1
|
Nazaret F, Farajzadeh D, Mejias J, Pacoud M, Cosi A, Frendo P, Alloing G, Mandon K. SydR, a redox-sensing MarR-type regulator of Sinorhizobium meliloti, is crucial for symbiotic infection of Medicago truncatula roots. mBio 2024; 15:e0227524. [PMID: 39480079 PMCID: PMC11633110 DOI: 10.1128/mbio.02275-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/24/2024] [Indexed: 11/02/2024] Open
Abstract
Rhizobia associate with legumes and induce the formation of nitrogen-fixing nodules. The regulation of bacterial redox state plays a major role in symbiosis, and reactive oxygen species produced by the plant are known to activate signaling pathways. However, only a few redox-sensing transcriptional regulators (TRs) have been characterized in the microsymbiont. Here, we describe SydR, a novel redox-sensing TR of Sinorhizobium meliloti that is essential for the establishment of symbiosis with Medicago truncatula. SydR, a MarR-type TR, represses the expression of the adjacent gene SMa2023 in growing cultures, and this repression is alleviated by NaOCl, tert-butyl hydroperoxide, or H2O2 treatment. Transcriptional psydR-gfp and pSMa2023-gfp fusions, as well as gel shift assays, showed that SydR binds two independent sites of the sydR-SMa2023 intergenic region. This binding is redox-dependent, and site-directed mutagenesis demonstrated that the conserved C16 is essential for SydR redox sensing. The inactivation of sydR did not alter the sensitivity of S. meliloti to NaOCl, tert-butyl hydroperoxide, or H2O2, nor did it affect the response to oxidants of the roGFP2-Orp1 redox biosensor expressed within bacteria. However, in planta, ΔsydR mutation impaired the formation of root nodules. Microscopic observations and analyses of plant marker gene expression showed that the ΔsydR mutant is defective at an early stage of the bacterial infection process. Altogether, these results demonstrated that SydR is a redox-sensing MarR-type TR that plays a key role in the regulation of nitrogen-fixing symbiosis with M. truncatula.IMPORTANCEThe nitrogen-fixing symbiosis between rhizobia and legumes has an important ecological role in the nitrogen cycle, contributes to nitrogen enrichment of soils, and can improve plant growth in agriculture. This interaction is initiated in the rhizosphere by a molecular dialog between the two partners, resulting in plant root infection and the formation of root nodules, where bacteria reduce the atmospheric nitrogen into ammonium. This symbiosis involves modifications of the bacterial redox state in response to reactive oxygen species produced by the plant partner. Here, we show that SydR, a transcriptional regulator of the Medicago symbiont Sinorhizobium meliloti, acts as a redox-responsive repressor that is crucial for the development of root nodules and contributes to the regulation of bacterial infection in S. meliloti/Medicago truncatula symbiotic interaction.
Collapse
Affiliation(s)
- Fanny Nazaret
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia-Antipolis, France
| | | | - Joffrey Mejias
- IRD, CIRAD, Université Montpellier, Plant Health Institute, Montpellier, France
| | - Marie Pacoud
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia-Antipolis, France
| | - Anthony Cosi
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia-Antipolis, France
| | - Pierre Frendo
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia-Antipolis, France
| | | | - Karine Mandon
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia-Antipolis, France
| |
Collapse
|
2
|
Santamaría‐Hernando S, De Bruyne L, Höfte M, Ramos‐González M. Improvement of fitness and biocontrol properties of
Pseudomonas putida
via an extracellular heme peroxidase. Microb Biotechnol 2022; 15:2652-2666. [PMID: 35986900 PMCID: PMC9518985 DOI: 10.1111/1751-7915.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/18/2022] [Indexed: 11/27/2022] Open
Abstract
The extracellular 373‐kDa PehA heme peroxidase of Pseudomonas putida KT2440 has two enzymatic domains which depend on heme cofactor for their peroxidase activity. A null pehA mutant was generated to examine the impact of PehA in rhizosphere colonization competence and the induction of plant systemic resistance (ISR). This mutant was not markedly hampered in colonization efficiency. However, increase in pehA dosage enhanced colonization fitness about 30 fold in the root and 900 fold in the root apex. In vitro assays with purified His‐tagged enzymatic domains of PehA indicated that heme‐dependent peroxidase activity was required for the enhancement of root tip colonization. Evaluation of live/dead cells confirmed that overexpression of pehA had a positive effect on bacterial cell viability. Following root colonization of rice plants by KT2440 strain, the incidence of rice blast caused by Magnaporthe oryzae was reduced by 65% and the severity of this disease was also diminished in comparison to non‐treated plants. An increase in the pehA dosage was also beneficial for the control of rice blast as compared with gene inactivation. The results suggest that PehA helps P. putida to cope with the plant‐imposed oxidative stress leading to enhanced colonization ability and concomitant ISR‐elicitation.
Collapse
Affiliation(s)
- Saray Santamaría‐Hernando
- Department of Environmental Protection Estación Experimental de Zaidín‐Consejo Superior de Investigaciones Científicas (CSIC) Granada Spain
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering Ghent University Ghent Belgium
| | - Lieselotte De Bruyne
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering Ghent University Ghent Belgium
| | - Monica Höfte
- Laboratory of Phytopathology, Department of Plants and Crops, Faculty of Bioscience Engineering Ghent University Ghent Belgium
| | - María‐Isabel Ramos‐González
- Department of Environmental Protection Estación Experimental de Zaidín‐Consejo Superior de Investigaciones Científicas (CSIC) Granada Spain
| |
Collapse
|
3
|
Zhang L, Li N, Wang Y, Zheng W, Shan D, Yu L, Luo L. Sinorhizobium meliloti ohrR genes affect symbiotic performance with alfalfa (Medicago sativa). ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:595-603. [PMID: 35510290 DOI: 10.1111/1758-2229.13079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Sinorhizobium meliloti infects the host plant alfalfa to induce formation of nitrogen-fixation root nodules, which inevitably elicit reactive oxygen species (ROS) bursts and organic peroxide generation. The MarR family regulator OhrR regulates the expression of chloroperoxidase and organic hydrogen resistance protein, which scavenge organic peroxides in free-living S. meliloti cells. The single mutant of ohrR genes SMc01945 (ohrR1) and SMc00098 (ohrR2) lacked symbiotic phenotypes. In this work, we identified the novel ohrR gene SMa2020 (ohrR3) and determined that ohrR genes are important for rhizobial infection, nodulation and nitrogen fixation with alfalfa. By analysing the phenotypes of the single, double and triple deletion mutants of ohrR genes, we demonstrate that ohrR1 and ohrR3 slightly affect rhizobial growth, but ohrR2 and ohrR3 influence cellular resistance to the organic peroxide, tert-butyl hydroperoxide. Deletion of ohrR1 and ohrR3 negatively affected infection thread formation and nodulation, and consequently, plant growth. Correspondingly, the expression of the ROS detoxification genes katA and sodB as well as that of the nitrogenase gene nifH was downregulated in bacteroids of the double and triple deletion mutants, which may underlie the symbiotic defects of these mutants. These findings demonstrate that OhrR proteins play a role in the S. meliloti-alfalfa symbiosis.
Collapse
Affiliation(s)
- Lanya Zhang
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Ningning Li
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yawen Wang
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Wenjia Zheng
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Dandan Shan
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Liangliang Yu
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Li Luo
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
4
|
Mandon K, Nazaret F, Farajzadeh D, Alloing G, Frendo P. Redox Regulation in Diazotrophic Bacteria in Interaction with Plants. Antioxidants (Basel) 2021; 10:antiox10060880. [PMID: 34070926 PMCID: PMC8226930 DOI: 10.3390/antiox10060880] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 11/23/2022] Open
Abstract
Plants interact with a large number of microorganisms that greatly influence their growth and health. Among the beneficial microorganisms, rhizosphere bacteria known as Plant Growth Promoting Bacteria increase plant fitness by producing compounds such as phytohormones or by carrying out symbioses that enhance nutrient acquisition. Nitrogen-fixing bacteria, either as endophytes or as endosymbionts, specifically improve the growth and development of plants by supplying them with nitrogen, a key macro-element. Survival and proliferation of these bacteria require their adaptation to the rhizosphere and host plant, which are particular ecological environments. This adaptation highly depends on bacteria response to the Reactive Oxygen Species (ROS), associated to abiotic stresses or produced by host plants, which determine the outcome of the plant-bacteria interaction. This paper reviews the different antioxidant defense mechanisms identified in diazotrophic bacteria, focusing on their involvement in coping with the changing conditions encountered during interaction with plant partners.
Collapse
Affiliation(s)
- Karine Mandon
- Université Côte d’Azur, INRAE, CNRS, ISA, 06903 Sophia Antipolis, France; (K.M.); (F.N.); (G.A.)
| | - Fanny Nazaret
- Université Côte d’Azur, INRAE, CNRS, ISA, 06903 Sophia Antipolis, France; (K.M.); (F.N.); (G.A.)
| | - Davoud Farajzadeh
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz 5375171379, Iran;
- Center for International Scientific Studies and Collaboration (CISSC), Ministry of Science, Research and Technology, Tehran 158757788, Iran
| | - Geneviève Alloing
- Université Côte d’Azur, INRAE, CNRS, ISA, 06903 Sophia Antipolis, France; (K.M.); (F.N.); (G.A.)
| | - Pierre Frendo
- Université Côte d’Azur, INRAE, CNRS, ISA, 06903 Sophia Antipolis, France; (K.M.); (F.N.); (G.A.)
- Correspondence:
| |
Collapse
|
5
|
Gao Y, Shimizu K, Amano C, Wang X, Pham TL, Sugiura N, Utsumi M. Response of microcystin biosynthesis and its biosynthesis gene cluster transcription in Microcystis aeruginosa on electrochemical oxidation. ENVIRONMENTAL TECHNOLOGY 2019; 40:3593-3601. [PMID: 29806796 DOI: 10.1080/09593330.2018.1482371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
Microcystin-LR (MC-LR), which is one of the most commonly found microcystins (MCs) in fresh water, has been proved to be a potential tumour promoter and classified as 2B by the International Agency for Research on Cancer. MC-LR decomposition and inhibition of MC-LR production in Microcystis aeruginosa were investigated under electrolysis condition using an electrolysis cell consisting of Ti/Pt electrodes and Nafion membrane. The relationship between the decrease in MC-LR concentration and transcription of MC-LR synthesis gene clusters was determined by performing real-time reverse transcription polymerase chain reaction (RT-qPCR) to monitor changes in the levels of transcription encoding mcyB and mcyD (cDNA to DNA) in M. aeruginosa NIES 1086 under electrolysis condition and three different conditions (i.e. oxygenated, air aerated and unaerated) as controls. Cell density decreased from day 2 under electrolysis than under the three controls. Intracellular MC-LR concentration was approximately 33 fg cell-1 under electrolysis from days 4 to 8, while those in the other conditions ranged in 40-50 fg cell-1. The mcyB transcription continuously decreased from day 2 to nondetectable level in day 6 under electrolysis, while this transcription was stabilised under the three controls. This result suggested that oxidative stress, such as hydroxyl radicals, played an important role in the down-regulation of mcyB and mcyD gene transcription level and the MC-LR concentration and cell density of M. aeruginosa.
Collapse
Affiliation(s)
- Yu Gao
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology , Qingdao , People's Republic of China
- Graduate School of Life and Environment Science, University of Tsukuba , Tsukuba , Japan
| | - Kazuya Shimizu
- Faculty of Life Science, Toyo University , Gunma , Japan
| | - Chie Amano
- Graduate School of Life and Environment Science, University of Tsukuba , Tsukuba , Japan
- Department of Limnology and Bio-Oceanography, University of Vienna , Wien , Austria
| | - Xin Wang
- Graduate School of Life and Environment Science, University of Tsukuba , Tsukuba , Japan
- School of Envrionment and Energy, Peking University , Shenzhen , People's Republic of China
| | - Thanh Luu Pham
- Graduate School of Life and Environment Science, University of Tsukuba , Tsukuba , Japan
| | - Norio Sugiura
- Graduate School of Life and Environment Science, University of Tsukuba , Tsukuba , Japan
- Malaysia-Japan International Institute of Technology, University Technology Malaysia , Johor Bahru , Malaysia
| | - Motoo Utsumi
- Graduate School of Life and Environment Science, University of Tsukuba , Tsukuba , Japan
| |
Collapse
|
6
|
Jiang G, Yang J, Li X, Cao Y, Liu X, Ling J, Wang H, Zhong Z, Zhu J. Alkyl hydroperoxide reductase is important for oxidative stress resistance and symbiosis in Azorhizobium caulinodans. FEMS Microbiol Lett 2019; 366:5290313. [PMID: 30657885 DOI: 10.1093/femsle/fnz014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/15/2019] [Indexed: 11/13/2022] Open
Abstract
Reactive oxygen species (ROS) are not only toxic products of oxygen from aerobic metabolism or stress but also signalling molecules involved in the development of the legume-Rhizobium symbiosis. To assess the importance of alkyl hydroperoxide reductase (AhpCD) in the nitrogen-fixating bacterium Azorhizobium caulinodans, we investigated the phenotypes of the ∆ahpCD strain with regards to ROS resistance and symbiotic interactions with Sesbania rostrata. The ∆ahpCD strain was notably more sensitive than its parent strain to hydrogen peroxide (H2O2) but not to two organic peroxides, in the early log phase. The expression of ahpCD was not controlled by a LysR-type transcriptional activator either in vitro or in vivo. The catalase activity of the ∆ahpCD strain was affected at a relatively low level of H2O2 stress. Furthermore, the ∆ahpCD strain induced a reduced number of stem nodules in S. rostrata with lowering of nitrogenase activity. These data suggest that A. caulinodans AhpCD is not only important for H2O2 detoxification in vitro but also critical for symbiosis with S. rostrata. Functional analysis of AhpCD is worth investigating in other rhizobia to gain a comprehensive view of its contributions to ROS defence and symbiotic association with legumes.
Collapse
Affiliation(s)
- Gaofei Jiang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, National Engineering Research Centre for Organic-based Fertilizers, Postdoctoral Station of Agricultural Resources and Environment, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Juan Yang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Xingjuan Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Yajun Cao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Xiaomeng Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Jun Ling
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Hui Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Zengtao Zhong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Jun Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, PR China
| |
Collapse
|
7
|
Liu X, Qiu W, Rao B, Cao Y, Fang X, Yang J, Jiang G, Zhong Z, Zhu J. Bacterioferritin comigratory protein is important in hydrogen peroxide resistance, nodulation, and nitrogen fixation in Azorhizobium caulinodans. Arch Microbiol 2019; 201:823-831. [PMID: 30953092 DOI: 10.1007/s00203-019-01654-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/16/2019] [Accepted: 03/22/2019] [Indexed: 12/01/2022]
Abstract
Reactive oxygen species are not only harmful for rhizobia but also required for the establishment of symbiotic interactions between rhizobia and their legume hosts. In this work, we first investigated the preliminary role of the bacterioferritin comigratory protein (BCP), a member of the peroxiredoxin family, in the nitrogen-fixing bacterium Azorhizobium caulinodans. Our data revealed that the bcp-deficient strain of A. caulinodans displayed an increased sensitivity to inorganic hydrogen peroxide (H2O2) but not to two organic peroxides in a growth-phase-dependent manner. Meanwhile, BCP was found to be involved in catalase activity under relatively low H2O2 conditions. Furthermore, nodulation and N2 fixation were significantly impaired by mutation of the bcp gene in A. caulinodans. Our work initially documented the importance of BCP in the bacterial defence against H2O2 in the free-living stage of rhizobia and during their symbiotic interactions with legumes. Molecular signalling in vivo is required to decipher the holistic functions of BCP in A. caulinodans as well as in other rhizobia.
Collapse
Affiliation(s)
- Xiaomeng Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Wei Qiu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Bei Rao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Yajun Cao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Xingxing Fang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Juan Yang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Gaofei Jiang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, Postdoctoral Station of Agricultural Resources and Environment, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China.
| | - Zengtao Zhong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China.
| | - Jun Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| |
Collapse
|
8
|
OxyR-Dependent Transcription Response of Sinorhizobium meliloti to Oxidative Stress. J Bacteriol 2018; 200:JB.00622-17. [PMID: 29358497 DOI: 10.1128/jb.00622-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/11/2018] [Indexed: 11/20/2022] Open
Abstract
Reactive oxygen species such as peroxides play an important role in plant development, cell wall maturation, and defense responses. During nodulation with the host plant Medicago sativa, Sinorhizobium meliloti cells are exposed to H2O2 in infection threads and developing nodules (R. Santos, D. Hérouart, S. Sigaud, D. Touati, and A. Puppo, Mol Plant Microbe Interact 14:86-89, 2001, https://doi.org/10.1094/MPMI.2001.14.1.86). S. meliloti cells likely also experience oxidative stress, from both internal and external sources, during life in the soil. Here, we present microarray transcription data for S. meliloti wild-type cells compared to a mutant deficient in the key oxidative regulatory protein OxyR, each in response to H2O2 treatment. Several alternative sigma factor genes are upregulated in the response to H2O2; the stress sigma gene rpoE2 shows OxyR-dependent induction by H2O2, while rpoH1 expression is induced by H2O2 irrespective of the oxyR genotype. The activity of the RpoE2 sigma factor in turn causes increased expression of two more sigma factor genes, rpoE5 and rpoH2 Strains with deletions of rpoH1 showed improved survival in H2O2 as well as increased levels of oxyR and total catalase expression. These results imply that ΔrpoH1 strains are primed to deal with oxidative stress. This work presents a global view of S. meliloti gene expression changes, and of regulation of those changes, in response to H2O2IMPORTANCE Like all aerobic organisms, the symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti experiences oxidative stress throughout its complex life cycle. This report describes the global transcriptional changes that S. meliloti makes in response to H2O2 and the roles of the OxyR transcriptional regulator and the RpoH1 sigma factor in regulating those changes. By understanding the complex regulatory response of S. meliloti to oxidative stress, we may further understand the role that reactive oxygen species play as both stressors and potential signals during symbiosis.
Collapse
|
9
|
Staerck C, Gastebois A, Vandeputte P, Calenda A, Larcher G, Gillmann L, Papon N, Bouchara JP, Fleury MJ. Microbial antioxidant defense enzymes. Microb Pathog 2017. [DOI: 10.1016/j.micpath.2017.06.015] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Schulz M, Sicker D, Schackow O, Hennig L, Hofmann D, Disko U, Ventura M, Basyuk K. 6-Hydroxy-5-nitrobenzo[ d]oxazol-2(3 H)-one-A degradable derivative of natural 6-Hydroxybenzoxazolin-2(3 H)-one produced by Pantoea ananatis. Commun Integr Biol 2017; 10:e1302633. [PMID: 28702124 PMCID: PMC5501217 DOI: 10.1080/19420889.2017.1302633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 01/10/2023] Open
Abstract
Pantoea ananatis is a bacterium associated with other microorganisms on Abutilon theophrasti Medik. roots. It converts 6-hydroxybenzoxazolin-2(3H)-one (BOA-6-OH), a hydroxylated derivative of the allelochemical benzoxazolin-2(3H)-one, into 6-hydroxy-5-nitrobenzo[d]oxazol-2(3H)-one. The compound was identified by NMR and mass spectrometric methods. In vitro synthesis succeeded with Pantoea protein, with isolated proteins from the Abutilon root surface or with horseradish peroxidase in the presence of nitrite and H2O2. Nitro-BOA-6-OH is completely degraded further by Pantoea ananatis and Abutilon root surface proteins. Under laboratory conditions, 6-hydroxy-5-nitrobenzo[d]oxazol-2(3H)-one inhibits Lepidium sativum seedling growth whereas Abutilon theophrasti is much less affected. Although biodegradable, an agricultural use of 6-hydroxy-5-nitrobenzo[d]oxazol-2(3H)-one is undesirable because of the high toxicity of nitro aromatic compounds to mammals.
Collapse
Affiliation(s)
- Margot Schulz
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Dieter Sicker
- Institut für Organische Chemie, Universität Leipzig, Leipzig, Germany
| | - Oliver Schackow
- Institut für Organische Chemie, Universität Leipzig, Leipzig, Germany
| | - Lothar Hennig
- Institut für Organische Chemie, Universität Leipzig, Leipzig, Germany
| | - Diana Hofmann
- IBG-3: Agrosphäre, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ulrich Disko
- IBG-3: Agrosphäre, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Marina Ventura
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Kateryna Basyuk
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| |
Collapse
|
11
|
Weigold P, El-Hadidi M, Ruecker A, Huson DH, Scholten T, Jochmann M, Kappler A, Behrens S. A metagenomic-based survey of microbial (de)halogenation potential in a German forest soil. Sci Rep 2016; 6:28958. [PMID: 27353292 PMCID: PMC4926216 DOI: 10.1038/srep28958] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/13/2016] [Indexed: 11/16/2022] Open
Abstract
In soils halogens (fluorine, chlorine, bromine, iodine) are cycled through the transformation of inorganic halides into organohalogen compounds and vice versa. There is evidence that these reactions are microbially driven but the key enzymes and groups of microorganisms involved are largely unknown. Our aim was to uncover the diversity, abundance and distribution of genes encoding for halogenating and dehalogenating enzymes in a German forest soil by shotgun metagenomic sequencing. Metagenomic libraries of three soil horizons revealed the presence of genera known to be involved in halogenation and dehalogenation processes such as Bradyrhizobium or Pseudomonas. We detected a so far unknown diversity of genes encoding for (de)halogenating enzymes in the soil metagenome including specific and unspecific halogenases as well as metabolic and cometabolic dehalogenases. Genes for non-heme, no-metal chloroperoxidases and haloalkane dehalogenases were the most abundant halogenase and dehalogenase genes, respectively. The high diversity and abundance of (de)halogenating enzymes suggests a strong microbial contribution to natural halogen cycling. This was also confirmed in microcosm experiments in which we quantified the biotic formation of chloroform and bromoform. Knowledge on microorganisms and genes that catalyze (de)halogenation reactions is critical because they are highly relevant to industrial biotechnologies and bioremediation applications.
Collapse
Affiliation(s)
- Pascal Weigold
- Geomicrobiology, Center for Applied Geosciences, University of
Tuebingen, Germany
| | - Mohamed El-Hadidi
- Algorithms in Bioinformatics, Center for Bioinformatics,
University of Tuebingen, Germany
| | - Alexander Ruecker
- Geomicrobiology, Center for Applied Geosciences, University of
Tuebingen, Germany
| | - Daniel H. Huson
- Algorithms in Bioinformatics, Center for Bioinformatics,
University of Tuebingen, Germany
| | - Thomas Scholten
- Soil Science and Geomorphology, Geography, University of
Tuebingen, Germany
| | - Maik Jochmann
- Instrumental Analytical Chemistry, Faculty of Chemistry,
University of Duisburg-Essen, Germany
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of
Tuebingen, Germany
| | - Sebastian Behrens
- Department of Civil, Environmental, and Geo- Engineering,
University of Minnesota, MN, USA
- BioTechnology Institute, University of Minnesota,
MN, USA
| |
Collapse
|
12
|
Hu J, Akula N, Wang N. Development of a Microemulsion Formulation for Antimicrobial SecA Inhibitors. PLoS One 2016; 11:e0150433. [PMID: 26963811 PMCID: PMC4786163 DOI: 10.1371/journal.pone.0150433] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/13/2016] [Indexed: 11/19/2022] Open
Abstract
In our previous study, we have identified five antimicrobial small molecules via structure based design, which inhibit SecA of Candidatus Liberibacter asiaticus (Las). SecA is a critical protein translocase ATPase subunit and is involved in pre-protein translocation across and integration into the cellular membrane in bacteria. In this study, eleven compounds were identified using similarity search method based on the five lead SecA inhibitors identified previously. The identified SecA inhibitors have poor aqueous solubility. Thus a microemulsion master mix (MMX) was developed to address the solubility issue and for application of the antimicrobials. MMX consists of N-methyl-2-pyrrolidone and dimethyl sulfoxide as solvent and co-solvent, as well as polyoxyethylated castor oil, polyalkylene glycol, and polyoxyethylene tridecyl ether phosphate as surfactants. MMX has significantly improved the solubility of SecA inhibitors and has no or little phytotoxic effects at concentrations less than 5.0% (v/v). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the SecA inhibitors and streptomycin against eight bacteria including Agrobacterium tumefaciens, Liberibacter crescens, Rhizobium etli, Bradyrhizobium japonicum, Mesorhizobium loti, and Sinorhizobium meliloti phylogenetically related to Las were determined using the broth microdilution method. MIC and MBC results showed that the 16 SecA inhibitors have antibacterial activities comparable to that of streptomycin. Overall, we have identified 11 potent SecA inhibitors using similarity search method. We have developed a microemulsion formulation for SecA inhibitors which improved the antimicrobial activities of SecA inhibitors.
Collapse
Affiliation(s)
- Jiahuai Hu
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Nagaraju Akula
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Nian Wang
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
- * E-mail:
| |
Collapse
|
13
|
Weigold P, Ruecker A, Jochmann M, Osorio Barajas XL, Lege S, Zwiener C, Kappler A, Behrens S. Formation of chloroform and tetrachloroethene by Sinorhizobium meliloti strain 1021. Lett Appl Microbiol 2015; 61:346-53. [PMID: 26119060 DOI: 10.1111/lam.12462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/08/2015] [Accepted: 06/22/2015] [Indexed: 12/16/2022]
Abstract
UNLABELLED The mechanisms and organisms involved in the natural formation of volatile organohalogen compounds (VOX) are largely unknown. We provide evidence that the common and widespread soil bacterium Sinorhizobium meliloti strain 1021 is capable of producing up to 3338·6 ± 327·8 ng l(-1) headspace volume of chloroform (CHCl3 ) and 807·8 ± 13·5 ng l(-1) headspace volume of tetrachloroethene (C2 Cl4 ) within 1 h when grown in soil extract medium. Biotic VOX formation has been suggested to be linked to the activity of halogenating enzymes such as haloperoxidases. We tested if the observed VOX formation by S. meliloti can be attributed to one of its chloroperoxidases (Smc01944) that is highly expressed in the presence of H2 O2. However, addition of 10 mmol l(-1) H2 O2 to the S. meliloti cultures decreased VOX formation by 52% for chloroform and 25% for tetrachloroethene, while viable cell numbers decreased by 23%. Interestingly, smc01944 gene expression increased 450-fold. The quantification of extracellular chlorination activity in cell suspension experiments did not provide evidence for a role of S. meliloti chloroperoxidases in the observed VOX formation. This suggests that a momentarily unknown mechanism which requires no H2 O2 might be responsible for the VOX formation by S. meliloti. Regardless of the underlying mechanism our results suggest that the soil bacterium S. meliloti might be an important source of VOX in soils. SIGNIFICANCE AND IMPACT OF THE STUDY Volatile organohalogen compounds (VOX) strongly influence atmospheric chemistry and Earth's climate. Besides anthropogenic emissions they are naturally produced by either abiotic or biotic pathways in various environments. Particularly in soils, microbial processes drive the natural halogen cycle but the direct link to microbial VOX formation has not been studied in detail yet. In this study we provide evidence that the common and widespread soil bacterium Sinorhizobium meliloti strain 1021 forms chloroform and tetrachloroethene. The potential contribution of S. meliloti to soil VOX release could significantly influence soil and atmospheric chemistry.
Collapse
Affiliation(s)
- P Weigold
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany
| | - A Ruecker
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany
| | - M Jochmann
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - X L Osorio Barajas
- Instrumental Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - S Lege
- Environmental Analytical Chemistry, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany
| | - C Zwiener
- Environmental Analytical Chemistry, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany
| | - A Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany
| | - S Behrens
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, Tuebingen, Germany.,Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, MN, USA.,BioTechnology Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
14
|
Mhamdi R, Nouairi I, ben Hammouda T, Mhamdi R, Mhadhbi H. Growth capacity and biochemical mechanisms involved in rhizobia tolerance to salinity and water deficit. J Basic Microbiol 2014; 55:451-61. [PMID: 25546228 DOI: 10.1002/jobm.201400451] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 11/02/2014] [Indexed: 11/08/2022]
Abstract
The aim of the present study was to evaluate abiotic stress tolerance of rhizobial strains belonging to Mesorhizobium, Sinorhizobium, and Rhizobium genera, as well as to investigate specie specific stress response mechanisms. Effect of NaCl and PEG on growth capacity, protein, lipid peroxydation (MDA), membrane fatty acid composition and antioxidant enzymes were investigated. Growth capacity and viability of overall rhizobia strains decreased proportionally to the increase of NaCl and PEG levels in the medium. Sinorhizobium strains appeared the most tolerant, where 4H41strain was able to grow at 800 mM NaCl and 40% PEG. On the other hand, growth of R. gallicum and M. mediterraneum was inhibited by 200 mM NaCl. The content of MDA was unchanged in Sinorhizobium strains under both stresses. For Mesorhizobium, only PEG treatment increased the content of MDA. Amount of the C19:0 cyclo fatty-acid was increased in both Sinorhizobium and Mesorhizobium tolerant strains. NaCl stress increased Superoxide dismutase (SOD) activity of overall species; especially the most tolerant strain 4H41. Both treatments increased catalase (CAT) activity in 4H41, TII7, and 835 strains. Obtained results suggest that major response of tolerant Sinorhizobium and Mesorhizobium strains to NaCl and PEG stresses is a preferential accumulation of the C19:0 cyclo fatty acid within bacterial membrane as mechanism to reduce fluidity and maintain integrity. Cell integrity and functioning is also assured by maintaining and/or increasing activity of SOD and CAT antioxidant enzymes for tolerant strains to omit structural and functional damages related to reactive oxygen species overproduced under stressful conditions.
Collapse
Affiliation(s)
- Rakia Mhamdi
- Laboratory of Legumes, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | | | | | | | | |
Collapse
|
15
|
Siqueira AF, Ormeño-Orrillo E, Souza RC, Rodrigues EP, Almeida LGP, Barcellos FG, Batista JSS, Nakatani AS, Martínez-Romero E, Vasconcelos ATR, Hungria M. Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for understanding symbiotic performance with soybean. BMC Genomics 2014; 15:420. [PMID: 24888481 PMCID: PMC4070871 DOI: 10.1186/1471-2164-15-420] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 05/20/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The soybean-Bradyrhizobium symbiosis can be highly efficient in fixing nitrogen, but few genomic sequences of elite inoculant strains are available. Here we contribute with information on the genomes of two commercial strains that are broadly applied to soybean crops in the tropics. B. japonicum CPAC 15 (=SEMIA 5079) is outstanding in its saprophytic capacity and competitiveness, whereas B. diazoefficiens CPAC 7 (=SEMIA 5080) is known for its high efficiency in fixing nitrogen. Both are well adapted to tropical soils. The genomes of CPAC 15 and CPAC 7 were compared to each other and also to those of B. japonicum USDA 6T and B. diazoefficiens USDA 110T. RESULTS Differences in genome size were found between species, with B. japonicum having larger genomes than B. diazoefficiens. Although most of the four genomes were syntenic, genome rearrangements within and between species were observed, including events in the symbiosis island. In addition to the symbiotic region, several genomic islands were identified. Altogether, these features must confer high genomic plasticity that might explain adaptation and differences in symbiotic performance. It was not possible to attribute known functions to half of the predicted genes. About 10% of the genomes was composed of exclusive genes of each strain, but up to 98% of them were of unknown function or coded for mobile genetic elements. In CPAC 15, more genes were associated with secondary metabolites, nutrient transport, iron-acquisition and IAA metabolism, potentially correlated with higher saprophytic capacity and competitiveness than seen with CPAC 7. In CPAC 7, more genes were related to the metabolism of amino acids and hydrogen uptake, potentially correlated with higher efficiency of nitrogen fixation than seen with CPAC 15. CONCLUSIONS Several differences and similarities detected between the two elite soybean-inoculant strains and between the two species of Bradyrhizobium provide new insights into adaptation to tropical soils, efficiency of N2 fixation, nodulation and competitiveness.
Collapse
Affiliation(s)
- Arthur Fernandes Siqueira
- />Department Biochemistry and Biotechnology, Universidade Estadual de Londrina (UEL), C.P. 60001, Londrina, PR 86051-990 Brazil
- />Embrapa Soja, C.P. 231, Londrina, PR 86001-970 Brazil
| | - Ernesto Ormeño-Orrillo
- />Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos Mexico
| | - Rangel Celso Souza
- />Laboratório Nacional de Computação Científica, Rua Getúlio Vargas 333, Petrópolis, RJ 25651-071 Brazil
| | | | - Luiz Gonzaga Paula Almeida
- />Laboratório Nacional de Computação Científica, Rua Getúlio Vargas 333, Petrópolis, RJ 25651-071 Brazil
| | | | - Jesiane Stefânia Silva Batista
- />Department Structural, Molecular and Genetic Biology, Universidade Estadual de Ponta Grossa (UEPG), Av. General Carlos Cavalcanti 4748, Ponta Grossa, PR 84030-900 Brazil
| | | | | | | | - Mariangela Hungria
- />Department Biochemistry and Biotechnology, Universidade Estadual de Londrina (UEL), C.P. 60001, Londrina, PR 86051-990 Brazil
- />Embrapa Soja, C.P. 231, Londrina, PR 86001-970 Brazil
| |
Collapse
|
16
|
Bowman JS, Larose C, Vogel TM, Deming JW. Selective occurrence of Rhizobiales in frost flowers on the surface of young sea ice near Barrow, Alaska and distribution in the polar marine rare biosphere. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:575-582. [PMID: 23864572 DOI: 10.1111/1758-2229.12047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 02/11/2013] [Accepted: 03/03/2013] [Indexed: 06/02/2023]
Abstract
Frost flowers are highly saline ice structures that grow on the surface of young sea ice, a spatially extensive environment of increasing importance in the Arctic Ocean. In a previous study, we reported organic components of frost flowers in the form of elevated levels of bacteria and exopolymers relative to underlying ice. Here, DNA was extracted from frost flowers and young sea ice, collected in springtime from a frozen lead offshore of Barrow, Alaska, to identify bacteria in these understudied environments. Evaluation of the distribution of 16S rRNA genes via four methods (microarray analysis, T-RFLP, clone library and shotgun metagenomic sequencing) indicated distinctive bacterial assemblages between the two environments, with frost flowers appearing to select for Rhizobiales. A phylogenetic placement approach, used to evaluate the distribution of similar Rhizobiales sequences in other polar marine studies, indicated that some of the observed strains represent widely distributed members of the marine rare biosphere in both the Arctic and Antarctic.
Collapse
MESH Headings
- Alaska
- Alphaproteobacteria/classification
- Alphaproteobacteria/isolation & purification
- Arctic Regions
- Biodiversity
- Cloning, Molecular
- Cluster Analysis
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA, Ribosomal/isolation & purification
- Ice Cover/microbiology
- Microarray Analysis
- Molecular Sequence Data
- Phylogeny
- Polymorphism, Restriction Fragment Length
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- J S Bowman
- School of Oceanography, University of Washington, Seattle, WA, USA.
| | | | | | | |
Collapse
|
17
|
Ormeño-Orrillo E, Menna P, Almeida LGP, Ollero FJ, Nicolás MF, Pains Rodrigues E, Shigueyoshi Nakatani A, Silva Batista JS, Oliveira Chueire LM, Souza RC, Ribeiro Vasconcelos AT, Megías M, Hungria M, Martínez-Romero E. Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.). BMC Genomics 2012; 13:735. [PMID: 23270491 PMCID: PMC3557214 DOI: 10.1186/1471-2164-13-735] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/15/2012] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 are α-Proteobacteria that establish nitrogen-fixing symbioses with a range of legume hosts. These strains are broadly used in commercial inoculants for application to common bean (Phaseolus vulgaris) in South America and Africa. Both strains display intrinsic resistance to several abiotic stressful conditions such as low soil pH and high temperatures, which are common in tropical environments, and to several antimicrobials, including pesticides. The genetic determinants of these interesting characteristics remain largely unknown. RESULTS Genome sequencing revealed that CIAT 899 and PRF 81 share a highly-conserved symbiotic plasmid (pSym) that is present also in Rhizobium leucaenae CFN 299, a rhizobium displaying a similar host range. This pSym seems to have arisen by a co-integration event between two replicons. Remarkably, three distinct nodA genes were found in the pSym, a characteristic that may contribute to the broad host range of these rhizobia. Genes for biosynthesis and modulation of plant-hormone levels were also identified in the pSym. Analysis of genes involved in stress response showed that CIAT 899 and PRF 81 are well equipped to cope with low pH, high temperatures and also with oxidative and osmotic stresses. Interestingly, the genomes of CIAT 899 and PRF 81 had large numbers of genes encoding drug-efflux systems, which may explain their high resistance to antimicrobials. Genome analysis also revealed a wide array of traits that may allow these strains to be successful rhizosphere colonizers, including surface polysaccharides, uptake transporters and catabolic enzymes for nutrients, diverse iron-acquisition systems, cell wall-degrading enzymes, type I and IV pili, and novel T1SS and T5SS secreted adhesins. CONCLUSIONS Availability of the complete genome sequences of CIAT 899 and PRF 81 may be exploited in further efforts to understand the interaction of tropical rhizobia with common bean and other legume hosts.
Collapse
Affiliation(s)
- Ernesto Ormeño-Orrillo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Pâmela Menna
- Embrapa Soja, C. P. 231, Londrina, Paraná, 86001-970, Brazil
| | - Luiz Gonzaga P Almeida
- Laboratório Nacional de Computação Científica (LNCC), Avenida Getúlio Vargas 333, Petrópolis, Rio de Janeiro, Brazil
| | | | - Marisa Fabiana Nicolás
- Laboratório Nacional de Computação Científica (LNCC), Avenida Getúlio Vargas 333, Petrópolis, Rio de Janeiro, Brazil
| | | | | | | | | | - Rangel Celso Souza
- Laboratório Nacional de Computação Científica (LNCC), Avenida Getúlio Vargas 333, Petrópolis, Rio de Janeiro, Brazil
| | | | - Manuel Megías
- Universidad de Sevilla, Apdo Postal 874, Sevilla, 41080, Spain
| | | | | |
Collapse
|
18
|
Bengtson P, Bastviken D, Oberg G. Possible roles of reactive chlorine II: assessing biotic chlorination as a way for organisms to handle oxygen stress. Environ Microbiol 2012; 15:991-1000. [PMID: 22712445 DOI: 10.1111/j.1462-2920.2012.02807.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Natural formation of organically bound chlorine is extensive in many environments. The enzymes associated with the formation of chlorinated organic matter are produced by a large variety of organisms. Little is known about the ecological role of the process, the key question being: why do microorganisms promote chlorination of organic matter? In a recent paper we discuss whether organic matter chlorination may be a result of antagonistic interactions among microorganisms. In the present paper we evaluate whether extracellular microbial formation of reactive chlorine may be used as a defence against oxygen stress, and we discuss whether this process is likely to contribute to the formation of chlorinated organic matter. Our analysis suggests that periodic exposure to elevated concentrations of reactive oxygen species is a common denominator among the multitude of organisms that are able to enzymatically catalyse formation of reactive chlorine. There is also some evidence suggesting that the production of such enzymes in algae and bacteria is induced by oxygen stress. The relative contribution from this process to the extensive formation of chlorinated organic matter in natural environments remains to be empirically assessed.
Collapse
Affiliation(s)
- Per Bengtson
- Department of Biology - Microbial Ecology, Lund University, The Ecology Building, Lund SE-223 62, Sweden
| | | | | |
Collapse
|
19
|
Queiroux C, Washburn BK, Davis OM, Stewart J, Brewer TE, Lyons MR, Jones KM. A comparative genomics screen identifies a Sinorhizobium meliloti 1021 sodM-like gene strongly expressed within host plant nodules. BMC Microbiol 2012; 12:74. [PMID: 22587634 PMCID: PMC3462710 DOI: 10.1186/1471-2180-12-74] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 05/04/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We have used the genomic data in the Integrated Microbial Genomes system of the Department of Energy's Joint Genome Institute to make predictions about rhizobial open reading frames that play a role in nodulation of host plants. The genomic data was screened by searching for ORFs conserved in α-proteobacterial rhizobia, but not conserved in closely-related non-nitrogen-fixing α-proteobacteria. RESULTS Using this approach, we identified many genes known to be involved in nodulation or nitrogen fixation, as well as several new candidate genes. We knocked out selected new genes and assayed for the presence of nodulation phenotypes and/or nodule-specific expression. One of these genes, SMc00911, is strongly expressed by bacterial cells within host plant nodules, but is expressed minimally by free-living bacterial cells. A strain carrying an insertion mutation in SMc00911 is not defective in the symbiosis with host plants, but in contrast to expectations, this mutant strain is able to out-compete the S. meliloti 1021 wild type strain for nodule occupancy in co-inoculation experiments. The SMc00911 ORF is predicted to encode a "SodM-like" (superoxide dismutase-like) protein containing a rhodanese sulfurtransferase domain at the N-terminus and a chromate-resistance superfamily domain at the C-terminus. Several other ORFs (SMb20360, SMc01562, SMc01266, SMc03964, and the SMc01424-22 operon) identified in the screen are expressed at a moderate level by bacteria within nodules, but not by free-living bacteria. CONCLUSIONS Based on the analysis of ORFs identified in this study, we conclude that this comparative genomics approach can identify rhizobial genes involved in the nitrogen-fixing symbiosis with host plants, although none of the newly identified genes were found to be essential for this process.
Collapse
Affiliation(s)
- Clothilde Queiroux
- Department of Biological Science, Florida State University, Biology Unit I, 230A, Tallahassee, FL 32306-4370, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Jeon JM, Lee HI, Donati AJ, So JS, Emerich DW, Chang WS. Whole-genome expression profiling of Bradyrhizobium japonicum in response to hydrogen peroxide. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1472-81. [PMID: 21864047 DOI: 10.1094/mpmi-03-11-0072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Bradyrhizobium japonicum, a nitrogen-fixing bacterium in soil, establishes a symbiotic relationship with the leguminous soybean plant. Despite a mutualistic association between the two partners, the host plant produces an oxidative burst to protect itself from the invasion of rhizobial cells. We investigated the effects of H(2)O(2)-mediated oxidative stress on B. japonicum gene expression in both prolonged exposure (PE) and fulminant shock (FS) conditions. In total, 439 and 650 genes were differentially expressed for the PE and FS conditions, respectively, at a twofold cut-off with q < 0.05. A number of genes within the transport and binding proteins category were upregulated during PE and a majority of those genes are involved in ABC transporter systems. Many genes encoding ? factors, global stress response proteins, the FixK(2) transcription factor, and its regulatory targets were found to be upregulated in the FS condition. Surprisingly, catalase and peroxidase genes which are typically expressed in other bacteria under oxidative stress were not differentially expressed in either condition. The isocitrate lyase gene (aceA) was induced by fulminant H(2)O(2) shock, as was evident at both the transcriptional and translational levels. Interestingly, there was no significant effect of H(2)O(2) on exopolysaccharide production at the given experimental conditions.
Collapse
Affiliation(s)
- Jeong-Min Jeon
- Department of Biology, University of Texas, Arlington, TX, USA
| | | | | | | | | | | |
Collapse
|
21
|
Fontenelle C, Blanco C, Arrieta M, Dufour V, Trautwetter A. Resistance to organic hydroperoxides requires ohr and ohrR genes in Sinorhizobium meliloti. BMC Microbiol 2011; 11:100. [PMID: 21569462 PMCID: PMC3107159 DOI: 10.1186/1471-2180-11-100] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 05/13/2011] [Indexed: 12/18/2022] Open
Abstract
Background Sinorhizobium meliloti is a symbiotic nitrogen-fixing bacterium that elicits nodules on roots of host plants Medicago sativa. During nodule formation bacteria have to withstand oxygen radicals produced by the plant. Resistance to H2O2 and superoxides has been extensively studied in S. meliloti. In contrast resistance to organic peroxides has not been investigated while S. meliloti genome encodes putative organic peroxidases. Organic peroxides are produced by plants and are highly toxic. The resistance to these oxygen radicals has been studied in various bacteria but never in plant nodulating bacteria. Results In this study we report the characterisation of organic hydroperoxide resistance gene ohr and its regulator ohrR in S. meliloti. The inactivation of ohr affects resistance to cumene and ter-butyl hydroperoxides but not to hydrogen peroxide or menadione in vitro. The expression of ohr and ohrR genes is specifically induced by organic peroxides. OhrR binds to the intergenic region between the divergent genes ohr and ohrR. Two binding sites were characterised. Binding to the operator is prevented by OhrR oxidation that promotes OhrR dimerisation. The inactivation of ohr did not affect symbiosis and nitrogen fixation, suggesting that redundant enzymatic activity exists in this strain. Both ohr and ohrR are expressed in nodules suggesting that they play a role during nitrogen fixation. Conclusions This report demonstrates the significant role Ohr and OhrR proteins play in bacterial stress resistance against organic peroxides in S. meliloti. The ohr and ohrR genes are expressed in nodule-inhabiting bacteroids suggesting a role during nodulation.
Collapse
Affiliation(s)
- Catherine Fontenelle
- UMR CNRS 6026, DUALS, Université de Rennes I, Campus de Beaulieu, Av. du Général Leclerc, 35042 Rennes, France
| | | | | | | | | |
Collapse
|
22
|
Genome-wide transcriptional and physiological responses of Bradyrhizobium japonicum to paraquat-mediated oxidative stress. Appl Environ Microbiol 2011; 77:3633-43. [PMID: 21498770 DOI: 10.1128/aem.00047-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The rhizobial bacterium Bradyrhizobium japonicum functions as a nitrogen-fixing symbiont of the soybean plant (Glycine max). Plants are capable of producing an oxidative burst, a rapid proliferation of reactive oxygen species (ROS), as a defense mechanism against pathogenic and symbiotic bacteria. Therefore, B. japonicum must be able to resist such a defense mechanism to initiate nodulation. In this study, paraquat, a known superoxide radical-inducing agent, was used to investigate this response. Genome-wide transcriptional profiles were created for both prolonged exposure (PE) and fulminant shock (FS) conditions. These profiles revealed that 190 and 86 genes were up- and downregulated for the former condition, and that 299 and 105 genes were up- and downregulated for the latter condition, respectively (>2.0-fold; P < 0.05). Many genes within putative operons for F(0)F(1)-ATP synthase, chemotaxis, transport, and ribosomal proteins were upregulated during PE. The transcriptional profile for the FS condition strangely resembled that of a bacteroid condition, including the FixK(2) transcription factor and most of its response elements. However, genes encoding canonical ROS scavenging enzymes, such as superoxide dismutase and catalase, were not detected, suggesting constitutive expression of those genes by endogenous ROS. Various physiological tests, including exopolysaccharide (EPS), cellular protein, and motility characterization, were performed to corroborate the gene expression data. The results suggest that B. japonicum responds to tolerable oxidative stress during PE through enhanced motility, increased translational activity, and EPS production, in addition to the expression of genes involved in global stress responses, such as chaperones and sigma factors.
Collapse
|
23
|
Bengtson P, Bastviken D, de Boer W, Oberg G. Possible role of reactive chlorine in microbial antagonism and organic matter chlorination in terrestrial environments. Environ Microbiol 2009; 11:1330-9. [PMID: 19453612 DOI: 10.1111/j.1462-2920.2009.01915.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several studies have demonstrated that extensive formation of organically bound chlorine occurs both in soil and in decaying plant material. Previous studies suggest that enzymatic formation of reactive chlorine outside cells is a major source. However, the ecological role of microbial-induced extracellular chlorination processes remains unclear. In the present paper, we assess whether or not the literature supports the hypothesis that extracellular chlorination is involved in direct antagonism against competitors for the same resources. Our review shows that it is by no means rare that biotic processes create conditions that render biocidal concentrations of reactive chlorine compounds, which suggest that extracellular production of reactive chlorine may have an important role in antagonistic microbial interactions. To test the validity, we searched the UniprotPK database for microorganisms that are known to produce haloperoxidases. It appeared that many of the identified haloperoxidases from terrestrial environments are originating from organisms that are associated with living plants or decomposing plant material. The results of the in silico screening were supported by various field and laboratory studies on natural chlorination. Hence, the ability to produce reactive chlorine seems to be especially common in environments that are known for antibiotic-mediated competition for resources (interference competition). Yet, the ability to produce haloperoxidases is also recorded, for example, for plant endosymbionts and parasites, and there is little or no empirical evidence that suggests that these organisms are antagonistic.
Collapse
Affiliation(s)
- Per Bengtson
- Department of Microbial Ecology, Lund University, Lund, Sweden
| | | | | | | |
Collapse
|
24
|
Hellweg C, Pühler A, Weidner S. The time course of the transcriptomic response of Sinorhizobium meliloti 1021 following a shift to acidic pH. BMC Microbiol 2009; 9:37. [PMID: 19216801 PMCID: PMC2651895 DOI: 10.1186/1471-2180-9-37] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Accepted: 02/15/2009] [Indexed: 11/21/2022] Open
Abstract
Background The symbiotic soil bacterium Sinorhizobium meliloti often has to face low pH in its natural habitats. To identify genes responding to pH stress a global transcriptional analysis of S. meliloti strain 1021 following a pH shift from pH 7.0 to pH 5.75 was carried out. In detail, oligo-based whole genome microarrays were used in a time course experiment. The monitoring period covered a time span of about one hour after the pH shift. The obtained microarray data was filtered and grouped by K-means clustering in order to obtain groups of genes behaving similarly concerning their expression levels throughout the time course. Results The results display a versatile response of S. meliloti 1021 represented by distinct expression profiles of subsets of genes with functional relation. The eight generated clusters could be subdivided into a group of four clusters containing genes that were up-regulated and another group of four clusters containing genes that were down-regulated in response to the acidic pH shift. The respective mean expression progression of the four up-regulated clusters could be described as (i) permanently and strong, (ii) permanently and intermediate, (iii) permanently and progressive, and (iv) transiently up-regulated. The expression profile of the four down-regulated clusters could be characterized as (i) permanently, (ii) permanently and progressive, (iii) transiently, and (iv) ultra short down-regulated. Genes coding for proteins with functional relation were mostly cumulated in the same cluster, pointing to a characteristic expression profile for distinct cellular functions. Among the strongest up-regulated genes lpiA, degP1, cah, exoV and exoH were found. The most striking functional groups responding to the shift to acidic pH were genes of the exopolysaccharide I biosynthesis as well as flagellar and chemotaxis genes. While the genes of the exopolysaccharide I biosynthesis (exoY, exoQ, exoW, exoV, exoT, exoH, exoK exoL, exoO, exoN, exoP) were up-regulated, the expression level of the flagellar and chemotaxis genes (visR, motA, flgF, flgB, flgC, fliE, flgG, flgE, flgL, flbT, mcpU) simultaneously decreased in response to acidic pH. Other responding functional groups of genes mainly belonged to nitrogen uptake and metabolism (amtB, nrtB, nirB, nirD), methionine metabolism (metA, metF, metH, metK, bmt and ahcY) as well as ion transport systems (sitABCD, phoCD). It is noteworthy, that several genes coding for hypothetical proteins of unknown function could be identified as up-regulated in response to the pH shift. Conclusion It was shown that the short term response to acidic pH stress does not result in a simple induction or repression of genes, but in a sequence of responses varying in their intensity over time. Obviously, the response to acidic pH is not based on a few specific genes, but involves whole sets of genes associated with various cellular functions.
Collapse
Affiliation(s)
- Christoph Hellweg
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Bielefeld, Germany.
| | | | | |
Collapse
|
25
|
Stoelting M, Geyer M, Reuter S, Reichelt R, Bek MJ, Pavenstädt H. Alpha/beta hydrolase 1 is upregulated in D5 dopamine receptor knockout mice and reduces O2- production of NADPH oxidase. Biochem Biophys Res Commun 2008; 379:81-5. [PMID: 19073140 DOI: 10.1016/j.bbrc.2008.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 12/03/2008] [Indexed: 01/11/2023]
Abstract
Renal dopamine receptors have been shown to play a critical role in ROS-dependent hypertension. D5 dopamine receptor deficient (D5-/-) mice are hypertensive and have increased systemic oxidative stress which is manifested in the kidney and the brain. To further investigate the underlying mechanisms of hypertension in D5-/- mice, we used RNA arrays to compare mRNA levels of kidneys from wildtype and D5-/- mice. Our data show, that the mRNA level of alpha/beta hydrolase 1 (ABHD1) is significantly upregulated in D5-/- mice. Additionally, overexpression of ABHD1 in a new established renal proximal tubule cell line reduced the amount of O(2)(-) produced by the NADPH oxidase. Therefore the upregulation of ABHD1 in D5-/- mice could be an answer to the increased oxidative stress. While oxidative stress is an important factor for the development of hypertension, ABHD1 could play a protective role in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Miriam Stoelting
- Medical Clinic and Policlinic D, University clinics Münster, Münster, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Rudrappa T, Biedrzycki ML, Bais HP. Causes and consequences of plant-associated biofilms. FEMS Microbiol Ecol 2008; 64:153-66. [PMID: 18355294 DOI: 10.1111/j.1574-6941.2008.00465.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The rhizosphere is the critical interface between plant roots and soil where beneficial and harmful interactions between plants and microorganisms occur. Although microorganisms have historically been studied as planktonic (or free-swimming) cells, most are found attached to surfaces, in multicellular assemblies known as biofilms. When found in association with plants, certain bacteria such as plant growth promoting rhizobacteria not only induce plant growth but also protect plants from soil-borne pathogens in a process known as biocontrol. Contrastingly, other rhizobacteria in a biofilm matrix may cause pathogenesis in plants. Although research suggests that biofilm formation on plants is associated with biological control and pathogenic response, little is known about how plants regulate this association. Here, we assess the biological importance of biofilm association on plants.
Collapse
Affiliation(s)
- Thimmaraju Rudrappa
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | | | | |
Collapse
|
27
|
Abstract
Rhizobial bacteria colonize legume roots for the purpose of biological nitrogen fixation. A complex series of events, coordinated by host and bacterial signal molecules, underlie the development of this symbiotic interaction. Rhizobia elicit de novo formation of a novel root organ within which they establish a chronic intracellular infection. Legumes permit rhizobia to invade these root tissues while exerting control over the infection process. Once rhizobia gain intracellular access to their host, legumes also strongly influence the process of bacterial differentiation that is required for nitrogen fixation. Even so, symbiotic rhizobia play an active role in promoting their goal of host invasion and chronic persistence by producing a variety of signal molecules that elicit changes in host gene expression. In particular, rhizobia appear to advocate for their access to the host by producing a variety of signal molecules capable of suppressing a general pathogen defense response.
Collapse
Affiliation(s)
- Katherine E. Gibson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Hajime Kobayashi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Graham C. Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
28
|
Chang WS, Franck WL, Cytryn E, Jeong S, Joshi T, Emerich DW, Sadowsky MJ, Xu D, Stacey G. An oligonucleotide microarray resource for transcriptional profiling of Bradyrhizobium japonicum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1298-307. [PMID: 17918631 DOI: 10.1094/mpmi-20-10-1298] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A DNA microarray, comprising 70-mer oligonucleotides, representing 8,453 open reading frames (ORFs), was constructed based on the Bradyrhizobium japonicum strain USDA110 genomic sequence. New annotation predicted 199 additional genes, which were added to the microarray and were shown to be transcribed. These arrays were used to profile transcription in cells under a variety of conditions, including growth in minimal versus rich medium, osmotic stress, and free-living cells versus bacteroids. Increased expression was seen for genes involved in translation, motility, and cell envelope synthesis in rich medium whereas expression increased in minimal medium for genes involved in vitamin biosynthesis and stress responses. Treatment with 50 mM NaCl activated stress-inducible genes but repressed genes involved in chemotaxis and motility. Strikingly, no known transport systems for accumulation of compatible solutes or osmoprotectants were induced in response to osmotic stress. A number of nif, fix, and hup genes, but not all, were upregulated in bacteroids. The B. japonicum type III secretion system, known to be important in early nodulation, was downregulated in bacteroids. The availability of a reliable, low-cost B. japonicum microarray provides a useful tool for functional genomic studies of one of the most agriculturally important bacteria.
Collapse
Affiliation(s)
- Woo-Suk Chang
- National Center for Soybean Biotechnology, University of Missouri, Columbia 65211, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC. How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol 2007; 5:619-33. [PMID: 17632573 PMCID: PMC2766523 DOI: 10.1038/nrmicro1705] [Citation(s) in RCA: 540] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nitrogen-fixing rhizobial bacteria and leguminous plants have evolved complex signal exchange mechanisms that allow a specific bacterial species to induce its host plant to form invasion structures through which the bacteria can enter the plant root. Once the bacteria have been endocytosed within a host-membrane-bound compartment by root cells, the bacteria differentiate into a new form that can convert atmospheric nitrogen into ammonia. Bacterial differentiation and nitrogen fixation are dependent on the microaerobic environment and other support factors provided by the plant. In return, the plant receives nitrogen from the bacteria, which allows it to grow in the absence of an external nitrogen source. Here, we review recent discoveries about the mutual recognition process that allows the model rhizobial symbiont Sinorhizobium meliloti to invade and differentiate inside its host plant alfalfa (Medicago sativa) and the model host plant barrel medic (Medicago truncatula).
Collapse
Affiliation(s)
- Kathryn M Jones
- Department of Biology, Massachusetts Institute of Technology, Building 68, Room 633, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
30
|
Hervé C, Fondrevez M, Chéron A, Barloy-Hubler F, Jan G. Transcarboxylase mRNA: A marker which evidences P. freudenreichii survival and metabolic activity during its transit in the human gut. Int J Food Microbiol 2007; 113:303-14. [PMID: 17156879 DOI: 10.1016/j.ijfoodmicro.2006.08.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Accepted: 08/20/2006] [Indexed: 11/17/2022]
Abstract
Dairy propionibacteria have recently been considered as probiotics which may beneficially modulate the intestinal ecosystem. However, appropriate vectors (food matrices containing the probiotic) which preserve their viability and offer good tolerance towards digestive stresses need to be developed. In addition, the development of efficient non-invasive methods which specifically monitor Propionibacterium freudenreichii concentration and activity within the human gut is required. To address this latter need, an enzyme involved in propionic fermentation, transcarboxylase, was evaluated in this study as molecular marker in P. freudenreichii. In vitro, the three transcarboxylase subunits were shown to be encoded by an operon and their expression regulated. It occurred during propionic fermentation, ceased in starved cells and was not affected by digestive stresses. The 5S subunit gene of transcarboxylase allowed specific detection of P. freudenreichii by real time PCR in the complex human faecal microbiota. A dairy vector harbouring P. freudenreichii was developed and afforded elevated probiotic faecal concentrations in humans. In vivo, this PCR method allowed rapid quantification of faecal P. freudenreichii in agreement with the cultural method (cfu counting). Moreover, real time Reverse Transcription (RT) -PCR evidenced transcription of the 5S subunit gene during transit through the human digestive tract. This work constitutes a methodological advance for survival and activity evaluation in human trials of the probiotics belonging to the P. freudenreichii species. It strongly suggests that this bacterium not only survives but remains metabolically active in the human gut.
Collapse
Affiliation(s)
- Christophe Hervé
- Laboratoires Standa, UMR-STLO, 65 rue de Saint-Brieuc, 35042 RENNES cedex, France.
| | | | | | | | | |
Collapse
|
31
|
Hrimpeng K, Prapagdee B, Banjerdkij P, Vattanaviboon P, Dubbs JM, Mongkolsuk S. Challenging Xanthomonas campestris with low levels of arsenic mediates cross-protection against oxidant killing. FEMS Microbiol Lett 2006; 262:121-7. [PMID: 16907748 DOI: 10.1111/j.1574-6968.2006.00383.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Xanthomonas encounters highly toxic reactive oxygen species (ROS) from many sources, such as those generated by plants against invading bacteria, other soil bacteria and from aerobic respiration. Thus, conditions that alter intracellular ROS levels such as exposure to toxic metalloids would have profound effects on bacterial physiology. Here, we report that exposure of Xanthomonas campestris pv. phaseoli (Xp) to low levels of arsenic induces physiological cross-protection against killing by H(2)O(2) and organic hydroperoxide but not a superoxide generator. Cross-protection against H(2)O(2) and organic hydroperoxide toxicity was due to increased expression of genes encoding major peroxide-metabolizing enzymes such as alkyl hydroperoxide reductase (AhpC), catalase (KatA) and organic hydroperoxide resistance protein (Ohr). Arsenic-induced protection against H(2)O(2) and organic hydroperoxide requires the peroxide stress response regulators, OxyR and OhrR, respectively. Moreover, analyses of double mutants of the major H(2)O(2) and organic hyproperoxide-scavenging enzymes, Xp ahpC katA and Xp ahpC ohr, respectively, suggested the existence of unidentified OxyR- and OhrR-regulated genes that are involved in arsenic-induced resistance to H(2)O(2) and organic hyproperoxide killing in Xp. These arsenic-induced physiological alterations could play an important role in bacterial survival both in the soil environment and during plant-pathogen interactions.
Collapse
Affiliation(s)
- Karnjana Hrimpeng
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok, Thailand
| | | | | | | | | | | |
Collapse
|
32
|
Bobik C, Meilhoc E, Batut J. FixJ: a major regulator of the oxygen limitation response and late symbiotic functions of Sinorhizobium meliloti. J Bacteriol 2006; 188:4890-902. [PMID: 16788198 PMCID: PMC1482993 DOI: 10.1128/jb.00251-06] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sinorhizobium meliloti exists either in a free-living state in the soil or in symbiosis within legume nodules, where the bacteria differentiate into nitrogen-fixing bacteroids. Expression of genes involved in nitrogen fixation and associated respiration is governed by two intermediate regulators, NifA and FixK, respectively, which are controlled by a two-component regulatory system FixLJ in response to low-oxygen conditions. In order to identify the FixLJ regulon, gene expression profiles were determined in microaerobic free-living cells as well as during the symbiotic life of the bacterium for the wild type and a fixJ null-mutant strain. We identified 122 genes activated by FixJ in either state, including 87 novel targets. FixJ controls 74% of the genes induced in microaerobiosis (2% oxygen) and the majority of genes expressed in mature bacteroids. Ninety-seven percent of FixJ-activated genes are located on the symbiotic plasmid pSymA. Transcriptome profiles of a nifA and a fixK mutant showed that NifA activates a limited number of genes, all specific to the symbiotic state, whereas FixK controls more than 90 genes, involved in free-living and/or symbiotic life. This study also revealed that FixJ has no other direct targets besides those already known. FixJ is involved in the regulation of functions such as denitrification or amino acid/polyamine metabolism and transport. Mutations in selected novel FixJ targets did not affect the ability of the bacteria to form nitrogen-fixing nodules on Medicago sativa roots. From these results, we propose an updated model of the FixJ regulon.
Collapse
Affiliation(s)
- Christine Bobik
- Laboratoire des Interactions Plantes Microorganismes (LIPM), UMR441-2594 CNRS/INRA BP52627, Chemin de Borde Rouge, Auzeville, 31326 Castanet-Tolosan Cedex, France
| | | | | |
Collapse
|
33
|
Capela D, Filipe C, Bobik C, Batut J, Bruand C. Sinorhizobium meliloti differentiation during symbiosis with alfalfa: a transcriptomic dissection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:363-72. [PMID: 16610739 DOI: 10.1094/mpmi-19-0363] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Sinorhizobium meliloti is a soil bacterium able to induce the formation of nodules on the root of specific legumes, including alfalfa (Medicago sativa). Bacteria colonize nodules through infection threads, invade the plant intracellularly, and ultimately differentiate into bacteroids capable of reducing atmospheric nitrogen to ammonia, which is directly assimilated by the plant. As a first step to describe global changes in gene expression of S. meliloti during the symbiotic process, we used whole genome microarrays to establish the transcriptome profile of bacteria from nodules induced by a bacterial mutant blocked at the infection stage and from wild-type nodules harvested at various timepoints after inoculation. Comparison of these profiles to those of cultured bacteria grown either to log or stationary phase as well as examination of a number of genes with known symbiotic transcription patterns allowed us to correlate global gene-expression patterns to three known steps of symbiotic bacteria bacteroid differentiation, i.e., invading bacteria inside infection threads, young differentiating bacteroids, and fully differentiated, nitrogen-fixing bacteroids. Finally, analysis of individual gene transcription profiles revealed a number of new potential symbiotic genes.
Collapse
Affiliation(s)
- Delphine Capela
- Laboratoire des Interactions Plantes-Microorganismes, UMR INRA-CNRS 441-2594, BP52627, 31326 Castanet-Tolosan, France
| | | | | | | | | |
Collapse
|
34
|
Yuan ZC, Zaheer R, Finan TM. Phosphate limitation induces catalase expression in Sinorhizobium meliloti, Pseudomonas aeruginosa and Agrobacterium tumefaciens. Mol Microbiol 2006; 58:877-94. [PMID: 16238634 DOI: 10.1111/j.1365-2958.2005.04874.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Growth of Sinorhizobium meliloti under Pi-limiting conditions induced expression of the major H2O2-inducible catalase (HPII) gene (katA) in this organism. This transcription required the PhoB transcriptional regulator and initiated from a promoter that was distinct from the OxyR-dependent promoter which activates katA transcription in response to addition of H2O2. In N2-fixing root nodules, katA was transcribed from the OxyR- and not the PhoB-dependent promoter. This is consistent with the accumulation of reactive oxygen species (ROS) in nodules and also indicates that bacteroids within nodules are not Pi-limited. Pi-limited growth also induced expression of catalase genes in Agrobacterium tumefaciens (HPI) and Pseudomonas aeruginosa (PA4236-HPI) suggesting that this may be a widespread phenomenon. The response is not a general stress response as in both S. meliloti and P. aeruginosa increased transcription is mediated by the phosphate responsive transcriptional activator PhoB. The phenotypic consequences of this response were demonstrated in S. meliloti by the dramatic increase in H2O2 resistance of wild type but not phoB mutant cells upon growth in Pi-limiting media. Our data indicate that in S. meliloti, katA and other genes whose products are involved in protection from oxidative stress are induced upon Pi-limitation. These observations suggest that as part of the response to Pi-limitation, S. meliloti, P. aeruginosa and A. tumefaciens have evolved a capacity to increase their resistance to oxidative stress. Whether this capacity evolved because Pi-starved cells generate more ROS or whether the physiological changes that occur in the cells in response to Pi-starvation render them more sensitive to ROS remains to be established.
Collapse
Affiliation(s)
- Ze-Chun Yuan
- Center for Environmental Genomics, Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4K1
| | | | | |
Collapse
|
35
|
Johnson DR, Lee PKH, Holmes VF, Alvarez-Cohen L. An internal reference technique for accurately quantifying specific mRNAs by real-time PCR with application to the tceA reductive dehalogenase gene. Appl Environ Microbiol 2005; 71:3866-71. [PMID: 16000799 PMCID: PMC1169012 DOI: 10.1128/aem.71.7.3866-3871.2005] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The accuracy of mRNA quantification by reverse transcription (RT) in conjunction with real-time PCR (qPCR) is limited by mRNA losses during sample preparation (cell lysis, RNA isolation, and DNA removal) and by inefficiencies in reverse transcription. To control for these losses and inefficiencies, a technique was developed that utilizes an exogenous internal reference mRNA (ref mRNA) along with mRNA absolute standard curves. The technique was applied to quantify mRNA of the trichloroethene (TCE) reductive dehalogenase-encoding tceA gene in an anaerobic TCE-to-ethene dechlorinating microbial enrichment. Compared to RT-qPCR protocols that utilize DNA absolute standard curves, application of the new technique increased measured quantities of tceA mRNA by threefold, demonstrating a substantial improvement in quantification. The technique was also effective for quantifying the loss of mRNA during specific steps of the sample processing protocol. Analysis revealed that the efficiency of the RNA isolation (56%) step was significantly less than that of the cell lysis (84%), DNA removal (93%), and RT (88%) steps. The technique was applied to compare the effects of cellular exposure to different chlorinated ethenes on tceA expression. Results show that exposure to TCE or cis-1,2-dichloroethene resulted in 25-fold-higher quantities of tceA mRNA than exposure to vinyl chloride or chlorinated ethene starvation.
Collapse
Affiliation(s)
- David R Johnson
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720-1710.
| | | | | | | |
Collapse
|