1
|
A New Family of Transcriptional Regulators Activating Biosynthetic Gene Clusters for Secondary Metabolites. Int J Mol Sci 2022; 23:ijms23052455. [PMID: 35269603 PMCID: PMC8910723 DOI: 10.3390/ijms23052455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/22/2022] Open
Abstract
We previously identified the aur1 biosynthetic gene cluster (BGC) in Streptomyceslavendulae subsp. lavendulae CCM 3239 (formerly Streptomycesaureofaciens CCM 3239), which is responsible for the production of the unusual angucycline-like antibiotic auricin. Auricin is produced in a narrow interval of the growth phase after entering the stationary phase, after which it is degraded due to its instability at the high pH values reached after the production phase. The complex regulation of auricin BGC is responsible for this specific production by several regulators, including the key activator Aur1P, which belongs to the family of atypical response regulators. The aur1P gene forms an operon with the downstream aur1O gene, which encodes an unknown protein without any conserved domain. Homologous aur1O genes have been found in several BGCs, which are mainly responsible for the production of angucycline antibiotics. Deletion of the aur1O gene led to a dramatic reduction in auricin production. Transcription from the previously characterized Aur1P-dependent biosynthetic aur1Ap promoter was similarly reduced in the S. lavendulaeaur1O mutant strain. The aur1O-specific coactivation of the aur1Ap promoter was demonstrated in a heterologous system using a luciferase reporter gene. In addition, the interaction between Aur1O and Aur1P has been demonstrated by a bacterial two-hybrid system. These results suggest that Aur1O is a specific coactivator of this key auricin-specific positive regulator Aur1P. Bioinformatics analysis of Aur1O and its homologues in other BGCs revealed that they represent a new family of transcriptional coactivators involved in the regulation of secondary metabolite biosynthesis. However, they are divided into two distinct sequence-specific subclasses, each of which is likely to interact with a different family of positive regulators.
Collapse
|
2
|
Mingyar E, Mühling L, Kulik A, Winkler A, Wibberg D, Kalinowski J, Blin K, Weber T, Wohlleben W, Stegmann E. A Regulator Based "Semi-Targeted" Approach to Activate Silent Biosynthetic Gene Clusters. Int J Mol Sci 2021; 22:ijms22147567. [PMID: 34299187 PMCID: PMC8306873 DOI: 10.3390/ijms22147567] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/29/2022] Open
Abstract
By culturing microorganisms under standard laboratory conditions, most biosynthetic gene clusters (BGCs) are not expressed, and thus, the products are not produced. To explore this biosynthetic potential, we developed a novel "semi-targeted" approach focusing on activating "silent" BGCs by concurrently introducing a group of regulator genes into streptomycetes of the Tübingen strain collection. We constructed integrative plasmids containing two classes of regulatory genes under the control of the constitutive promoter ermE*p (cluster situated regulators (CSR) and Streptomyces antibiotic regulatory proteins (SARPs)). These plasmids were introduced into Streptomyces sp. TÜ17, Streptomyces sp. TÜ10 and Streptomyces sp. TÜ102. Introduction of the CSRs-plasmid into strain S. sp. TÜ17 activated the production of mayamycin A. By using the individual regulator genes, we proved that Aur1P, was responsible for the activation. In strain S. sp. TÜ102, the introduction of the SARP-plasmid triggered the production of a chartreusin-like compound. Insertion of the CSRs-plasmid into strain S. sp. TÜ10 resulted in activating the warkmycin-BGC. In both recombinants, activation of the BGCs was only possible through the simultaneous expression of aur1PR3 and griR in S. sp. TÜ102 and aur1P and pntR in of S. sp. TÜ10.
Collapse
Affiliation(s)
- Erik Mingyar
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Auf der Morgenstelle 28, 72076 Tübingen, Germany; (E.M.); (L.M.); (A.K.); (W.W.)
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Lucas Mühling
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Auf der Morgenstelle 28, 72076 Tübingen, Germany; (E.M.); (L.M.); (A.K.); (W.W.)
| | - Andreas Kulik
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Auf der Morgenstelle 28, 72076 Tübingen, Germany; (E.M.); (L.M.); (A.K.); (W.W.)
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Anika Winkler
- Center for Biotechnology (CeBiTec), Universität Bielefeld, 33615 Bielefeld, Germany; (A.W.); (D.W.); (J.K.)
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Universität Bielefeld, 33615 Bielefeld, Germany; (A.W.); (D.W.); (J.K.)
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Universität Bielefeld, 33615 Bielefeld, Germany; (A.W.); (D.W.); (J.K.)
| | - Kai Blin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark; (K.B.); (T.W.)
| | - Tilmann Weber
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark; (K.B.); (T.W.)
| | - Wolfgang Wohlleben
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Auf der Morgenstelle 28, 72076 Tübingen, Germany; (E.M.); (L.M.); (A.K.); (W.W.)
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124—Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
| | - Evi Stegmann
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Auf der Morgenstelle 28, 72076 Tübingen, Germany; (E.M.); (L.M.); (A.K.); (W.W.)
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124—Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
- Correspondence:
| |
Collapse
|
3
|
Takao R, Sakai K, Koshino H, Osada H, Takahashi S. Identification of the kinanthraquinone biosynthetic gene cluster by expression of an atypical response regulator. Biosci Biotechnol Biochem 2021; 85:714-721. [DOI: 10.1093/bbb/zbaa082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/29/2020] [Indexed: 01/15/2023]
Abstract
ABSTRACT
Recent advances in genome sequencing have revealed a variety of secondary metabolite biosynthetic gene clusters in actinomycetes. Understanding the biosynthetic mechanism controlling secondary metabolite production is important for utilizing these gene clusters. In this study, we focused on the kinanthraquinone biosynthetic gene cluster, which has not been identified yet in Streptomyces sp. SN-593. Based on chemical structure, 5 type II polyketide synthase gene clusters were listed from the genome sequence of Streptomyces sp. SN-593. Among them, a candidate gene cluster was selected by comparing the gene organization with grincamycin, which is synthesized through an intermediate similar to kinanthraquinone. We initially utilized a BAC library for subcloning the kiq gene cluster, performed heterologous expression in Streptomyces lividans TK23, and identified the production of kinanthraquinone and kinanthraquinone B. We also found that heterologous expression of kiqA, which belongs to the DNA-binding response regulator OmpR family, dramatically enhanced the production of kinanthraquinones.
Collapse
Affiliation(s)
- Risa Takao
- Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama-shi, Saitama, Japan
- Natural Product Biosynthesis Research Unit, RIKEN Centre for Sustainable Resource Science, Wako, Saitama, Japan
| | - Katsuyuki Sakai
- Natural Product Biosynthesis Research Unit, RIKEN Centre for Sustainable Resource Science, Wako, Saitama, Japan
| | - Hiroyuki Koshino
- Molecular Structure Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Centre for Sustainable Resource Science, Wako, Saitama, Japan
| | - Shunji Takahashi
- Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama-shi, Saitama, Japan
- Natural Product Biosynthesis Research Unit, RIKEN Centre for Sustainable Resource Science, Wako, Saitama, Japan
| |
Collapse
|
4
|
Gummerlich N, Rebets Y, Paulus C, Zapp J, Luzhetskyy A. Targeted Genome Mining-From Compound Discovery to Biosynthetic Pathway Elucidation. Microorganisms 2020; 8:microorganisms8122034. [PMID: 33352664 PMCID: PMC7765855 DOI: 10.3390/microorganisms8122034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022] Open
Abstract
Natural products are an important source of novel investigational compounds in drug discovery. Especially in the field of antibiotics, Actinobacteria have been proven to be a reliable source for lead structures. The discovery of these natural products with activity- and structure-guided screenings has been impeded by the constant rediscovery of previously identified compounds. Additionally, a large discrepancy between produced natural products and biosynthetic potential in Actinobacteria, including representatives of the order Pseudonocardiales, has been revealed using genome sequencing. To turn this genomic potential into novel natural products, we used an approach including the in-silico pre-selection of unique biosynthetic gene clusters followed by their systematic heterologous expression. As a proof of concept, fifteen Saccharothrixespanaensis genomic library clones covering predicted biosynthetic gene clusters were chosen for expression in two heterologous hosts, Streptomyceslividans and Streptomycesalbus. As a result, two novel natural products, an unusual angucyclinone pentangumycin and a new type II polyketide synthase shunt product SEK90, were identified. After purification and structure elucidation, the biosynthetic pathways leading to the formation of pentangumycin and SEK90 were deduced using mutational analysis of the biosynthetic gene cluster and feeding experiments with 13C-labelled precursors.
Collapse
Affiliation(s)
- Nils Gummerlich
- Department of Pharmaceutical Biotechnology, Saarland University, Campus C2.3, 66123 Saarbrücken, Germany; (N.G.); (Y.R.); (C.P.)
| | - Yuriy Rebets
- Department of Pharmaceutical Biotechnology, Saarland University, Campus C2.3, 66123 Saarbrücken, Germany; (N.G.); (Y.R.); (C.P.)
| | - Constanze Paulus
- Department of Pharmaceutical Biotechnology, Saarland University, Campus C2.3, 66123 Saarbrücken, Germany; (N.G.); (Y.R.); (C.P.)
| | - Josef Zapp
- Department of Pharmaceutical Biology, Saarland University, Campus C2.3, 66123 Saarbrücken, Germany;
| | - Andriy Luzhetskyy
- Department of Pharmaceutical Biotechnology, Saarland University, Campus C2.3, 66123 Saarbrücken, Germany; (N.G.); (Y.R.); (C.P.)
- Actinobacteria Metabolic Engineering Group, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
- Correspondence: ; Tel.: +49-681-302-70200
| |
Collapse
|
5
|
Lu F, Hou Y, Zhang H, Chu Y, Xia H, Tian Y. Regulatory genes and their roles for improvement of antibiotic biosynthesis in Streptomyces. 3 Biotech 2017; 7:250. [PMID: 28718097 DOI: 10.1007/s13205-017-0875-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/07/2017] [Indexed: 01/23/2023] Open
Abstract
The numerous secondary metabolites in Streptomyces spp. are crucial for various applications. For example, cephamycin C is used as an antibiotic, and avermectin is used as an insecticide. Specifically, antibiotic yield is closely related to many factors, such as the external environment, nutrition (including nitrogen and carbon sources), biosynthetic efficiency and the regulatory mechanisms in producing strains. There are various types of regulatory genes that work in different ways, such as pleiotropic (or global) regulatory genes, cluster-situated regulators, which are also called pathway-specific regulatory genes, and many other regulators. The study of regulatory genes that influence antibiotic biosynthesis in Streptomyces spp. not only provides a theoretical basis for antibiotic biosynthesis in Streptomyces but also helps to increase the yield of antibiotics via molecular manipulation of these regulatory genes. Currently, more and more emphasis is being placed on the regulatory genes of antibiotic biosynthetic gene clusters in Streptomyces spp., and many studies on these genes have been performed to improve the yield of antibiotics in Streptomyces. This paper lists many antibiotic biosynthesis regulatory genes in Streptomyces spp. and focuses on frequently investigated regulatory genes that are involved in pathway-specific regulation and pleiotropic regulation and their applications in genetic engineering.
Collapse
|
6
|
Wu C, Du C, Ichinose K, Choi YH, van Wezel GP. Discovery of C-Glycosylpyranonaphthoquinones in Streptomyces sp. MBT76 by a Combined NMR-Based Metabolomics and Bioinformatics Workflow. JOURNAL OF NATURAL PRODUCTS 2017; 80:269-277. [PMID: 28128554 PMCID: PMC5373568 DOI: 10.1021/acs.jnatprod.6b00478] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Indexed: 06/06/2023]
Abstract
Mining of microbial genomes has revealed that actinomycetes harbor far more biosynthetic potential for bioactive natural products than anticipated. Activation of (cryptic) biosynthetic gene clusters and identification of the corresponding metabolites has become a focal point for drug discovery. Here, we applied NMR-based metabolomics combined with bioinformatics to identify novel C-glycosylpyranonaphthoquinones in Streptomyces sp. MBT76 and to elucidate the biosynthetic pathway. Following activation of the cryptic qin gene cluster for a type II polyketide synthase (PKS) by constitutive expression of its pathway-specific activator, bioinformatics coupled to NMR profiling facilitated the chromatographic isolation and structural elucidation of qinimycins A-C (1-3). The intriguing structural features of the qinimycins, including 8-C-glycosylation, 5,14-epoxidation, and 13-hydroxylation, distinguished these molecules from the model pyranonaphthoquinones actinorhodin, medermycin, and granaticin. Another novelty lies in the unusual fusion of a deoxyaminosugar to the pyranonaphthoquinone backbone during biosynthesis of the antibiotics BE-54238 A and B (4, 5). Qinimycins showed weak antimicrobial activity against Gram-positive bacteria. Our work shows the utility of combining bioinformatics, targeted activation of cryptic gene clusters, and NMR-based metabolic profiling as an effective pipeline for the discovery of microbial natural products with distinctive skeletons.
Collapse
Affiliation(s)
- Changsheng Wu
- Molecular
Biotechnology, Institute of Biology, Leiden
University, Sylviusweg
72, 2333 BE Leiden, The Netherlands
- Natural
Products Laboratory, Institute of Biology, Leiden University, Sylviusweg
72 2333 BE Leiden, The Netherlands
| | - Chao Du
- Molecular
Biotechnology, Institute of Biology, Leiden
University, Sylviusweg
72, 2333 BE Leiden, The Netherlands
| | - Koji Ichinose
- Research
Institute of Pharmaceutical Sciences, Musashino
University, Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Young Hae Choi
- Natural
Products Laboratory, Institute of Biology, Leiden University, Sylviusweg
72 2333 BE Leiden, The Netherlands
| | - Gilles P. van Wezel
- Molecular
Biotechnology, Institute of Biology, Leiden
University, Sylviusweg
72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
7
|
Bekeova C, Rehakova A, Feckova L, Vlckova S, Novakova R, Mingyar E, Kormanec J. Characterisation of the genes involved in the biosynthesis and attachment of the aminodeoxysugar D-forosamine in the auricin gene cluster of Streptomyces aureofaciens CCM3239. Appl Microbiol Biotechnol 2015; 100:3177-95. [PMID: 26685675 DOI: 10.1007/s00253-015-7214-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/27/2015] [Accepted: 12/02/2015] [Indexed: 11/27/2022]
Abstract
We previously identified the aur1 gene cluster which produces the angucycline antibiotic auricin. Preliminary characterisation of auricin revealed that it is modified by a single aminodeoxysugar, D-forosamine. Here we characterise the D-forosamine-specific genes. The four close tandem genes, aur1TQSV, encoding enzymes involved in the initial steps of the deoxysugar biosynthesis, were located on a large operon with other core auricin biosynthetic genes. Deleting these genes resulted in the absence of auricin and the production of deglycosylated auricin intermediates. The two final D-forosamine biosynthetic genes, sa59, an NDP-hexose aminotransferase, and sa52, an NDP-aminohexose N-dimethyltransferase, are located in a region rather distant from the core auricin genes. A deletion analysis of these genes confirmed their role in D-forosamine biosynthesis. The Δsa59 mutant had a phenotype similar to that of the cluster deletion mutant, while the Δsa52 mutant produced an auricin with a demethylated D-forosamine. Although auricin contains a single deoxyhexose, two glycosyltransferase genes were found to participate in the attachment of D-forosamine to the auricin aglycon. An analysis of the expression of the D-forosamine biosynthesis genes revealed that the initial D-forosamine biosynthetic genes aur1TQSV are regulated together with the other auricin core genes by the aur1Ap promoter under the control of the auricin-specific activator Aur1P. The expression of the other D-forosamine genes, however, is governed by promoters differentially dependent upon the two SARP family auricin-specific activators Aur1PR3 and Aur1PR4. These promoters contain direct repeats similar to the SARP consensus sequence and are involved in the interaction with both regulators.
Collapse
Affiliation(s)
- Carmen Bekeova
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51, Bratislava, Slovak Republic
| | - Alena Rehakova
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51, Bratislava, Slovak Republic
| | - Lubomira Feckova
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51, Bratislava, Slovak Republic
| | - Silvia Vlckova
- Institute of Chemistry, Slovak Academy of Sciences, 845 38, Bratislava, Slovak Republic
| | - Renata Novakova
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51, Bratislava, Slovak Republic
| | - Erik Mingyar
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51, Bratislava, Slovak Republic
| | - Jan Kormanec
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51, Bratislava, Slovak Republic.
| |
Collapse
|
8
|
A Complex Signaling Cascade Governs Pristinamycin Biosynthesis in Streptomyces pristinaespiralis. Appl Environ Microbiol 2015; 81:6621-36. [PMID: 26187956 DOI: 10.1128/aem.00728-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/27/2015] [Indexed: 01/15/2023] Open
Abstract
Pristinamycin production in Streptomyces pristinaespiralis Pr11 is tightly regulated by an interplay between different repressors and activators. A γ-butyrolactone receptor gene (spbR), two TetR repressor genes (papR3 and papR5), three SARP (Streptomyces antibiotic regulatory protein) genes (papR1, papR2, and papR4), and a response regulator gene (papR6) are carried on the large 210-kb pristinamycin biosynthetic gene region of Streptomyces pristinaespiralis Pr11. A detailed investigation of all pristinamycin regulators revealed insight into a complex signaling cascade, which is responsible for the fine-tuned regulation of pristinamycin production in S. pristinaespiralis.
Collapse
|
9
|
Romero-Rodríguez A, Robledo-Casados I, Sánchez S. An overview on transcriptional regulators in Streptomyces. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1017-39. [PMID: 26093238 DOI: 10.1016/j.bbagrm.2015.06.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/09/2015] [Accepted: 06/12/2015] [Indexed: 12/19/2022]
Abstract
Streptomyces are Gram-positive microorganisms able to adapt and respond to different environmental conditions. It is the largest genus of Actinobacteria comprising over 900 species. During their lifetime, these microorganisms are able to differentiate, produce aerial mycelia and secondary metabolites. All of these processes are controlled by subtle and precise regulatory systems. Regulation at the transcriptional initiation level is probably the most common for metabolic adaptation in bacteria. In this mechanism, the major players are proteins named transcription factors (TFs), capable of binding DNA in order to repress or activate the transcription of specific genes. Some of the TFs exert their action just like activators or repressors, whereas others can function in both manners, depending on the target promoter. Generally, TFs achieve their effects by using one- or two-component systems, linking a specific type of environmental stimulus to a transcriptional response. After DNA sequencing, many streptomycetes have been found to have chromosomes ranging between 6 and 12Mb in size, with high GC content (around 70%). They encode for approximately 7000 to 10,000 genes, 50 to 100 pseudogenes and a large set (around 12% of the total chromosome) of regulatory genes, organized in networks, controlling gene expression in these bacteria. Among the sequenced streptomycetes reported up to now, the number of transcription factors ranges from 471 to 1101. Among these, 315 to 691 correspond to transcriptional regulators and 31 to 76 are sigma factors. The aim of this work is to give a state of the art overview on transcription factors in the genus Streptomyces.
Collapse
Affiliation(s)
- Alba Romero-Rodríguez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico
| | - Ivonne Robledo-Casados
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico.
| |
Collapse
|
10
|
Inducible Expression of a Resistance-Nodulation-Division-Type Efflux Pump in Staphylococcus aureus Provides Resistance to Linoleic and Arachidonic Acids. J Bacteriol 2015; 197:1893-905. [PMID: 25802299 DOI: 10.1128/jb.02607-14] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 03/17/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Although Staphylococcus aureus is exposed to antimicrobial fatty acids on the skin, in nasal secretions, and in abscesses, a specific mechanism of inducible resistance to this important facet of innate immunity has not been identified. Here, we have sequenced the genome of S. aureus USA300 variants selected for their ability to grow at an elevated concentration of linoleic acid. The fatty acid-resistant clone FAR7 had a single nucleotide polymorphism resulting in an H₁₂₁Y substitution in an uncharacterized transcriptional regulator belonging to the AcrR family, which was divergently transcribed from a gene encoding a member of the resistance-nodulation-division superfamily of multidrug efflux pumps. We named these genes farR and farE, for regulator and effector of fatty acid resistance, respectively. Several lines of evidence indicated that FarE promotes efflux of antimicrobial fatty acids and is regulated by FarR. First, expression of farE was strongly induced by arachidonic and linoleic acids in an farR-dependent manner. Second, an H₁₂₁Y substitution in FarR resulted in increased expression of farE and was alone sufficient to promote increased resistance of S. aureus to linoleic acid. Third, inactivation of farE resulted in a significant reduction in the inducible resistance of S. aureus to the bactericidal activity of 100 μM linoleic acid, increased accumulation of [(14)C]linoleic acid by growing cells, and severely impaired growth in the presence of nonbactericidal concentrations of linoleic acid. Cumulatively, these findings represent the first description of a specific mechanism of inducible resistance to antimicrobial fatty acids in a Gram-positive pathogen. IMPORTANCE Staphylococcus aureus colonizes approximately 25% of humans and is a leading cause of human infectious morbidity and mortality. To persist on human hosts, S. aureus must have intrinsic defense mechanisms to cope with antimicrobial fatty acids, which comprise an important component of human innate defense mechanisms. We have identified a novel pair of genes, farR and farE, that constitute a dedicated regulator and effector of S. aureus resistance to linoleic and arachidonic acids, which are major fatty acids in human membrane phospholipid. Expression of farE, which encodes an efflux pump, is induced in an farR-dependent mechanism, in response to these antimicrobial fatty acids that would be encountered in a tissue abscess.
Collapse
|
11
|
A γ-butyrolactone autoregulator-receptor system involved in the regulation of auricin production in Streptomyces aureofaciens CCM 3239. Appl Microbiol Biotechnol 2014; 99:309-25. [DOI: 10.1007/s00253-014-6057-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/15/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
|
12
|
Kormanec J, Novakova R, Mingyar E, Feckova L. Intriguing properties of the angucycline antibiotic auricin and complex regulation of its biosynthesis. Appl Microbiol Biotechnol 2013; 98:45-60. [PMID: 24265028 DOI: 10.1007/s00253-013-5373-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 11/29/2022]
Abstract
Streptomyces bacteria are major producers of bioactive natural products, including many antibiotics. We identified a gene cluster, aur1, in a large linear plasmid of Streptomyces aureofaciens CCM3239. The cluster is responsible for the production of a new angucycline polyketide antibiotic auricin. Several tailoring biosynthetic genes were scatted in rather distant aur1 flanking regions. Auricin was produced in a very narrow growth phase interval of several hours after entry into stationary phase, after which it was degraded to non-active metabolites because of its instability at the high pH values reached after the production stage. Strict transcriptional regulation of the auricin biosynthetic gene cluster has been demonstrated, including feed-forward and feedback control by auricin intermediates via several of the huge number of regulatory genes present in the aur1 cluster. The complex mechanism may ensure strict confinement of auricin production to a specific growth stage.
Collapse
Affiliation(s)
- Jan Kormanec
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51, Bratislava, Slovak Republic,
| | | | | | | |
Collapse
|
13
|
Rehakova A, Novakova R, Feckova L, Mingyar E, Kormanec J. A gene determining a new member of the SARP family contributes to transcription of genes for the synthesis of the angucycline polyketide auricin in Streptomyces aureofaciens CCM 3239. FEMS Microbiol Lett 2013; 346:45-55. [PMID: 23763439 DOI: 10.1111/1574-6968.12200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 11/27/2022] Open
Abstract
Three regulators, Aur1P, Aur1R and a SARP-family Aur1PR3, have been previously found to control expression of the aur1 cluster for the angucycline antibiotic auricin in Streptomyces aureofaciens CCM 3239. Here, we describe an additional regulatory gene, aur1PR4, encoding a homologue from the SARP-family regulators. Its role in auricin regulation was confirmed by its disruption that dramatically affected auricin production. However, transcription from the aur1Ap promoter, directing expression of 22 auricin biosynthetic genes, was not substantially affected in the Δaur1PR4 mutant. A new promoter, sa13p, directing transcription of four putative auricin tailoring genes, was found to be dependent on aur1PR4. Moreover, analysis of the sa13p promoter region revealed the presence of three heptameric repeat sequences corresponding to putative SARP-binding sites. Expression of aur1PR4 is directed by a single promoter, aur1PR4p, which is induced after entry into stationary phase. Transcription from aur1PR4p was absent in a S. aureofaciens Δaur1P mutant strain, and Aur1P was shown to bind specifically to the aur1PR4p promoter. These results indicate a complex network of regulation of the auricin gene cluster. Both Aur1P and Aur1PR3 are involved in regulation of the core aur1A-U biosynthetic genes, and Aur1PR4 in regulation of putative auricin tailoring genes.
Collapse
Affiliation(s)
- Alena Rehakova
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | | | | | | |
Collapse
|
14
|
Aminov RI. Evolution in action: dissemination of tet(X) into pathogenic microbiota. Front Microbiol 2013; 4:192. [PMID: 23847612 PMCID: PMC3706747 DOI: 10.3389/fmicb.2013.00192] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 06/23/2013] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rustam I Aminov
- Faculty of Medical Sciences, University of the West Indies Kingston, Jamaica
| |
Collapse
|
15
|
Liu G, Chater KF, Chandra G, Niu G, Tan H. Molecular regulation of antibiotic biosynthesis in streptomyces. Microbiol Mol Biol Rev 2013; 77:112-43. [PMID: 23471619 PMCID: PMC3591988 DOI: 10.1128/mmbr.00054-12] [Citation(s) in RCA: 531] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Streptomycetes are the most abundant source of antibiotics. Typically, each species produces several antibiotics, with the profile being species specific. Streptomyces coelicolor, the model species, produces at least five different antibiotics. We review the regulation of antibiotic biosynthesis in S. coelicolor and other, nonmodel streptomycetes in the light of recent studies. The biosynthesis of each antibiotic is specified by a large gene cluster, usually including regulatory genes (cluster-situated regulators [CSRs]). These are the main point of connection with a plethora of generally conserved regulatory systems that monitor the organism's physiology, developmental state, population density, and environment to determine the onset and level of production of each antibiotic. Some CSRs may also be sensitive to the levels of different kinds of ligands, including products of the pathway itself, products of other antibiotic pathways in the same organism, and specialized regulatory small molecules such as gamma-butyrolactones. These interactions can result in self-reinforcing feed-forward circuitry and complex cross talk between pathways. The physiological signals and regulatory mechanisms may be of practical importance for the activation of the many cryptic secondary metabolic gene cluster pathways revealed by recent sequencing of numerous Streptomyces genomes.
Collapse
Affiliation(s)
- Gang Liu
- State Key Laboratory of Microbial Resources
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Keith F. Chater
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | | |
Collapse
|
16
|
Kutas P, Feckova L, Rehakova A, Novakova R, Homerova D, Mingyar E, Rezuchova B, Sevcikova B, Kormanec J. Strict control of auricin production in Streptomyces aureofaciens CCM 3239 involves a feedback mechanism. Appl Microbiol Biotechnol 2012; 97:2413-21. [PMID: 23081778 DOI: 10.1007/s00253-012-4505-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/26/2012] [Accepted: 10/06/2012] [Indexed: 10/27/2022]
Abstract
The polyketide gene cluster aur1 is responsible for the production of the angucycline antibiotic auricin in Streptomyces aureofaciens CCM 3239. Auricin production is regulated in a complex manner involving several regulators, including a key pathway-specific positive regulator Aur1P that belongs to the family of 'atypical' response regulators. Production of auricin is induced after entry into stationary phase. However, auricin was produced in only a short time interval of several hours. We found that the decrease of auricin production was due to a strict regulation of auricin biosynthetic genes at the transcriptional level by a feedback mechanism; auricin and/or its intermediate(s) inhibited binding of Aur1P to its cognate biosynthetic promoter aur1Ap and consequently stopped its activation. In addition, we also determined that synthesised auricin is unstable during growth of S. aureofaciens CCM3239 in the production medium even though purified auricin is stable for days in various organic solvents. The critical parameter affecting its stability was pH. Auricin is stable at acid pH and unstable at neutral and alkaline pH. The drop in auricin concentration was due to an increase of pH shortly after induction of auricin production during cultivation of S. aureofaciens CCM3239.
Collapse
Affiliation(s)
- Peter Kutas
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovak Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Saleh O, Flinspach K, Westrich L, Kulik A, Gust B, Fiedler HP, Heide L. Mutational analysis of a phenazine biosynthetic gene cluster in Streptomyces anulatus 9663. Beilstein J Org Chem 2012; 8:501-13. [PMID: 22509222 PMCID: PMC3326630 DOI: 10.3762/bjoc.8.57] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 03/06/2012] [Indexed: 11/23/2022] Open
Abstract
The biosynthetic gene cluster for endophenazines, i.e., prenylated phenazines from Streptomyces anulatus 9663, was heterologously expressed in several engineered host strains derived from Streptomyces coelicolor M145. The highest production levels were obtained in strain M512. Mutations in the rpoB and rpsL genes of the host, which result in increased production of other secondary metabolites, had no beneficial effect on the production of phenazines. The heterologous expression strains produced, besides the known phenazine compounds, a new prenylated phenazine, termed endophenazine E. The structure of endophenazine E was determined by high-resolution mass spectrometry and by one- and two-dimensional NMR spectroscopy. It represented a conjugate of endophenazine A (9-dimethylallylphenazine-1-carboxylic acid) and L-glutamine (L-Gln), with the carboxyl group of endophenazine A forming an amide bond to the α-amino group of L-Gln. Gene inactivation experiments in the gene cluster proved that ppzM codes for a phenazine N-methyltransferase. The gene ppzV apparently represents a new type of TetR-family regulator, specifically controlling the prenylation in endophenazine biosynthesis. The gene ppzY codes for a LysR-type regulator and most likely controls the biosynthesis of the phenazine core. A further putative transcriptional regulator is located in the vicinity of the cluster, but was found not to be required for phenazine or endophenazine formation. This is the first investigation of the regulatory genes of phenazine biosynthesis in Streptomyces.
Collapse
Affiliation(s)
- Orwah Saleh
- Pharmaceutical Institute, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Novakova R, Rehakova A, Kutas P, Feckova L, Kormanec J. The role of two SARP family transcriptional regulators in regulation of the auricin gene cluster in Streptomyces aureofaciens CCM 3239. Microbiology (Reading) 2011; 157:1629-1639. [DOI: 10.1099/mic.0.047795-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two regulators, Aur1P and Aur1R, have been previously found to control expression of the aur1 polyketide gene cluster involved in biosynthesis of the angucycline-like antibiotic auricin in Streptomyces aureofaciens CCM 3239 in a cascade mechanism. Here, we describe the characterization of two additional regulatory genes, aur1PR2 and aur1PR3, encoding homologues of the SARP family of transcriptional activators that were identified in the upstream part of the aur1 cluster. Expression of both genes is directed by a single promoter, aur1PR2p and aur1Pr3p, respectively, induced in late exponential phase. Disruption of aur1PR2 in S. aureofaciens CCM 3239 had no effect on auricin production. However, the disruption of aur1PR3 dramatically reduced auricin compared with its parental wild-type strain. Transcription from the aur1Ap promoter, directing expression of the first biosynthetic gene in the auricin gene cluster, was similarly decreased in the S. aureofaciens CCM 3239 aur1PR3 mutant. Transcription from the aur1PR3p promoter increased in the S. aureofaciens CCM 3239 aur1R mutant strain, and the TetR family negative regulator Aur1R was shown to specifically bind the aur1PR3p promoter. These results indicate a complex regulation of the auricin cluster by the additional SARP family transcriptional activator Aur1PR3.
Collapse
Affiliation(s)
- Renata Novakova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| | - Alena Rehakova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| | - Peter Kutas
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| | - Lubomira Feckova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| | - Jan Kormanec
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| |
Collapse
|
19
|
Novakova R, Rehakova A, Feckova L, Kutas P, Knischova R, Kormanec J. Genetic manipulation of pathway regulation for overproduction of angucycline-like antibiotic auricin in Streptomyces aureofaciens CCM 3239. Folia Microbiol (Praha) 2011; 56:276-82. [DOI: 10.1007/s12223-011-0033-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 04/19/2011] [Indexed: 11/28/2022]
|
20
|
Novakova R, Kutas P, Feckova L, Kormanec J. The role of the TetR-family transcriptional regulator Aur1R in negative regulation of the auricin gene cluster in Streptomyces aureofaciens CCM 3239. Microbiology (Reading) 2010; 156:2374-2383. [DOI: 10.1099/mic.0.037895-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two regulatory genes, aur1P and aur1R, have been previously identified upstream of the aur1 polyketide gene cluster involved in biosynthesis of the angucycline-like antibiotic auricin in Streptomyces aureofaciens CCM 3239. The aur1P gene encodes a protein similar to the response regulators of bacterial two-component signal transduction systems and has been shown to specifically activate expression of the auricin biosynthetic genes. The aur1R gene encodes a protein homologous to transcriptional repressors of the TetR family. Here we describe the characterization of the aur1R gene. Expression of the gene is directed by a single promoter, aur1Rp, which is induced just before stationary phase. Disruption of aur1R in S. aureofaciens CCM 3239 had no effect on growth and differentiation. However, the disrupted strain produced more auricin than its parental wild-type S. aureofaciens CCM 3239 strain. Transcription from the aur1Ap and aur1Pp promoters, directing expression of the first biosynthetic gene in the auricin gene cluster and the pathway-specific transcriptional activator, respectively, was increased in the S. aureofaciens CCM 3239 aur1R mutant strain. However, Aur1R was shown to bind specifically only to the aur1Pp promoter in vitro. This binding was abolished by the addition of auricin and/or its intermediates. The results indicate that the Aur1R regulator specifically represses expression of the aur1P gene, which encodes a pathway-specific activator of the auricin biosynthetic gene cluster in S. aureofaciens CCM 3239, and that this repression is relieved by auricin or its intermediates.
Collapse
Affiliation(s)
- Renata Novakova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| | - Peter Kutas
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| | - Lubomira Feckova
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| | - Jan Kormanec
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovak Republic
| |
Collapse
|
21
|
Abstract
Investigations of antibiotic resistance from an environmental prospective shed new light on a problem that was traditionally confined to a subset of clinically relevant antibiotic-resistant bacterial pathogens. It is clear that the environmental microbiota, even in apparently antibiotic-free environments, possess an enormous number and diversity of antibiotic resistance genes, some of which are very similar to the genes circulating in pathogenic microbiota. It is difficult to explain the role of antibiotics and antibiotic resistance in natural environments from an anthropocentric point of view, which is focused on clinical aspects such as the efficiency of antibiotics in clearing infections and pathogens that are resistant to antibiotic treatment. A broader overview of the role of antibiotics and antibiotic resistance in nature from the evolutionary and ecological prospective suggests that antibiotics have evolved as another way of intra- and inter-domain communication in various ecosystems. This signalling by non-clinical concentrations of antibiotics in the environment results in adaptive phenotypic and genotypic responses of microbiota and other members of the community. Understanding the complex picture of evolution and ecology of antibiotics and antibiotic resistance may help to understand the processes leading to the emergence and dissemination of antibiotic resistance and also help to control it, at least in relation to the newer antibiotics now entering clinical practice.
Collapse
Affiliation(s)
- Rustam I Aminov
- University of Aberdeen, Rowett Institute of Nutrition and Health, Greenburn Road, Aberdeen AB21 9SB, UK.
| |
Collapse
|
22
|
Ostash I, Rebets Y, Ostash B, Kobylyanskyy A, Myronovskyy M, Nakamura T, Walker S, Fedorenko V. An ABC transporter encoding gene lndW confers resistance to landomycin E. Arch Microbiol 2008; 190:105-9. [DOI: 10.1007/s00203-008-0367-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 01/20/2008] [Accepted: 03/17/2008] [Indexed: 10/22/2022]
|
23
|
Rebets Y, Dutko L, Ostash B, Luzhetskyy A, Kulachkovskyy O, Yamaguchi T, Nakamura T, Bechthold A, Fedorenko V. Function of lanI in regulation of landomycin A biosynthesis in Streptomyces cyanogenus S136 and cross-complementation studies with Streptomyces antibiotic regulatory proteins encoding genes. Arch Microbiol 2007; 189:111-20. [PMID: 17786405 DOI: 10.1007/s00203-007-0299-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 06/01/2007] [Accepted: 07/26/2007] [Indexed: 11/30/2022]
Abstract
The transcriptional regulator of landomycin A biosynthesis encoded by lanI gene has been inactivated within the chromosome of Streptomyces cyanogenus S136. The obtained mutant strain did not produce landomycin A and its known intermediates. Loss of landomycin A production caused significant changes in morphology of the lanI deficient strain. RT-PCR analysis confirmed complete cessation of transcription of certain lan genes, including lanJ (encoding putative proton dependent transporter) and lanK (presumably involved in lanJ expression regulation). Introduction of either lanI or lndI [lanI homologue controlling landomycin E biosynthesis in Streptomyces globisporus 1912, both encoding Streptomyces antibiotic regulatory proteins (SARPs)] restored landomycin A production in the mutant strain. Chimeric constructs ladI and ladR were generated by exchanging the DNA sequences corresponding to N- and C-terminal parts of LndI and LanI. None of these genes were able to activate the production of landomycins in regulatory mutants of S. cyanogenus and S. globisporus. Nevertheless, the production of novel unidentified compound was observed in the case of S. cyanogenus harboring ladI gene. Various genes encoding SARPs have been expressed in S. globisporus and S. cyanogenus regulatory mutants and the results of these complementation experiments are discussed.
Collapse
Affiliation(s)
- Yuriy Rebets
- Department of Genetics and Biotechnology of Ivan Franko National University of L'viv, Grushevskogo st.4, L'viv, 79005, Ukraine
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kloosterman TG, van der Kooi-Pol MM, Bijlsma JJE, Kuipers OP. The novel transcriptional regulator SczA mediates protection against Zn2+ stress by activation of the Zn2+-resistance gene czcD in Streptococcus pneumoniae. Mol Microbiol 2007; 65:1049-63. [PMID: 17640279 DOI: 10.1111/j.1365-2958.2007.05849.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Maintenance of the intracellular homeostasis of metal ions is important for the virulence of many bacterial pathogens. Here, we demonstrate that the czcD gene of the human pathogen Streptococcus pneumoniae is involved in resistance against Zn2+, and that its transcription is induced by the transition-metal ions Zn2+, Co2+ and Ni2+. Upstream of czcD a gene was identified, encoding a novel TetR family regulator, SczA, that is responsible for the metal ion-dependent activation of czcD expression. Transcriptome analyses revealed that in a sczA mutant expression of czcD, a gene encoding a MerR-family transcriptional regulator and a gene encoding a zinc-containing alcohol dehydrogenase (adhB) were downregulated. Activation of the czcD promoter by SczA is shown to proceed by Zn2+-dependent binding of SczA to a conserved DNA motif. In the absence of Zn2+, SczA binds to a second site in the czcD promoter, thereby fully blocking czcD expression. This is the first example of a metalloregulatory protein belonging to the TetR family that has been described. The presence in S. pneumoniae of the Zn2+-resistance system characterized in this study might reflect the need for adjustment to a fluctuating Zn2+ pool encountered by this pathogen during infection of the human body.
Collapse
Affiliation(s)
- Tomas G Kloosterman
- Department of Molecular Genetics, University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, PO Box 14, 9750 AA Haren, The Netherlands
| | | | | | | |
Collapse
|
25
|
Abstract
Tylosin production in Streptomyces fradiae is regulated via interplay between a repressor, TylQ, and an activator of the SARP family, TylS, during regulation of tylR. The latter encodes the pathway-specific activator of the tylosin-biosynthetic (tyl) genes. Also controlled by TylS is a hitherto unassigned gene, tylU, whose product is shown here to be important for tylosin production. Thus, targeted disruption of tylU reduced tylosin yields by about 80% and bioconversion analysis with the resultant strain revealed defects in both polyketide metabolism and deoxyhexose biosynthesis. Such defects were completely eliminated by engineered overexpression of tylR (but not tylS) and Western analysis revealed significantly reduced levels of TylR in the tylU-disrupted strain. These results are consistent with a model in which TylS and TylU act in concert to facilitate expression of tylR, for which TylU (but not TylS) is nonessential. Activator proteins of the SARP family, such as TylS, are widespread among Streptomyces spp. and are important regulators of antibiotic production. Their action has been widely studied with no prior indication of associated 'helper' activity, the prevalence of which now remains to be established.
Collapse
Affiliation(s)
- Neil Bate
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, UK
| | | | | |
Collapse
|
26
|
van Berkel WJH, Kamerbeek NM, Fraaije MW. Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J Biotechnol 2006; 124:670-89. [PMID: 16712999 DOI: 10.1016/j.jbiotec.2006.03.044] [Citation(s) in RCA: 532] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 02/21/2006] [Accepted: 03/29/2006] [Indexed: 10/24/2022]
Abstract
During the last decades a large number of flavin-dependent monooxygenases have been isolated and studied. This has revealed that flavoprotein monooxygenases are able to catalyze a remarkable wide variety of oxidative reactions such as regioselective hydroxylations and enantioselective sulfoxidations. These oxidation reactions are often difficult, if not impossible, to be achieved using chemical approaches. Analysis of the available genome sequences has indicated that many more flavoprotein monooxygenases exist and await biocatalytic exploration. Based on the known biochemical properties of a number of flavoprotein monooxygenases and sequence and structural analyses, flavoprotein monooxygenases can be classified into six distinct flavoprotein monooxygenase subclasses. This review provides an inventory of known flavoprotein monooxygenases belonging to these different enzyme subclasses. Furthermore, the biocatalytic potential of a selected number of flavoprotein monooxygenases is highlighted.
Collapse
Affiliation(s)
- W J H van Berkel
- Laboratory of Biochemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | | | |
Collapse
|
27
|
Takano E. Gamma-butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr Opin Microbiol 2006; 9:287-94. [PMID: 16675291 DOI: 10.1016/j.mib.2006.04.003] [Citation(s) in RCA: 252] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 04/20/2006] [Indexed: 12/31/2022]
Abstract
Small signalling molecules called gamma-butyrolactones are mainly produced by Streptomyces species in which they regulate antibiotic production and morphological differentiation. Their molecular mechanism of action has recently been unravelled in several streptomycetes, revealing a diverse and complex system. Gamma-butyrolactones and their receptors also occur in some other Actinobacteria, suggesting that this is a general regulatory system for antibiotic production. The gamma-butyrolactones bind to receptors, many of which are involved in regulation of specific antibiotic biosynthesis clusters. The importance of understanding how secondary metabolites are regulated and how environmental and physiological signals are sensed highlights the relevance of studying this system.
Collapse
Affiliation(s)
- Eriko Takano
- Mikrobiologie/Biotechnologie, Eberhard-Karls-Universität Tübingen, Elfriede-Aulhorn Str 6, 72076 Tübingen, Germany.
| |
Collapse
|