1
|
Benítez-Serrano JC, Palomares-Resendiz G, Díaz-Aparicio E, Hernández-Castro R, Martínez-Pérez L, Suárez-Güemes F, Arellano-Reynoso B. Survival of Brucella abortus RB51 and S19 Vaccine Strains in Fresh and Ripened Cheeses. Foodborne Pathog Dis 2022; 19:535-542. [PMID: 35675662 DOI: 10.1089/fpd.2022.0001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Brucellosis is a zoonotic infection caused by the consumption of contaminated raw milk and dairy products. This study aims to compare survival rates of Brucella abortus RB51 and S19 vaccine strains to that of virulent B. abortus 2308 strain during the manufacture of fresh and ripened cheeses. To do this, we inoculated fresh pasteurized milk with B. abortus RB51, S19, or 2308 at a 6 × 108 colony-forming unit per milliliter concentration during the cheese making process. Cheese was manufactured at room temperature, then, fresh cheeses were conserved at either 4°C or 25°C for 7 days, while ripened cheeses were conserved for 31 days at the same temperatures. We measured B. abortus survival and pH values during different stages of the process. Our results confirm that all three strains can maintain viable cells in both types of cheeses throughout the process. Survival of B. abortus RB51 was 10 times lower than was the survival of the B. abortus S19 and B. abortus 2308 strains in both fresh and ripened cheeses. Our results also suggest that both temperature and pH can condition Brucella survival. In conclusion, B. abortus RB51 and S19 vaccine strains can survive throughout the manufacture and conservation processes of both fresh and ripened cheeses. In turn, this implies a potential health risk if cheeses contaminated with these strains were to be consumed.
Collapse
Affiliation(s)
- Juan Carlos Benítez-Serrano
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Gabriela Palomares-Resendiz
- CENID Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Ciudad de México, México
| | - Efrén Díaz-Aparicio
- CENID Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Ciudad de México, México
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos, Hospital General "Dr. Manuel Gea González", Ciudad de México, México
| | - Laura Martínez-Pérez
- Laboratorio de Microbiología Aplicada, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Francisco Suárez-Güemes
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Beatriz Arellano-Reynoso
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
2
|
Dabral N, Burcham GN, Jain-Gupta N, Sriranganathan N, Vemulapalli R. Overexpression of wbkF gene in Brucella abortus RB51WboA leads to increased O-polysaccharide expression and enhanced vaccine efficacy against B. abortus 2308, B. melitensis 16M, and B. suis 1330 in a murine brucellosis model. PLoS One 2019; 14:e0213587. [PMID: 30856219 PMCID: PMC6411116 DOI: 10.1371/journal.pone.0213587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
Brucella abortus RB51 is an attenuated, stable, spontaneous rough mutant derived in the laboratory from the virulent strain B. abortus 2308. Previous studies discovered that the wboA gene, which encodes a glycosyltransferase required for synthesis of the O-polysaccharide, is disrupted in strain RB51 by an IS711 element. However, complementation of strain RB51 with a functional wboA gene (strain RB51WboA) does not confer it a smooth phenotype but results in low levels of cytoplasmic O-polysaccharide synthesis. In this study, we asked if increasing the potential availability of bactoprenol priming precursors in strain RB51WboA would increase the levels of O-polysaccharide synthesis and enhance the protective efficacy against virulent Brucella challenge. To achieve this, we overexpressed the wbkF gene, which encodes a putative undecaprenyl-glycosyltransferase involved in bactoprenol priming for O-polysaccharide polymerization, in strain RB51WboA to generate strain RB51WboAKF. In comparison to strain RB51WboA, strain RB51WboAKF expressed higher levels of O-polysaccharide, but was still attenuated and remained phenotypically rough. Mice immunized with strain RB51WboAKF developed increased levels of smooth LPS-specific serum antibodies, primarily of IgG2a and IgG3 isotype. Splenocytes from mice vaccinated with strain RB51WboAKF secreted higher levels of antigen-specific IFN-γ and TNF-α and contained more numbers of antigen-specific IFN-γ secreting CD4+ and CD8+ T lymphocytes when compared to those of the RB51 or RB51WboA vaccinated groups. Immunization with strain RB51WboAKF conferred enhanced protection against virulent B. abortus 2308, B. melitensis 16M and B. suis 1330 challenge when compared to the currently used vaccine strains. Our results suggest that strain RB51WboAKF has the potential to be a more efficacious vaccine than its parent strain in natural hosts.
Collapse
Affiliation(s)
- Neha Dabral
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Grant N. Burcham
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - Neeta Jain-Gupta
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Nammalwar Sriranganathan
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Ramesh Vemulapalli
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
3
|
Madueño L, Coppotelli B, Festa S, Alvarez H, Morelli I. Insights into the mechanisms of desiccation resistance of the Patagonian PAH-degrading strainSphingobiumsp. 22B. J Appl Microbiol 2018; 124:1532-1543. [DOI: 10.1111/jam.13742] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 02/09/2018] [Accepted: 02/16/2018] [Indexed: 01/05/2023]
Affiliation(s)
- L. Madueño
- Centro de Investigación y Desarrollo en Fermentaciones Industriales; CINDEFI, (UNLP-CCT-La Plata, CONICET); La Plata Buenos Aires Argentina
| | - B.M. Coppotelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales; CINDEFI, (UNLP-CCT-La Plata, CONICET); La Plata Buenos Aires Argentina
| | - S. Festa
- Centro de Investigación y Desarrollo en Fermentaciones Industriales; CINDEFI, (UNLP-CCT-La Plata, CONICET); La Plata Buenos Aires Argentina
| | - H.M. Alvarez
- INBIOP (Instituto de Biociencias de la Patagonia); Consejo Nacional de Investigaciones Científicas y Técnicas; Facultad de Ciencias Naturales; Universidad Nacional de la Patagonia San Juan Bosco; Comodoro Rivadavia Chubut Argentina
| | - I.S. Morelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales; CINDEFI, (UNLP-CCT-La Plata, CONICET); La Plata Buenos Aires Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA); Buenos Aires Argentina
| |
Collapse
|
4
|
Sultana ST, Call DR, Beyenal H. Maltodextrin enhances biofilm elimination by electrochemical scaffold. Sci Rep 2016; 6:36003. [PMID: 27782161 PMCID: PMC5080540 DOI: 10.1038/srep36003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/22/2016] [Indexed: 01/08/2023] Open
Abstract
Electrochemical scaffolds (e-scaffolds) continuously generate low concentrations of H2O2 suitable for damaging wound biofilms without damaging host tissue. Nevertheless, retarded diffusion combined with H2O2 degradation can limit the efficacy of this potentially important clinical tool. H2O2 diffusion into biofilms and bacterial cells can be increased by damaging the biofilm structure or by activating membrane transportation channels by exposure to hyperosmotic agents. We hypothesized that e-scaffolds would be more effective against Acinetobacter baumannii and Staphylococcus aureus biofilms in the presence of a hyperosmotic agent. E-scaffolds polarized at -600 mVAg/AgCl were overlaid onto preformed biofilms in media containing various maltodextrin concentrations. E-scaffold alone decreased A. baumannii and S. aureus biofilm cell densities by (3.92 ± 0.15) log and (2.31 ± 0.12) log, respectively. Compared to untreated biofilms, the efficacy of the e-scaffold increased to a maximum (8.27 ± 0.05) log reduction in A. baumannii and (4.71 ± 0.12) log reduction in S. aureus biofilm cell densities upon 10 mM and 30 mM maltodextrin addition, respectively. Overall ~55% decrease in relative biofilm surface coverage was achieved for both species. We conclude that combined treatment with electrochemically generated H2O2 from an e-scaffold and maltodextrin is more effective in decreasing viable biofilm cell density.
Collapse
Affiliation(s)
- Sujala T. Sultana
- School of Chemical Engineering & Bioengineering, Washington State University, Pullman, 99164, WA, USA
| | - Douglas R. Call
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, 99164, WA, USA
| | - Haluk Beyenal
- School of Chemical Engineering & Bioengineering, Washington State University, Pullman, 99164, WA, USA
| |
Collapse
|
5
|
Ormeño-Orrillo E, Gomes DF, Del Cerro P, Vasconcelos ATR, Canchaya C, Almeida LGP, Mercante FM, Ollero FJ, Megías M, Hungria M. Genome of Rhizobium leucaenae strains CFN 299(T) and CPAO 29.8: searching for genes related to a successful symbiotic performance under stressful conditions. BMC Genomics 2016; 17:534. [PMID: 27485828 PMCID: PMC4971678 DOI: 10.1186/s12864-016-2859-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 06/27/2016] [Indexed: 01/02/2023] Open
Abstract
Background Common bean (Phaseolus vulgaris L.) is the most important legume cropped worldwide for food production and its agronomic performance can be greatly improved if the benefits from symbiotic nitrogen fixation are maximized. The legume is known for its high promiscuity in nodulating with several Rhizobium species, but those belonging to the Rhizobium tropici “group” are the most successful and efficient in fixing nitrogen in tropical acid soils. Rhizobium leucaenae belongs to this group, which is abundant in the Brazilian “Cerrados” soils and frequently submitted to several environmental stresses. Here we present the first high-quality genome drafts of R. leucaenae, including the type strain CFN 299T and the very efficient strain CPAO 29.8. Our main objective was to identify features that explain the successful capacity of R. leucaenae in nodulating common bean under stressful environmental conditions. Results The genomes of R. leucaenae strains CFN 299T and CPAO 29.8 were estimated at 6.7–6.8 Mbp; 7015 and 6899 coding sequences (CDS) were predicted, respectively, 6264 of which are common to both strains. The genomes of both strains present a large number of CDS that may confer tolerance of high temperatures, acid soils, salinity and water deficiency. Types I, II, IV-pili, IV and V secretion systems were present in both strains and might help soil and host colonization as well as the symbiotic performance under stressful conditions. The symbiotic plasmid of CPAO 29.8 is highly similar to already described tropici pSyms, including five copies of nodD and three of nodA genes. R. leucaenae CFN 299T is capable of synthesizing Nod factors in the absence of flavonoids when submitted to osmotic stress, indicating that under abiotic stress the regulation of nod genes might be different. Conclusion A detailed study of the genes putatively related to stress tolerance in R. leucaenae highlighted an intricate pattern comprising a variety of mechanisms that are probably orchestrated to tolerate the stressful conditions to which the strains are submitted on a daily basis. The capacity to synthesize Nod factors under abiotic stress might follow the same regulatory pathways as in CIAT 899T and may help both to improve bacterial survival and to expand host range to guarantee the perpetuation of the symbiosis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2859-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Douglas Fabiano Gomes
- Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil.,CAPES, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70.040-020, Brasília, Federal District, Brazil
| | - Pablo Del Cerro
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, 6 Apdo Postal, 41012, Sevilla, Spain
| | - Ana Tereza Ribeiro Vasconcelos
- Laboratório Nacional de Computação Científica (LNCC), Labinfo, Rua Getúlio Vargas 333, 25651-071, Petrópolis, Rio de Janeiro, Brazil
| | - Carlos Canchaya
- Department Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310, Vigo, Spain
| | - Luiz Gonzaga Paula Almeida
- Laboratório Nacional de Computação Científica (LNCC), Labinfo, Rua Getúlio Vargas 333, 25651-071, Petrópolis, Rio de Janeiro, Brazil
| | | | - Francisco Javier Ollero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, 6 Apdo Postal, 41012, Sevilla, Spain
| | - Manuel Megías
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes, 6 Apdo Postal, 41012, Sevilla, Spain
| | | |
Collapse
|
6
|
Dabral N, Jain-Gupta N, Seleem MN, Sriranganathan N, Vemulapalli R. Overexpression of Brucella putative glycosyltransferase WbkA in B. abortus RB51 leads to production of exopolysaccharide. Front Cell Infect Microbiol 2015; 5:54. [PMID: 26157707 PMCID: PMC4478442 DOI: 10.3389/fcimb.2015.00054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/10/2015] [Indexed: 11/13/2022] Open
Abstract
Brucella spp. are Gram-negative, facultative intracellular bacteria that cause brucellosis in mammals. Brucella strains containing the O-polysaccharide in their cell wall structure exhibit a smooth phenotype whereas the strains devoid of the polysaccharide show rough phenotype. B. abortus strain RB51 is a stable rough attenuated mutant which is used as a licensed live vaccine for bovine brucellosis. Previous studies have shown that the wboA gene, which encodes a glycosyltransferase required for the synthesis of O-polysaccharide, is disrupted in B. abortus RB51 by an IS711 element. Although complementation of strain RB51 with a functional wboA gene results in O-polysaccharide synthesis in the cytoplasm, it does not result in smooth phenotype. The aim of this study was to determine if overexpression of Brucella WbkA or WbkE, two additional putative glycosyltransferases essential for O-polysaccharide synthesis, in strain RB51 would result in the O-polysaccharide synthesis and smooth phenotype. Our results demonstrate that overexpression of wbkA or wbkE gene in RB51 does not result in O-polysaccharide expression as shown by Western blotting with specific antibodies. However, wbkA, but not wbkE, overexpression leads to the development of a clumping phenotype and the production of exopolysaccharide(s) containing mannose, galactose, N-acetylglucosamine, and N-acetylgalactosamine. Moreover, we found that the clumping recombinant strain displays increased adhesion to polystyrene plates. The recombinant strain was similar to strain RB51 in its attenuation characteristic and in its ability to induce protective immunity against virulent B. abortus challenge in mice.
Collapse
Affiliation(s)
- Neha Dabral
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University West Lafayette, IN, USA
| | - Neeta Jain-Gupta
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech Blacksburg, VA, USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University West Lafayette, IN, USA
| | - Nammalwar Sriranganathan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech Blacksburg, VA, USA
| | - Ramesh Vemulapalli
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University West Lafayette, IN, USA
| |
Collapse
|
7
|
Santiago-Rodríguez MDR, Díaz-Aparicio E, Arellano-Reynoso B, García-Lobo JM, Gimeno M, Palomares-Reséndiz EG, Hernández-Castro R. Survival of Brucella abortus aqpX Mutant in Fresh and Ripened Cheeses. Foodborne Pathog Dis 2015; 12:170-5. [DOI: 10.1089/fpd.2014.1823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Efrén Díaz-Aparicio
- CENID Microbiología, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Cuajimalpa, México
| | - Beatriz Arellano-Reynoso
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, México
| | - Juan M. García-Lobo
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria IBBTEC, Universidad de Cantabria-CSIC-SODERCAN, Santander, Cantabria, Spain
| | - Miquel Gimeno
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán, México
| | - Erika G. Palomares-Reséndiz
- CENID Microbiología, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Cuajimalpa, México
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos, Hospital General “Dr. Manuel Gea González,” Tlalpan, México
| |
Collapse
|
8
|
Liu WJ, Dong H, Peng XW, Wu QM. The Cyclic AMP-binding protein CbpB in Brucella melitensis and its role in cell envelope integrity, resistance to detergent and virulence. FEMS Microbiol Lett 2014; 356:79-88. [PMID: 24850100 DOI: 10.1111/1574-6968.12472] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 11/30/2022] Open
Abstract
Brucella melitensis possesses an operon with two components: the response regulator OtpR and a putative cAMP-dependent protein kinase regulatory subunit encoded by the BMEI0067 gene. In the previous study, the function of OtpR has been studied, while little is known about the function of the BMEI0067 gene. Using a bioinformatics approach, we showed that the BMEI0067 gene encodes an additional putative cAMP-binding protein, which we refer to as CbpB. Structural modeling predicted that CbpB has a cAMP-binding protein (CAP) domain and is structurally similar to eukaryotic protein kinase A regulatory subunits. Here, we report the characterization of CbpB, a cAMP-binding protein in Brucella melitensis, showed to be involved in mouse persistent infections. ∆cbpB::km possessed cell elongation, bubble-like protrusions on cell surface and its resistance to environmental stresses (temperature, osmotic stress and detergent). Interestingly, comparative real-time qPCR assays, the cbpB mutation resulted in significantly different expression of aqpX and several penicillin-binding proteins and cell division proteins in Brucella. Combined, these results demonstrated characterization of CbpB in B. melitensis and its key role for intracellular multiplication.
Collapse
Affiliation(s)
- Wen-Juan Liu
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | | | | | | |
Collapse
|
9
|
Ormeño-Orrillo E, Menna P, Almeida LGP, Ollero FJ, Nicolás MF, Pains Rodrigues E, Shigueyoshi Nakatani A, Silva Batista JS, Oliveira Chueire LM, Souza RC, Ribeiro Vasconcelos AT, Megías M, Hungria M, Martínez-Romero E. Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.). BMC Genomics 2012; 13:735. [PMID: 23270491 PMCID: PMC3557214 DOI: 10.1186/1471-2164-13-735] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/15/2012] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 are α-Proteobacteria that establish nitrogen-fixing symbioses with a range of legume hosts. These strains are broadly used in commercial inoculants for application to common bean (Phaseolus vulgaris) in South America and Africa. Both strains display intrinsic resistance to several abiotic stressful conditions such as low soil pH and high temperatures, which are common in tropical environments, and to several antimicrobials, including pesticides. The genetic determinants of these interesting characteristics remain largely unknown. RESULTS Genome sequencing revealed that CIAT 899 and PRF 81 share a highly-conserved symbiotic plasmid (pSym) that is present also in Rhizobium leucaenae CFN 299, a rhizobium displaying a similar host range. This pSym seems to have arisen by a co-integration event between two replicons. Remarkably, three distinct nodA genes were found in the pSym, a characteristic that may contribute to the broad host range of these rhizobia. Genes for biosynthesis and modulation of plant-hormone levels were also identified in the pSym. Analysis of genes involved in stress response showed that CIAT 899 and PRF 81 are well equipped to cope with low pH, high temperatures and also with oxidative and osmotic stresses. Interestingly, the genomes of CIAT 899 and PRF 81 had large numbers of genes encoding drug-efflux systems, which may explain their high resistance to antimicrobials. Genome analysis also revealed a wide array of traits that may allow these strains to be successful rhizosphere colonizers, including surface polysaccharides, uptake transporters and catabolic enzymes for nutrients, diverse iron-acquisition systems, cell wall-degrading enzymes, type I and IV pili, and novel T1SS and T5SS secreted adhesins. CONCLUSIONS Availability of the complete genome sequences of CIAT 899 and PRF 81 may be exploited in further efforts to understand the interaction of tropical rhizobia with common bean and other legume hosts.
Collapse
Affiliation(s)
- Ernesto Ormeño-Orrillo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Pâmela Menna
- Embrapa Soja, C. P. 231, Londrina, Paraná, 86001-970, Brazil
| | - Luiz Gonzaga P Almeida
- Laboratório Nacional de Computação Científica (LNCC), Avenida Getúlio Vargas 333, Petrópolis, Rio de Janeiro, Brazil
| | | | - Marisa Fabiana Nicolás
- Laboratório Nacional de Computação Científica (LNCC), Avenida Getúlio Vargas 333, Petrópolis, Rio de Janeiro, Brazil
| | | | | | | | | | - Rangel Celso Souza
- Laboratório Nacional de Computação Científica (LNCC), Avenida Getúlio Vargas 333, Petrópolis, Rio de Janeiro, Brazil
| | | | - Manuel Megías
- Universidad de Sevilla, Apdo Postal 874, Sevilla, 41080, Spain
| | | | | |
Collapse
|
10
|
Evaluation of the effects of erythritol on gene expression in Brucella abortus. PLoS One 2012; 7:e50876. [PMID: 23272076 PMCID: PMC3522698 DOI: 10.1371/journal.pone.0050876] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/25/2012] [Indexed: 11/19/2022] Open
Abstract
Bacteria of the genus Brucella have the unusual capability to catabolize erythritol and this property has been associated with their virulence mainly because of the presence of erythritol in bovine foetal tissues and because the attenuated S19 vaccine strain is the only Brucella strain unable to oxydize erythritol. In this work we have analyzed the transcriptional changes produced in Brucella by erythritol by means of two high throughput approaches: RNA hybridization against a microarray containing most of Brucella ORF's constructed from the Brucella ORFeome and next generation sequencing of Brucella mRNA in an Illumina GAIIx platform. The results obtained showed the overexpression of a group of genes, many of them in a single cluster around the ery operon, able to co-ordinately mediate the transport and degradation of erythritol into three carbon atoms intermediates that will be then converted into fructose-6P (F6P) by gluconeogenesis. Other induced genes participating in the nonoxidative branch of the pentose phosphate shunt and the TCA may collaborate with the ery genes to conform an efficient degradation of sugars by this route. On the other hand, several routes of amino acid and nucleotide biosynthesis are up-regulated whilst amino acid transport and catabolism genes are down-regulated. These results corroborate previous descriptions indicating that in the presence of erythritol, this sugar was used preferentially over other compounds and provides a neat explanation of the the reported stimulation of growth induced by erythritol.
Collapse
|
11
|
Méndez-González KY, Hernández-Castro R, Carrillo-Casas EM, Monroy JF, López-Merino A, Suárez-Güemes F. Brucella melitensisSurvival During Manufacture of Ripened Goat Cheese at Two Temperatures. Foodborne Pathog Dis 2011; 8:1257-61. [DOI: 10.1089/fpd.2011.0887] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Karla Y. Méndez-González
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, México
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos y, Hospital General “Dr. Manuel Gea González,” Secretaria de Salud, Tlalpan, México
| | - Erika M. Carrillo-Casas
- Departamento de Biología Molecular e Histocompatibilidad, Hospital General “Dr. Manuel Gea González,” Secretaria de Salud, Tlalpan, México
| | - Jorge F. Monroy
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, México
| | - Ahide López-Merino
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Miguel Hidalgo, México
| | - Francisco Suárez-Güemes
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, México
| |
Collapse
|
12
|
Azad AK, Sato R, Ohtani K, Sawa Y, Ishikawa T, Shibata H. Functional characterization and hyperosmotic regulation of aquaporin in Synechocystis sp. PCC 6803. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:375-382. [PMID: 21421383 DOI: 10.1016/j.plantsci.2010.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 09/17/2010] [Accepted: 10/19/2010] [Indexed: 05/30/2023]
Abstract
The genome of the cyanobacterium Synechocystis sp. PCC 6803 (hereafter, Synechocystis) contains an aqpZ gene (slr2057) which encodes an aquaporin (SsAqpZ), a membrane channel protein that might play a role in osmotic water transport and therefore the growth of Synechocystis. Structural characterization of SsAqpZ by protein sequence analysis and homology modelling revealed that it was more similar to bacterial aquaporin Z than the glycerol facilitator. To understand the functional role of SsAqpZ, the aqpZ knockout (KO) and myc-tagged aqpZ knockin (KI) Synechocystis were constructed. Water channel activity assays showed that SsAqpZ facilitated water transportation. SsAqpZ-mediated changes in cell volume were observed in wild-type (WT) and KI Synechocystis. Expression of SsAqpZ in KI Synechocystis was induced by extracellular hyperosmolarity. In the absence of hyperosmolarity, WT, KO and KI Synechocystis showed the same pattern of growth and no morphological or phenotypical perturbations. Under hyperosmotic condition, while the WT and also KI cells maintained a similar growth rate throughout the entire exponential phase, KO cells grew significantly slower. These results indicate that SsAqpZ has water channel activity and is involved in the adaptation and maintenance of growth of Synechocystis in a hyperosmotic environment.
Collapse
Affiliation(s)
- Abul Kalam Azad
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan.
| | | | | | | | | | | |
Collapse
|
13
|
A pilot study of the effect of audible sound on the growth of Escherichia coli. Colloids Surf B Biointerfaces 2010; 78:367-71. [DOI: 10.1016/j.colsurfb.2010.02.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Revised: 02/22/2010] [Accepted: 02/25/2010] [Indexed: 11/23/2022]
|
14
|
Zhang X, Ren J, Li N, Liu W, Wu Q. Disruption of the BMEI0066 gene attenuates the virulence of Brucella melitensis and decreases its stress tolerance. Int J Biol Sci 2009; 5:570-7. [PMID: 19742243 PMCID: PMC2737717 DOI: 10.7150/ijbs.5.570] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 08/25/2009] [Indexed: 01/20/2023] Open
Abstract
Brucella melitensis is a facultative intracellular pathogen. An operon composed of BMEI0066, which encodes a two-component response regulator CenR, and BMEI0067, which encodes a cAMP-dependent protein kinase regulatory subunit, has been predicted to exist in many bacterial species. However, little is known about the function of this operon. In order to characterize this operon and assess its role in virulence, we constructed a marked deletion mutant of BMEI0066. The mutant was less able to withstand hyperosmotic conditions than wild-type (16M), but showed no significant difference with 16M when challenged by H2O2. The mutant also showed increased sensitivity to elevated temperature (42°C) and a reduced survival ratio under acidic conditions compared with 16M. The mutant failed to replicate in cultured murine macrophages and was rapidly cleared from the spleens of experimentally infected BALB/c mice. These findings suggest that these operon products make an important contribution to pathogenesis in mice, probably by allowing B. melitensis to adapt to the harsh environment encountered within host macrophages.
Collapse
Affiliation(s)
- Xinglin Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P.R. China
| | | | | | | | | |
Collapse
|
15
|
Lorca GL, Barabote RD, Zlotopolski V, Tran C, Winnen B, Hvorup RN, Stonestrom AJ, Nguyen E, Huang LW, Kim DS, Saier MH. Transport capabilities of eleven gram-positive bacteria: comparative genomic analyses. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1768:1342-66. [PMID: 17490609 PMCID: PMC2592090 DOI: 10.1016/j.bbamem.2007.02.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 12/29/2006] [Accepted: 02/07/2007] [Indexed: 11/29/2022]
Abstract
The genomes of eleven Gram-positive bacteria that are important for human health and the food industry, nine low G+C lactic acid bacteria and two high G+C Gram-positive organisms, were analyzed for their complement of genes encoding transport proteins. Thirteen to 18% of their genes encode transport proteins, larger percentages than observed for most other bacteria. All of these bacteria possess channel proteins, some of which probably function to relieve osmotic stress. Amino acid uptake systems predominate over sugar and peptide cation symporters, and of the sugar uptake porters, those specific for oligosaccharides and glycosides often outnumber those for free sugars. About 10% of the total transport proteins are constituents of putative multidrug efflux pumps with Major Facilitator Superfamily (MFS)-type pumps (55%) being more prevalent than ATP-binding cassette (ABC)-type pumps (33%), which, however, usually greatly outnumber all other types. An exception to this generalization is Streptococcus thermophilus with 54% of its drug efflux pumps belonging to the ABC superfamily and 23% belonging each to the Multidrug/Oligosaccharide/Polysaccharide (MOP) superfamily and the MFS. These bacteria also display peptide efflux pumps that may function in intercellular signalling, and macromolecular efflux pumps, many of predictable specificities. Most of the bacteria analyzed have no pmf-coupled or transmembrane flow electron carriers. The one exception is Brevibacterium linens, which in addition to these carriers, also has transporters of several families not represented in the other ten bacteria examined. Comparisons with the genomes of organisms from other bacterial kingdoms revealed that lactic acid bacteria possess distinctive proportions of recognized transporter types (e.g., more porters specific for glycosides than reducing sugars). Some homologues of transporters identified had previously been identified only in Gram-negative bacteria or in eukaryotes. Our studies reveal unique characteristics of the lactic acid bacteria such as the universal presence of genes encoding mechanosensitive channels, competence systems and large numbers of sugar transporters of the phosphotransferase system. The analyses lead to important physiological predictions regarding the preferred signalling and metabolic activities of these industrially important bacteria.
Collapse
Affiliation(s)
| | | | - Vladimir Zlotopolski
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Can Tran
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Brit Winnen
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Rikki N. Hvorup
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Aaron J. Stonestrom
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Elizabeth Nguyen
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Li-Wen Huang
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - David S. Kim
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| | - Milton H. Saier
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116
| |
Collapse
|
16
|
Tanghe A, Van Dijck P, Thevelein JM. Why do microorganisms have aquaporins? Trends Microbiol 2006; 14:78-85. [PMID: 16406529 DOI: 10.1016/j.tim.2005.12.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 11/16/2005] [Accepted: 12/13/2005] [Indexed: 10/25/2022]
Abstract
Aquaporins are channel proteins that enhance the permeability of cell membranes for water. They have been found in Bacteria, Archaea and Eukaryotes. However, their absence in many microorganisms suggests that aquaporins do not fulfill a broad role such as turgor regulation or osmoadaptation but, instead, fulfill a role that enables microorganisms to have specific lifestyles. The recent discovery that aquaporins enhance cellular tolerance against rapid freezing suggests that they have ecological relevance. We have identified several examples of large-scale freeze-thawing of microbes in nature and we also draw attention to alternative lifestyle-related functions for aquaporins, which will be a focus of future research.
Collapse
Affiliation(s)
- An Tanghe
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Katholieke Universiteit Leuven and Flanders Interuniversity Institute for Biotechnology (VIB), Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | | | | |
Collapse
|