiol Biotechnol 2014; 30:2673-80. [PMID: 24980942 DOI: 10.1007/s11274-014-1691-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
Abstract
In response to deprivation of combined nitrogen, the filamentous cyanobacterium Anabaena sp. strain PCC 7120 develops heterocyst, which is specifically involved in the nitrogen fixation. In this study, we focused on the regulation of HanA, a histone-like protein, in heterocyst development. Electrophoretic mobility shift assay results showed that NtcA, a global nitrogen regulator necessary for heterocyst differentiation, could bind to two NtcA-binding motifs in the hanA promoter region. qPCR results also showed that NtcA may regulate the expression of hanA. By using the hanA promoter-controlled gfp as a reporter gene and performing western blot we found that the amount of HanA in mature heterocysts was decreased gradually.
Collapse
|
21
|
Omairi‐Nasser A, Haselkorn R, Austin J. Visualization of channels connecting cells in filamentous nitrogen‐fixing cyanobacteria. FASEB J 2014; 28:3016-22. [DOI: 10.1096/fj.14-252007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Amin Omairi‐Nasser
- Department of Molecular Genetics and Cell BiologyThe University of ChicagoChicagoIllinoisUSA
| | - Robert Haselkorn
- Department of Molecular Genetics and Cell BiologyThe University of ChicagoChicagoIllinoisUSA
| | - Jotham Austin
- Department of Molecular Genetics and Cell BiologyThe University of ChicagoChicagoIllinoisUSA
- Advanced Electron Microscopy FacilityThe University of ChicagoChicagoIllinoisUSA
| |
Collapse
|
22
|
Liu X, Wang Y, Laurini E, Posocco P, Chen H, Ziarelli F, Janicki A, Qu F, Fermeglia M, Pricl S, Zhang CC, Peng L. Structural requirements of 2-oxoglutaric acid analogues to mimic its signaling function. Org Lett 2013; 15:4662-5. [PMID: 23988123 DOI: 10.1021/ol401914z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A 2-oxoglutaric acid (2-OG) probe bearing a methylene group introduced at the C4 position and a vinyl group to replace the carbonyl group at the C2 position elicited characteristic affinity for NtcA, the 2-OG receptor, while maintaining the signaling function of the parent natural metabolite 2-OG. This discovery opens new perspectives in the design, synthesis, and implementation of specific 2-OG analogues as molecular probes for investigating the complex 2-OG signaling pathways.
Collapse
Affiliation(s)
- Xinjun Liu
- Aix-Marseille Université , CINaM CNRS UMR 7325, 13288 Marseille, France, College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, P.R. China, Molecular Simulation Engineering Laboratory, University of Trieste , 34127 Trieste, Italy, National Interuniversity Consortium for Material Science and Technology, Research Unit MOSE-DEA, Trieste University , Italy, Spectropole , Faculté de Saint-Jérôme, Marseille, France, and Aix-Marseille Université , LCB CNRS UMR 7283, 13402 Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Beversdorf LJ, Miller TR, McMahon KD. The role of nitrogen fixation in cyanobacterial bloom toxicity in a temperate, eutrophic lake. PLoS One 2013; 8:e56103. [PMID: 23405255 PMCID: PMC3566065 DOI: 10.1371/journal.pone.0056103] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 01/09/2013] [Indexed: 11/26/2022] Open
Abstract
Toxic cyanobacterial blooms threaten freshwaters worldwide but have proven difficult to predict because the mechanisms of bloom formation and toxin production are unknown, especially on weekly time scales. Water quality management continues to focus on aggregated metrics, such as chlorophyll and total nutrients, which may not be sufficient to explain complex community changes and functions such as toxin production. For example, nitrogen (N) speciation and cycling play an important role, on daily time scales, in shaping cyanobacterial communities because declining N has been shown to select for N fixers. In addition, subsequent N pulses from N2 fixation may stimulate and sustain toxic cyanobacterial growth. Herein, we describe how rapid early summer declines in N followed by bursts of N fixation have shaped cyanobacterial communities in a eutrophic lake (Lake Mendota, Wisconsin, USA), possibly driving toxic Microcystis blooms throughout the growing season. On weekly time scales in 2010 and 2011, we monitored the cyanobacterial community in a eutrophic lake using the phycocyanin intergenic spacer (PC-IGS) region to determine population dynamics. In parallel, we measured microcystin concentrations, N2 fixation rates, and potential environmental drivers that contribute to structuring the community. In both years, cyanobacterial community change was strongly correlated with dissolved inorganic nitrogen (DIN) concentrations, and Aphanizomenon and Microcystis alternated dominance throughout the pre-toxic, toxic, and post-toxic phases of the lake. Microcystin concentrations increased a few days after the first significant N2 fixation rates were observed. Then, following large early summer N2 fixation events, Microcystis increased and became most abundant. Maximum microcystin concentrations coincided with Microcystis dominance. In both years, DIN concentrations dropped again in late summer, and N2 fixation rates and Aphanizomenon abundance increased before the lake mixed in the fall. Estimated N inputs from N2 fixation were large enough to supplement, or even support, the toxic Microcystis blooms.
Collapse
Affiliation(s)
- Lucas J Beversdorf
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
| | | | | |
Collapse
|
24
|
Liu X, Chen H, Laurini E, Wang Y, Dal Col V, Posocco P, Ziarelli F, Fermeglia M, Zhang CC, Pricl S, Peng L. 2-difluoromethylene-4-methylenepentanoic acid, a paradoxical probe able to mimic the signaling role of 2-oxoglutaric acid in cyanobacteria. Org Lett 2011; 13:2924-7. [PMID: 21545161 DOI: 10.1021/ol2009544] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
2-Difluoromethylene-4-methylenepentanoic acid (DFMPA), a seemingly deviated analog of 2-oxoglutaric acid (2-OG), could surprisingly mimic its signaling function in cyanobacteria. Computer modeling revealed the favorable binding of DFMPA toward the 2-OG receptor, NtcA, via mutual conformational changes, suggesting that structural alteration of 2-OG is tolerated for it to exercise its signaling role. This extremely useful finding could be exploited for the design of affinity probes with which to study new 2-OG receptors in related signaling pathways.
Collapse
Affiliation(s)
- Xinjun Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chen YF, Motteux O, Bédu S, Li YZ, Zhang CC. Characterization of Two Critical Residues in the Effector-Binding Domain of NtcA in the Cyanobacterium Anabaena sp. Strain PCC 7120. Curr Microbiol 2011; 63:32-8. [DOI: 10.1007/s00284-011-9936-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 04/09/2011] [Indexed: 11/24/2022]
|
26
|
Bothe H, Schmitz O, Yates MG, Newton WE. Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev 2010; 74:529-51. [PMID: 21119016 PMCID: PMC3008169 DOI: 10.1128/mmbr.00033-10] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This review summarizes recent aspects of (di)nitrogen fixation and (di)hydrogen metabolism, with emphasis on cyanobacteria. These organisms possess several types of the enzyme complexes catalyzing N(2) fixation and/or H(2) formation or oxidation, namely, two Mo nitrogenases, a V nitrogenase, and two hydrogenases. The two cyanobacterial Ni hydrogenases are differentiated as either uptake or bidirectional hydrogenases. The different forms of both the nitrogenases and hydrogenases are encoded by different sets of genes, and their organization on the chromosome can vary from one cyanobacterium to another. Factors regulating the expression of these genes are emerging from recent studies. New ideas on the potential physiological and ecological roles of nitrogenases and hydrogenases are presented. There is a renewed interest in exploiting cyanobacteria in solar energy conversion programs to generate H(2) as a source of combustible energy. To enhance the rates of H(2) production, the emphasis perhaps needs not to be on more efficient hydrogenases and nitrogenases or on the transfer of foreign enzymes into cyanobacteria. A likely better strategy is to exploit the use of radiant solar energy by the photosynthetic electron transport system to enhance the rates of H(2) formation and so improve the chances of utilizing cyanobacteria as a source for the generation of clean energy.
Collapse
Affiliation(s)
- Hermann Bothe
- Botanical Institute, The University of Cologne, Zülpicher Str. 47b, D-50923 Cologne, Germany.
| | | | | | | |
Collapse
|
27
|
Structural basis for the allosteric control of the global transcription factor NtcA by the nitrogen starvation signal 2-oxoglutarate. Proc Natl Acad Sci U S A 2010; 107:12487-92. [PMID: 20616047 DOI: 10.1073/pnas.1001556107] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
2-oxogluatarate (2-OG), a metabolite of the highly conserved Krebs cycle, not only plays a critical role in metabolism, but also constitutes a signaling molecule in a variety of organisms ranging from bacteria to plants and animals. In cyanobacteria, the accumulation of 2-OG constitutes the signal of nitrogen starvation and NtcA, a global transcription factor, has been proposed as a putative receptor for 2-OG. Here we present three crystal structures of NtcA from the cyanobacterium Anabaena: the apoform, and two ligand-bound forms in complex with either 2-OG or its analogue 2,2-difluoropentanedioic acid. All structures assemble as homodimers, with each subunit composed of an N-terminal effector-binding domain and a C-terminal DNA-binding domain connected by a long helix (C-helix). The 2-OG binds to the effector-binding domain at a pocket similar to that used by cAMP in catabolite activator protein, but with a different pattern. Comparative structural analysis reveals a putative signal transmission route upon 2-OG binding. A tighter coiled-coil conformation of the two C-helices induced by 2-OG is crucial to maintain the proper distance between the two F-helices for DNA recognition. Whereas catabolite activator protein adopts a transition from off-to-on state upon cAMP binding, our structural analysis explains well why NtcA can bind to DNA even in its apoform, and how 2-OG just enhances the DNA-binding activity of NtcA. These findings provided the structural insights into the function of a global transcription factor regulated by 2-OG, a metabolite standing at a crossroad between carbon and nitrogen metabolisms.
Collapse
|
28
|
Mutual regulation of ntcA and hetR during heterocyst differentiation requires two similar PP2C-type protein phosphatases, PrpJ1 and PrpJ2, in Anabaena sp. strain PCC 7120. J Bacteriol 2009; 191:6059-66. [PMID: 19633087 DOI: 10.1128/jb.01271-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The filamentous cyanobacterium Anabaena sp. strain PCC 7120 can form heterocysts for N(2) fixation. Initiation of heterocyst differentiation depends on mutual regulation of ntcA and hetR. Control of hetR expression by NtcA is partially mediated by nrrA, but other factors must be involved in this regulation. Anabaena has two closely related PP2C-type protein phosphatases, PrpJ1 (formerly PrpJ) and PrpJ2; PrpJ1 is involved in heterocyst maturation. In this study, we show that PrpJ2, like PrpJ1, has Mn(2+)-dependent phosphatase activity. We further demonstrate that whereas prpJ2 is dispensable for cell growth under different nitrogen regimens tested, a double mutant with both prpJ1 and prpJ2 disrupted did not initiate heterocyst differentiation. Ectopic expression of hetR in the double mutant could rescue the failure to initiate heterocyst development, but the heterocysts formed, like those of a prpJ1 single mutant, were not mature. The expression of prpJ2 was enhanced during heterocyst development, and the upregulation of the gene was directly under the control of NtcA. Upregulation of both ntcA and hetR was affected in the double mutant. We propose that PrpJ1 and PrpJ2 together are required for mutual regulation of ntcA and hetR and are thus involved in regulation of the initiation of heterocyst differentiation.
Collapse
|
29
|
Zhang JY, Chen WL, Zhang CC. hetR and patS, two genes necessary for heterocyst pattern formation, are widespread in filamentous nonheterocyst-forming cyanobacteria. MICROBIOLOGY-SGM 2009; 155:1418-1426. [PMID: 19383713 DOI: 10.1099/mic.0.027540-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Heterocysts, cells specialized in N(2) fixation in cyanobacteria, appeared at near to 2.1 Ga. They constitute one of the oldest forms of differentiated cells in evolution, and are thus an interesting model for studies on evolutionary-developmental biology. How heterocysts arose during evolution remains unknown. In Anabaena PCC 7120, heterocyst development requires, among other genes, hetR for the initiation of heterocyst differentiation, and patS, encoding a diffusible inhibitor of heterocyst formation. In this study, we report that both hetR and patS are widespread among filamentous cyanobacteria that do not form heterocysts or fix N(2). hetR and patS are found in proximity on the chromosome in several cases, such as Arthrospira platensis, in which the level of HetR increased following nitrogen deprivation. The hetR gene of A. platensis could complement a hetR mutant of Anabaena PCC 7120, and patS of A. platensis could suppress heterocyst differentiation in Anabaena PCC 7120. Thus, key regulatory genes, including hetR and patS, involved in heterocyst development may have evolved before heterocysts appeared, suggesting that their function was not limited to heterocyst differentiation.
Collapse
Affiliation(s)
- Ju-Yuan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, PR China
| | - Wen-Li Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, PR China
| | - Cheng-Cai Zhang
- Aix-Marseille Université and Laboratoire de Chimie Bactérienne-UPR9043, Centre National de la Recherche Scientifique, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France
| |
Collapse
|
30
|
Leganés F, Forchhammer K, Fernández-Piñas F. Role of calcium in acclimation of the cyanobacterium Synechococcus elongatus PCC 7942 to nitrogen starvation. MICROBIOLOGY-SGM 2009; 155:25-34. [PMID: 19118343 DOI: 10.1099/mic.0.022251-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A Ca2+ signal is required for the process of heterocyst differentiation in the filamentous diazotrophic cyanobacterium Anabaena sp. PCC 7120. This paper presents evidence that a transient increase in intracellular free Ca2+ is also involved in acclimation to nitrogen starvation in the unicellular non-diazotrophic cyanobacterium Synechococcus elongatus PCC 7942. The Ca2+ transient was triggered in response to nitrogen step-down or the addition of 2-oxoglutarate (2-OG), or its analogues 2,2-difluoropentanedioic acid (DFPA) and 2-methylenepentanedioic acid (2-MPA), to cells growing with combined nitrogen, suggesting that an increase in intracellular 2-OG levels precedes the Ca2+ transient. The signalling protein P(II) and the transcriptional regulator NtcA appear to be needed to trigger the signal. Suppression of the Ca2+ transient by the intracellular Ca2+ chelator N,N'-[1,2-ethanediylbis(oxy-2,1-phenylene)]bis[N-[2-[(acetyloxy)methoxy]-2-oxoethyl]]-,bis[(acetyloxy)methyl] ester (BAPTA-AM) inhibited expression of the glnB and glnN genes, which are involved in acclimation to nitrogen starvation and transcriptionally activated by NtcA. BAPTA-AM treatment partially inhibited expression of the nblA gene, which is involved in phycobiliprotein degradation following nutrient starvation and is regulated by NtcA and NblR; in close agreement, BAPTA-AM treatment partially inhibited bleaching following nitrogen starvation. Taken together, the results presented here strongly suggest an involvement of a defined Ca2+ transient in acclimation of S. elongatus to nitrogen starvation through NtcA-dependent regulation.
Collapse
Affiliation(s)
- Francisco Leganés
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Karl Forchhammer
- Lehrstuhl für Mikrobiologie-Organismische Interaktionen, Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | | |
Collapse
|
31
|
Nicolaisen K, Hahn A, Schleiff E. The cell wall in heterocyst formation byAnabaenasp. PCC 7120. J Basic Microbiol 2009; 49:5-24. [DOI: 10.1002/jobm.200800300] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
32
|
|
33
|
Transcription activation by NtcA and 2-oxoglutarate of three genes involved in heterocyst differentiation in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 2008; 190:6126-33. [PMID: 18658268 DOI: 10.1128/jb.00787-08] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Anabaena sp. strain PCC 7120, differentiation of heterocysts takes place in response to the external cue of combined nitrogen deprivation, allowing the organism to fix atmospheric nitrogen in oxic environments. NtcA, a global transcriptional regulator of cyanobacteria, is required for activation of the expression of multiple genes involved in heterocyst differentiation, including key regulators that are specific to the process. We have set up a fully defined in vitro system, which includes the purified Anabaena RNA polymerase, and have studied the effects of NtcA and its signaling effector 2-oxoglutarate on RNA polymerase binding, open complex formation, and transcript production from promoters of the hetC, nrrA, and devB genes that are activated by NtcA at different stages of heterocyst differentiation. Both RNA polymerase and NtcA could specifically bind to the target DNA in the absence of any effector. 2-Oxoglutarate had a moderate positive effect on NtcA binding, and NtcA had a limited positive effect on RNA polymerase recruitment at the promoters. However, a stringent requirement of both NtcA and 2-oxoglutarate was observed for the detection of open complexes and transcript production at the three investigated promoters. These results support a key role for 2-oxoglutarate in transcription activation in the developing heterocyst.
Collapse
|
34
|
Shi L, Li JH, Cheng Y, Wang L, Chen WL, Zhang CC. Two genes encoding protein kinases of the HstK family are involved in synthesis of the minor heterocyst-specific glycolipid in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 2007; 189:5075-81. [PMID: 17513480 PMCID: PMC1951881 DOI: 10.1128/jb.00323-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The filamentous cyanobacterium Anabaena sp. strain PCC 7120 can fix N(2) under oxic conditions, and the activity of nitrogen fixation occurs exclusively in heterocysts, cells differentiated from vegetative cells in response to a limitation of a combined-nitrogen source in the growth medium. At the late stages of heterocyst differentiation, an envelope layer composed of two glycolipids is formed to limit the entry of oxygen so that the oxygen-sensitive nitrogenase can function. The genome of Anabaena sp. strain PCC 7120 possesses a family of 13 genes (the hstK family), all encoding proteins with a putative Ser/Thr kinase domain at their N termini and a His-kinase domain at their C termini. In this study, we showed that the double mutant D4.3 strain, in which two members of this gene family, pkn44 (all1625) and pkn30 (all3691), were both inactivated, failed to fix N(2) in the presence of oxygen (Fox(-)). In an environment without oxygen, a low level of nitrogenase activity was detectable (Fix(+)). Heterocyst development in the mutant D4.3 was delayed by 24 h and arrested at a relatively early stage without the formation of the glycolipid layer (Hgl(-)). Only the minor species of the two heterocyst-specific glycolipids (HGLs) was missing in the mutant. We propose that DevH, a putative transcription factor, coordinates the synthesis of both HGLs, while Pkn44/Pkn30 and the previously characterized PrpJ may represent two distinct regulatory pathways involved in the synthesis of the minor HGL and the major HGL, respectively.
Collapse
Affiliation(s)
- Lei Shi
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | | | | | | | | | | |
Collapse
|
35
|
Latifi A, Ruiz M, Jeanjean R, Zhang CC. PrxQ-A, a member of the peroxiredoxin Q family, plays a major role in defense against oxidative stress in the cyanobacterium Anabaena sp. strain PCC7120. Free Radic Biol Med 2007; 42:424-31. [PMID: 17210455 DOI: 10.1016/j.freeradbiomed.2006.11.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 10/20/2006] [Accepted: 11/10/2006] [Indexed: 11/25/2022]
Abstract
The genome of the cyanobacterium Anabaena PCC 7120 encodes seven polypeptides showing sequence similarities with peroxiredoxins (Prx-s). One of them, prxQ-A (alr2503), which encodes a Prx Q homologue, is located in the same gene cluster as pkn22, which encodes a Ser/Thr kinase. Here we report that the pkn22-knockout mutant (Mp22) is sensitive to oxidative stress because it fails to synthesize PrxQ-A; the expression of prxQ-A is significantly induced under oxidative stress conditions. The hypersensitivity of the Mp22 mutant to oxidative stress was restored by inducing the expression of the prxQ-A gene in trans. The recombinant PrxQ-A protein shows antioxidant activity protecting the DNA from being degraded by reactive oxygen species, catalyzes the reduction of H2O2 in the presence of DTT, and shows thioredoxin-dependent peroxidase activity in vitro. The conserved Cys47 residue is the peroxide oxidation site, since the replacement of Cys47 by a Ser residue completely abolished the peroxidase activity. All these data suggest that PrxQ-A may efficiently protect this organism from oxidative stress.
Collapse
Affiliation(s)
- Amel Latifi
- Laboratoire de Chimie Bactérienne, IBSM-CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille cedex 20, France.
| | | | | | | |
Collapse
|
36
|
Chen H, Laurent S, Bédu S, Ziarelli F, Chen HL, Cheng Y, Zhang CC, Peng L. Studying the signaling role of 2-oxoglutaric acid using analogs that mimic the ketone and ketal forms of 2-oxoglutaric acid. ACTA ACUST UNITED AC 2006; 13:849-56. [PMID: 16931334 DOI: 10.1016/j.chembiol.2006.06.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 05/18/2006] [Accepted: 06/01/2006] [Indexed: 11/23/2022]
Abstract
2-Oxoglutaric acid (2-OG), a Krebs cycle intermediate, is a signaling molecule in many organisms. To determine which form of 2-OG, the ketone or the ketal form, is responsible for its signaling function, we have synthesized and characterized various 2-OG analogs. Only 2-methylenepentanedioic acid (2-MPA), which resembles closely the ketone form of 2-OG, is able to elicit cell responses in the cyanobacterium Anabaena by inducing nitrogen-fixing cells called heterocysts. None of the analogs mimicking the ketal form of 2-OG are able to induce heterocysts because none of them are able to interact with NtcA, a 2-OG sensor. NtcA interacts with 2-MPA and 2-OG in a similar manner, and it is necessary for heterocyst differentiation induced by 2-MPA. Therefore, it is primarily the ketone form that is responsible for the signaling role of 2-OG in Anabaena.
Collapse
Affiliation(s)
- Han Chen
- College of Chemistry and Molecular Sciences, Wuhan University, 430072 Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Ehira S, Ohmori M. NrrA directly regulates expression of hetR during heterocyst differentiation in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 2006; 188:8520-5. [PMID: 17041048 PMCID: PMC1698254 DOI: 10.1128/jb.01314-06] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heterocyst differentiation in the cyanobacterium Anabaena sp. strain PCC 7120 requires NtcA, the global nitrogen regulator in cyanobacteria, and HetR, the master regulator of heterocyst differentiation. Expression of hetR is upregulated by nitrogen deprivation, and its upregulation depends on NtcA. However, it has not yet been revealed how NtcA regulates the expression of hetR. In the experiments presented here, it was confirmed that NrrA (All4312), a nitrogen-responsive response regulator, was required for the upregulation of hetR. The use of the nitrogen-responsive transcription initiation sites (TISs) for the hetR gene depended upon NrrA. NrrA bound specifically to the region upstream of TISs located at positions -728 and -696 in vitro. Overexpression of nrrA resulted in enhanced hetR expression and heterocyst formation. A molecular regulatory cascade is proposed whereby NtcA upregulates the expression of nrrA upon limitation of combined nitrogen in the medium and then NrrA upregulates the expression of hetR, leading to heterocyst differentiation.
Collapse
Affiliation(s)
- Shigeki Ehira
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, 255 Shimo-Okubo, Saitama 338-8570, Japan
| | | |
Collapse
|
38
|
Lahmi R, Sendersky E, Perelman A, Hagemann M, Forchhammer K, Schwarz R. Alanine dehydrogenase activity is required for adequate progression of phycobilisome degradation during nitrogen starvation in Synechococcus elongatus PCC 7942. J Bacteriol 2006; 188:5258-65. [PMID: 16816198 PMCID: PMC1539948 DOI: 10.1128/jb.00209-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Degradation of the cyanobacterial light-harvesting antenna, the phycobilisome, is a general acclimation response that is observed under various stress conditions. In this study we identified a novel mutant of Synechococcus elongatus PCC 7942 that exhibits impaired phycobilisome degradation specifically during nitrogen starvation, unlike previously described mutants, which exhibit aberrant degradation under nitrogen, sulfur, and phosphorus starvation conditions. The phenotype of the new mutant, AldOmega, results from inactivation of ald (encoding alanine dehydrogenase). AldOmega is deficient in transcription induction of a number of genes during nitrogen starvation. These genes include the "general nutrient stress-related" genes, nblA and nblC, the products of which are essential for phycobilisome degradation. Furthermore, transcripts of several specific nitrogen-responsive genes accumulate at lower levels in AldOmega than in the wild-type strain. In contrast, ald inactivation did not decrease the accumulation of transcripts during sulfur starvation. Transcription of ald is induced upon nitrogen starvation, which is consistent with the ability of wild-type cells to maintain a low cellular content of alanine under these conditions. Unlike wild-type cells, AldOmega accumulates alanine upon nitrogen starvation. Our analyses suggest that alanine dehydrogenase activity is necessary for an adequate cellular response to nitrogen starvation. Decomposition of alanine may be required to provide a sufficient amount of ammonia. Furthermore, the accumulated alanine, or a related metabolite, may interfere with the cues that modulate acclimation during nitrogen starvation. Taken together, our results provide novel information regarding cellular responses to nitrogen starvation and suggest that mechanisms related to nitrogen-specific responses are involved in modulation of a general acclimation process.
Collapse
Affiliation(s)
- Roxane Lahmi
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | | | | | | | | | | |
Collapse
|
39
|
Shi Y, Zhao W, Zhang W, Ye Z, Zhao J. Regulation of intracellular free calcium concentration during heterocyst differentiation by HetR and NtcA in Anabaena sp. PCC 7120. Proc Natl Acad Sci U S A 2006; 103:11334-9. [PMID: 16849429 PMCID: PMC1544087 DOI: 10.1073/pnas.0602839103] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Calcium ions are important to some prokaryotic cellular processes, such as heterocyst differentiation of cyanobacteria. Intracellular free Ca(2+)concentration, [Ca(2+)](i), increases several fold in heterocysts and is regulated by CcbP, a Ca(2+)-binding protein found in heterocyst-forming cyanobacteria. We demonstrate here that CcbP is degraded by HetR, a serine-type protease that controls heterocyst differentiation. The degradation depends on Ca(2+) and appears to be specific because HetR did not digest other tested proteins. CcbP was found to bind two Ca(2+) per molecule with K(D) values of 200 nM and 12.8 microM. Degradation of CcbP releases bound Ca(2+) that contributes significantly to the increase of [Ca(2+)](i) during the process of heterocyst differentiation in Anabaena sp. strain PCC 7120. We suggest that degradation of CcbP is a mechanism of positive autoregulation of HetR. The down-regulation of ccbP in differentiating cells and mature heterocysts, which also is critical to the regulation of [Ca(2+)](i), depends on NtcA. Coexpression of ntcA and a ccbP promoter-controlled gfp in Escherichia coli diminished production of GFP, and the decrease is enhanced by alpha-ketoglutarate. It was also found that NtcA could bind a fragment of the ccbP promoter containing an NtcA-binding sequence in a alpha-ketoglutarate-dependent fashion. Therefore, [Ca(2+)](i) is regulated by a collaboration of HetR and NtcA in heterocyst differentiation in Anabaena sp. strain PCC 7120.
Collapse
Affiliation(s)
- Yunming Shi
- State Key Lab of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | - Weixing Zhao
- State Key Lab of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | - Wei Zhang
- State Key Lab of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zi Ye
- State Key Lab of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jindong Zhao
- State Key Lab of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
40
|
Zhang CC, Laurent S, Sakr S, Peng L, Bédu S. Heterocyst differentiation and pattern formation in cyanobacteria: a chorus of signals. Mol Microbiol 2006; 59:367-75. [PMID: 16390435 DOI: 10.1111/j.1365-2958.2005.04979.x] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heterocyst differentiation in filamentous cyanobacteria provides an excellent prokaryotic model for studying multicellular behaviour and pattern formation. In Anabaena sp. strain PCC 7120, for example, 5-10% of the cells along each filament are induced, when deprived of combined nitrogen, to differentiate into heterocysts. Heterocysts are specialized in the fixation of N(2) under oxic conditions and are semi-regularly spaced among vegetative cells. This developmental programme leads to spatial separation of oxygen-sensitive nitrogen fixation (by heterocysts) and oxygen-producing photosynthesis (by vegetative cells). The interdependence between these two cell types ensures filament growth under conditions of combined-nitrogen limitation. Multiple signals have recently been identified as necessary for the initiation of heterocyst differentiation, the formation of the heterocyst pattern and pattern maintenance. The Krebs cycle metabolite 2-oxoglutarate (2-OG) serves as a signal of nitrogen deprivation. Accumulation of a non-metabolizable analogue of 2-OG triggers the complex developmental process of heterocyst differentiation. Once heterocyst development has been initiated, interactions among the various components involved in heterocyst differentiation determine the developmental fate of each cell. The free calcium concentration is crucial to heterocyst differentiation. Lateral diffusion of the PatS peptide or a derivative of it from a developing cell may inhibit the differentiation of neighbouring cells. HetR, a protease showing DNA-binding activity, is crucial to heterocyst differentiation and appears to be the central processor of various early signals involved in the developmental process. How the various signalling pathways are integrated and used to control heterocyst differentiation processes is a challenging question that still remains to be elucidated.
Collapse
Affiliation(s)
- Cheng-Cai Zhang
- Laboratoire de Chimie Bactérienne, UPR9043-CNRS, Institut de Biologie Structurale et Microbiologie, 31, chemin Joseph Aiguier, 13402 Marseille cedex 20, France.
| | | | | | | | | |
Collapse
|
41
|
Laurent S, Chen H, Bédu S, Ziarelli F, Peng L, Zhang CC. Nonmetabolizable analogue of 2-oxoglutarate elicits heterocyst differentiation under repressive conditions in Anabaena sp. PCC 7120. Proc Natl Acad Sci U S A 2005; 102:9907-12. [PMID: 15985552 PMCID: PMC1174989 DOI: 10.1073/pnas.0502337102] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In response to combined nitrogen starvation in the growth medium, the filamentous cyanobacterium Anabaena sp. PCC 7120 is able to develop a particular cell type, called a heterocyst, specialized in molecular nitrogen fixation. Heterocysts are regularly intercalated among vegetative cells and represent 5-10% of all cells along each filament. In unicellular cyanobacteria, the key Krebs cycle intermediate, 2-oxoglutarate (2-OG), has been suggested as a nitrogen status signal, but in vivo evidence is still lacking. In this study we show that nitrogen starvation causes 2-OG to accumulate transiently within cells of Anabaena PCC 7120, reaching a maximal intracellular concentration of approximately 0.1 mM 1 h after combined nitrogen starvation. A nonmetabolizable fluorinated 2-OG derivative, 2,2-difluoropentanedioic acid (DFPA), was synthesized and used to demonstrate the signaling function of 2-OG in vivo. DFPA is shown to be a structural analogue of 2-OG and the process of its uptake and accumulation in vivo can be followed by (19)F magic angle spinning NMR because of the presence of the fluorine atom and its chemical stability. DFPA at a threshold concentration of 0.3 mM triggers heterocyst differentiation under repressing conditions. The multidisciplinary approaches using synthetic fluorinated analogues, magic angle spinning NMR for their analysis in vivo, and techniques of molecular biology provide a powerful means to identify the nature of the signals that remain unknown or poorly defined in many signaling pathways.
Collapse
Affiliation(s)
- Sophie Laurent
- Laboratoire de Chimie Bactérienne, UPR9043, Centre National de la Recherche Scientifique, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | | | |
Collapse
|
42
|
Olmedo-Verd E, Flores E, Herrero A, Muro-Pastor AM. HetR-dependent and -independent expression of heterocyst-related genes in an Anabaena strain overproducing the NtcA transcription factor. J Bacteriol 2005; 187:1985-91. [PMID: 15743946 PMCID: PMC1064053 DOI: 10.1128/jb.187.6.1985-1991.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120 depends on both the global nitrogen control transcription factor NtcA and the cell differentiation regulatory protein HetR, with expression of ntcA and hetR being dependent on each other. In this study we constructed strains that constitutively express the ntcA gene leading to high levels of NtcA protein irrespective of the nitrogen source, and we analyzed the effects of such NtcA levels on heterocyst differentiation. In the NtcA-overproducing strain, heterocyst differentiation, induction of NtcA-dependent heterocyst development genes or operons such as devBCA or the cox2 operon, and NtcA-dependent excision of the 11-kb nifD-intervening element only took place under nitrogen deficiency. Although functional heterocysts were produced in response to nitrogen step-down, the NtcA overproducing strain could not grow diazotrophically. Overexpression of ntcA in a hetR background promoted expression of devBCA in response to ammonium withdrawal and excision of the 11-kb element even in the presence of combined nitrogen. Our results show that some NtcA-dependent heterocyst-related genes can be expressed independently of HetR.
Collapse
Affiliation(s)
- Elvira Olmedo-Verd
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain
| | | | | | | |
Collapse
|
43
|
Armitage JP, Holland IB, Jenal U, Kenny B. "Neural networks" in bacteria: making connections. J Bacteriol 2005; 187:26-36. [PMID: 15601685 PMCID: PMC538844 DOI: 10.1128/jb.187.1.26-36.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Judith P Armitage
- Department of Biochemistry, University of Oxford, South Parks Rd., Oxford, United Kingdom.
| | | | | | | |
Collapse
|
44
|
Herrero A, Muro-Pastor AM, Valladares A, Flores E. Cellular differentiation and the NtcA transcription factor in filamentous cyanobacteria. FEMS Microbiol Rev 2004; 28:469-87. [PMID: 15374662 DOI: 10.1016/j.femsre.2004.04.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 12/31/2003] [Accepted: 04/04/2004] [Indexed: 10/26/2022] Open
Abstract
Some filamentous cyanobacteria can undergo a variety of cellular differentiation processes that permit their better adaptation to certain environmental conditions. These processes include the differentiation of hormogonia, short filaments aimed at the dispersal of the organism in the environment, of akinetes, cells resistant to various stress conditions, and of heterocysts, cells specialized in the fixation of atmospheric nitrogen in oxic environments. NtcA is a transcriptional regulator that operates global nitrogen control in cyanobacteria by activating (and in some cases repressing) many genes involved in nitrogen assimilation. NtcA is required for the triggering of heterocyst differentiation and for subsequent steps of its development and function. This requirement is based on the role of NtcA as an activator of the expression of hetR and other multiple genes at specific steps of the differentiation process. The products of these genes effect development as well as the distinct metabolism of the mature heterocyst. The different features found in the NtcA-dependent promoters, together with the cellular level of active NtcA protein, should have a role in the determination of the hierarchy of gene activation during the process of heterocyst differentiation.
Collapse
Affiliation(s)
- Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla, Avda. Américo Vespucio s/n, E-41092 Seville, Spain.
| | | | | | | |
Collapse
|