1
|
Singh AP, Gupta A, Jaiswal J, Singh PR, Sinha RP. Impacts of different salt concentrations on the morphology, physiology, and antioxidant properties of the rice-field cyanobacterium Nostochopsis lobatus HKAR-21. Int Microbiol 2025:10.1007/s10123-025-00638-7. [PMID: 39954147 DOI: 10.1007/s10123-025-00638-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/10/2025] [Accepted: 01/29/2025] [Indexed: 02/17/2025]
Abstract
The physiological and biochemical responses of organisms, including cyanobacteria, are greatly influenced by environmental change. Salinity significantly affects global rice output, and cyanobacteria are major contributors to rice productivity. Therefore, in our study, we explore the effects of varying concentrations of three (i.e., MgSO4, CaCl2, K2HPO4) agriculturally important salts on the biomass, growth, and biochemical status of the rice-field cyanobacterium Nostochopsis lobatus HKAR-21. A significant decrease in the photopigment activity, growth, and effective quantum yield of photosystem II (PSII) (Fv/Fm) was observed in the cells treated with 0 μM K2HPO4 and 0 μM MgSO4. There was minimum effect on the growth and photopigment in samples treated without CaCl2 (0 μM CaCl2). Phycobiliproteins (PBPs) and carbohydrate content were largely regulated by MgSO4. However, K2HPO4 had an optimum effect on all three macromolecular components. Brightfield imaging revealed that each salt had a characteristic role in the morphology of the cells. Additionally, in vitro lipid peroxidation with in vivo reactive oxygen species (ROS) and lipid peroxidation were examined with the help of DCFH-DA and Nile red fluorescence, respectively. The antioxidant potential of the carotenoid was checked by using DPPH and ABTS assays. Our study conclusively highlights that the increasing salt concentration will have a negative impact on the cyanobacterium growth which in turn will affect the productivity of rice paddy fields which is one of the most important crops on which more than a billion people are dependent.
Collapse
Affiliation(s)
- Ashish P Singh
- Laboratory of Photobiology and Molecular Microbiology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Amit Gupta
- Laboratory of Photobiology and Molecular Microbiology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Jyoti Jaiswal
- Laboratory of Photobiology and Molecular Microbiology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Prashant R Singh
- Laboratory of Photobiology and Molecular Microbiology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rajeshwar P Sinha
- Laboratory of Photobiology and Molecular Microbiology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Duersch BG, Soini SA, Luo Y, Liu X, Chen S, Merk VM. Nanoscale elemental and morphological imaging of nitrogen-fixing cyanobacteria. Metallomics 2024; 16:mfae040. [PMID: 39271453 PMCID: PMC11450467 DOI: 10.1093/mtomcs/mfae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/12/2024] [Indexed: 09/15/2024]
Abstract
Nitrogen-fixing cyanobacteria bind atmospheric nitrogen and carbon dioxide using sunlight. This experimental study focused on a laboratory-based model system, Anabaena sp., in nitrogen-depleted culture. When combined nitrogen is scarce, the filamentous prokaryotes reconcile photosynthesis and nitrogen fixation by cellular differentiation into heterocysts. To better understand the influence of micronutrients on cellular function, 2D and 3D synchrotron X-ray fluorescence mappings were acquired from whole biological cells in their frozen-hydrated state at the Bionanoprobe, Advanced Photon Source. To study elemental homeostasis within these chain-like organisms, biologically relevant elements were mapped using X-ray fluorescence spectroscopy and energy-dispersive X-ray microanalysis. Higher levels of cytosolic K+, Ca2+, and Fe2+ were measured in the heterocyst than in adjacent vegetative cells, supporting the notion of elevated micronutrient demand. P-rich clusters, identified as polyphosphate bodies involved in nutrient storage, metal detoxification, and osmotic regulation, were consistently co-localized with K+ and occasionally sequestered Mg2+, Ca2+, Fe2+, and Mn2+ ions. Machine-learning-based k-mean clustering revealed that P/K clusters were associated with either Fe or Ca, with Fe and Ca clusters also occurring individually. In accordance with XRF nanotomography, distinct P/K-containing clusters close to the cellular envelope were surrounded by larger Ca-rich clusters. The transition metal Fe, which is a part of nitrogenase enzyme, was detected as irregularly shaped clusters. The elemental composition and cellular morphology of diazotrophic Anabaena sp. was visualized by multimodal imaging using atomic force microscopy, scanning electron microscopy, and fluorescence microscopy. This paper discusses the first experimental results obtained with a combined in-line optical and X-ray fluorescence microscope at the Bionanoprobe.
Collapse
Affiliation(s)
- Bobby G Duersch
- Department of Chemistry and Biochemistry, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL, USA
| | - Steven A Soini
- Department of Chemistry and Biochemistry, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL, USA
| | - Yanqi Luo
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Xiaoyang Liu
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Si Chen
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Vivian M Merk
- Department of Chemistry and Biochemistry, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
3
|
Tamayo-Belda M, Pulido-Reyes G, González-Pleiter M, Martín-Betancor K, Leganés F, Rosal R, Fernández-Piñas F. Identification and toxicity towards aquatic primary producers of the smallest fractions released from hydrolytic degradation of polycaprolactone microplastics. CHEMOSPHERE 2022; 303:134966. [PMID: 35588878 DOI: 10.1016/j.chemosphere.2022.134966] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/05/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Bioplastics are thought as a safe substitute of non-biodegradable polymers. However, once released in the environment, biodegradation may be very slow, and they also suffer abiotic fragmentation processes, which may give rise to different fractions of polymer sizes. We present novel data on abiotic hydrolytic degradation of polycaprolactone (PCL), tracking the presence of by-products during 132 days by combining different physicochemical techniques. During the study a considerable amount of two small size plastic fractions were found (up to ∼ 6 mg of PCL by-product/g of PCL beads after 132 days of degradation); and classified as submicron-plastics (sMPs) from 1 μm to 100 nm and nanoplastics (NPs, <100 nm) as well as oligomers. The potential toxicity of the smallest fractions, PCL by-products < 100 nm (PCL-NPs + PCL oligomers) and the PCL oligomers single fraction, was tested on two ecologically relevant aquatic primary producers: the heterocystous filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120, and the unicellular cyanobacterium Synechococcus sp. PCC 7942. Upon exposure to both, single and combined fractions, Reactive Oxygen Species (ROS) overproduction, intracellular pH and metabolic activity alterations were observed in both organisms, whilst membrane potential and morphological damages were only observed upon PCL-NPs + PCL oligomers exposure. Notably both PCL by-products fractions inhibited nitrogen fixation in Anabaena, which may be clearly detrimental for the aquatic trophic chain. As conclusion, fragmentation of bioplastics may render a continuous production of secondary nanoplastics as well as oligomers that might be toxic to the surrounding biota; both PCL-NPs and PCL oligomers, but largely the nanoparticulate fraction, were harmful for the two aquatic primary producers. Efforts should be made to thoroughly understand the fragmentation of bioplastics and the toxicity of the smallest fractions resulting from that degradation.
Collapse
Affiliation(s)
- Miguel Tamayo-Belda
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049, Madrid, Spain
| | - Gerardo Pulido-Reyes
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049, Madrid, Spain
| | - Miguel González-Pleiter
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049, Madrid, Spain
| | - Keila Martín-Betancor
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049, Madrid, Spain
| | - Francisco Leganés
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, E-28049, Madrid, Spain
| | - Roberto Rosal
- Department of Chemical Engineering, Universidad de Alcalá, E-28871, Alcalá de Henares, Madrid, Spain
| | | |
Collapse
|
4
|
Aguilera A, Berdun F, Bartoli C, Steelheart C, Alegre M, Bayir H, Tyurina YY, Kagan VE, Salerno G, Pagnussat G, Martin MV. C-ferroptosis is an iron-dependent form of regulated cell death in cyanobacteria. J Cell Biol 2022; 221:212878. [PMID: 34817556 PMCID: PMC8624678 DOI: 10.1083/jcb.201911005] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 09/29/2021] [Accepted: 11/05/2021] [Indexed: 12/30/2022] Open
Abstract
Ferroptosis is an oxidative and iron-dependent form of regulated cell death (RCD) recently described in eukaryotic organisms like animals, plants, and parasites. Here, we report that a similar process takes place in the photosynthetic prokaryote Synechocystis sp. PCC 6803 in response to heat stress. After a heat shock, Synechocystis sp. PCC 6803 cells undergo a cell death pathway that can be suppressed by the canonical ferroptosis inhibitors, CPX, vitamin E, Fer-1, liproxstatin-1, glutathione (GSH), or ascorbic acid (AsA). Moreover, as described for eukaryotic ferroptosis, this pathway is characterized by an early depletion of the antioxidants GSH and AsA, and by lipid peroxidation. These results indicate that all of the hallmarks described for eukaryotic ferroptosis are conserved in photosynthetic prokaryotes and suggest that ferroptosis might be an ancient cell death program.
Collapse
Affiliation(s)
- Anabella Aguilera
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (CIB-FIBA), Mar del Plata, Argentina
| | - Federico Berdun
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (CIB-FIBA), Mar del Plata, Argentina
| | - Carlos Bartoli
- Instituto de Fisiología Vegetal (INFIVE), Facultades de Ciencias Agrarias y Forestales y de Ciencias Naturales y Museo, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Charlotte Steelheart
- Instituto de Fisiología Vegetal (INFIVE), Facultades de Ciencias Agrarias y Forestales y de Ciencias Naturales y Museo, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Matías Alegre
- Instituto de Fisiología Vegetal (INFIVE), Facultades de Ciencias Agrarias y Forestales y de Ciencias Naturales y Museo, Universidad Nacional de La Plata, CCT-CONICET La Plata, La Plata, Argentina
| | - Hülya Bayir
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA.,Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA.,Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA.,Departments of Environmental and Occupational Health, Chemistry, Pharmacology and Chemical Biology, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA.,Departments of Environmental and Occupational Health, Chemistry, Pharmacology and Chemical Biology, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA
| | - Valerian E Kagan
- Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA.,Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA.,Departments of Environmental and Occupational Health, Chemistry, Pharmacology and Chemical Biology, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA.,Institute for Regenerative Medicine, IM Sechenov Moscow State Medical University, Moscow, Russia
| | - Graciela Salerno
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (CIB-FIBA), Mar del Plata, Argentina
| | - Gabriela Pagnussat
- Instituto de investigaciones Biológicas IIB-CONICET, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - María Victoria Martin
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (CIB-FIBA), Mar del Plata, Argentina
| |
Collapse
|
5
|
Schätzle H, Arévalo S, Flores E, Schleiff E. A TonB-Like Protein, SjdR, Is Involved in the Structural Definition of the Intercellular Septa in the Heterocyst-Forming Cyanobacterium Anabaena. mBio 2021; 12:e0048321. [PMID: 34101487 PMCID: PMC8262864 DOI: 10.1128/mbio.00483-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Cyanobacteria are photosynthetic organisms with a Gram-negative envelope structure. Certain filamentous species such as Anabaena sp. strain PCC 7120 can fix dinitrogen upon depletion of combined nitrogen. Because the nitrogen-fixing enzyme, nitrogenase, is oxygen sensitive, photosynthesis and nitrogen fixation are spatially separated in Anabaena. Nitrogen fixation takes place in specialized cells called heterocysts, which differentiate from vegetative cells. During heterocyst differentiation, a microoxic environment is created by dismantling photosystem II and restructuring the cell wall. Moreover, solute exchange between the different cell types is regulated to limit oxygen influx into the heterocyst. The septal zone containing nanopores for solute exchange is constricted between heterocysts and vegetative cells, and cyanophycin plugs are located at the heterocyst poles. We identified a protein previously annotated as TonB1 that is largely conserved among cyanobacteria. A mutant of the encoding gene formed heterocysts but was impaired in diazotrophic growth. Mutant heterocysts appeared elongated and exhibited abnormal morphological features, including a reduced cyanophycin plug, an enhanced septum size, and a restricted nanopore zone in the septum. In spite of this, the intercellular transfer velocity of the fluorescent marker calcein was increased in the mutant compared to the wild type. Thus, the protein is required for proper formation of septal structures, expanding our emerging understanding of Anabaena peptidoglycan plasticity and intercellular solute exchange, and is therefore renamed SjdR (septal junction disk regulator). Notably, calcium supplementation compensated for the impaired diazotrophic growth and alterations in septal peptidoglycan in the sjdR mutant, emphasizing the importance of calcium for cell wall structure. IMPORTANCE Multicellularity in bacteria confers an improved adaptive capacity to environmental conditions and stresses. This includes an enhanced capability of resource utilization through a distribution of biochemical processes between constituent cells. This specialization results in a mutual dependency of different cell types, as is the case for nitrogen-fixing heterocysts and photosynthetically active vegetative cells in Anabaena. In this cyanobacterium, intercellular solute exchange is facilitated through nanopores in the peptidoglycan between adjacent cells. To ensure functionality of the specialized cells, septal size as well as the position, size, and frequency of nanopores in the septum need to be tightly established. The novel septal junction disk regulator SjdR characterized here is conserved in the cyanobacterial phylum. It influences septal size and septal nanopore distribution. Consequently, its absence severely affects the intercellular communication and the strains' growth capacity under nitrogen depletion. Thus, SjdR is involved in septal structure remodeling in cyanobacteria.
Collapse
Affiliation(s)
- Hannah Schätzle
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- FIERCE, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sergio Arévalo
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- FIERCE, Goethe University Frankfurt, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| |
Collapse
|
6
|
Wahdan SFM, Heintz-Buschart A, Sansupa C, Tanunchai B, Wu YT, Schädler M, Noll M, Purahong W, Buscot F. Targeting the Active Rhizosphere Microbiome of Trifolium pratense in Grassland Evidences a Stronger-Than-Expected Belowground Biodiversity-Ecosystem Functioning Link. Front Microbiol 2021; 12:629169. [PMID: 33597941 PMCID: PMC7882529 DOI: 10.3389/fmicb.2021.629169] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
The relationship between biodiversity and ecosystem functioning (BEF) is a central issue in soil and microbial ecology. To date, most belowground BEF studies focus on the diversity of microbes analyzed by barcoding on total DNA, which targets both active and inactive microbes. This approach creates a bias as it mixes the part of the microbiome currently steering processes that provide actual ecosystem functions with the part not directly involved. Using experimental extensive grasslands under current and future climate, we used the bromodeoxyuridine (BrdU) immunocapture technique combined with pair-end Illumina sequencing to characterize both total and active microbiomes (including both bacteria and fungi) in the rhizosphere of Trifolium pratense. Rhizosphere function was assessed by measuring the activity of three microbial extracellular enzymes (β-glucosidase, N-acetyl-glucosaminidase, and acid phosphatase), which play central roles in the C, N, and P acquisition. We showed that the richness of overall and specific functional groups of active microbes in rhizosphere soil significantly correlated with the measured enzyme activities, while total microbial richness did not. Active microbes of the rhizosphere represented 42.8 and 32.1% of the total bacterial and fungal taxa, respectively, and were taxonomically and functionally diverse. Nitrogen fixing bacteria were highly active in this system with 71% of the total operational taxonomic units (OTUs) assigned to this group detected as active. We found the total and active microbiomes to display different responses to variations in soil physicochemical factors in the grassland, but with some degree of resistance to a manipulation mimicking future climate. Our findings provide critical insights into the role of active microbes in defining soil ecosystem functions in a grassland ecosystem. We demonstrate that the relationship between biodiversity-ecosystem functioning in soil may be stronger than previously thought.
Collapse
Affiliation(s)
- Sara Fareed Mohamed Wahdan
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany.,Department of Biology, Leipzig University, Leipzig, Germany.,Department of Botany, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Anna Heintz-Buschart
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Chakriya Sansupa
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany
| | - Benjawan Tanunchai
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany
| | - Yu-Ting Wu
- Department of Forestry, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Martin Schädler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Community Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany
| | - Matthias Noll
- Institute for Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Witoon Purahong
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany
| | - François Buscot
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
7
|
Walter J, Leganés F, Aro EM, Gollan PJ. The small Ca 2+-binding protein CSE links Ca 2+ signalling with nitrogen metabolism and filament integrity in Anabaena sp. PCC 7120. BMC Microbiol 2020; 20:57. [PMID: 32160863 PMCID: PMC7065334 DOI: 10.1186/s12866-020-01735-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 02/24/2020] [Indexed: 02/02/2023] Open
Abstract
Background Filamentous cyanobacteria represent model organisms for investigating multicellularity. For many species, nitrogen-fixing heterocysts are formed from photosynthetic vegetative cells under nitrogen limitation. Intracellular Ca2+ has been implicated in the highly regulated process of heterocyst differentiation but its role remains unclear. Ca2+ is known to operate more broadly in metabolic signalling in cyanobacteria, although the signalling mechanisms are virtually unknown. A Ca2+-binding protein called the Ca2+ Sensor EF-hand (CSE) is found almost exclusively in filamentous cyanobacteria. Expression of asr1131 encoding the CSE protein in Anabaena sp. PCC 7120 was strongly induced by low CO2 conditions, and rapidly downregulated during nitrogen step-down. A previous study suggests a role for CSE and Ca2+ in regulation of photosynthetic activity in response to changes in carbon and nitrogen availability. Results In the current study, a mutant Anabaena sp. PCC 7120 strain lacking asr1131 (Δcse) was highly prone to filament fragmentation, leading to a striking phenotype of very short filaments and poor growth under nitrogen-depleted conditions. Transcriptomics analysis under nitrogen-replete conditions revealed that genes involved in heterocyst differentiation and function were downregulated in Δcse, while heterocyst inhibitors were upregulated, compared to the wild-type. Conclusions These results indicate that CSE is required for filament integrity and for proper differentiation and function of heterocysts upon changes in the cellular carbon/nitrogen balance. A role for CSE in transmitting Ca2+ signals during the first response to changes in metabolic homeostasis is discussed.
Collapse
Affiliation(s)
- Julia Walter
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Tykistökatu 6A, 6. krs, 20520, Turku, Finland.,Present address: Department of Plant Sciences, Environmental Plant Physiology, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Francisco Leganés
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Calle Darwin 2, 28049, Madrid, Spain
| | - Eva-Mari Aro
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Tykistökatu 6A, 6. krs, 20520, Turku, Finland
| | - Peter J Gollan
- Department of Biochemistry, Molecular Plant Biology, University of Turku, Tykistökatu 6A, 6. krs, 20520, Turku, Finland.
| |
Collapse
|
8
|
Kaczmarski JA, Hong NS, Mukherjee B, Wey LT, Rourke L, Förster B, Peat TS, Price GD, Jackson CJ. Structural Basis for the Allosteric Regulation of the SbtA Bicarbonate Transporter by the P II-like Protein, SbtB, from Cyanobium sp. PCC7001. Biochemistry 2019; 58:5030-5039. [PMID: 31746199 DOI: 10.1021/acs.biochem.9b00880] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cyanobacteria have evolved a suite of enzymes and inorganic carbon (Ci) transporters that improve photosynthetic performance by increasing the localized concentration of CO2 around the primary CO2-fixating enzyme, Rubisco. This CO2-concentrating mechanism (CCM) is highly regulated, responds to illumination/darkness cycles, and allows cyanobacteria to thrive under limiting Ci conditions. While the transcriptional control of CCM activity is well understood, less is known about how regulatory proteins might allosterically regulate Ci transporters in response to changing conditions. Cyanobacterial sodium-dependent bicarbonate transporters (SbtAs) are inhibited by PII-like regulatory proteins (SbtBs), with the inhibitory effect being modulated by adenylnucleotides. Here, we used isothermal titration calorimetry to show that SbtB from Cyanobium sp. PCC7001 (SbtB7001) binds AMP, ADP, cAMP, and ATP with micromolar-range affinities. X-ray crystal structures of apo and nucleotide-bound SbtB7001 revealed that while AMP, ADP, and cAMP have little effect on the SbtB7001 structure, binding of ATP stabilizes the otherwise flexible T-loop, and that the flexible C-terminal C-loop adopts several distinct conformations. We also show that ATP binding affinity is increased 10-fold in the presence of Ca2+, and we present an X-ray crystal structure of Ca2+ATP:SbtB7001 that shows how this metal ion facilitates additional stabilizing interactions with the apex of the T-loop. We propose that the Ca2+ATP-induced conformational change observed in SbtB7001 is important for allosteric regulation of SbtA activity by SbtB and is consistent with changing adenylnucleotide levels in illumination/darkness cycles.
Collapse
Affiliation(s)
- Joe A Kaczmarski
- Research School of Chemistry , The Australian National University , 137 Sullivans Creek Road , Canberra , ACT 0200 , Australia
| | - Nan-Sook Hong
- Research School of Chemistry , The Australian National University , 137 Sullivans Creek Road , Canberra , ACT 0200 , Australia
| | - Bratati Mukherjee
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology , The Australian National University , 134 Linnaeus Way , Canberra , ACT 0200 , Australia
| | - Laura T Wey
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology , The Australian National University , 134 Linnaeus Way , Canberra , ACT 0200 , Australia
| | - Loraine Rourke
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology , The Australian National University , 134 Linnaeus Way , Canberra , ACT 0200 , Australia
| | - Britta Förster
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology , The Australian National University , 134 Linnaeus Way , Canberra , ACT 0200 , Australia
| | - Thomas S Peat
- CSIRO Biomedical Program , 343 Royal Parade , Parkville , VIC 3052 , Australia
| | - G Dean Price
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology , The Australian National University , 134 Linnaeus Way , Canberra , ACT 0200 , Australia
| | - Colin J Jackson
- Research School of Chemistry , The Australian National University , 137 Sullivans Creek Road , Canberra , ACT 0200 , Australia
| |
Collapse
|
9
|
Tiwari A, Singh P, Riyazat Khadim S, Singh AK, Singh U, Singh P, Asthana RK. Role of Ca 2+ as protectant under heat stress by regulation of photosynthesis and membrane saturation in Anabaena PCC 7120. PROTOPLASMA 2019; 256:681-691. [PMID: 30456698 DOI: 10.1007/s00709-018-1328-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/12/2018] [Indexed: 05/08/2023]
Abstract
The present study was aimed at understanding the effects of heat stress on selected physiological and biochemical parameters of a model cyanobacterium, Anabaena PCC 7120 in addition to amelioration strategy using exogenous Ca2+. A comparison of the cells exposed to heat stress (0-24 h) in the presence or absence of Ca2+ clearly showed reduction in colony-forming ability and increase in reactive oxygen species (ROS) leading to loss in the viability of cells of Ca2+-deficient cultures. There was higher level of saturation in membrane lipids of the cells supplemented with Ca2+ along with higher accumulation of proline. Similarly, higher quantum yield (7.8-fold) in Ca2+-supplemented cultures indicated role of Ca2+ in regulation of photosynthesis. Relative electron transport rate (rETR) decreased in both the sets with the difference in the rate of decrease (slow) in Ca2+-supplemented cultures. The Ca2+-supplemented sets also maintained high levels of open reaction centers of PS II in comparison to Ca2+-deprived cells. Increase in transcripts of both subunits ((rbcL and rbcS) of RubisCO from Ca2+-supplemented Anabaena cultures pointed out the role of Ca2+ in sustenance of photosynthesis of cells via CO2 fixation, thus, playing an important role in maintaining metabolic status of the heat-stressed cyanobacterium.
Collapse
Affiliation(s)
- Anupam Tiwari
- Lovely Professional University, Phagwara, Jalandhar, India
| | - Prabhakar Singh
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sk Riyazat Khadim
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ankit Kumar Singh
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Urmilesh Singh
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Priyanka Singh
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ravi Kumar Asthana
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
10
|
A novel Ca 2+-binding protein influences photosynthetic electron transport in Anabaena sp. PCC 7120. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:519-532. [PMID: 31034800 DOI: 10.1016/j.bbabio.2019.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/17/2019] [Accepted: 04/23/2019] [Indexed: 12/25/2022]
Abstract
Ca2+ is a potent signalling molecule that regulates many cellular processes. In cyanobacteria, Ca2+ has been linked to cell growth, stress response and photosynthesis, and to the development of specialist heterocyst cells in certain nitrogen-fixing species. Despite this, the pathways of Ca2+ signal transduction in cyanobacteria are poorly understood, and very few protein components are known. The current study describes a previously unreported Ca2+-binding protein which was called the Ca2+ Sensor EF-hand (CSE), which is conserved in filamentous, nitrogen-fixing cyanobacteria. CSE is shown to bind Ca2+, which induces a conformational change in the protein structure. Poor growth of a strain of Anabaena sp. PCC 7120 overexpressing CSE was attributed to diminished photosynthetic performance. Transcriptomics, biophysics and proteomics analyses revealed modifications in the light-harvesting phycobilisome and photosynthetic reaction centre protein complexes.
Collapse
|
11
|
González-Pleiter M, Leganés F, Fernández-Piñas F. Intracellular free Ca2+signals antibiotic exposure in cyanobacteria. RSC Adv 2017. [DOI: 10.1039/c7ra03001k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intracellular free Ca2+, [Ca2+]i, is a key element of the cellular response to many abiotic and biotic stresses.
Collapse
Affiliation(s)
- M. González-Pleiter
- Department of Biology
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - F. Leganés
- Department of Biology
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | - F. Fernández-Piñas
- Department of Biology
- Facultad de Ciencias
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| |
Collapse
|
12
|
Tiwari A, Singh P, Asthana RK. Role of calcium in the mitigation of heat stress in the cyanobacterium Anabaena PCC 7120. JOURNAL OF PLANT PHYSIOLOGY 2016; 199:67-75. [PMID: 27302007 DOI: 10.1016/j.jplph.2016.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 05/09/2016] [Accepted: 05/18/2016] [Indexed: 05/08/2023]
Abstract
The effects of exogenously added CaCl2 (0.25mM) on photopigments, photosynthetic O2-evolution, antioxidative enzyme activity, membrane damage, expression of two heat shock genes (groEL and groES) and apoptotic features in Anabaena 7120 under heat stress (45°C) for up to 24h were investigated. Heat stress lowered the level of photopigments; however, Ca2+--supplemented cultures showed a low level reduction in Chl a but induced accumulation of carotenoids and phycocyanin under heat stress. Photosynthetic O2-evolving capacity was maintained at a higher level in cells from Ca2+-supplemented medium. Among the antioxidative enzymes, superoxide dismutase activity was unaffected by the presence or absence of Ca2+ in contrast to increases in catalase, ascorbate peroxidase and glutathione reductase activities in cells grown in Ca2+-supplemented medium. Lower levels of lipid peroxidation were recorded in Anabaena cells grown in Ca2+-supplemented medium in comparison to cells from Ca2+--deprived medium. Target cells grown in Ca2+-deprived medium developed apoptotic features in the early stages of heat shock, while Ca2+ application seemed to interfere with apoptosis because only a few cells showed such features after 24 h of heat exposure, indicating a role for Ca2+ in maintaining cell viability under heat stress. There was also continuous up regulation of two important heat shock genes (groEL and groES) in Ca2+-supplemented cultures, exposed to heat shock, again indicating a role for Ca2+ in stress management.
Collapse
Affiliation(s)
- Anupam Tiwari
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Priyanka Singh
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Ravi Kumar Asthana
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
13
|
Walter J, Lynch F, Battchikova N, Aro EM, Gollan PJ. Calcium impacts carbon and nitrogen balance in the filamentous cyanobacterium Anabaena sp. PCC 7120. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3997-4008. [PMID: 27012282 PMCID: PMC4915528 DOI: 10.1093/jxb/erw112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Calcium is integral to the perception, communication and adjustment of cellular responses to environmental changes. However, the role of Ca(2+) in fine-tuning cellular responses of wild-type cyanobacteria under favourable growth conditions has not been examined. In this study, extracellular Ca(2+) has been altered, and changes in the whole transcriptome of Anabaena sp. PCC 7120 have been evaluated under conditions replete of carbon and combined nitrogen. Ca(2+) induced differential expression of many genes driving primary cellular metabolism, with transcriptional regulation of carbon- and nitrogen-related processes responding with opposing trends. However, physiological effects of these transcriptional responses on biomass accumulation, biomass composition, and photosynthetic activity over the 24h period following Ca(2+) adjustment were found to be minor. It is well known that intracellular carbon:nitrogen balance is integral to optimal cell growth and that Ca(2+) plays an important role in the response of heterocystous cyanobacteria to combined-nitrogen deprivation. This work adds to the current knowledge by demonstrating a signalling role of Ca(2+) for making sensitive transcriptional adjustments required for optimal growth under non-limiting conditions.
Collapse
Affiliation(s)
- Julia Walter
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Fiona Lynch
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Natalia Battchikova
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Eva-Mari Aro
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| | - Peter J Gollan
- Department of Biochemistry, Molecular Plant Biology, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
14
|
Guida BS, Garcia-Pichel F. Extreme cellular adaptations and cell differentiation required by a cyanobacterium for carbonate excavation. Proc Natl Acad Sci U S A 2016; 113:5712-7. [PMID: 27140633 PMCID: PMC4878501 DOI: 10.1073/pnas.1524687113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Some cyanobacteria, known as euendoliths, excavate and grow into calcium carbonates, with their activity leading to significant marine and terrestrial carbonate erosion and to deleterious effects on coral reef and bivalve ecology. Despite their environmental relevance, the mechanisms by which they can bore have remained elusive and paradoxical, in that, as oxygenic phototrophs, cyanobacteria tend to alkalinize their surroundings, which will encourage carbonate precipitation, not dissolution. Therefore, cyanobacteria must rely on unique adaptations to bore. Studies with the filamentous euendolith, Mastigocoleus testarum, indicated that excavation requires both cellular energy and transcellular calcium transport, mediated by P-type ATPases, but the cellular basis for this phenomenon remains obscure. We present evidence that excavation in M. testarum involves two unique cellular adaptations. Long-range calcium transport is based on active pumping at multiple cells along boring filaments, orchestrated by the preferential localization of calcium ATPases at one cell pole, in a ring pattern, facing the cross-walls, and by repeating this placement and polarity, a pattern that breaks at branching and apical cells. In addition, M. testarum differentiates specialized cells we call calcicytes, that which accumulate calcium at concentrations more than 500-fold those found in other cyanobacteria, concomitantly and drastically lowering photosynthetic pigments and enduring severe cytoplasmatic alkalinization. Calcicytes occur commonly, but not exclusively, in apical parts of the filaments distal to the excavation front. We suggest that calcicytes allow for fast calcium flow at low, nontoxic concentrations through undifferentiated cells by providing buffering storage for excess calcium before final excretion to the outside medium.
Collapse
|
15
|
Bachin D, Nazarenko LV, Mironov KS, Pisareva T, Allakhverdiev SI, Los DA. Mechanosensitive ion channel MscL controls ionic fluxes during cold and heat stress in Synechocystis. FEMS Microbiol Lett 2015; 362:fnv090. [DOI: 10.1093/femsle/fnv090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2015] [Indexed: 12/25/2022] Open
|
16
|
Survival strategies in the aquatic and terrestrial world: the impact of second messengers on cyanobacterial processes. Life (Basel) 2014; 4:745-69. [PMID: 25411927 PMCID: PMC4284465 DOI: 10.3390/life4040745] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/31/2014] [Accepted: 11/05/2014] [Indexed: 12/15/2022] Open
Abstract
Second messengers are intracellular substances regulated by specific external stimuli globally known as first messengers. Cells rely on second messengers to generate rapid responses to environmental changes and the importance of their roles is becoming increasingly realized in cellular signaling research. Cyanobacteria are photooxygenic bacteria that inhabit most of Earth's environments. The ability of cyanobacteria to survive in ecologically diverse habitats is due to their capacity to adapt and respond to environmental changes. This article reviews known second messenger-controlled physiological processes in cyanobacteria. Second messengers used in these systems include the element calcium (Ca2+), nucleotide-based guanosine tetraphosphate or pentaphosphate (ppGpp or pppGpp, represented as (p)ppGpp), cyclic adenosine 3',5'-monophosphate (cAMP), cyclic dimeric GMP (c-di-GMP), cyclic guanosine 3',5'-monophosphate (cGMP), and cyclic dimeric AMP (c-di-AMP), and the gaseous nitric oxide (NO). The discussion focuses on processes central to cyanobacteria, such as nitrogen fixation, light perception, photosynthesis-related processes, and gliding motility. In addition, we address future research trajectories needed to better understand the signaling networks and cross talk in the signaling pathways of these molecules in cyanobacteria. Second messengers have significant potential to be adapted as technological tools and we highlight possible novel and practical applications based on our understanding of these molecules and the signaling networks that they control.
Collapse
|
17
|
|
18
|
Westerhoff HV, Brooks AN, Simeonidis E, García-Contreras R, He F, Boogerd FC, Jackson VJ, Goncharuk V, Kolodkin A. Macromolecular networks and intelligence in microorganisms. Front Microbiol 2014; 5:379. [PMID: 25101076 PMCID: PMC4106424 DOI: 10.3389/fmicb.2014.00379] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/05/2014] [Indexed: 11/13/2022] Open
Abstract
Living organisms persist by virtue of complex interactions among many components organized into dynamic, environment-responsive networks that span multiple scales and dimensions. Biological networks constitute a type of information and communication technology (ICT): they receive information from the outside and inside of cells, integrate and interpret this information, and then activate a response. Biological networks enable molecules within cells, and even cells themselves, to communicate with each other and their environment. We have become accustomed to associating brain activity - particularly activity of the human brain - with a phenomenon we call "intelligence." Yet, four billion years of evolution could have selected networks with topologies and dynamics that confer traits analogous to this intelligence, even though they were outside the intercellular networks of the brain. Here, we explore how macromolecular networks in microbes confer intelligent characteristics, such as memory, anticipation, adaptation and reflection and we review current understanding of how network organization reflects the type of intelligence required for the environments in which they were selected. We propose that, if we were to leave terms such as "human" and "brain" out of the defining features of "intelligence," all forms of life - from microbes to humans - exhibit some or all characteristics consistent with "intelligence." We then review advances in genome-wide data production and analysis, especially in microbes, that provide a lens into microbial intelligence and propose how the insights derived from quantitatively characterizing biomolecular networks may enable synthetic biologists to create intelligent molecular networks for biotechnology, possibly generating new forms of intelligence, first in silico and then in vivo.
Collapse
Affiliation(s)
- Hans V. Westerhoff
- Department of Molecular Cell Physiology, Vrije Universiteit AmsterdamAmsterdam, Netherlands
- Manchester Centre for Integrative Systems Biology, The University of ManchesterManchester, UK
- Synthetic Systems Biology, University of AmsterdamAmsterdam, Netherlands
| | - Aaron N. Brooks
- Institute for Systems BiologySeattle, WA, USA
- Molecular and Cellular Biology Program, University of WashingtonSeattle, WA, USA
| | - Evangelos Simeonidis
- Institute for Systems BiologySeattle, WA, USA
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg
| | | | - Fei He
- Department of Automatic Control and Systems Engineering, The University of SheffieldSheffield, UK
| | - Fred C. Boogerd
- Department of Molecular Cell Physiology, Vrije Universiteit AmsterdamAmsterdam, Netherlands
| | | | - Valeri Goncharuk
- Netherlands Institute for NeuroscienceAmsterdam, Netherlands
- Russian Cardiology Research CenterMoscow, Russia
- Department of Medicine, Center for Alzheimer and Neurodegenerative Research, University of AlbertaEdmonton, AB, Canada
| | - Alexey Kolodkin
- Institute for Systems BiologySeattle, WA, USA
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg
| |
Collapse
|
19
|
Nomura H, Shiina T. Calcium signaling in plant endosymbiotic organelles: mechanism and role in physiology. MOLECULAR PLANT 2014; 7:1094-1104. [PMID: 24574521 DOI: 10.1093/mp/ssu020] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Recent studies have demonstrated that chloroplasts and mitochondria evoke specific Ca(2+) signals in response to biotic and abiotic stresses in a stress-dependent manner. The identification of Ca(2+) transporters and Ca(2+) signaling molecules in chloroplasts and mitochondria implies that they play roles in controlling not only intra-organellar functions, but also extra-organellar processes such as plant immunity and stress responses. It appears that organellar Ca(2+) signaling might be more important to plant cell functions than previously thought. This review briefly summarizes what is known about the molecular basis of Ca(2+) signaling in plant mitochondria and chloroplasts.
Collapse
Affiliation(s)
- Hironari Nomura
- Department of Health and Nutrition, Gifu Women's University, 80 Taromaru, Gifu 501-2592, Japan
| | - Takashi Shiina
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku Kyoto 606-8522, Japan
| |
Collapse
|
20
|
Singh S, Mishra AK. Regulation of calcium ion and its effect on growth and developmental behavior in wild type and ntcA mutant of Anabaena sp. PCC 7120 under varied levels of CaCl2. Microbiology (Reading) 2014. [DOI: 10.1134/s002626171403014x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
21
|
Evaluation of the ecotoxicity of pollutants with bioluminescent microorganisms. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 145:65-135. [PMID: 25216953 DOI: 10.1007/978-3-662-43619-6_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This chapter deals with the use of bioluminescent microorganisms in environmental monitoring, particularly in the assessment of the ecotoxicity of pollutants. Toxicity bioassays based on bioluminescent microorganisms are an interesting complement to classical toxicity assays, providing easiness of use, rapid response, mass production, and cost effectiveness. A description of the characteristics and main environmental applications in ecotoxicity testing of naturally bioluminescent microorganisms, covering bacteria and eukaryotes such as fungi and dinoglagellates, is reported in this chapter. The main features and applications of a wide variety of recombinant bioluminescent microorganisms, both prokaryotic and eukaryotic, are also summarized and critically considered. Quantitative structure-activity relationship models and hormesis are two important concepts in ecotoxicology; bioluminescent microorganisms have played a pivotal role in their development. As pollutants usually occur in complex mixtures in the environment, the use of both natural and recombinant bioluminescent microorganisms to assess mixture toxicity has been discussed. The main information has been summarized in tables, allowing quick consultation of the variety of luminescent organisms, bioluminescence gene systems, commercially available bioluminescent tests, environmental applications, and relevant references.
Collapse
|
22
|
Abstract
Ultraviolet (UV) radiation can cause stresses or act as a photoregulatory signal depending on its wavelengths and fluence rates. Although the most harmful effects of UV on living cells are generally attributed to UV-B radiation, UV-A radiation can also affect many aspects of cellular processes. In cyanobacteria, most studies have concentrated on the damaging effect of UV and defense mechanisms to withstand UV stress. However, little is known about the activation mechanism of signaling components or their pathways which are implicated in the process following UV irradiation. Motile cyanobacteria use a very precise negative phototaxis signaling system to move away from high levels of solar radiation, which is an effective escape mechanism to avoid the detrimental effects of UV radiation. Recently, two different UV-A-induced signaling systems for regulating cyanobacterial phototaxis were characterized at the photophysiological and molecular levels. Here, we review the current understanding of the UV-A mediated signaling pathways in the context of the UV-A perception mechanism, early signaling components, and negative phototactic responses. In addition, increasing evidences supporting a role of pterins in response to UV radiation are discussed. We outline the effect of UV-induced cell damage, associated signaling molecules, and programmed cell death under UV-mediated oxidative stress.
Collapse
|
23
|
Moscatiello R, Baldan B, Squartini A, Mariani P, Navazio L. Oligogalacturonides: novel signaling molecules in Rhizobium-legume communications. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1387-1395. [PMID: 22835276 DOI: 10.1094/mpmi-03-12-0066-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Oligogalacturonides are pectic fragments of the plant cell wall, whose signaling role has been described thus far during plant development and plant-pathogen interactions. In the present work, we evaluated the potential involvement of oligogalacturonides in the molecular communications between legumes and rhizobia during the establishment of nitrogen-fixing symbiosis. Oligogalacturonides with a degree of polymerization of 10 to 15 were found to trigger a rapid intracellular production of reactive oxygen species in Rhizobium leguminosarum bv. viciae 3841. Accumulation of H(2)O(2), detected by both 2',7'-dichlorodihydrofluorescein diacetate-based fluorescence and electron-dense deposits of cerium perhydroxides, was transient and did not affect bacterial cell viability, due to the prompt activation of the katG gene encoding a catalase. Calcium measurements carried out in R. leguminosarum transformed with the bioluminescent Ca(2+) reporter aequorin demonstrated the induction of a rapid and remarkable intracellular Ca(2+) increase in response to oligogalacturonides. When applied jointly with naringenin, oligogalacturonides effectively inhibited flavonoid-induced nod gene expression, indicating an antagonistic interplay between oligogalacturonides and inducing flavonoids in the early stages of plant root colonization. The above data suggest a novel role for oligogalacturonides as signaling molecules released in the rhizosphere in the initial rhizobium-legume interaction.
Collapse
|
24
|
Stael S, Wurzinger B, Mair A, Mehlmer N, Vothknecht UC, Teige M. Plant organellar calcium signalling: an emerging field. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1525-42. [PMID: 22200666 PMCID: PMC3966264 DOI: 10.1093/jxb/err394] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This review provides a comprehensive overview of the established and emerging roles that organelles play in calcium signalling. The function of calcium as a secondary messenger in signal transduction networks is well documented in all eukaryotic organisms, but so far existing reviews have hardly addressed the role of organelles in calcium signalling, except for the nucleus. Therefore, a brief overview on the main calcium stores in plants-the vacuole, the endoplasmic reticulum, and the apoplast-is provided and knowledge on the regulation of calcium concentrations in different cellular compartments is summarized. The main focus of the review will be the calcium handling properties of chloroplasts, mitochondria, and peroxisomes. Recently, it became clear that these organelles not only undergo calcium regulation themselves, but are able to influence the Ca(2+) signalling pathways of the cytoplasm and the entire cell. Furthermore, the relevance of recent discoveries in the animal field for the regulation of organellar calcium signals will be discussed and conclusions will be drawn regarding potential homologous mechanisms in plant cells. Finally, a short overview on bacterial calcium signalling is included to provide some ideas on the question where this typically eukaryotic signalling mechanism could have originated from during evolution.
Collapse
Affiliation(s)
- Simon Stael
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Bernhard Wurzinger
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Andrea Mair
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Norbert Mehlmer
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
| | - Ute C. Vothknecht
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
- Center for Integrated Protein Science (Munich) at the Department of Biology of the LMU Munich, D-81377 Munich, Germany
| | - Markus Teige
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
- To whom correspondence should be addressed.
| |
Collapse
|
25
|
Tozawa Y, Nomura Y. Signalling by the global regulatory molecule ppGpp in bacteria and chloroplasts of land plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:699-709. [PMID: 21815973 DOI: 10.1111/j.1438-8677.2011.00484.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The hyperphosphorylated guanine ribonucleotide ppGpp mediates the stringent response in bacteria. Biochemical and genetic studies of this response in Escherichia coli have shown that the biosynthesis of ppGpp is catalysed by two homologous enzymes, RelA and SpoT. RelA is activated in response to amino acid starvation, and SpoT responds to abiotic physical stress beside nutritional stress. All free-living bacteria, including Gram-positive firmicutes, contain RelA-SpoT homologues (RSH). Further, novel ppGpp biosynthetic enzymes, designated small alarmone synthetases (SASs), were recently identified in a subset of bacteria, including the Gram-positive organism Bacillus subtilis, and were shown to consist only of a ppGpp synthetase domain. Studies suggest that these SAS proteins contribute to ppGpp signalling in response to stressful conditions in a manner distinct from that of RelA-SpoT enzymes. SAS proteins currently appear to always occur in addition to RSH enzymes in various combinations but never alone. RSHs have also been identified in chloroplasts, organelles of photosynthetic eukaryotes that originated from endosymbiotic photosynthetic bacteria. These chloroplast RSHs are exclusively encoded in nuclear DNA and targeted into chloroplasts. The findings suggest that ppGpp may regulate chloroplast functions similar to those regulated in bacteria, including transcription and translation. In addition, a novel ppGpp synthetase that is regulated by Ca²⁺ as a result of the presence of two EF-hand motifs at its COOH terminus was recently identified in chloroplasts of land plants. This finding indicates the existence of a direct connection between eukaryotic Ca²⁺ signalling and prokaryotic ppGpp signalling in chloroplasts. The new observations with regard to ppGpp signalling in land plants suggest that such signalling contributes to the regulation of a wider range of cellular functions than previously anticipated.
Collapse
Affiliation(s)
- Y Tozawa
- Cell-Free Science and Technology Research Center, Ehime University, Matsuyama, Japan.
| | | |
Collapse
|
26
|
Microbial excavation of solid carbonates powered by P-type ATPase-mediated transcellular Ca2+ transport. Proc Natl Acad Sci U S A 2010; 107:21749-54. [PMID: 21115827 DOI: 10.1073/pnas.1011884108] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Some microbes, among them a few species of cyanobacteria, are able to excavate carbonate minerals, from limestone to biogenic carbonates, including coral reefs, in a bioerosive activity that directly links biological and geological parts of the global carbon cycle. The physiological mechanisms that enable such endolithic cyanobacteria to bore, however, remain unknown. In fact, their boring constitutes a geochemical paradox, in that photoautotrophic metabolism will tend to precipitate carbonates, not dissolve them. We developed a stable microbe/mineral boring system based on a cyanobacterial isolate, strain BC008, with which to study the process of microbial excavation directly in the laboratory. Measurements of boring into calcite under different light regimes, and an analysis of photopigment content and photosynthetic rates along boring filaments, helped us reject mechanisms based on the spatial or temporal separation of alkali versus Acid-generating metabolism (i.e., photosynthesis and respiration). Instead, extracellular Ca(2+) imaging of boring cultures in vivo showed that BC008 was able to take up Ca(2+) at the excavation front, decreasing the local extracellular ion activity product of calcium carbonate enough to promote spontaneous dissolution there. Intracellular Ca(2+) was then transported away along the multicellular cyanobacterial trichomes and excreted at the distal borehole opening into the external medium. Inhibition assays and gene expression analyses indicate that the uptake and transport was driven by P-type Ca(2+)-ATPases. We believe such a chemically simple and biologically sophisticated mechanism for boring to be unparalleled among bacteria.
Collapse
|
27
|
Free Ca2+ as an early intracellular biomarker of exposure of cyanobacteria to environmental pollution. Anal Bioanal Chem 2010; 400:1015-29. [DOI: 10.1007/s00216-010-4209-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 09/08/2010] [Accepted: 09/08/2010] [Indexed: 10/19/2022]
|
28
|
Abstract
Many multicellular cyanobacteria produce specialized nitrogen-fixing heterocysts. During diazotrophic growth of the model organism Anabaena (Nostoc) sp. strain PCC 7120, a regulated developmental pattern of single heterocysts separated by about 10 to 20 photosynthetic vegetative cells is maintained along filaments. Heterocyst structure and metabolic activity function together to accommodate the oxygen-sensitive process of nitrogen fixation. This article focuses on recent research on heterocyst development, including morphogenesis, transport of molecules between cells in a filament, differential gene expression, and pattern formation.
Collapse
Affiliation(s)
- Krithika Kumar
- Department of Biology, Texas A&M University, College Station, 77843, USA
| | | | | |
Collapse
|
29
|
Darder M, Aranda P, Burgos-Asperilla L, Llobera A, Cadarso VJ, Fernández-Sánchez C, Ruiz-Hitzky E. Algae–silica systems as functional hybrid materials. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/b913269d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Moscatiello R, Alberghini S, Squartini A, Mariani P, Navazio L. Evidence for calcium-mediated perception of plant symbiotic signals in aequorin-expressing Mesorhizobium loti. BMC Microbiol 2009; 9:206. [PMID: 19775463 PMCID: PMC2759959 DOI: 10.1186/1471-2180-9-206] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 09/23/2009] [Indexed: 11/22/2022] Open
Abstract
Background During the interaction between rhizobia and leguminous plants the two partners engage in a molecular conversation that leads to reciprocal recognition and ensures the beginning of a successful symbiotic integration. In host plants, intracellular Ca2+ changes are an integral part of the signalling mechanism. In rhizobia it is not yet known whether Ca2+ can act as a transducer of symbiotic signals. Results A plasmid encoding the bioluminescent Ca2+ probe aequorin was introduced into Mesorhizobium loti USDA 3147T strain to investigate whether a Ca2+ response is activated in rhizobia upon perception of plant root exudates. We find that M. loti cells respond to environmental and symbiotic cues through transient elevations in intracellular free Ca2+ concentration. Only root exudates from the homologous host Lotus japonicus induce Ca2+ signalling and downstream activation of nodulation genes. The extracellular Ca2+ chelator EGTA inhibits both transient intracellular Ca2+ increase and inducible nod gene expression, while not affecting the expression of other genes, either constitutively expressed or inducible. Conclusion These findings indicate a newly described early event in the molecular dialogue between plants and rhizobia and highlight the use of aequorin-expressing bacterial strains as a promising novel approach for research in legume symbiosis.
Collapse
Affiliation(s)
- Roberto Moscatiello
- Dipartimento di Biologia, Università di Padova, Via U, Bassi 58/B, 35131 Padova, Italy.
| | | | | | | | | |
Collapse
|
31
|
Leganés F, Forchhammer K, Fernández-Piñas F. Role of calcium in acclimation of the cyanobacterium Synechococcus elongatus PCC 7942 to nitrogen starvation. MICROBIOLOGY-SGM 2009; 155:25-34. [PMID: 19118343 DOI: 10.1099/mic.0.022251-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A Ca2+ signal is required for the process of heterocyst differentiation in the filamentous diazotrophic cyanobacterium Anabaena sp. PCC 7120. This paper presents evidence that a transient increase in intracellular free Ca2+ is also involved in acclimation to nitrogen starvation in the unicellular non-diazotrophic cyanobacterium Synechococcus elongatus PCC 7942. The Ca2+ transient was triggered in response to nitrogen step-down or the addition of 2-oxoglutarate (2-OG), or its analogues 2,2-difluoropentanedioic acid (DFPA) and 2-methylenepentanedioic acid (2-MPA), to cells growing with combined nitrogen, suggesting that an increase in intracellular 2-OG levels precedes the Ca2+ transient. The signalling protein P(II) and the transcriptional regulator NtcA appear to be needed to trigger the signal. Suppression of the Ca2+ transient by the intracellular Ca2+ chelator N,N'-[1,2-ethanediylbis(oxy-2,1-phenylene)]bis[N-[2-[(acetyloxy)methoxy]-2-oxoethyl]]-,bis[(acetyloxy)methyl] ester (BAPTA-AM) inhibited expression of the glnB and glnN genes, which are involved in acclimation to nitrogen starvation and transcriptionally activated by NtcA. BAPTA-AM treatment partially inhibited expression of the nblA gene, which is involved in phycobiliprotein degradation following nutrient starvation and is regulated by NtcA and NblR; in close agreement, BAPTA-AM treatment partially inhibited bleaching following nitrogen starvation. Taken together, the results presented here strongly suggest an involvement of a defined Ca2+ transient in acclimation of S. elongatus to nitrogen starvation through NtcA-dependent regulation.
Collapse
Affiliation(s)
- Francisco Leganés
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Karl Forchhammer
- Lehrstuhl für Mikrobiologie-Organismische Interaktionen, Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | | |
Collapse
|
32
|
Nicolaisen K, Hahn A, Schleiff E. The cell wall in heterocyst formation byAnabaenasp. PCC 7120. J Basic Microbiol 2009; 49:5-24. [DOI: 10.1002/jobm.200800300] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Bonilla I, Bolaños L. Mineral Nutrition for Legume-Rhizobia Symbiosis: B, Ca, N, P, S, K, Fe, Mo, Co, and Ni: A Review. SUSTAINABLE AGRICULTURE REVIEWS 2009. [DOI: 10.1007/978-1-4020-9654-9_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Navazio L, Mariani P. Calcium opens the dialogue between plants and arbuscular mycorrhizal fungi. PLANT SIGNALING & BEHAVIOR 2008; 3:229-30. [PMID: 19704636 PMCID: PMC2634184 DOI: 10.4161/psb.3.4.5093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 09/27/2007] [Indexed: 05/14/2023]
Abstract
Calcium ion is considered a ubiquitous second messenger in all eukaryotic cells. Analysis of intracellular Ca(2+) concentration dynamics has demonstrated its signalling role in plant cells in response to a wide array of environmental cues. The implication of Ca(2+) in the early steps of the arbuscular mycorrhizal symbiosis has been frequently claimed, mainly by analogy with what firmly demonstrated in the rhizobium-legume symbiosis. We recently documented transient Ca(2+) changes in plant cells challenged with diffusible molecules released by arbuscular mycorrhizal fungi. Ca(2+) measurements by the recombinant aequorin method provided new insights into the molecular communications between plants and these beneficial fungi.
Collapse
Affiliation(s)
- Lorella Navazio
- Dipartimento di Biologia; Università di Padova; Padova, Italy
| | | |
Collapse
|
35
|
Jang J, Wang L, Jeanjean R, Zhang CC. PrpJ, a PP2C-type protein phosphatase located on the plasma membrane, is involved in heterocyst maturation in the cyanobacterium Anabaena sp. PCC 7120. Mol Microbiol 2007; 64:347-58. [PMID: 17371502 DOI: 10.1111/j.1365-2958.2007.05654.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein phosphatases play important roles in the regulation of cell growth, division and differentiation. The cyanobacterium Anabaena PCC 7120 is able to differentiate heterocysts specialized in nitrogen fixation. To protect the nitrogenase from inactivation by oxygen, heterocyst envelope possesses a layer of polysaccharide and a layer of glycolipids. In the present study, we characterized All1731 (PrpJ), a protein phosphatase from Anabaena PCC 7120. prpJ was constitutively expressed in both vegetative cells and heterocysts. Under diazotrophic conditions, the mutant DeltaprpJ (S20) did not grow, lacked only one of the two heterocyst glycolipids, and fragmented extensively at the junctions between developing cells and vegetative cells. No heterocyst glycolipid layer could be observed in the mutant by electron microscopy. The inactivation of prpJ affected the expression of hglE(A) and nifH, two genes necessary for the formation of the glycolipid layer of heterocysts and the nitrogenase respectively. PrpJ displayed a phosphatase activity characteristic of PP2C-type protein phosphatases, and was localized on the plasma membrane. The function of prpJ establishes a new control point for heterocyst maturation because it regulates the synthesis of only one of the two heterocyst glycolipids while all other genes so far analysed regulate the synthesis of both heterocyst glycolipids.
Collapse
Affiliation(s)
- Jichan Jang
- Laboratoire de Chimie Bactérienne, CNRS-UPR9043, Institut de Biologie Structurale et Microbiologie, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France
| | | | | | | |
Collapse
|
36
|
Sakr S, Thyssen M, Denis M, Zhang CC. Relationship among several key cell cycle events in the developmental cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 2006; 188:5958-65. [PMID: 16885464 PMCID: PMC1540088 DOI: 10.1128/jb.00524-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When grown in the absence of a source of combined nitrogen, the filamentous cyanobacterium Anabaena sp. strain PCC 7120 develops, within 24 h, a differentiated cell type called a heterocyst that is specifically involved in the fixation of N(2). Cell division is required for heterocyst development, suggesting that the cell cycle could control this developmental process. In this study, we investigated several key events of the cell cycle, such as cell growth, DNA synthesis, and cell division, and explored their relationships to heterocyst development. The results of analyses by flow cytometry indicated that the DNA content increased as the cell size expanded during cell growth. The DNA content of heterocysts corresponded to the subpopulation of vegetative cells that had a big cell size, presumably those at the late stages of cell growth. Consistent with these results, most proheterocysts exhibited two nucleoids, which were resolved into a single nucleoid in most mature heterocysts. The ring structure of FtsZ, a protein required for the initiation of bacterial cell division, was present predominantly in big cells and rarely in small cells. When cell division was inhibited and consequently cells became elongated, little change in DNA content was found by measurement using flow cytometry, suggesting that inhibition of cell division may block further synthesis of DNA. The overexpression of minC, which encodes an inhibitor of FtsZ polymerization, led to the inhibition of cell division, but cells expanded in spherical form to become giant cells; structures with several cells attached together in the form of a cloverleaf could be seen frequently. These results may indicate that the relative amounts of FtsZ and MinC affect not only cell division but also the placement of the cell division planes and the cell morphology. MinC overexpression blocked heterocyst differentiation, consistent with the requirement of cell division in the control of heterocyst development.
Collapse
Affiliation(s)
- Samer Sakr
- Laboratoire de Chimie Bactérienne, CNRS-UPR 9043, Institut de Biologie Structurale et Microbiologie, 31 Chemin Joseph Aiguier, 13402 Marseille cedex 20, France
| | | | | | | |
Collapse
|
37
|
Shi Y, Zhao W, Zhang W, Ye Z, Zhao J. Regulation of intracellular free calcium concentration during heterocyst differentiation by HetR and NtcA in Anabaena sp. PCC 7120. Proc Natl Acad Sci U S A 2006; 103:11334-9. [PMID: 16849429 PMCID: PMC1544087 DOI: 10.1073/pnas.0602839103] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Calcium ions are important to some prokaryotic cellular processes, such as heterocyst differentiation of cyanobacteria. Intracellular free Ca(2+)concentration, [Ca(2+)](i), increases several fold in heterocysts and is regulated by CcbP, a Ca(2+)-binding protein found in heterocyst-forming cyanobacteria. We demonstrate here that CcbP is degraded by HetR, a serine-type protease that controls heterocyst differentiation. The degradation depends on Ca(2+) and appears to be specific because HetR did not digest other tested proteins. CcbP was found to bind two Ca(2+) per molecule with K(D) values of 200 nM and 12.8 microM. Degradation of CcbP releases bound Ca(2+) that contributes significantly to the increase of [Ca(2+)](i) during the process of heterocyst differentiation in Anabaena sp. strain PCC 7120. We suggest that degradation of CcbP is a mechanism of positive autoregulation of HetR. The down-regulation of ccbP in differentiating cells and mature heterocysts, which also is critical to the regulation of [Ca(2+)](i), depends on NtcA. Coexpression of ntcA and a ccbP promoter-controlled gfp in Escherichia coli diminished production of GFP, and the decrease is enhanced by alpha-ketoglutarate. It was also found that NtcA could bind a fragment of the ccbP promoter containing an NtcA-binding sequence in a alpha-ketoglutarate-dependent fashion. Therefore, [Ca(2+)](i) is regulated by a collaboration of HetR and NtcA in heterocyst differentiation in Anabaena sp. strain PCC 7120.
Collapse
Affiliation(s)
- Yunming Shi
- State Key Lab of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | - Weixing Zhao
- State Key Lab of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | - Wei Zhang
- State Key Lab of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zi Ye
- State Key Lab of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jindong Zhao
- State Key Lab of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
38
|
Zhang CC, Laurent S, Sakr S, Peng L, Bédu S. Heterocyst differentiation and pattern formation in cyanobacteria: a chorus of signals. Mol Microbiol 2006; 59:367-75. [PMID: 16390435 DOI: 10.1111/j.1365-2958.2005.04979.x] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heterocyst differentiation in filamentous cyanobacteria provides an excellent prokaryotic model for studying multicellular behaviour and pattern formation. In Anabaena sp. strain PCC 7120, for example, 5-10% of the cells along each filament are induced, when deprived of combined nitrogen, to differentiate into heterocysts. Heterocysts are specialized in the fixation of N(2) under oxic conditions and are semi-regularly spaced among vegetative cells. This developmental programme leads to spatial separation of oxygen-sensitive nitrogen fixation (by heterocysts) and oxygen-producing photosynthesis (by vegetative cells). The interdependence between these two cell types ensures filament growth under conditions of combined-nitrogen limitation. Multiple signals have recently been identified as necessary for the initiation of heterocyst differentiation, the formation of the heterocyst pattern and pattern maintenance. The Krebs cycle metabolite 2-oxoglutarate (2-OG) serves as a signal of nitrogen deprivation. Accumulation of a non-metabolizable analogue of 2-OG triggers the complex developmental process of heterocyst differentiation. Once heterocyst development has been initiated, interactions among the various components involved in heterocyst differentiation determine the developmental fate of each cell. The free calcium concentration is crucial to heterocyst differentiation. Lateral diffusion of the PatS peptide or a derivative of it from a developing cell may inhibit the differentiation of neighbouring cells. HetR, a protease showing DNA-binding activity, is crucial to heterocyst differentiation and appears to be the central processor of various early signals involved in the developmental process. How the various signalling pathways are integrated and used to control heterocyst differentiation processes is a challenging question that still remains to be elucidated.
Collapse
Affiliation(s)
- Cheng-Cai Zhang
- Laboratoire de Chimie Bactérienne, UPR9043-CNRS, Institut de Biologie Structurale et Microbiologie, 31, chemin Joseph Aiguier, 13402 Marseille cedex 20, France.
| | | | | | | | | |
Collapse
|
39
|
Zhao Y, Shi Y, Zhao W, Huang X, Wang D, Brown N, Brand J, Zhao J. CcbP, a calcium-binding protein from Anabaena sp. PCC 7120, provides evidence that calcium ions regulate heterocyst differentiation. Proc Natl Acad Sci U S A 2005; 102:5744-8. [PMID: 15811937 PMCID: PMC556313 DOI: 10.1073/pnas.0501782102] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2005] [Indexed: 11/18/2022] Open
Abstract
Although it is known that calcium is a very important messenger involved in many eukaryotic cellular processes, much less is known about calcium's role in bacteria. CcbP, a Ca(2+)-binding protein, was isolated from the heterocystous cyanobacterium Anabaena sp. PCC 7120, and the ccbP gene was cloned and inactivated. In the absence of combined nitrogen, inactivation of ccbP resulted in multiple contiguous heterocysts, whereas overexpression of ccbP suppressed heterocyst formation. Calmodulin, which is not present in Anabaena species, could also suppress heterocyst formation in both Anabaena sp. PCC 7120 and Anabaena variabilis. HetR induction upon nitrogen step-down was slow in the strain overexpressing ccbP. The Ca(2+) reporter protein obelin was used to show that mature heterocysts had a high intracellular free Ca(2+)concentration {[Ca(2+)](i)}, and immunoblotting showed that CcbP was absent from heterocysts. A regular pattern of cells with higher [Ca(2+)](i) was established during heterocyst differentiation before the appearance of proheterocysts. A rapid increase of [Ca(2+)](i) could be detected 4 h after the removal of combined nitrogen, and this increase was suppressed by excessive CcbP. These results suggest that Ca(2+) ions play very important roles in hetR induction and heterocyst differentiation.
Collapse
Affiliation(s)
- Yinhong Zhao
- State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Maheswaran M, Urbanke C, Forchhammer K. Complex formation and catalytic activation by the PII signaling protein of N-acetyl-L-glutamate kinase from Synechococcus elongatus strain PCC 7942. J Biol Chem 2004; 279:55202-10. [PMID: 15502156 DOI: 10.1074/jbc.m410971200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The signal transduction protein P(II) from the cyanobacterium Synechococcus elongatus strain PCC 7942 forms a complex with the key enzyme of arginine biosynthesis, N-acetyl-l-glutamate kinase (NAGK). Here we report the effect of complex formation on the catalytic properties of NAGK. Although pH and ion dependence are not affected, the catalytic efficiency of NAGK is strongly enhanced by binding of P(II), with K(m) decreasing by a factor of 10 and V(max) increasing 4-fold. In addition, arginine feedback inhibition of NAGK is strongly decreased in the presence of P(II), resulting in a tight control of NAGK activity under physiological conditions by P(II). Analysis of the NAGK-P(II) complex suggests that one P(II) trimer binds to one NAGK hexamer with a K(d) of approximately 3 nm. Complex formation is strongly affected by ATP and ADP. ADP is a strong inhibitor of complex formation, whereas ATP inhibits complex formation only in the absence of divalent cations or in the presence of Mg(2+) ions, together with increased 2-oxoglutarate concentrations. Ca(2+) is able to antagonize the negative effect of ATP and 2-oxoglutarate. ADP and ATP exert their adverse effect on NAGK-P(II) complex formation through binding to the P(II) protein.
Collapse
Affiliation(s)
- Mani Maheswaran
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig Universität Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | | | | |
Collapse
|