1
|
Santos HJ, Nozaki T. The mitosome of the anaerobic parasitic protist Entamoeba histolytica: A peculiar and minimalist mitochondrion-related organelle. J Eukaryot Microbiol 2022; 69:e12923. [PMID: 35588086 PMCID: PMC9796589 DOI: 10.1111/jeu.12923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The simplest class of mitochondrion-related organelles (MROs) is the mitosome, an organelle present in a few anaerobic protozoan parasites such as Entamoeba histolytica, Giardia intestinalis, and Cryptosporidium parvum. E. histolytica causes amoebiasis in humans, deemed as one of the important, yet neglected tropical infections in the world. Much of the enigma of the E. histolytica mitosome circles around the obvious lack of a majority of known mitochondrial components and functions exhibited in other organisms. The identification of enzymes responsible for sulfate activation (AS, IPP, and APSK) and a number of lineage-specific proteins such as the outer membrane beta-barrel protein (MBOMP30), and transmembrane domain-containing proteins that bind to various organellar proteins (ETMP1, ETMP30, EHI_170120, and EHI_099350) showcased the remarkable divergence of this organelle compared to the other MROs of anaerobic protozoa. Here, we summarize the findings regarding the biology of the mitosomes in E. histolytica, from their discovery up to the present understanding of its roles and interactions. We also include current advances and future perspectives on the biology, biochemistry, and evolution of the mitosomes of E. histolytica.
Collapse
Affiliation(s)
- Herbert J. Santos
- Department of Biomedical Chemistry, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
2
|
Kazama M, Yoshida K, Ogiwara S, Makiuchi T, Tachibana H. Influence of Heterologous Transplant of DNA-lacking Mitochondria from Entamoeba histolytica on Proliferation of Entamoeba invadens. J Eukaryot Microbiol 2018; 66:483-493. [PMID: 30329208 DOI: 10.1111/jeu.12693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/30/2018] [Accepted: 10/08/2018] [Indexed: 11/27/2022]
Abstract
In mitochondria, compatibility of proteins encoded in mitochondrial DNA and nuclear DNA is essential for the normal functioning of the organelle. Incompatibility between mitochondrial and nuclear DNA can lead to dysfunctional respiration, mitochondrial diseases, and lethal problems, which suggests that the presence of heterologous mitochondria is unfavorable. In a previous study, we established a transplant method for DNA-lacking mitochondria (mitosomes) in the anaerobic protozoan Entamoeba histolytica. In this study, interspecies transplant of mitosomes from E. histolytica into Entamoeba invadens, which is a parasitic protozoon of reptiles, was performed using the microinjection method at various temperatures and injection volumes. When E. invadens was used as recipient, it showed higher tolerance to a lower temperature and larger injection volume, in comparison with E. histolytica. After microinjection, donor mitosomes expressing HA-tag conjugated protein were observed in recipient cells by immunofluorescent staining. The heterologous mitosomes-injected cells proliferated and growth rate of the microinjected-cells was similar to that of intact cells. Therefore, we conclude that interspecies transplant of DNA-lacking mitochondria does not result in incompatibility.
Collapse
Affiliation(s)
- Makoto Kazama
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan.,NEKKEN Bio-Resource Center, Institute of Tropical Medicine, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Kazuhiro Yoshida
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan.,Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Sanae Ogiwara
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Takashi Makiuchi
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Hiroshi Tachibana
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| |
Collapse
|
3
|
Kazama M, Ogiwara S, Makiuchi T, Yoshida K, Nakada-Tsukui K, Nozaki T, Tachibana H. Behavior of DNA-lacking mitochondria in Entamoeba histolytica revealed by organelle transplant. Sci Rep 2017; 7:44273. [PMID: 28287148 PMCID: PMC5347163 DOI: 10.1038/srep44273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/07/2017] [Indexed: 12/19/2022] Open
Abstract
The anaerobic protozoan parasite Entamoeba histolytica has mitosomes that are mitochondria lacking some canonical functions and organelle DNA. Mitosomes play an important role in the life cycle of the parasite. The distribution of proteins in mitosomes is not uniform, and how mitosomes are maintained and retained is unknown. To answer these questions, we developed a transplant method for mitosomes with hemagglutinin-tagged protein into recipient cells containing mitosomes with Myc-tagged protein. Immunofluorescence staining showed that the two protein tags colocalized in single mitosomes in some recipient cells. These results suggest that our transplant method can be used in anaerobic protozoa and that donor mitosomes may obtain recipient proteins through fusion with other mitosomes or through de novo synthesis of proteins in recipient cells.
Collapse
Affiliation(s)
- Makoto Kazama
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Sanae Ogiwara
- Support Center for Medical Research and Education, Tokai University, Isehara, Kanagawa 259-1193, Japan
| | - Takashi Makiuchi
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Kazuhiro Yoshida
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Hiroshi Tachibana
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
4
|
Rout S, Zumthor JP, Schraner EM, Faso C, Hehl AB. An Interactome-Centered Protein Discovery Approach Reveals Novel Components Involved in Mitosome Function and Homeostasis in Giardia lamblia. PLoS Pathog 2016; 12:e1006036. [PMID: 27926928 PMCID: PMC5142787 DOI: 10.1371/journal.ppat.1006036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/01/2016] [Indexed: 12/23/2022] Open
Abstract
Protozoan parasites of the genus Giardia are highly prevalent globally, and infect a wide range of vertebrate hosts including humans, with proliferation and pathology restricted to the small intestine. This narrow ecological specialization entailed extensive structural and functional adaptations during host-parasite co-evolution. An example is the streamlined mitosomal proteome with iron-sulphur protein maturation as the only biochemical pathway clearly associated with this organelle. Here, we applied techniques in microscopy and protein biochemistry to investigate the mitosomal membrane proteome in association to mitosome homeostasis. Live cell imaging revealed a highly immobilized array of 30–40 physically distinct mitosome organelles in trophozoites. We provide direct evidence for the single giardial dynamin-related protein as a contributor to mitosomal morphogenesis and homeostasis. To overcome inherent limitations that have hitherto severely hampered the characterization of these unique organelles we applied a novel interaction-based proteome discovery strategy using forward and reverse protein co-immunoprecipitation. This allowed generation of organelle proteome data strictly in a protein-protein interaction context. We built an initial Tom40-centered outer membrane interactome by co-immunoprecipitation experiments, identifying small GTPases, factors with dual mitosome and endoplasmic reticulum (ER) distribution, as well as novel matrix proteins. Through iterative expansion of this protein-protein interaction network, we were able to i) significantly extend this interaction-based mitosomal proteome to include other membrane-associated proteins with possible roles in mitosome morphogenesis and connection to other subcellular compartments, and ii) identify novel matrix proteins which may shed light on mitosome-associated metabolic functions other than Fe-S cluster biogenesis. Functional analysis also revealed conceptual conservation of protein translocation despite the massive divergence and reduction of protein import machinery in Giardia mitosomes. Organelles with endosymbiotic origin are present in virtually all extant eukaryotes and have undergone considerable remodeling during > 1 billion years of evolution. Highly diverged organelles such as mitosomes or plastids in some parasitic protozoa are the product of extensive secondary reduction. They are sufficiently unique to generate interest as targets for pharmacological intervention, in addition to providing a rich ground for evolutionary cell biologists. The so-called mitochondria-related organelles (MROs) comprise mitosomes and hydrogenosomes, with the former having lost any role in energy metabolism along with the organelle genome. The mitosomes of the intestinal pathogen Giardia lamblia are the most highly reduced MROs known and have proven difficult to investigate because of their extreme divergence and their unique biophysical properties. Here, we implemented a novel strategy aimed at systematic analysis of the organelle proteome by iterative expansion of a protein-protein interaction network. We combined serial forward and reverse co-immunoprecipitations with mass spectrometry analysis, data mining, and validation by subcellular localization and/or functional analysis to generate an interactome network centered on a giardial Tom40 homolog. This iterative ab initio proteome reconstruction provided protein-protein interaction data in addition to identifying novel organelle proteins and functions. Building on this data we generated information on organelle replication, mitosome morphogenesis and organelle dynamics in living cells.
Collapse
Affiliation(s)
- Samuel Rout
- Institute of Parasitology, University of Zurich (ZH), Zurich, Switzerland
| | - Jon Paulin Zumthor
- Institute of Parasitology, University of Zurich (ZH), Zurich, Switzerland
| | | | - Carmen Faso
- Institute of Parasitology, University of Zurich (ZH), Zurich, Switzerland
- * E-mail: (ABH); (CF)
| | - Adrian B. Hehl
- Institute of Parasitology, University of Zurich (ZH), Zurich, Switzerland
- * E-mail: (ABH); (CF)
| |
Collapse
|
5
|
Matsubayashi M, Sasagawa Y, Aita T, Tokoro M, Haritani M, Shibahara T. First report of mixed Entamoeba polecki (ST 1) and E. suis infection in piglets shedding abnormalfeces by histopathological and molecular surveys. Acta Parasitol 2016; 61:665-670. [PMID: 27787199 DOI: 10.1515/ap-2016-0093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/16/2016] [Indexed: 11/15/2022]
Abstract
Of the three species of Entamoeba found in swine, namely E. histolytica, E. polecki and E. suis, E. histolytica can also infect humans, producing colitis or abscesses of liver and leading to death. However, the pathogenicity of other species of Entamoeba has not been fully characterized. Here, we conducted histopathology and molecular surveys on a pig farm where piglets had blackish feces or muddy diarrhea. Histopathological examination of two piglets showed necrosis of the mucous surface at the ileum, cecum, or colon, infiltration of neutrophils, and formation of ulcers. Based on morphological characteristics, E. polecki and E. suis trophozoites were mainly detected at lamina propria and surface of the lesion, respectively, and Lawsonia intracellularis, a bacterial pathogen, was also detected. Molecular analysis using the small subunit ribosomal RNA gene on other piglets and a sow revealed infection with both E. polecki and E. suis. These findings corroborate our previous reports that the two Entamoeba spp. are pathogenic in pigs as aggravations of symptoms with L. intracellularis. This is the first report about mixed infection with E. polecki and E. suis.
Collapse
|
6
|
Pais-Morales J, Betanzos A, García-Rivera G, Chávez-Munguía B, Shibayama M, Orozco E. Resveratrol Induces Apoptosis-Like Death and Prevents In Vitro and In Vivo Virulence of Entamoeba histolytica. PLoS One 2016; 11:e0146287. [PMID: 26731663 PMCID: PMC4701480 DOI: 10.1371/journal.pone.0146287] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/15/2015] [Indexed: 11/26/2022] Open
Abstract
Entamoeba histolytica causes amoebiasis, an infection that kills 100,000 individuals each year. Metronidazole and its derivatives are currently used against this protozoan, but these drugs present adverse effects on human health. Here, we investigated the effect of resveratrol (a natural compound) on E. histolytica trophozoites viability, as well as its influence on the parasite virulence. Trophozoites growth was arrested by 72 μM resveratrol and the IC50 was determined as 220 μM at 48 h. Cells appeared smaller, rounded and in clusters, with debris-containing vacuoles and with abnormally condensed chromatin. Resveratrol triggered reactive oxygen species production. It caused lipid peroxidation and produced phosphatidylserine externalization and DNA fragmentation this latter evidenced by TUNEL assays. It also provoked an increase of intracellular Ca2+ concentration, activated calpain and decreased superoxide dismutase activity, indicating that an apoptosis-like event occurred; however, autophagy was not detected. Cytopathic activity, phagocytosis, encystment and in vivo virulence were diminished dramatically by pre-incubation of trophozoites with resveratrol, evidencing that resveratrol attenuated the trophozoite virulence in vitro. Interestingly, after the inoculation of virulent trophozoites, animals treated with the drug did not develop or developed very small abscesses. Our findings propose that resveratrol could be an alternative to contend amoebiasis.
Collapse
Affiliation(s)
- Jonnatan Pais-Morales
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
| | - Abigail Betanzos
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
| | - Guillermina García-Rivera
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
| | - Mineko Shibayama
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
- * E-mail:
| |
Collapse
|
7
|
Leckenby A, Hall N. Genomic changes during evolution of animal parasitism in eukaryotes. Curr Opin Genet Dev 2015; 35:86-92. [PMID: 26637954 DOI: 10.1016/j.gde.2015.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 12/21/2022]
Abstract
Understanding how pathogens have evolved to survive in close association with their hosts is an important step in unraveling the biology of host-pathogen interactions. Comparative genomics is a powerful tool to approach this problem as an increasing number of genomes of multiple pathogen species and strains become available. The ever-growing catalog of genome sequences makes comparison of organisms easier, but it also allows us to reconstitute the evolutionary processes occurring at the genomic level that may have led to the acquisition of pathogenic or parasitic mechanisms.
Collapse
Affiliation(s)
- Amber Leckenby
- Department of Functional and Comparative Genomics, The University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - Neil Hall
- Department of Functional and Comparative Genomics, The University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK.
| |
Collapse
|
8
|
Zadrobílková E, Smejkalová P, Walker G, Čepička I. Morphological and Molecular Diversity of the Neglected Genus Rhizomastix Alexeieff, 1911 (Amoebozoa: Archamoebae) with Description of Five New Species. J Eukaryot Microbiol 2015; 63:181-97. [DOI: 10.1111/jeu.12266] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/17/2015] [Accepted: 08/26/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Eliška Zadrobílková
- Department of Zoology; Faculty of Science; Charles University in Prague; Vinicna 7 128 44 Prague Czech Republic
- Centre for Epidemiology and Microbiology; National Institute of Public Health; Srobarova 48 100 42 Prague Czech Republic
| | - Pavla Smejkalová
- Department of Zoology; Faculty of Science; Charles University in Prague; Vinicna 7 128 44 Prague Czech Republic
- Department of Parasitology; Faculty of Science; Charles University in Prague; Vinicna 7 128 44 Prague Czech Republic
| | - Giselle Walker
- Department of Zoology; Faculty of Science; Charles University in Prague; Vinicna 7 128 44 Prague Czech Republic
- Equipe Diversité et Évolution Microbiennes; Laboratoire Ecologie; Systématique et Evolution; UMR 8079 CNRS-UPS-AgroParisTech; Université de Paris-Sud; Bâtiment 360 91405 Orsay France
| | - Ivan Čepička
- Department of Zoology; Faculty of Science; Charles University in Prague; Vinicna 7 128 44 Prague Czech Republic
| |
Collapse
|
9
|
Why chloroplasts and mitochondria retain their own genomes and genetic systems: Colocation for redox regulation of gene expression. Proc Natl Acad Sci U S A 2015; 112:10231-8. [PMID: 26286985 DOI: 10.1073/pnas.1500012112] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chloroplasts and mitochondria are subcellular bioenergetic organelles with their own genomes and genetic systems. DNA replication and transmission to daughter organelles produces cytoplasmic inheritance of characters associated with primary events in photosynthesis and respiration. The prokaryotic ancestors of chloroplasts and mitochondria were endosymbionts whose genes became copied to the genomes of their cellular hosts. These copies gave rise to nuclear chromosomal genes that encode cytosolic proteins and precursor proteins that are synthesized in the cytosol for import into the organelle into which the endosymbiont evolved. What accounts for the retention of genes for the complete synthesis within chloroplasts and mitochondria of a tiny minority of their protein subunits? One hypothesis is that expression of genes for protein subunits of energy-transducing enzymes must respond to physical environmental change by means of a direct and unconditional regulatory control--control exerted by change in the redox state of the corresponding gene product. This hypothesis proposes that, to preserve function, an entire redox regulatory system has to be retained within its original membrane-bound compartment. Colocation of gene and gene product for redox regulation of gene expression (CoRR) is a hypothesis in agreement with the results of a variety of experiments designed to test it and which seem to have no other satisfactory explanation. Here, I review evidence relating to CoRR and discuss its development, conclusions, and implications. This overview also identifies predictions concerning the results of experiments that may yet prove the hypothesis to be incorrect.
Collapse
|
10
|
Matsubayashi M, Suzuta F, Terayama Y, Shimojo K, Yui T, Haritani M, Shibahara T. Ultrastructural characteristics and molecular identification of Entamoeba suis isolated from pigs with hemorrhagic colitis: implications for pathogenicity. Parasitol Res 2014; 113:3023-8. [PMID: 24894081 DOI: 10.1007/s00436-014-3965-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 05/25/2014] [Indexed: 11/30/2022]
Abstract
Protozoan parasites of the genus Entamoeba infect many classes of vertebrates and are primarily classified based on morphological criteria. To date, only a few species have been proven to cause disease. Here, we examined the pathology of infected pigs with hemorrhage and detected Entamoeba parasites. Isolates were characterized genetically and ultrastructurally to identify the species. Histopathologically, bleeding and thrombus formation were seen only in the large intestine mucosa, where a large number of trophozoites or some Entamoeba cysts were observed around breakdowns in the lamina propria. No screw-shaped bacteria were detected in the lesions, and no pathogenic bacteria such as Brachyspira spp. were detected in fecal cultures. Interestingly, electron microscopy revealed that the parasites possessed mitochondrial organelles, unlike other Entamoeba spp. The isolates were identified as Entamoeba suis by PCR analysis and sequencing of the small subunit ribosomal RNA (SSU rRNA) gene. In phylogenetic analyses based on the actin gene, the E. suis isolate formed a cluster with Entamoeba histolytica and Entamoeba invadens, as well as with other parasites of the Amoebidae. Whether the pathogenicity of the E. suis isolate is affected by the severity of infection or host health status remains unclear; however, our results suggest that E. suis could cause or exacerbate clinical symptoms such as hemorrhagic colitis or diarrhea.
Collapse
Affiliation(s)
- Makoto Matsubayashi
- National Institute of Animal Health, National Agricultural and Food Research Organization, Tsukuba, Ibaraki, 305-0856, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Highly divergent mitochondrion-related organelles in anaerobic parasitic protozoa. Biochimie 2014; 100:3-17. [DOI: 10.1016/j.biochi.2013.11.018] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 11/24/2013] [Indexed: 11/20/2022]
|
12
|
Constenla M, Padrós F, Palenzuela O. Endolimax piscium sp. nov. (Amoebozoa), causative agent of systemic granulomatous disease of cultured sole, Solea senegalensis Kaup. JOURNAL OF FISH DISEASES 2014; 37:229-240. [PMID: 23496286 DOI: 10.1111/jfd.12097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/21/2013] [Accepted: 01/29/2013] [Indexed: 06/01/2023]
Abstract
A new amoeba species pathogenic for Senegalese sole is described based on ultrastructural analysis and SSU rDNA phylogenetic inference. The parasite presents round to ovoid trophozoites (<5 μm) with a high degree of intracellular simplification. No mitochondria were observed, but mitosome-like organelles were present. No cysts could be detected. Phylogenetic analysis confirmed the Senegalese sole parasite as an amitochondriate Archamoeba related to Endolimax nana and Iodamoeba spp., and we tentatively describe it as a new species in the genus Endolimax, Endolimax piscium. However, the genetic distance with E. nana is quite large, with only 60% pairwise identity between both SSU rDNA genotypes. Although the overall topology of the Archamoebae cladograms containing E. piscium was consistent, the support for the branching of Endolimax spp. relative to its closest neighbours was variable, being higher with distance or parsimony-based inference methods than with ML or Bayesian trees. The use of stringent alignment sampling masks also caused instability and reduced support for some branches, including the monophyly of Endolimax spp. in the most conservative data sets. The characterization of other Archamoebae parasitizing fish could help to clarify the status of E. piscium and to interpret the large genetic distance observed between Endolimax species.
Collapse
Affiliation(s)
- M Constenla
- XRAq (Generalitat de Catalunya), Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
13
|
Manna S, Barth C. Identification of a novel pentatricopeptide repeat subfamily with a C-terminal domain of bacterial origin acquired via ancient horizontal gene transfer. BMC Res Notes 2013; 6:525. [PMID: 24321137 PMCID: PMC4029402 DOI: 10.1186/1756-0500-6-525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/29/2013] [Indexed: 11/10/2022] Open
Abstract
Background Pentatricopeptide repeat (PPR) proteins are a large family of sequence-specific RNA binding proteins involved in organelle RNA metabolism. Very little is known about the origin and evolution of these proteins, particularly outside of plants. Here, we report the identification of a novel subfamily of PPR proteins not found in plants and explore their evolution. Results We identified a novel subfamily of PPR proteins, which all contain a C-terminal tRNA guanine methyltransferase (TGM) domain, suggesting a predicted function not previously associated with PPR proteins. This group of proteins, which we have named the PPR-TGM subfamily, is found in distantly related eukaryotic lineages including cellular slime moulds, entamoebae, algae and diatoms, but appears to be the first PPR subfamily absent from plants. Each PPR-TGM protein identified is predicted to have different subcellular locations, thus we propose that these proteins have roles in tRNA metabolism in all subcellular locations, not just organelles. We demonstrate that the TGM domain is not only similar to bacterial TGM proteins, but that it is most similar to chlamydial TGMs in particular, despite the absence of PPR proteins in bacteria. Based on our data, we postulate that this subfamily of PPR proteins evolved from a TGM-encoding gene of a member of the Chlamydiae, which was obtained via ancient prokaryote-to-eukaryote horizontal gene transfer. Following its acquisition, the N-terminus of the encoded TGM protein must have been extended to include PPR motifs, possibly to confer additional functions to the protein, giving rise to the PPR-TGM subfamily. Conclusions The identification of a unique PPR subfamily which originated from the Chlamydiae group of bacteria offers novel insight into the origin and evolution of PPR proteins not previously considered. It also provides further understanding into their roles in non-organellar RNA metabolism.
Collapse
Affiliation(s)
| | - Christian Barth
- Department of Microbiology, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
14
|
de Paula WBM, Lucas CH, Agip ANA, Vizcay-Barrena G, Allen JF. Energy, ageing, fidelity and sex: oocyte mitochondrial DNA as a protected genetic template. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120263. [PMID: 23754815 PMCID: PMC3685464 DOI: 10.1098/rstb.2012.0263] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Oxidative phosphorylation couples ATP synthesis to respiratory electron transport. In eukaryotes, this coupling occurs in mitochondria, which carry DNA. Respiratory electron transport in the presence of molecular oxygen generates free radicals, reactive oxygen species (ROS), which are mutagenic. In animals, mutational damage to mitochondrial DNA therefore accumulates within the lifespan of the individual. Fertilization generally requires motility of one gamete, and motility requires ATP. It has been proposed that oxidative phosphorylation is nevertheless absent in the special case of quiescent, template mitochondria, that these remain sequestered in oocytes and female germ lines and that oocyte mitochondrial DNA is thus protected from damage, but evidence to support that view has hitherto been lacking. Here we show that female gametes of Aurelia aurita, the common jellyfish, do not transcribe mitochondrial DNA, lack electron transport, and produce no free radicals. In contrast, male gametes actively transcribe mitochondrial genes for respiratory chain components and produce ROS. Electron microscopy shows that this functional division of labour between sperm and egg is accompanied by contrasting mitochondrial morphology. We suggest that mitochondrial anisogamy underlies division of any animal species into two sexes with complementary roles in sexual reproduction. We predict that quiescent oocyte mitochondria contain DNA as an unexpressed template that avoids mutational accumulation by being transmitted through the female germ line. The active descendants of oocyte mitochondria perform oxidative phosphorylation in somatic cells and in male gametes of each new generation, and the mutations that they accumulated are not inherited. We propose that the avoidance of ROS-dependent mutation is the evolutionary pressure underlying maternal mitochondrial inheritance and the developmental origin of the female germ line.
Collapse
Affiliation(s)
- Wilson B M de Paula
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | | | | | | | | |
Collapse
|
15
|
Ptáčková E, Kostygov AY, Chistyakova LV, Falteisek L, Frolov AO, Patterson DJ, Walker G, Cepicka I. Evolution of Archamoebae: Morphological and Molecular Evidence for Pelobionts Including Rhizomastix, Entamoeba, Iodamoeba, and Endolimax. Protist 2013; 164:380-410. [DOI: 10.1016/j.protis.2012.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 11/13/2012] [Accepted: 11/27/2012] [Indexed: 10/27/2022]
|
16
|
Braukmann T, Kuzmina M, Stefanovic S. Plastid genome evolution across the genus Cuscuta (Convolvulaceae): two clades within subgenus Grammica exhibit extensive gene loss. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:977-89. [PMID: 23349139 PMCID: PMC3580819 DOI: 10.1093/jxb/ers391] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The genus Cuscuta (Convolvulaceae, the morning glory family) is one of the most intensely studied lineages of parasitic plants. Whole plastome sequencing of four Cuscuta species has demonstrated changes to both plastid gene content and structure. The presence of photosynthetic genes under purifying selection indicates that Cuscuta is cryptically photosynthetic. However, the tempo and mode of plastid genome evolution across the diversity of this group (~200 species) remain largely unknown. A comparative investigation of plastid genome content, grounded within a phylogenetic framework, was conducted using a slot-blot Southern hybridization approach. Cuscuta was extensively sampled (~56% of species), including groups previously suggested to possess more altered plastomes compared with other members of this genus. A total of 56 probes derived from all categories of protein-coding genes, typically found within the plastomes of flowering plants, were used. The results indicate that two clades within subgenus Grammica (clades 'O' and 'K') exhibit substantially more plastid gene loss relative to other members of Cuscuta. All surveyed members of the 'O' clade show extensive losses of plastid genes from every category of genes typically found in the plastome, including otherwise highly conserved small and large ribosomal subunits. The extent of plastid gene losses within this clade is similar in magnitude to that observed previously in some non-asterid holoparasites, in which the very presence of a plastome has been questioned. The 'K' clade also exhibits considerable loss of plastid genes. Unlike in the 'O' clade, in which all species seem to be affected, the losses in clade 'K' progress phylogenetically, following a pattern consistent with the Evolutionary Transition Series hypothesis. This clade presents an ideal opportunity to study the reduction of the plastome of parasites 'in action'. The widespread plastid gene loss in these two clades is hypothesized to be a consequence of the complete loss of photosynthesis. Additionally, taxa that would be the best candidates for entire plastome sequencing are identified in order to investigate further the loss of photosynthesis and reduction of the plastome within Cuscuta.
Collapse
Affiliation(s)
- Thomas Braukmann
- Department of Biology, University of Toronto-Mississauga, 3359 Mississauga Rd. N, Mississauga, Ontario, Canada.
| | | | | |
Collapse
|
17
|
Novel TPR-containing subunit of TOM complex functions as cytosolic receptor for Entamoeba mitosomal transport. Sci Rep 2013; 3:1129. [PMID: 23350036 PMCID: PMC3553487 DOI: 10.1038/srep01129] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/27/2012] [Indexed: 11/24/2022] Open
Abstract
Under anaerobic environments, the mitochondria have undergone remarkable reduction and transformation into highly reduced structures, referred as mitochondrion-related organelles (MROs), which include mitosomes and hydrogenosomes. In agreement with the concept of reductive evolution, mitosomes of Entamoeba histolytica lack most of the components of the TOM (translocase of the outer mitochondrial membrane) complex, which is required for the targeting and membrane translocation of preproteins into the canonical aerobic mitochondria. Here we showed, in E. histolytica mitosomes, the presence of a 600-kDa TOM complex composed of Tom40, a conserved pore-forming subunit, and Tom60, a novel lineage-specific receptor protein. Tom60, containing multiple tetratricopeptide repeats, is localized to the mitosomal outer membrane and the cytosol, and serves as a receptor of both mitosomal matrix and membrane preproteins. Our data indicate that Entamoeba has invented a novel lineage-specific shuttle receptor of the TOM complex as a consequence of adaptation to an anaerobic environment.
Collapse
|
18
|
Abstract
The model organism Dictyostelium discoideum is a member of the Amoebozoa, one of the six major -divisions of eukaryotes. Amoebozoa comprise a wide variety of amoeboid and flagellate organisms with single cells measuring from 5 μm to several meters across. They have adopted many different life styles and sexual behaviors and can live in all but the most extreme environments. This chapter provides an overview of Amoebozoan diversity and compares roads towards multicellularity within the Amoebozoa with inventions of multicellularity in other protist divisions. The chapter closes with a scenario for the evolution of Dictyostelid multicellularity from an Amoebozoan stress response.
Collapse
Affiliation(s)
| | - Pauline Schaap
- University of Dundee, College of Life Sciences, Dundee, UK
| |
Collapse
|
19
|
Mitosomes in trophozoites and cysts of the reptilian parasite Entamoeba invadens. EUKARYOTIC CELL 2011; 10:1582-5. [PMID: 21965513 DOI: 10.1128/ec.05172-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heat shock protein genes led to the discovery of mitosomes in Entamoeba histolytica, but mitosomes have not been described for any other Entamoeba species, nor have they been identified in the cyst stage. Here, we show that the distantly related reptilian pathogen Entamoeba invadens contains mitosomes, in both trophozoites and cysts, suggesting all Entamoeba species contain these organelles.
Collapse
|
20
|
Tian HF, Wen JF. [Diversity of parasitic protozoan mitochondria and adaptive evolution]. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2010; 31:35-8. [PMID: 20446451 DOI: 10.3724/sp.j.1141.2010.01035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Eukaryotic mitochondrion generally possess a definite and canonical structure and function. However, in the unicellular parasitic protozoa, various atypical mitochondria with respect to the number, structure, and function, have been discovered consecutively, revealing the variability, plasticity and rich diversity of mitochondrion. Here, we review the mitochondrial diversity in diverse parasitic protozoa, and the underlying reason for such diversity--the adaptive evolution of mitochondrion to the micro-oxygen or anaero parasitic environment of these parasites is also analyzed and discussed.
Collapse
Affiliation(s)
- Hai-Feng Tian
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China
| | | |
Collapse
|
21
|
Hjort K, Goldberg AV, Tsaousis AD, Hirt RP, Embley TM. Diversity and reductive evolution of mitochondria among microbial eukaryotes. Philos Trans R Soc Lond B Biol Sci 2010; 365:713-27. [PMID: 20124340 DOI: 10.1098/rstb.2009.0224] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
All extant eukaryotes are now considered to possess mitochondria in one form or another. Many parasites or anaerobic protists have highly reduced versions of mitochondria, which have generally lost their genome and the capacity to generate ATP through oxidative phosphorylation. These organelles have been called hydrogenosomes, when they make hydrogen, or remnant mitochondria or mitosomes when their functions were cryptic. More recently, organelles with features blurring the distinction between mitochondria, hydrogenosomes and mitosomes have been identified. These organelles have retained a mitochondrial genome and include the mitochondrial-like organelle of Blastocystis and the hydrogenosome of the anaerobic ciliate Nyctotherus. Studying eukaryotic diversity from the perspective of their mitochondrial variants has yielded important insights into eukaryote molecular cell biology and evolution. These investigations are contributing to understanding the essential functions of mitochondria, defined in the broadest sense, and the limits to which reductive evolution can proceed while maintaining a viable organelle.
Collapse
Affiliation(s)
- Karin Hjort
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | |
Collapse
|
22
|
Localization and targeting of an unusual pyridine nucleotide transhydrogenase in Entamoeba histolytica. EUKARYOTIC CELL 2010; 9:926-33. [PMID: 20382757 DOI: 10.1128/ec.00011-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pyridine nucleotide transhydrogenase (PNT) catalyzes the direct transfer of a hydride-ion equivalent between NAD(H) and NADP(H) in bacteria and the mitochondria of eukaryotes. PNT was previously postulated to be localized to the highly divergent mitochondrion-related organelle, the mitosome, in the anaerobic/microaerophilic protozoan parasite Entamoeba histolytica based on the potential mitochondrion-targeting signal. However, our previous proteomic study of isolated phagosomes suggested that PNT is localized to organelles other than mitosomes. An immunofluorescence assay using anti-E. histolytica PNT (EhPNT) antibody raised against the NADH-binding domain showed a distribution to the membrane of numerous vesicles/vacuoles, including lysosomes and phagosomes. The domain(s) required for the trafficking of PNT to vesicles/vacuoles was examined by using amoeba transformants expressing a series of carboxyl-terminally truncated PNTs fused with green fluorescent protein or a hemagglutinin tag. All truncated PNTs failed to reach vesicles/vacuoles and were retained in the endoplasmic reticulum. These data indicate that the putative targeting signal is not sufficient for the trafficking of PNT to the vesicular/vacuolar compartments and that full-length PNT is necessary for correct transport. PNT displayed a smear of >120 kDa on SDS-PAGE gels. PNGase F and tunicamycin treatment, chemical degradation of carbohydrates, and heat treatment of PNT suggested that the apparent aberrant mobility of PNT is likely attributable to its hydrophobic nature. PNT that is compartmentalized to the acidic compartments is unprecedented in eukaryotes and may possess a unique physiological role in E. histolytica.
Collapse
|
23
|
Dolezal P, Dagley MJ, Kono M, Wolynec P, Likić VA, Foo JH, Sedinová M, Tachezy J, Bachmann A, Bruchhaus I, Lithgow T. The essentials of protein import in the degenerate mitochondrion of Entamoeba histolytica. PLoS Pathog 2010; 6:e1000812. [PMID: 20333239 PMCID: PMC2841616 DOI: 10.1371/journal.ppat.1000812] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 02/08/2010] [Indexed: 12/24/2022] Open
Abstract
Several essential biochemical processes are situated in mitochondria. The metabolic transformation of mitochondria in distinct lineages of eukaryotes created proteomes ranging from thousands of proteins to what appear to be a much simpler scenario. In the case of Entamoeba histolytica, tiny mitochondria known as mitosomes have undergone extreme reduction. Only recently a single complete metabolic pathway of sulfate activation has been identified in these organelles. The E. histolytica mitosomes do not produce ATP needed for the sulfate activation pathway and for three molecular chaperones, Cpn60, Cpn10 and mtHsp70. The already characterized ADP/ATP carrier would thus be essential to provide cytosolic ATP for these processes, but how the equilibrium of inorganic phosphate could be maintained was unknown. Finally, how the mitosomal proteins are translocated to the mitosomes had remained unclear. We used a hidden Markov model (HMM) based search of the E. histolytica genome sequence to discover candidate (i) mitosomal phosphate carrier complementing the activity of the ADP/ATP carrier and (ii) membrane-located components of the protein import machinery that includes the outer membrane translocation channel Tom40 and membrane assembly protein Sam50. Using in vitro and in vivo systems we show that E. histolytica contains a minimalist set up of the core import components in order to accommodate a handful of mitosomal proteins. The anaerobic and parasitic lifestyle of E. histolytica has produced one of the simplest known mitochondrial compartments of all eukaryotes. Comparisons with mitochondria of another amoeba, Dictystelium discoideum, emphasize just how dramatic the reduction of the protein import apparatus was after the loss of archetypal mitochondrial functions in the mitosomes of E. histolytica. All eukaryotic organisms have mitochondria, organelles cordoned by a double membrane, which are descendants of an ancestral bacterial endosymbiont. Nowadays, mitochondria are fully integrated into the context of diverse cellular processes and serve in providing energy, iron-containing prosthetic groups and some of the cellular building blocks like lipids and amino acids. In multi-cellular organisms, mitochondria play an additional vital role in cell signaling pathways and programmed cell death. In some unicellular eukaryotes which inhabit oxygen poor environments, intriguing mitochondrial adaptations have taken place resulting in the creation of specialized compartments known as mitosomes and hydrogenosomes. Several important human pathogens like Entamoeba histolytica, Giardia intestinalis, Trichomonas vaginalis and microsporidia contain these organelles and in many cases the function and biogenesis of these organelles remain unknown. In this paper, we investigated the protein import pathways into the mitosomes of E. histolytica, which represent one of the simplest mitochondria-related compartment discovered yet. In accordance with the limited organellar proteome, we show that only core components of mitochondria-related protein import machines are present in E. histolytica to serve for the import of a small set of substrate proteins.
Collapse
Affiliation(s)
- Pavel Dolezal
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Identification of four Entamoeba histolytica organellar DNA polymerases of the family B and cellular localization of the Ehodp1 gene and EhODP1 protein. J Biomed Biotechnol 2010; 2010:734898. [PMID: 20300437 PMCID: PMC2840583 DOI: 10.1155/2010/734898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 12/15/2009] [Indexed: 11/20/2022] Open
Abstract
We report the identification of a family of four active genes (Ehodp1, Ehodp2, Ehodp3, and Ehodp4) encoding putative DNA polymerases in Entamoeba histolytica, the protozoan parasite responsible of human amoebiasis. The four Ehodp genes show similarity to DNA polymerases encoded in fungi and plant mitochondrial plasmids. EhODP polypeptides conserve the 3′-5′ exonuclease II and 5′-3′ polymerization domains, and they have the I, II, and III conserved boxes that characterize them as DNA polymerases of family B. Furthermore, we found in EhODP polymerases two novel A and B boxes, present also in DNA polymerases encoded in fungi mitochondrial plasmids. By in situ PCR, Ehodp1 gene was located in nuclei and in DNA-containing cytoplasmic structures. Additionally, using polyclonal antibodies against a recombinant rEhODP1-168 polypeptide, and confocal microscopy, EhODP1 was located in cytoplasmic DNA-containing structures.
Collapse
|
25
|
Maralikova B, Ali V, Nakada-Tsukui K, Nozaki T, van der Giezen M, Henze K, Tovar J. Bacterial-type oxygen detoxification and iron-sulfur cluster assembly in amoebal relict mitochondria. Cell Microbiol 2010; 12:331-42. [DOI: 10.1111/j.1462-5822.2009.01397.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Baluska F. Cell-cell channels, viruses, and evolution: via infection, parasitism, and symbiosis toward higher levels of biological complexity. Ann N Y Acad Sci 2009; 1178:106-19. [PMID: 19845631 DOI: 10.1111/j.1749-6632.2009.04995.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Between prokaryotic cells and eukaryotic cells there is dramatic difference in complexity which represents a problem for the current version of the cell theory, as well as for the current version of evolution theory. In the past few decades, the serial endosymbiotic theory of Lynn Margulis has been confirmed. This results in a radical departure from our understanding of living systems: the eukaryotic cell represents de facto"cells-within-cell." Higher order "cells-within-cell" situations are obvious at the eukaryotic cell level in the form of secondary and tertiary endosymbiosis, or in the male and female gametophytes of higher plants. The next challenge of the current version of the cell theory is represented by the fact that the multicellular fungi and plants are, in fact, supracellular assemblies as their cells are not physically separated from each other. Moreover, there are also examples of alliances and mergings between multicellular organisms. Infection, especially the viral one, but also bacterial and fungal infections, followed by symbiosis, is proposed to act as the major force that drives the biological evolution toward higher complexity.
Collapse
|
27
|
Mitosomes in Entamoeba histolytica contain a sulfate activation pathway. Proc Natl Acad Sci U S A 2009; 106:21731-6. [PMID: 19995967 DOI: 10.1073/pnas.0907106106] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Hydrogenosomes and mitosomes are mitochondrion-related organelles in anaerobic/microaerophilic eukaryotes with highly reduced and divergent functions. The full diversity of their content and function, however, has not been fully determined. To understand the central role of mitosomes in Entamoeba histolytica, a parasitic protozoon that causes amoebic dysentery and liver abscesses, we examined the proteomic profile of purified mitosomes. Using 2 discontinuous Percoll gradient centrifugation and MS analysis, we identified 95 putative mitosomal proteins. Immunofluorescence assay showed that 3 proteins involved in sulfate activation, ATP sulfurylase, APS kinase, and inorganic pyrophosphatase, as well as sodium/sulfate symporter, involved in sulfate uptake, were compartmentalized to mitosomes. We have also provided biochemical evidence that activated sulfate derivatives, adenosine-5'-phosphosulfate and 3'-phosphoadenosine-5'-phosphosulfate, were produced in mitosomes. Phylogenetic analysis showed that the aforementioned proteins and chaperones have distinct origins, suggesting the mosaic character of mitosomes in E. histolytica consisting of proteins derived from alpha-proteobacterial, delta-proteobacterial, and ancestral eukaryotic origins. These results suggest that sulfate activation is the major function of mitosomes in E. histolytica and that E. histolytica mitosomes represent a unique mitochondrion-related organelle with remarkable diversity.
Collapse
|
28
|
Identification and partial characterization of a dynamin-like protein, EhDLP1, from the protist parasite Entamoeba histolytica. EUKARYOTIC CELL 2009; 9:215-23. [PMID: 19915078 DOI: 10.1128/ec.00214-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dynamin superfamily of proteins includes a large repertoire of evolutionarily conserved GTPases that interact with different subcellular organelle membranes in eukaryotes. Dynamins are thought to participate in a number of cellular processes involving membrane remodeling and scission. Dynamin-like proteins (DLPs) form a subfamily of this vast class and play important roles in cellular processes, such as mitochondrial fission, cytokinesis, and endocytosis. In the present study, a gene encoding a dynamin-like protein (EhDLP1) from the protist parasite Entamoeba histolytica was identified and the protein was partially characterized using a combination of in silico, biochemical, and imaging methods. The protein was capable of GTP binding and hydrolysis, lipid binding, and oligomerization. Immunofluorescence studies showed the protein to be associated with the nuclear membrane. A mutant of EhDLP1 lacking GTP binding and hydrolyzing activities did not associate with the nuclear membrane. The results suggest a nucleus-associated function for EhDLP1.
Collapse
|
29
|
Affiliation(s)
- Akhil B. Vaidya
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129;
| | - Michael W. Mather
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129;
| |
Collapse
|
30
|
Particularities of mitochondrial structure in parasitic protists (Apicomplexa and Kinetoplastida). Int J Biochem Cell Biol 2009; 41:2069-80. [PMID: 19379828 DOI: 10.1016/j.biocel.2009.04.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 04/07/2009] [Accepted: 04/09/2009] [Indexed: 11/20/2022]
Abstract
Without mitochondria, eukaryotic cells would depend entirely on anaerobic glycolysis for ATP generation. This also holds true for protists, both free-living and parasitic. Parasitic protists include agents of human and animal diseases that have a huge impact on world populations. In the phylum Apicomplexa, several species of Plasmodium cause malaria, whereas Toxoplasma gondii is a cosmopolite parasite found on all continents. Flagellates of the order Kinetoplastida include the genera Leishmania and Trypanosoma causative agents of human leishmaniasis and (depending on the species) African trypanosomiasis and Chagas disease. Although clearly distinct in many aspects, the members of these two groups bear a single and usually well developed mitochondrion. The single mitochondrion of Apicomplexa has a dense matrix and many cristae with a circular profile. The organelle is even more peculiar in the order Kinetoplastida, exhibiting a condensed network of DNA at a specific position, always close to the flagellar basal body. This arrangement is known as Kinetoplast and the name of the order derived from it. Kinetoplastids also bear glycosomes, peroxisomes that concentrate enzymes of the glycolytic cycle. Mitochondrial volume and activity is maximum when glycosomal is low and vice versa. In both Apicomplexa and trypanosomatids, mitochondria show particularities that are absent in other eukaryotic organisms. These peculiar features make them an attractive target for therapeutic drugs for the diseases they cause.
Collapse
|
31
|
Meléndez-Hernández MG, Barrios MLL, Orozco E, Luna-Arias JP. The vacuolar ATPase from Entamoeba histolytica: molecular cloning of the gene encoding for the B subunit and subcellular localization of the protein. BMC Microbiol 2008; 8:235. [PMID: 19108705 PMCID: PMC2629482 DOI: 10.1186/1471-2180-8-235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 12/23/2008] [Indexed: 11/10/2022] Open
Abstract
Background Entamoeba histolytica is a professional phagocytic cell where the vacuolar ATPase plays a key role. This enzyme is a multisubunit complex that regulates pH in many subcellular compartments, even in those that are not measurably acidic. It participates in a wide variety of cellular processes such as endocytosis, intracellular transport and membrane fusion. The presence of a vacuolar type H+-ATPase in E. histolytica trophozoites has been inferred previously from inhibition assays of its activity, the isolation of the Ehvma1 and Ehvma3 genes, and by proteomic analysis of purified phagosomes. Results We report the isolation and characterization of the Ehvma2 gene, which encodes for the subunit B of the vacuolar ATPase. This polypeptide is a 55.3 kDa highly conserved protein with 34 to 80% identity to orthologous proteins from other species. Particularly, in silico studies showed that EhV-ATPase subunit B displays 78% identity and 90% similarity to its Dictyostelium ortholog. A 462 bp DNA fragment of the Ehvma2 gene was expressed in bacteria and recombinant polypeptide was used to raise mouse polyclonal antibodies. EhV-ATPase subunit B antibodies detected a 55 kDa band in whole cell extracts and in an enriched fraction of DNA-containing organelles named EhkOs. The V-ATPase subunit B was located by immunofluorescence and confocal microscopy in many vesicles, in phagosomes, plasma membrane and in EhkOs. We also identified the genes encoding for the majority of the V-ATPase subunits in the E. histolytica genome, and proposed a putative model for this proton pump. Conclusion We have isolated the Ehvma2 gene which encodes for the V-ATPase subunit B from the E. histolytica clone A. This gene has a 154 bp intron and encodes for a highly conserved polypeptide. Specific antibodies localized EhV-ATPase subunit B in many vesicles, phagosomes, plasma membrane and in EhkOs. Most of the orthologous genes encoding for the EhV-ATPase subunits were found in the E. histolytica genome, indicating the conserved nature of V-ATPase in this parasite.
Collapse
|
32
|
Mather MW, Vaidya AB. Mitochondria in malaria and related parasites: ancient, diverse and streamlined. J Bioenerg Biomembr 2008; 40:425-33. [PMID: 18814021 DOI: 10.1007/s10863-008-9176-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 08/23/2008] [Indexed: 10/21/2022]
Abstract
Parasitic organisms have emerged from nearly every corner of the eukaryotic kingdom and hence display tremendous diversity of form and function. This diversity extends to their mitochondria and mitochondrion-derived organelles. While the principles of the chemiosmotic theory apply to all these pathogens, the differences from their hosts provide opportunities for therapeutic development. In this review we discuss examples of mitochondrial systems from a deep-branching phylum, Apicomplexa. Many important human pathogens, such as malaria parasites, belong to this phylum. Unique features of their mitochondria are validated targets for drugs that are selectively toxic to the parasites.
Collapse
Affiliation(s)
- Michael W Mather
- Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | | |
Collapse
|
33
|
Pérez-Brocal V, Clark CG. Analysis of two genomes from the mitochondrion-like organelle of the intestinal parasite Blastocystis: complete sequences, gene content, and genome organization. Mol Biol Evol 2008; 25:2475-82. [PMID: 18765437 PMCID: PMC2568035 DOI: 10.1093/molbev/msn193] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Acquisition of mitochondria by the ancestor of all living eukaryotes represented a crucial milestone in the evolution of the eukaryotic cell. Nevertheless, a number of anaerobic unicellular eukaryotes have secondarily discarded certain mitochondrial features, leading to modified organelles such as hydrogenosomes and mitosomes via degenerative evolution. These mitochondrion-derived organelles have lost many of the typical characteristics of aerobic mitochondria, including certain metabolic pathways, morphological traits, and, in most cases, the organellar genome. So far, the evolutionary pathway leading from aerobic mitochondria to anaerobic degenerate organelles has remained unclear due to the lack of examples representing intermediate stages. The human parasitic stramenopile Blastocystis is a rare example of an anaerobic eukaryote with organelles that have retained some mitochondrial characteristics, including a genome, whereas they lack others, such as cytochromes. Here we report the sequence and comparative analysis of the organellar genome from two different Blastocystis isolates as well as a comparison to other genomes from stramenopile mitochondria. Analysis of the characteristics displayed by the unique Blastocystis organelle genome gives us an insight into the initial evolutionary steps that may have led from mitochondria to hydrogenosomes and mitosomes.
Collapse
Affiliation(s)
- Vicente Pérez-Brocal
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | |
Collapse
|
34
|
Gill EE, Diaz-Triviño S, Barberà MJ, Silberman JD, Stechmann A, Gaston D, Tamas I, Roger AJ. Novel mitochondrion-related organelles in the anaerobic amoeba Mastigamoeba balamuthi. Mol Microbiol 2008; 66:1306-20. [PMID: 18045382 DOI: 10.1111/j.1365-2958.2007.05979.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Unicellular eukaryotes that lack mitochondria typically contain related organelles such as hydrogenosomes or mitosomes. To characterize the evolutionary diversity of these organelles, we conducted an expressed sequence tag (EST) survey on the free-living amoeba Mastigamoeba balamuthi, a relative of the human parasite Entamoeba histolytica. From 19 182 ESTs, we identified 21 putative mitochondrial proteins implicated in protein import, amino acid interconversion and carbohydrate metabolism, two components of the iron-sulphur cluster (Fe-S) assembly apparatus as well as two enzymes characteristic of hydrogenosomes. By immunofluorescence microscopy and subcellular fractionation, we show that mitochondrial chaperonin 60 is targeted to small abundant organelles within Mastigamoeba. In transmission electron micrographs, we identified double-membraned compartments that likely correspond to these mitochondrion-derived organelles, The predicted organellar proteome of the Mastigamoeba organelle indicates a unique spectrum of functions that collectively have never been observed in mitochondrion-related organelles. However, like Entamoeba, the Fe-S cluster assembly proteins in Mastigamoeba were acquired by lateral gene transfer from epsilon-proteobacteria and do not possess obvious organellar targeting peptides. These data indicate that the loss of classical aerobic mitochondrial functions and acquisition of anaerobic enzymes and Fe-S cluster assembly proteins occurred in a free-living member of the eukaryote super-kingdom Amoebozoa.
Collapse
Affiliation(s)
- Erin E Gill
- Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Department of Biochemistry and Molecular Biology, Dalhousie University, B3H 1X5, Canada
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Clark CG, Alsmark UCM, Tazreiter M, Saito-Nakano Y, Ali V, Marion S, Weber C, Mukherjee C, Bruchhaus I, Tannich E, Leippe M, Sicheritz-Ponten T, Foster PG, Samuelson J, Noël CJ, Hirt RP, Embley TM, Gilchrist CA, Mann BJ, Singh U, Ackers JP, Bhattacharya S, Bhattacharya A, Lohia A, Guillén N, Duchêne M, Nozaki T, Hall N. Structure and content of the Entamoeba histolytica genome. ADVANCES IN PARASITOLOGY 2008; 65:51-190. [PMID: 18063096 DOI: 10.1016/s0065-308x(07)65002-7] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The intestinal parasite Entamoeba histolytica is one of the first protists for which a draft genome sequence has been published. Although the genome is still incomplete, it is unlikely that many genes are missing from the list of those already identified. In this chapter we summarise the features of the genome as they are currently understood and provide previously unpublished analyses of many of the genes.
Collapse
Affiliation(s)
- C G Clark
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kuroiwa T, Misumi O, Nishida K, Yagisawa F, Yoshida Y, Fujiwara T, Kuroiwa H. Vesicle, mitochondrial, and plastid division machineries with emphasis on dynamin and electron-dense rings. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 271:97-152. [PMID: 19081542 DOI: 10.1016/s1937-6448(08)01203-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The original eukaryotic cells contained at least one set of double-membrane-bounded organelles (cell nucleus and mitochondria) and single-membrane-bounded organelles [endoplasmic reticulum, Golgi apparatus, lysosomes (vacuoles), and microbodies (peroxisomes)]. An increase in the number of organelles accompanied the evolution of these cells into Amoebozoa and Opisthokonta. Furthermore, the basic cells, containing mitochondria, engulfed photosynthetic Cyanobacteria, which were converted to plastids, and the cells thereby evolved into cells characteristic of the Bikonta. How did basic single- and double-membrane-bounded organelles originate from bacteria-like cells during early eukaryotic evolution? To answer this question, the important roles of the GTPase dynamin- and electron-dense rings in the promotion of diverse cellular activities in eukaryotes, including endocytosis, vesicular transport, mitochondrial division, and plastid division, must be considered. In this review, vesicle division, mitochondrial division, and plastid division machineries, including the dynamin- and electron-dense rings, and their roles in the origin and biogenesis of organelles in eukaryote cells are summarized.
Collapse
Affiliation(s)
- T Kuroiwa
- Research Information Center of Extremophile, Rikkyo (St Paul's) University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Aguilera P, Barry T, Tovar J. Entamoeba histolytica mitosomes: Organelles in search of a function. Exp Parasitol 2008; 118:10-6. [PMID: 17880942 DOI: 10.1016/j.exppara.2007.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 08/07/2007] [Accepted: 08/08/2007] [Indexed: 11/23/2022]
Abstract
It has been more than eight years since the discovery of mitosomes (mitochondrial remnant organelles) in the intestinal human pathogen Entamoeba histolytica. Despite detailed knowledge about the biochemistry of this parasite and the completion of the E. histolytica genome sequencing project no physiological function has yet been unequivocally assigned to these organelles. Entamoeba mitosomes seem to be the most degenerate of all endosymbiosis-derived organelles studied to date. They do not appear to participate in energy metabolism and may have dispensed completely with the proteins required for iron-sulphur cluster biosynthesis. However, the large number of mitosomes found in E. histolytica trophozoites hints at a significant biological role for these organelles in their natural environment. Identifying the protein complement of mitosomes will provide answers as to their biological significance and the reason(s) for their retention in this parasite.
Collapse
Affiliation(s)
- Penelope Aguilera
- School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, United Kingdom
| | | | | |
Collapse
|
38
|
Hackstein JHP, Tjaden J, Huynen M. Mitochondria, hydrogenosomes and mitosomes: products of evolutionary tinkering! Curr Genet 2006; 50:225-45. [PMID: 16897087 DOI: 10.1007/s00294-006-0088-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 06/29/2006] [Accepted: 07/02/2006] [Indexed: 11/29/2022]
Affiliation(s)
- Johannes H P Hackstein
- Department of Evolutionary Microbiology, Faculty of Science, Radboud University Nijmegen, Toernooiveld 1, 6525, ED Nijmegen, The Netherlands.
| | | | | |
Collapse
|
39
|
van der Giezen M, León-Avila G, Tovar J. Characterization of chaperonin 10 (Cpn10) from the intestinal human pathogen Entamoeba histolytica. MICROBIOLOGY-SGM 2005; 151:3107-3115. [PMID: 16151221 DOI: 10.1099/mic.0.28068-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Entamoeba histolytica is the causative agent of amoebiasis, a poverty-related disease that kills an estimated 100 000 people each year. E. histolytica does not contain "standard mitochondria", but harbours mitochondrial remnant organelles called mitosomes. These organelles are characterized by the presence of mitochondrial chaperonin Cpn60, but little else is known about the functions and molecular composition of mitosomes. In this study, a gene encoding molecular chaperonin Cpn10--the functional partner of Cpn60--was cloned, and its structure and expression were characterized, as well as the cellular localization of its encoded protein. The 5' untranslated region of the gene contains all of the structural promoter elements required for transcription in this organism. The amoebic Cpn10, like Cpn60, is not significantly upregulated upon heat-shock treatment. Computer-assisted protein modelling, and specific antibodies against Cpn10 and Cpn60, suggest that both proteins interact with each other, and that they function in the same intracellular compartment. Thus, E. histolytica appears to have retained at least two of the key molecular components required for the refolding of imported mitosomal proteins.
Collapse
Affiliation(s)
- Mark van der Giezen
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Gloria León-Avila
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Jorge Tovar
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| |
Collapse
|
40
|
van der Giezen M, Tovar J. Degenerate mitochondria. EMBO Rep 2005; 6:525-30. [PMID: 15940286 PMCID: PMC1369098 DOI: 10.1038/sj.embor.7400440] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Accepted: 04/15/2005] [Indexed: 11/08/2022] Open
Abstract
Mitochondria are the main sites of biological energy generation in eukaryotes. These organelles are remnants of a bacterial endosymbiont that took up residence inside a host cell over 1,500 million years ago. Comparative genomics studies suggest that the mitochondrion is monophyletic in origin. Thus, the original mitochondrial endosymbiont has evolved independently in anaerobic and aerobic environments that are inhabited by diverse eukaryotic lineages. This process has resulted in a collection of morphologically, genetically and functionally heterogeneous organelle variants that include anaerobic and aerobic mitochondria, hydrogenosomes and mitosomes. Current studies aim to determine whether a central common function drives the retention of mitochondrial organelles in different eukaryotic organisms.
Collapse
Affiliation(s)
- Mark van der Giezen
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | - Jorge Tovar
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
- Tel: + 44 1784 414159; Fax: +44 1784 434326;
| |
Collapse
|
41
|
Chan KW, Slotboom DJ, Cox S, Embley TM, Fabre O, van der Giezen M, Harding M, Horner DS, Kunji ERS, León-Avila G, Tovar J. A novel ADP/ATP transporter in the mitosome of the microaerophilic human parasite Entamoeba histolytica. Curr Biol 2005; 15:737-42. [PMID: 15854906 DOI: 10.1016/j.cub.2005.02.068] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 02/21/2005] [Accepted: 02/21/2005] [Indexed: 11/23/2022]
Abstract
Recent data suggest that microaerophilic and parasitic protozoa, which lack oxidative phosphorylation, nevertheless contain mitochondrial homologs [1-6], organelles that share common ancestry with mitochondria. Such widespread retention suggests there may be a common function for mitochondrial homologs that makes them essential for eukaryotic cells. We determined the mitochondrial carrier family (MCF) complement of the Entamoeba histolytica mitochondrial homolog, also known as a crypton [5] or more commonly as a mitosome [3]. MCF proteins support mitochondrial metabolic energy generation, DNA replication, and amino-acid metabolism by linking biochemical pathways in the mitochondrial matrix with those in the cytosol [7]. MCF diversity thus closely mirrors important facets of mitochondrial metabolic diversity. The Entamoeba histolytica mitosome has lost all but a single type of MCF protein, which transports ATP and ADP via a novel mechanism that is not reliant on a membrane potential. Phylogenetic analyses confirm that the Entamoeba ADP/ATP carrier is distinct from archetypal mitochondrial ADP/ATP carriers, an observation that is supported by its different substrate and inhibitor specificity. Because many functions of yeast and human mitochondria rely on solutes transported by specialized members of this family, the Entamoeba mitosome must contain only a small subset of these processes requiring adenine nucleotide exchange.
Collapse
Affiliation(s)
- Ka Wai Chan
- Dunn Human Nutrition Unit, Medical Research Council, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Keithly JS, Langreth SG, Buttle KF, Mannella CA. Electron tomographic and ultrastructural analysis of the Cryptosporidium parvum relict mitochondrion, its associated membranes, and organelles. J Eukaryot Microbiol 2005; 52:132-40. [PMID: 15817118 DOI: 10.1111/j.1550-7408.2005.04-3317.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sporozoites of the apicomplexan Cryptosporidium parvum possess a small, membranous organelle sandwiched between the nucleus and crystalloid body. Based upon immunolabelling data, this organelle was identified as a relict mitochondrion. Transmission electron microscopy and tomographic reconstruction reveal the complex arrangement of membranes in the vicinity of this organelle, as well as its internal organization. The mitochondrion is enveloped by multiple segments of rough endoplasmic reticulum that extend from the outer nuclear envelope. In tomographic reconstructions of the mitochondrion, there is either a single, highly-folded inner membrane or multiple internal subcompartments (which might merge outside the reconstructed volume). The infoldings of the inner membrane lack the tubular "crista junctions" found in typical metazoan, fungal, and protist mitochondria. The absence of this highly conserved structural feature is congruent with the loss, through reductive evolution, of the normal oxidative phosphorylation machinery in C. parvum. It is proposed that the retention of a relict mitochondrion in C. parvum is a strategy for compartmentalizing away from the cytosol toxic ferrous iron and sulfide, which are needed for iron sulfur cluster biosynthesis, an essential function of mitochondria in all eukaryotes.
Collapse
Affiliation(s)
- Janet S Keithly
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York 12201, USA.
| | | | | | | |
Collapse
|
43
|
Abstract
Despite enormous efforts, the patterns of the rise of eukaryotic life on Earth are not clearly defined. The ability of eukaryotes to produce energy using oxygen and sugars was a key factor in advancing life on Earth towards complex multicellular organisms. However, this was not the only way to produce energy and survive. Mitochondria probably appeared soon after the oxygen increase in the Earth's atmosphere but many microaerophilic protists require little or no oxygen to survive. New ultrastructural, biochemical and molecular phylogeny data about structures and processes involved in the generation of energy by currently known protists have forced the revision of understanding of the "tree of life".
Collapse
Affiliation(s)
- Thaddeus K Graczyk
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
44
|
Regoes A, Zourmpanou D, León-Avila G, van der Giezen M, Tovar J, Hehl AB. Protein import, replication, and inheritance of a vestigial mitochondrion. J Biol Chem 2005; 280:30557-63. [PMID: 15985435 DOI: 10.1074/jbc.m500787200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial remnant organelles (mitosomes) that exist in a range of "amitochondrial" eukaryotic organisms represent ideal models for the study of mitochondrial evolution and for the establishment of the minimal set of proteins required for the biogenesis of an endosymbiosis-derived organelle. Giardia intestinalis, often described as the earliest branching eukaryote, contains double membrane-bounded structures involved in iron-sulfur cluster biosynthesis, an essential function of mitochondria. Here we present evidence that Giardia mitosomes also harbor Cpn60, mtHsp70, and ferredoxin and that despite their advanced state of reductive evolution they have retained vestiges of presequence-dependent and -independent protein import pathways akin to those that operate in mammalian mitochondria. Although import of IscU and ferredoxin is still reliant on their amino-terminal presequences, targeting of Giardia Cpn60, IscS, or mtHsp70 into mitosomes no longer requires cleavable presequences, a derived feature from their mitochondrial homologues. In addition, we found that division and segregation of a single centrally positioned mitosome tightly associated with the microtubular cytoskeleton is coordinated with the cell cycle, whereas peripherally located mitosomes are inherited into daughter cells stochastically.
Collapse
Affiliation(s)
- Attila Regoes
- Institute of Parasitology, University of Zürich, Winterthurerstrasse 266a, CH-8057 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
45
|
Boxma B, de Graaf RM, van der Staay GWM, van Alen TA, Ricard G, Gabaldón T, van Hoek AHAM, Moon-van der Staay SY, Koopman WJH, van Hellemond JJ, Tielens AGM, Friedrich T, Veenhuis M, Huynen MA, Hackstein JHP. An anaerobic mitochondrion that produces hydrogen. Nature 2005; 434:74-9. [PMID: 15744302 DOI: 10.1038/nature03343] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 01/07/2005] [Indexed: 11/09/2022]
Abstract
Hydrogenosomes are organelles that produce ATP and hydrogen, and are found in various unrelated eukaryotes, such as anaerobic flagellates, chytridiomycete fungi and ciliates. Although all of these organelles generate hydrogen, the hydrogenosomes from these organisms are structurally and metabolically quite different, just like mitochondria where large differences also exist. These differences have led to a continuing debate about the evolutionary origin of hydrogenosomes. Here we show that the hydrogenosomes of the anaerobic ciliate Nyctotherus ovalis, which thrives in the hindgut of cockroaches, have retained a rudimentary genome encoding components of a mitochondrial electron transport chain. Phylogenetic analyses reveal that those proteins cluster with their homologues from aerobic ciliates. In addition, several nucleus-encoded components of the mitochondrial proteome, such as pyruvate dehydrogenase and complex II, were identified. The N. ovalis hydrogenosome is sensitive to inhibitors of mitochondrial complex I and produces succinate as a major metabolic end product--biochemical traits typical of anaerobic mitochondria. The production of hydrogen, together with the presence of a genome encoding respiratory chain components, and biochemical features characteristic of anaerobic mitochondria, identify the N. ovalis organelle as a missing link between mitochondria and hydrogenosomes.
Collapse
Affiliation(s)
- Brigitte Boxma
- Department of Evolutionary Microbiology, Faculty of Science, Radboud University Nijmegen, Toernooiveld 1, NL-6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Loftus B, Anderson I, Davies R, Alsmark UCM, Samuelson J, Amedeo P, Roncaglia P, Berriman M, Hirt RP, Mann BJ, Nozaki T, Suh B, Pop M, Duchene M, Ackers J, Tannich E, Leippe M, Hofer M, Bruchhaus I, Willhoeft U, Bhattacharya A, Chillingworth T, Churcher C, Hance Z, Harris B, Harris D, Jagels K, Moule S, Mungall K, Ormond D, Squares R, Whitehead S, Quail MA, Rabbinowitsch E, Norbertczak H, Price C, Wang Z, Guillén N, Gilchrist C, Stroup SE, Bhattacharya S, Lohia A, Foster PG, Sicheritz-Ponten T, Weber C, Singh U, Mukherjee C, El-Sayed NM, Petri WA, Clark CG, Embley TM, Barrell B, Fraser CM, Hall N. The genome of the protist parasite Entamoeba histolytica. Nature 2005; 433:865-8. [PMID: 15729342 DOI: 10.1038/nature03291] [Citation(s) in RCA: 633] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Accepted: 12/02/2004] [Indexed: 11/08/2022]
Abstract
Entamoeba histolytica is an intestinal parasite and the causative agent of amoebiasis, which is a significant source of morbidity and mortality in developing countries. Here we present the genome of E. histolytica, which reveals a variety of metabolic adaptations shared with two other amitochondrial protist pathogens: Giardia lamblia and Trichomonas vaginalis. These adaptations include reduction or elimination of most mitochondrial metabolic pathways and the use of oxidative stress enzymes generally associated with anaerobic prokaryotes. Phylogenomic analysis identifies evidence for lateral gene transfer of bacterial genes into the E. histolytica genome, the effects of which centre on expanding aspects of E. histolytica's metabolic repertoire. The presence of these genes and the potential for novel metabolic pathways in E. histolytica may allow for the development of new chemotherapeutic agents. The genome encodes a large number of novel receptor kinases and contains expansions of a variety of gene families, including those associated with virulence. Additional genome features include an abundance of tandemly repeated transfer-RNA-containing arrays, which may have a structural function in the genome. Analysis of the genome provides new insights into the workings and genome evolution of a major human pathogen.
Collapse
Affiliation(s)
- Brendan Loftus
- TIGR, 9712 Medical Center Drive, Rockville, Maryland 20850, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
van der Giezen M, Tovar J, Clark CG. Mitochondrion‐Derived Organelles in Protists and Fungi. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 244:175-225. [PMID: 16157181 DOI: 10.1016/s0074-7696(05)44005-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The mitochondrion is generally considered to be a defining feature of eukaryotic cells, yet most anaerobic eukaryotes lack this organelle. Many of these were previously thought to derive from eukaryotes that diverged prior to acquisition of the organelle through endosymbiosis. It is now known that all extant eukaryotes are descended from an ancestor that had a mitochondrion and that in anaerobic eukaryotes the organelle has been modified into either hydrogenosomes, which continue to generate energy for the host cell, or mitosomes, which do not. These organelles have each arisen independently several times. Recent evidence suggests a shared derived characteristic that may be responsible for the retention of the organelles in the absence of the better-known mitochondrial functions--iron-sulfur cluster assembly. This review explores the events leading to this new understanding of mitochondrion-derived organelles in amitochondriate eukaryotes, the current state of our knowledge, and future areas for investigation.
Collapse
Affiliation(s)
- Mark van der Giezen
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom
| | | | | |
Collapse
|
48
|
|
49
|
Affiliation(s)
- Nigel Yarlett
- Department of Chemistry and Physical Sciences and Haskins Laboratories, Pace University, New York, NY 10038, USA
| |
Collapse
|