1
|
Gangwal A, Kumar N, Sangwan N, Dhasmana N, Dhawan U, Sajid A, Arora G, Singh Y. Giving a signal: how protein phosphorylation helps Bacillus navigate through different life stages. FEMS Microbiol Rev 2023; 47:fuad044. [PMID: 37533212 PMCID: PMC10465088 DOI: 10.1093/femsre/fuad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023] Open
Abstract
Protein phosphorylation is a universal mechanism regulating a wide range of cellular responses across all domains of life. The antagonistic activities of kinases and phosphatases can orchestrate the life cycle of an organism. The availability of bacterial genome sequences, particularly Bacillus species, followed by proteomics and functional studies have aided in the identification of putative protein kinases and protein phosphatases, and their downstream substrates. Several studies have established the role of phosphorylation in different physiological states of Bacillus species as they pass through various life stages such as sporulation, germination, and biofilm formation. The most common phosphorylation sites in Bacillus proteins are histidine, aspartate, tyrosine, serine, threonine, and arginine residues. Protein phosphorylation can alter protein activity, structural conformation, and protein-protein interactions, ultimately affecting the downstream pathways. In this review, we summarize the knowledge available in the field of Bacillus signaling, with a focus on the role of protein phosphorylation in its physiological processes.
Collapse
Affiliation(s)
- Aakriti Gangwal
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nishant Kumar
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nitika Sangwan
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Neha Dhasmana
- School of Medicine, New York University, 550 First Avenue New York-10016, New York, United States
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Andaleeb Sajid
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Gunjan Arora
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi-110007, India
| |
Collapse
|
2
|
Zhou Z, Pan Q, Lv X, Yuan J, Zhang Y, Zhang MX, Ke M, Mo XM, Xie YL, Liu Y, Chen T, Liang M, Yin F, Liu L, Zhou Y, Qiao K, Liu R, Li Z, Wong NK. Structural insights into the inhibition of bacterial RecA by naphthalene polysulfonated compounds. iScience 2021; 24:101952. [PMID: 33458611 PMCID: PMC7797525 DOI: 10.1016/j.isci.2020.101952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 10/23/2020] [Accepted: 12/14/2020] [Indexed: 02/05/2023] Open
Abstract
As a promising target for alternative antimicrobials, bacterial recombinase A (RecA) protein has attracted much attention for its roles in antibiotic-driven SOS response and mutagenesis. Naphthalene polysulfonated compounds (NPS) such as suramin have previously been explored as antibiotic adjuvants targeting RecA, although the underlying structural bases for RecA-ligand interactions remain obscure. Based on our in silico predictions and documented activity of NPS in vitro, we conclude that the analyzed NPS likely interact with Tyr103 (Y103) and other key residues in the ATPase activity center (pocket A). For validation, we generated recombinant RecA proteins (wild-type versus Y103 mutant) to determine the binding affinities for RecA protein interactions with suramin and underexamined NPS in isothermal titration calorimetry. The corresponding dissociation constants (K d) ranged from 11.5 to 18.8 μM, and Y103 was experimentally shown to be critical to RecA-NPS interactions.
Collapse
Affiliation(s)
- Ziyuan Zhou
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Qing Pan
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanology, Shenzhen University, Shenzhen 518055, China
| | - Xinchen Lv
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- National Key Laboratory of Plant Molecular Genetics & Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Jing Yuan
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Ming-Xia Zhang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Ming Ke
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xiao-Mei Mo
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Yong-Li Xie
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Yingxia Liu
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Mingchan Liang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518055, China
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Lei Liu
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Yiqing Zhou
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Kun Qiao
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Rui Liu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- National Key Laboratory of Plant Molecular Genetics & Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Zigang Li
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518055, China
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Nai-Kei Wong
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| |
Collapse
|
3
|
Sheng DH, Wang YX, Qiu M, Zhao JY, Yue XJ, Li YZ. Functional Division Between the RecA1 and RecA2 Proteins in Myxococcus xanthus. Front Microbiol 2020; 11:140. [PMID: 32117159 PMCID: PMC7029660 DOI: 10.3389/fmicb.2020.00140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/21/2020] [Indexed: 12/18/2022] Open
Abstract
Myxococcus xanthus DK1622 has two RecA genes, recA1 (MXAN_1441) and recA2 (MXAN_1388), with unknown functional differentiation. Herein, we showed that both recA genes were induced by ultraviolet (UV) irradiation but that the induction of recA1 was more delayed than that of recA2. Deletion of recA1 did not affect the growth but significantly decreased the UV-radiation survival, homologous recombination (HR) ability, and induction of LexA-dependent SOS genes. In contrast, the deletion of recA2 markedly prolonged the lag phase of bacterial growth and increased the sensitivity to DNA damage caused by hydrogen peroxide but did not change the UV-radiation resistance or SOS gene inducibility. Protein activity analysis demonstrated that RecA1, but not RecA2, catalyzed DNA strand exchange (DSE) and LexA autocleavage in vitro. Transcriptomic analysis indicated that RecA2 has evolved mainly to regulate gene expression for cellular transportation and antioxidation. This is the first report of functional divergence of duplicated bacterial recA genes. The results highlight the evolutionary strategy of M. xanthus cells for DNA HR and genome sophistication.
Collapse
Affiliation(s)
- Duo-Hong Sheng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Yi-Xue Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Miao Qiu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jin-Yi Zhao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Xin-Jing Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Biedendieck R. A Bacillus megaterium System for the Production of Recombinant Proteins and Protein Complexes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 896:97-113. [PMID: 27165321 DOI: 10.1007/978-3-319-27216-0_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
For many years the Gram-positive bacterium Bacillus megaterium has been used for the production and secretion of recombinant proteins. For this purpose it was systematically optimized. Plasmids with different inducible promoter systems, with different compatible origins, with small tags for protein purification and with various specific signals for protein secretion were combined with genetically improved host strains. Finally, the development of appropriate cultivation conditions for the production strains established this organism as a bacterial cell factory even for large proteins. Along with the overproduction of individual proteins the organism is now also used for the simultaneous coproduction of up to 14 recombinant proteins, multiple subsequently interacting or forming protein complexes. Some of these recombinant strains are successfully used for bioconversion or the biosynthesis of valuable components including vitamins. The titers in the g per liter scale for the intra- and extracellular recombinant protein production prove the high potential of B. megaterium for industrial applications. It is currently further enhanced for the production of recombinant proteins and multi-subunit protein complexes using directed genetic engineering approaches based on transcriptome, proteome, metabolome and fluxome data.
Collapse
Affiliation(s)
- Rebekka Biedendieck
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany. .,Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
5
|
Jakobs M, Meinhardt F. What renders Bacilli genetically competent? A gaze beyond the model organism. Appl Microbiol Biotechnol 2014; 99:1557-70. [DOI: 10.1007/s00253-014-6316-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 12/20/2022]
|
6
|
Altamia MA, Wood N, Fung JM, Dedrick S, Linton EW, Concepcion GP, Haygood MG, Distel DL. Genetic differentiation among isolates of Teredinibacter turnerae, a widely occurring intracellular endosymbiont of shipworms. Mol Ecol 2014; 23:1418-1432. [PMID: 24765662 DOI: 10.1111/mec.12667] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Teredinibacter turnerae is a cultivable intracellular endosymbiont of xylotrophic (woodfeeding)bivalves of the Family Teredinidae (shipworms). Although T. turnerae has been isolated from many shipworm taxa collected in many locations, no systematic effort has been made to explore genetic diversity within this symbiont species across the taxonomic and geographical range of its hosts. The mode of symbiont transmission is unknown. Here, we examine sequence diversity in fragments of six genes (16S rRNA, gyrB, sseA, recA, rpoB and celAB) among 25 isolates of T. turnerae cultured from 13 shipworm species collected in 15 locations in the Atlantic, Pacific and Indian Oceans. While 16S rRNA sequences are nearly invariant between all examined isolates (maximum pairwise difference <0.26%), variation between examined protein-coding loci is greater (mean pairwise difference 2.2–5.9%). Phylogenetic analyses based on each protein-coding locus differentiate the 25 isolates into two distinct and well-supported clades. With five exceptions, clade assignments for each isolate were supported by analysis of alleles of each of the five protein-coding loci. These exceptions include (i) putative recombinant alleles of the celAB and gyrB loci in two isolates (PMS-535T.S.1b.3 and T8510), suggesting homologous recombination between members of the two clades; and (ii) evidence for a putative lateral gene transfer event affecting a second locus (recA) in three isolates (T8412, T8503 and T8513). These results demonstrate that T. turnerae isolates do not represent a homogeneous global population. Instead, they indicate the emergence of two lineages that, although distinct, likely experience some level of genetic exchange with each other and with other bacterial species.
Collapse
Affiliation(s)
- Marvin A Altamia
- Marine Science Institute, University of the Philippines-Diliman, Quezon City, 1101, Philippines
| | - Nicole Wood
- Laboratory for Marine Genomic Research, Ocean Genome Legacy Inc., Ipswich, MA, 01938, USA
| | - Jennifer M Fung
- Laboratory for Marine Genomic Research, Ocean Genome Legacy Inc., Ipswich, MA, 01938, USA
| | - Sandra Dedrick
- Laboratory for Marine Genomic Research, Ocean Genome Legacy Inc., Ipswich, MA, 01938, USA
| | - Eric W Linton
- Department of Biology, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Gisela P Concepcion
- Marine Science Institute, University of the Philippines-Diliman, Quezon City, 1101, Philippines
| | - Margo G Haygood
- Institute of Environmental Health, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Daniel L Distel
- Ocean Genome Legacy Center of New England Biolabs, Marine Science Center, Northeastern University, Nahant, MA, 01908, USA
| |
Collapse
|
7
|
Buchholz M, Nahrstedt H, Pillukat MH, Deppe V, Meinhardt F. yneA mRNA instability is involved in temporary inhibition of cell division during the SOS response of Bacillus megaterium. MICROBIOLOGY-SGM 2013; 159:1564-1574. [PMID: 23728628 DOI: 10.1099/mic.0.064766-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The SOS response, a mechanism enabling bacteria to cope with DNA damage, is strictly regulated by the two major players, RecA and LexA (Bacillus homologue DinR). Genetic stress provokes formation of ssDNA-RecA nucleoprotein filaments, the coprotease activity of which mediates the autocatalytic cleavage of the transcriptional repressor DinR and ensures the expression of a set of din (damage-inducible) genes, which encode proteins that enhance repair capacity, accelerate mutagenesis rate and cause inhibition of cell division (ICD). In Bacillus subtilis, the transcriptional activation of the yneAB-ynzC operon is part of the SOS response, with YneA being responsible for the ICD. Pointing to its cellular function in Bacillus megaterium, overexpression of homologous YneA led to filamentous growth, while ICD was temporary during the SOS response. Genetic knockouts of the individual open reading frames of the yneAB-ynzC operon increased the mutagenic sensitivity, proving - for the first time in a Bacillus species - that each of the three genes is in fact instrumental in coping with genetic stress. Northern- and quantitative real-time PCR analyses revealed - in contrast to other din genes (exemplified for dinR, uvrBA) - transient mRNA-presence of the yneAB-ynzC operon irrespective of persisting SOS-inducing conditions. Promoter test assays and Northern analyses suggest that the decline of the ICD is at least partly due to yneAB-ynzC mRNA instability.
Collapse
Affiliation(s)
- Meike Buchholz
- Institut für Molekulare Mikrobiologie und Biotechnologie Westfälische Wilhelms-Universität Münster Corrensstraße 3, 48149 Münster, Germany
| | - Hannes Nahrstedt
- Institut für Molekulare Mikrobiologie und Biotechnologie Westfälische Wilhelms-Universität Münster Corrensstraße 3, 48149 Münster, Germany
| | - Mike H Pillukat
- Institut für Molekulare Mikrobiologie und Biotechnologie Westfälische Wilhelms-Universität Münster Corrensstraße 3, 48149 Münster, Germany
| | - Veronika Deppe
- Institut für Molekulare Mikrobiologie und Biotechnologie Westfälische Wilhelms-Universität Münster Corrensstraße 3, 48149 Münster, Germany
| | - Friedhelm Meinhardt
- Institut für Molekulare Mikrobiologie und Biotechnologie Westfälische Wilhelms-Universität Münster Corrensstraße 3, 48149 Münster, Germany
| |
Collapse
|
8
|
Korneli C, David F, Biedendieck R, Jahn D, Wittmann C. Getting the big beast to work--systems biotechnology of Bacillus megaterium for novel high-value proteins. J Biotechnol 2012; 163:87-96. [PMID: 22750448 DOI: 10.1016/j.jbiotec.2012.06.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 06/18/2012] [Accepted: 06/20/2012] [Indexed: 12/31/2022]
Abstract
The high industrial relevance of the soil bacterium Bacillus megaterium as host for recombinant proteins is driving systems-wide analyses of its metabolic and regulatory networks. The present review highlights novel systems biology tools available to unravel the various cellular components on the level of metabolic and regulatory networks. These provide a rational platform for systems metabolic engineering of B. megaterium. In line, a number of interesting studies have particularly focused on studying recombinant B. megaterium in its industrial bioprocess environment thus integrating systems metabolic engineering with systems biotechnology and providing the full picture toward optimal processes.
Collapse
Affiliation(s)
- Claudia Korneli
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
9
|
Borgmeier C, Biedendieck R, Hoffmann K, Jahn D, Meinhardt F. Transcriptome profiling of degU expression reveals unexpected regulatory patterns in Bacillus megaterium and discloses new targets for optimizing expression. Appl Microbiol Biotechnol 2011; 92:583-96. [PMID: 21935588 DOI: 10.1007/s00253-011-3575-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/17/2011] [Accepted: 09/08/2011] [Indexed: 11/24/2022]
Abstract
The first whole transcriptome assessment of a Bacillus megaterium strain provides unanticipated insights into the degSU regulon considered to be of central importance for exo-enzyme production. Regulatory patterns as well as the transcription of degSU itself deviate from the model organism Bacillus subtilis; the number of DegU-regulated secretory enzymes is rather small. Targets for productivity optimization, besides degSU itself, arise from the unexpected DegU-dependent induction of the transition-state regulator AbrB during exponential growth. Induction of secretion-assisting factors, such as the translocase subunit SecY or the signal peptidase SipM, promote hypersecretion. B. megaterium DegSU transcriptional control is advantageous for production purposes, since the degU32 constitutively active mutant conferred hypersecretion of a heterologous Bacillus amyloliquefaciens amylase without the detrimental rise, as for B. subtilis and Bacillus licheniformis, in extracellular proteolytic activities.
Collapse
Affiliation(s)
- Claudia Borgmeier
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms Universität, Corrensstrasse 3, 48149, Münster, Germany
| | | | | | | | | |
Collapse
|
10
|
Miller SR, Wood AM, Blankenship RE, Kim M, Ferriera S. Dynamics of gene duplication in the genomes of chlorophyll d-producing cyanobacteria: implications for the ecological niche. Genome Biol Evol 2011; 3:601-13. [PMID: 21697100 PMCID: PMC3156569 DOI: 10.1093/gbe/evr060] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene duplication may be an important mechanism for the evolution of new functions and for the adaptive modulation of gene expression via dosage effects. Here, we analyzed the fate of gene duplicates for two strains of a novel group of cyanobacteria (genus Acaryochloris) that produces the far-red light absorbing chlorophyll d as its main photosynthetic pigment. The genomes of both strains contain an unusually high number of gene duplicates for bacteria. As has been observed for eukaryotic genomes, we find that the demography of gene duplicates can be well modeled by a birth-death process. Most duplicated Acaryochloris genes are of comparatively recent origin, are strain-specific, and tend to be located on different genetic elements. Analyses of selection on duplicates of different divergence classes suggest that a minority of paralogs exhibit near neutral evolutionary dynamics immediately following duplication but that most duplicate pairs (including those which have been retained for long periods) are under strong purifying selection against amino acid change. The likelihood of duplicate retention varied among gene functional classes, and the pronounced differences between strains in the pool of retained recent duplicates likely reflects differences in the nutrient status and other characteristics of their respective environments. We conclude that most duplicates are quickly purged from Acaryochloris genomes and that those which are retained likely make important contributions to organism ecology by conferring fitness benefits via gene dosage effects. The mechanism of enhanced duplication may involve homologous recombination between genetic elements mediated by paralogous copies of recA.
Collapse
Affiliation(s)
- Scott R Miller
- Division of Biological Sciences, The University of Montana, USA.
| | | | | | | | | |
Collapse
|
11
|
Functional analysis of the response regulator DegU in Bacillus megaterium DSM319 and comparative secretome analysis of degSU mutants. Appl Microbiol Biotechnol 2011; 91:699-711. [DOI: 10.1007/s00253-011-3302-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/01/2011] [Accepted: 04/01/2011] [Indexed: 10/18/2022]
|
12
|
Biedendieck R, Borgmeier C, Bunk B, Stammen S, Scherling C, Meinhardt F, Wittmann C, Jahn D. Systems biology of recombinant protein production using Bacillus megaterium. Methods Enzymol 2011; 500:165-95. [PMID: 21943898 DOI: 10.1016/b978-0-12-385118-5.00010-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The Gram-negative bacterium Escherichia coli is the most widely used production host for recombinant proteins in both academia and industry. The Gram-positive bacterium Bacillus megaterium represents an increasingly used alternative for high yield intra- and extracellular protein synthesis. During the past two decades, multiple tools including gene expression plasmids and production strains have been developed. Introduction of free replicating and integrative plasmids into B. megaterium is possible via protoplasts transformation or transconjugation. Using His(6)- and StrepII affinity tags, the intra- or extracellular produced proteins can easily be purified in one-step procedures. Different gene expression systems based on the xylose controlled promoter P(xylA) and various phage RNA polymerase (T7, SP6, K1E) driven systems enable B. megaterium to produce up to 1.25g of recombinant protein per liter. Biomass concentrations of up to 80g/l can be achieved by high cell density cultivations in bioreactors. Gene knockouts and gene replacements in B. megaterium are possible via an optimized gene disruption system. For a safe application in industry, sporulation and protease-deficient as well as UV-sensitive mutants are available. With the help of the recently published B. megaterium genome sequence, it is possible to characterize bottle necks in the protein production process via systems biology approaches based on transcriptome, proteome, metabolome, and fluxome data. The bioinformatical platform (Megabac, http://www.megabac.tu-bs.de) integrates obtained theoretical and experimental data.
Collapse
Affiliation(s)
- Rebekka Biedendieck
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, Braunschweig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
An improved transconjugation protocol for Bacillus megaterium facilitating a direct genetic knockout. Appl Microbiol Biotechnol 2010; 86:1959-65. [PMID: 20217076 DOI: 10.1007/s00253-010-2503-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 10/19/2022]
Abstract
We provide a simple but very efficient transconjugation protocol for Bacillus megaterium. By combining utile attributes of known transconjugation methods (small size of the transferred DNA, close physical contact between donor and recipient cells, and heat treatment of the latter) and by determining the appropriate donor/recipient ratio, mating approaches yielded 5 x 10(-5) transconjugants/recipient. Counter-selection for eliminating Escherichia coli donor cells from the mating mixture was possible by pasteurization in case a wild type sporulation proficient B. megaterium served as the mating partner. For nonsporulating mutants, the sacB gene from Bacillus subtilis coding for levansucrase was successfully employed to select against the E. coli donor. The transfer efficiency, up to 15,000 transconjugants acquirable in a single experiment, sufficed--for the first time in this species--to directly select a gene (uvrA) knockout in a one-step procedure. By making use of a mobilizable B. megaterium suicide vector, ten out of the 40 sampled putative transconjugants displayed the expected UV sensitivity and were found to harbor the suicide vector at the anticipated position. Along with the soon available information arising from current B. megaterium sequencing projects, the possibility to quickly inactivate genetic loci will considerably speed up genetic work with this biotechnologically relevant species.
Collapse
|
14
|
Dulermo R, Fochesato S, Blanchard L, De Groot A. Mutagenic lesion bypass and two functionally different RecA proteins in Deinococcus deserti. Mol Microbiol 2009; 74:194-208. [PMID: 19703105 DOI: 10.1111/j.1365-2958.2009.06861.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RecA is essential for extreme radiation tolerance in Deinococcus radiodurans. Interestingly, Sahara bacterium Deinococcus deserti has three recA genes (recA(C), recA(P1), recA(P3)) that code for two different RecA proteins (RecA(C), RecA(P)). Moreover, and in contrast to other sequenced Deinococcus species, D. deserti possesses homologues of translesion synthesis (TLS) DNA polymerases, including ImuY and DnaE2. Together with a lexA homologue, imuY and dnaE2 form a gene cluster similar to a widespread RecA/LexA-controlled mutagenesis cassette. After having developed genetic tools, we have constructed mutant strains to characterize these recA and TLS polymerase genes in D. deserti. Both RecA(C) and RecA(P) are functional and allow D. deserti to survive, and thus repair massive DNA damage, after exposure to high doses of radiation. D. deserti is mutable by UV, which requires ImuY, DnaE2 and RecA(C), but not RecA(P). RecA(C), but not RecA(P), facilitates induced expression of imuY and dnaE2 following UV exposure. We propose that the extra recA(P1) and recA(P3) genes may provide higher levels of RecA protein for efficient error-free repair of DNA damage, without further increasing error-prone lesion bypass by ImuY and DnaE2, whereas limited TLS may contribute to adaptation to harsh conditions by generating genetic variability.
Collapse
Affiliation(s)
- Rémi Dulermo
- CEA, DSV, IBEB, Lab Ecol Microb Rhizosphere & Environ Extrem (LEMiRE), Saint-Paul-lez-Durance, F-13108, France.CNRS, UMR 6191 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, F-13108, France.Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
| | - Sylvain Fochesato
- CEA, DSV, IBEB, Lab Ecol Microb Rhizosphere & Environ Extrem (LEMiRE), Saint-Paul-lez-Durance, F-13108, France.CNRS, UMR 6191 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, F-13108, France.Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
| | - Laurence Blanchard
- CEA, DSV, IBEB, Lab Ecol Microb Rhizosphere & Environ Extrem (LEMiRE), Saint-Paul-lez-Durance, F-13108, France.CNRS, UMR 6191 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, F-13108, France.Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
| | - Arjan De Groot
- CEA, DSV, IBEB, Lab Ecol Microb Rhizosphere & Environ Extrem (LEMiRE), Saint-Paul-lez-Durance, F-13108, France.CNRS, UMR 6191 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, F-13108, France.Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
| |
Collapse
|
15
|
Alliance of proteomics and genomics to unravel the specificities of Sahara bacterium Deinococcus deserti. PLoS Genet 2009; 5:e1000434. [PMID: 19370165 PMCID: PMC2669436 DOI: 10.1371/journal.pgen.1000434] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 02/23/2009] [Indexed: 12/22/2022] Open
Abstract
To better understand adaptation to harsh conditions encountered in hot arid deserts, we report the first complete genome sequence and proteome analysis of a bacterium, Deinococcus deserti VCD115, isolated from Sahara surface sand. Its genome consists of a 2.8-Mb chromosome and three large plasmids of 324 kb, 314 kb, and 396 kb. Accurate primary genome annotation of its 3,455 genes was guided by extensive proteome shotgun analysis. From the large corpus of MS/MS spectra recorded, 1,348 proteins were uncovered and semiquantified by spectral counting. Among the highly detected proteins are several orphans and Deinococcus-specific proteins of unknown function. The alliance of proteomics and genomics high-throughput techniques allowed identification of 15 unpredicted genes and, surprisingly, reversal of incorrectly predicted orientation of 11 genes. Reversal of orientation of two Deinococcus-specific radiation-induced genes, ddrC and ddrH, and identification in D. deserti of supplementary genes involved in manganese import extend our knowledge of the radiotolerance toolbox of Deinococcaceae. Additional genes involved in nutrient import and in DNA repair (i.e., two extra recA, three translesion DNA polymerases, a photolyase) were also identified and found to be expressed under standard growth conditions, and, for these DNA repair genes, after exposure of the cells to UV. The supplementary nutrient import and DNA repair genes are likely important for survival and adaptation of D. deserti to its nutrient-poor, dry, and UV-exposed extreme environment. D. deserti belongs to the Deinococcaceae, a family of bacteria characterized by an exceptional ability to withstand the lethal effects of DNA-damaging agents, including ionizing radiation, UV light, and desiccation. It was isolated from Sahara surface sands, an extreme and nutrient-poor environment, regularly exposed to intense UV radiation, cycles of extreme temperatures, and desiccation. The evolution of organisms that are able to survive acute irradiation doses of 15,000 Gy is difficult to explain given the apparent absence of highly radioactive habitats on Earth over geologic time. Thus, it seems more likely that the natural selection pressure for the evolution of radiation-resistant bacteria was chronic exposure to nonradioactive forms of DNA damage, in particular those promoted by desiccation. Here, we report the first complete genome sequence of a bacterium, D. deserti VCD115, isolated from hot, arid desert surface sand. Accurate genome annotation of its 3,455 genes was guided by extensive proteome analysis in which 1,348 proteins were uncovered after growth in standard conditions. Supplementary genes involved in manganese import, in nutrient import, and in DNA repair were identified and are likely important for survival and adaptation of D. deserti to its hostile environment.
Collapse
|
16
|
Vary PS, Biedendieck R, Fuerch T, Meinhardt F, Rohde M, Deckwer WD, Jahn D. Bacillus megaterium—from simple soil bacterium to industrial protein production host. Appl Microbiol Biotechnol 2007; 76:957-67. [PMID: 17657486 DOI: 10.1007/s00253-007-1089-3] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 06/11/2007] [Accepted: 06/12/2007] [Indexed: 10/23/2022]
Abstract
Bacillus megaterium has been industrially employed for more than 50 years, as it possesses some very useful and unusual enzymes and a high capacity for the production of exoenzymes. It is also a desirable cloning host for the production of intact proteins, as it does not possess external alkaline proteases and can stably maintain a variety of plasmid vectors. Genetic tools for this species include transducing phages and several hundred mutants covering the processes of biosynthesis, catabolism, division, sporulation, germination, antibiotic resistance, and recombination. The seven plasmids of B. megaterium strain QM B1551 contain several unusual metabolic genes that may be useful in bioremediation. Recently, several recombinant shuttle vectors carrying different strong inducible promoters and various combinations of affinity tags for simple protein purification have been constructed. Leader sequences-mediated export of affinity-tagged proteins into the growth medium was made possible. These plasmids are commercially available. For a broader application of B. megaterium in industry, sporulation and protease-deficient as well as UV-sensitive mutants were constructed. The genome sequence of two different strains, plasmidless DSM319 and QM B1551 carrying seven natural plasmids, is now available. These sequences allow for a systems biotechnology optimization of the production host B. megaterium. Altogether, a "toolbox" of hundreds of genetically characterized strains, genetic methods, vectors, hosts, and genomic sequences make B. megaterium an ideal organism for industrial, environmental, and experimental applications.
Collapse
Affiliation(s)
- Patricia S Vary
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Waldeck J, Meyer-Rammes H, Wieland S, Feesche J, Maurer KH, Meinhardt F. Targeted deletion of genes encoding extracellular enzymes in Bacillus licheniformis and the impact on the secretion capability. J Biotechnol 2007; 130:124-32. [PMID: 17481763 DOI: 10.1016/j.jbiotec.2007.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 02/13/2007] [Accepted: 03/09/2007] [Indexed: 10/23/2022]
Abstract
The general secretory pathway is routinely concerned with a multitude of extracellular enzymes. By eliminating obstructive competitors the export machinery may transport larger quantities of remaining proteins under circumstances in which the secretion machinery is fully loaded. Hence, in this study, genes encoding efficiently expressed but dispensable exoenzymes were knocked out in Bacillus licheniformis MD1. Single, double, and triple mutants with deletions of celA, chiA, and amyB, respectively, were generated via in vivo recombination by making use of a vector with a temperature sensitive origin of replication. Overexpression of a heterologous amylase gene on a multi-copy plasmid, a common scenario in biotechnological processes, resulted in an articulate reduction of chromosomally encoded extracellular enzyme activities indicating that the secretion machinery works to capacity in such transformants. Deletion mutants with the expression plasmid displayed enhanced amylase activities compared to the strain with the wild type genetic background. In addition, the chromosomally encoded protease activity was clearly higher in transformants with deletions.
Collapse
Affiliation(s)
- Jens Waldeck
- Westfälische Wilhelms-Universität Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Corrensstrasse 3, 48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Waldeck J, Meyer-Rammes H, Nahrstedt H, Eichstädt R, Wieland S, Meinhardt F. Targeted deletion of the uvrBA operon and biological containment in the industrially important Bacillus licheniformis. Appl Microbiol Biotechnol 2006; 73:1340-7. [PMID: 17004053 DOI: 10.1007/s00253-006-0602-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 07/20/2006] [Accepted: 08/07/2006] [Indexed: 10/24/2022]
Abstract
From a Bacillus licheniformis wild type as well as a defined asporogenous derivative, stable UV hypersensitive mutants were generated by targeted deletion of the uvrBA operon, encoding highly conserved key components of the nucleotide excision repair. Comparative studies, which included the respective parental strains, revealed no negative side effects of the deletion, neither on enzyme secretion nor on vegetative propagation. Thus, the uvrBA locus proved to be a useful deletion target for achieving biological containment in this industrially exploited bacterium. In contrast to recA mutants, which also display UV hypersensitivity, further strain development via homologous recombination techniques will be still possible in such uvr mutants.
Collapse
Affiliation(s)
- Jens Waldeck
- Westfälische Wilhelms-Universität Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Corrensstrasse 3, 48149, Münster, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Roux CM, Booth NJ, Bellaire BH, Gee JM, Roop RM, Kovach ME, Tsolis RM, Elzer PH, Ennis DG. RecA and RadA proteins of Brucella abortus do not perform overlapping protective DNA repair functions following oxidative burst. J Bacteriol 2006; 188:5187-95. [PMID: 16816190 PMCID: PMC1539968 DOI: 10.1128/jb.01994-05] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Very little is known about the role of DNA repair networks in Brucella abortus and its role in pathogenesis. We investigated the roles of RecA protein, DNA repair, and SOS regulation in B. abortus. While recA mutants in most bacterial species are hypersensitive to UV damage, surprisingly a B. abortus recA null mutant conferred only modest sensitivity. We considered the presence of a second RecA protein to account for this modest UV sensitivity. Analyses of the Brucella spp. genomes and our molecular studies documented the presence of only one recA gene, suggesting a RecA-independent repair process. Searches of the available Brucella genomes revealed some homology between RecA and RadA, a protein implicated in E. coli DNA repair. We considered the possibility that B. abortus RadA might be compensating for the loss of RecA by promoting similar repair activities. We present functional analyses that demonstrated that B. abortus RadA complements a radA defect in E. coli but could not act in place of the B. abortus RecA. We show that RecA but not RadA was required for survival in macrophages. We also discovered that recA was expressed at high constitutive levels, due to constitutive LexA cleavage by RecA, with little induction following DNA damage. Higher basal levels of RecA and its SOS-regulated gene products might protect against DNA damage experienced following the oxidative burst within macrophages.
Collapse
Affiliation(s)
- Christelle M Roux
- Department of Biology, P.O. Box 42451, University of Louisiana, Lafayette, LA 70504-2451, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lin Z, Kong H, Nei M, Ma H. Origins and evolution of the recA/RAD51 gene family: evidence for ancient gene duplication and endosymbiotic gene transfer. Proc Natl Acad Sci U S A 2006; 103:10328-10333. [PMID: 16798872 PMCID: PMC1502457 DOI: 10.1073/pnas.0604232103] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bacterial recA gene and its eukaryotic homolog RAD51 are important for DNA repair, homologous recombination, and genome stability. Members of the recA/RAD51 family have functions that have differentiated during evolution. However, the evolutionary history and relationships of these members remains unclear. Homolog searches in prokaryotes and eukaryotes indicated that most eubacteria contain only one recA. However, many archaeal species have two recA/RAD51 homologs (RADA and RADB), and eukaryotes possess multiple members (RAD51, RAD51B, RAD51C, RAD51D, DMC1, XRCC2, XRCC3, and recA). Phylogenetic analyses indicated that the recA/RAD51 family can be divided into three subfamilies: (i) RADalpha, with highly conserved functions; (ii) RADbeta, with relatively divergent functions; and (iii) recA, functioning in eubacteria and eukaryotic organelles. The RADalpha and RADbeta subfamilies each contain archaeal and eukaryotic members, suggesting that a gene duplication occurred before the archaea/eukaryote split. In the RADalpha subfamily, eukaryotic RAD51 and DMC1 genes formed two separate monophyletic groups when archaeal RADA genes were used as an outgroup. This result suggests that another duplication event occurred in the early stage of eukaryotic evolution, producing the DMC1 clade with meiosis-specific genes. The RADbeta subfamily has a basal archaeal clade and five eukaryotic clades, suggesting that four eukaryotic duplication events occurred before animals and plants diverged. The eukaryotic recA genes were detected in plants and protists and showed strikingly high levels of sequence similarity to recA genes from proteobacteria or cyanobacteria. These results suggest that endosymbiotic transfer of recA genes occurred from mitochondria and chloroplasts to nuclear genomes of ancestral eukaryotes.
Collapse
Affiliation(s)
- Zhenguo Lin
- *Department of Biology and the Institute of Molecular Evolutionary Genetics and
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802; and
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | - Masatoshi Nei
- *Department of Biology and the Institute of Molecular Evolutionary Genetics and
| | - Hong Ma
- *Department of Biology and the Institute of Molecular Evolutionary Genetics and
- *Department of Biology and the Institute of Molecular Evolutionary Genetics and
| |
Collapse
|
21
|
Nahrstedt H, Waldeck J, Gröne M, Eichstädt R, Feesche J, Meinhardt F. Strain development in Bacillus licheniformis: construction of biologically contained mutants deficient in sporulation and DNA repair. J Biotechnol 2006; 119:245-54. [PMID: 15951041 DOI: 10.1016/j.jbiotec.2005.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 04/05/2005] [Accepted: 04/05/2005] [Indexed: 10/25/2022]
Abstract
By introducing defined deletions in recA and an essential sporulation gene (spoIV), stable mutant strains of Bacillus licheniformis were obtained which are totally asporogenous and severely affected in DNA repair, and thus being UV-hypersensitive. Studies on growth in various liquid media as well as on amylase production revealed no differences of the mutants when compared to the wild type. Hence, such genes appear to be suitable disruption targets for achieving passive biological containment in this industrially exploited species.
Collapse
Affiliation(s)
- Hannes Nahrstedt
- Westfälische Wilhelms-Universität Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Corrensstrasse 3, 48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Schmidt S, Wolf N, Strey J, Nahrstedt H, Meinhardt F, Waldeck J. Test systems to study transcriptional regulation and promoter activity in Bacillus megaterium. Appl Microbiol Biotechnol 2005; 68:647-55. [PMID: 15782292 DOI: 10.1007/s00253-005-1930-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 12/29/2004] [Accepted: 01/25/2005] [Indexed: 10/25/2022]
Abstract
Plasmid-located (multi-copy) and chromosomally located (single-copy) promoter test systems were developed for Bacillus megaterium by making use of the homologous beta-galactosidase-encoding bgaM gene. The multi-copy system facilitates rapid promoter analyses and promoter trapping, whereas the single-copy system, integrated into the chromosome, allows investigation of tightly regulated promoters. As a prerequisite for both the multi- and the single-copy systems, a beta-galactosidase-deficient B. megaterium strain was generated by deletion mutagenesis. Both test systems were verified using the promoter of the xylose operon (P( xylA )) from B. megaterium along with its repressor (XylR). As expected, expression levels in the two systems differed significantly, although expression of the bgaM reporter gene was induced by xylose in both cases, thereby proving the functionality of both the multi- and the single-copy system.
Collapse
Affiliation(s)
- Silke Schmidt
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Germany
| | | | | | | | | | | |
Collapse
|