1
|
Mikucki A, McCluskey NR, Kahler CM. The Host-Pathogen Interactions and Epicellular Lifestyle of Neisseria meningitidis. Front Cell Infect Microbiol 2022; 12:862935. [PMID: 35531336 PMCID: PMC9072670 DOI: 10.3389/fcimb.2022.862935] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/28/2022] [Indexed: 01/17/2023] Open
Abstract
Neisseria meningitidis is a gram-negative diplococcus and a transient commensal of the human nasopharynx. It shares and competes for this niche with a number of other Neisseria species including N. lactamica, N. cinerea and N. mucosa. Unlike these other members of the genus, N. meningitidis may become invasive, crossing the epithelium of the nasopharynx and entering the bloodstream, where it rapidly proliferates causing a syndrome known as Invasive Meningococcal Disease (IMD). IMD progresses rapidly to cause septic shock and meningitis and is often fatal despite aggressive antibiotic therapy. While many of the ways in which meningococci survive in the host environment have been well studied, recent insights into the interactions between N. meningitidis and the epithelial, serum, and endothelial environments have expanded our understanding of how IMD develops. This review seeks to incorporate recent work into the established model of pathogenesis. In particular, we focus on the competition that N. meningitidis faces in the nasopharynx from other Neisseria species, and how the genetic diversity of the meningococcus contributes to the wide range of inflammatory and pathogenic potentials observed among different lineages.
Collapse
Affiliation(s)
- August Mikucki
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Nicolie R. McCluskey
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- College of Science, Health, Engineering and Education, Telethon Kids Institute, Murdoch University, Perth, WA, Australia
| | - Charlene M. Kahler
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- *Correspondence: Charlene M. Kahler,
| |
Collapse
|
2
|
Mullally CA, Mikucki A, Wise MJ, Kahler CM. Modelling evolutionary pathways for commensalism and hypervirulence in Neisseria meningitidis. Microb Genom 2021; 7. [PMID: 34704920 PMCID: PMC8627216 DOI: 10.1099/mgen.0.000662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neisseria meningitidis, the meningococcus, resides exclusively in humans and causes invasive meningococcal disease (IMD). The population of N. meningitidis is structured into stable clonal complexes by limited horizontal recombination in this naturally transformable species. N. meningitidis is an opportunistic pathogen, with some clonal complexes, such as cc53, effectively acting as commensal colonizers, while other genetic lineages, such as cc11, are rarely colonizers but are over-represented in IMD and are termed hypervirulent. This study examined theoretical evolutionary pathways for pathogenic and commensal lineages by examining the prevalence of horizontally acquired genomic islands (GIs) and loss-of-function (LOF) mutations. Using a collection of 4850 genomes from the BIGSdb database, we identified 82 GIs in the pan-genome of 11 lineages (10 hypervirulent and one commensal lineage). A new computational tool, Phaser, was used to identify frameshift mutations, which were examined for statistically significant association with genetic lineage. Phaser identified a total of 144 frameshift loci of which 105 were shown to have a statistically significant non-random distribution in phase status. The 82 GIs, but not the LOF loci, were associated with genetic lineage and invasiveness using the disease carriage ratio metric. These observations have been integrated into a new model that infers the early events of the evolution of the human adapted meningococcus. These pathways are enriched for GIs that are involved in modulating attachment to the host, growth rate, iron uptake and toxin expression which are proposed to increase competition within the meningococcal population for the limited environmental niche of the human nasopharynx. We surmise that competition for the host mucosal surface with the nasopharyngeal microbiome has led to the selection of isolates with traits that enable access to cell types (non-phagocytic and phagocytic) in the submucosal tissues leading to an increased risk for IMD.
Collapse
Affiliation(s)
- Christopher A. Mullally
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
| | - August Mikucki
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
| | - Michael J. Wise
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, Australia
| | - Charlene M. Kahler
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
- Telethon Kids Institute, Perth Children’s Hospital, Perth, Australia
- *Correspondence: Charlene M. Kahler,
| |
Collapse
|
3
|
Genetic determinants of genus-level glycan diversity in a bacterial protein glycosylation system. PLoS Genet 2019; 15:e1008532. [PMID: 31869330 PMCID: PMC6959607 DOI: 10.1371/journal.pgen.1008532] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/14/2020] [Accepted: 11/22/2019] [Indexed: 12/27/2022] Open
Abstract
The human pathogens N. gonorrhoeae and N. meningitidis display robust intra- and interstrain glycan diversity associated with their O-linked protein glycosylation (pgl) systems. In an effort to better understand the evolution and function of protein glycosylation operating there, we aimed to determine if other human-restricted, Neisseria species similarly glycosylate proteins and if so, to assess the levels of glycoform diversity. Comparative genomics revealed the conservation of a subset of genes minimally required for O-linked protein glycosylation glycan and established those pgl genes as core genome constituents of the genus. In conjunction with mass spectrometric–based glycan phenotyping, we found that extant glycoform repertoires in N. gonorrhoeae, N. meningitidis and the closely related species N. polysaccharea and N. lactamica reflect the functional replacement of a progenitor glycan biosynthetic pathway. This replacement involved loss of pgl gene components of the primordial pathway coincident with the acquisition of two exogenous glycosyltransferase genes. Critical to this discovery was the identification of a ubiquitous but previously unrecognized glycosyltransferase gene (pglP) that has uniquely undergone parallel but independent pseudogenization in N. gonorrhoeae and N. meningitidis. We suggest that the pseudogenization events are driven by processes of compositional epistasis leading to gene decay. Additionally, we documented instances where inter-species recombination influences pgl gene status and creates discordant genetic interactions due ostensibly to the multi-locus nature of pgl gene networks. In summary, these findings provide a novel perspective on the evolution of protein glycosylation systems and identify phylogenetically informative, genetic differences associated with Neisseria species. Bacteria express a remarkable diversity of sugars and oligosaccharides in conjunction with protein glycosylation systems. Currently however, little is known about the evolutionary processes and selective forces shaping glycan biosynthetic pathways. The closely related bacterial pathogens Neisseria gonorrhoeae and Neisseria meningitidis remain serious sources of human disease and these species express antigenically variable oligosaccharides as components of their broad-spectrum, O‐linked protein glycosylation (pgl) systems. With the exception of isolates of Neisseria elongata subspecies glycolytica, the status of such post-translational modifications in related commensal species colonizing humans remains largely undefined. Here, we exploit new data from further studies of protein glycosylation in Neisseria elongata subspecies glycolytica to address these concerns. Employing comparative genomics and glycan phenotyping, we show that related pgl systems are indeed expressed by all human-restricted Neisseria species but identify unique gene gain and loss events as well as loss-of-function polymorphisms that accommodate a dramatic shift in glycoform structure occurring across the genus. These findings constitute novel perspectives on both the evolution of protein glycosylation systems in general and the macroevolutionary processes occurring in related bacterial species residing within a single host.
Collapse
|
4
|
Baarda BI, Martinez FG, Sikora AE. Proteomics, Bioinformatics and Structure-Function Antigen Mining For Gonorrhea Vaccines. Front Immunol 2018; 9:2793. [PMID: 30564232 PMCID: PMC6288298 DOI: 10.3389/fimmu.2018.02793] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
Expanding efforts to develop preventive gonorrhea vaccines is critical because of the serious health consequences combined with the prevalence and the dire possibility of untreatable gonorrhea. Reverse vaccinology, which includes genome and proteome mining, has proven successful in the discovery of vaccine candidates against many pathogenic bacteria. Here, we describe proteomic applications including comprehensive, quantitative proteomic platforms and immunoproteomics coupled with broad-ranging bioinformatics that have been applied for antigen mining to develop gonorrhea vaccine(s). We further focus on outlining the vaccine candidate decision tree, describe the structure-function of novel proteome-derived antigens as well as ways to gain insights into their roles in the cell envelope, and underscore new lessons learned about the fascinating biology of Neisseria gonorrhoeae.
Collapse
Affiliation(s)
- Benjamin I. Baarda
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Fabian G. Martinez
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Aleksandra E. Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| |
Collapse
|
5
|
Bannister SA, Kidd SP, Kirby E, Shah S, Thomas A, Vipond R, Elmore MJ, Telfer Brunton A, Marsh P, Green S, Silman NJ, Kempsell KE. Development and Assessment of a Diagnostic DNA Oligonucleotide Microarray for Detection and Typing of Meningitis-Associated Bacterial Species. High Throughput 2018; 7:ht7040032. [PMID: 30332776 PMCID: PMC6306750 DOI: 10.3390/ht7040032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/11/2018] [Accepted: 09/21/2018] [Indexed: 02/03/2023] Open
Abstract
Meningitis is commonly caused by infection with a variety of bacterial or viral pathogens. Acute bacterial meningitis (ABM) can cause severe disease, which can progress rapidly to a critical life-threatening condition. Rapid diagnosis of ABM is critical, as this is most commonly associated with severe sequelae with associated high mortality and morbidity rates compared to viral meningitis, which is less severe and self-limiting. We have designed a microarray for detection and diagnosis of ABM. This has been validated using randomly amplified DNA targets (RADT), comparing buffers with or without formamide, in glass slide format or on the Alere ArrayTubeTM (Alere Technologies GmbH) microarray platform. Pathogen-specific signals were observed using purified bacterial nucleic acids and to a lesser extent using patient cerebral spinal fluid (CSF) samples, with some technical issues observed using RADT and glass slides. Repurposing the array onto the Alere ArrayTubeTM platform and using a targeted amplification system increased specific and reduced nonspecific hybridization signals using both pathogen nucleic and patient CSF DNA targets, better revealing pathogen-specific signals although sensitivity was still reduced in the latter. This diagnostic microarray is useful as a laboratory diagnostic tool for species and strain designation for ABM, rather than for primary diagnosis.
Collapse
Affiliation(s)
| | - Stephen P Kidd
- Public Health England, Porton Down, Salisbury SP4 0JG, UK.
| | | | - Sonal Shah
- Public Health England, Porton Down, Salisbury SP4 0JG, UK.
| | - Anvy Thomas
- Public Health England, Porton Down, Salisbury SP4 0JG, UK.
| | - Richard Vipond
- Public Health England, Porton Down, Salisbury SP4 0JG, UK.
| | | | - Andrew Telfer Brunton
- Department of Clinical Microbiology, Royal Cornwall Hospitals NHS Trust, Penventinnie Lane, Treliske, Truro, Cornwall TR1 3LQ, UK.
| | - Peter Marsh
- Public Health England Laboratory Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK.
| | - Steve Green
- Public Health England Laboratory Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK.
| | - Nigel J Silman
- Public Health England, Porton Down, Salisbury SP4 0JG, UK.
| | | |
Collapse
|
6
|
Abstract
The genus Neisseria contains two pathogenic species of prominant public health concern: Neisseria gonorrhoeae and Neisseria meningitidis. These pathogens display a notable ability to undergo frequent programmed recombination events. The recombination-mediated pathways of transformation and pilin antigenic variation in the Neisseria are well-studied systems that are critical for pathogenesis. Here we will detail the conserved and unique aspects of transformation and antigenic variation in the Neisseria. Transformation will be followed from initial DNA binding through recombination into the genome with consideration to the factors necessary at each step. Additional focus is paid to the unique type IV secretion system that mediates donation of transforming DNA in the pathogenic Neisseria. The pilin antigenic variation system uses programmed recombinations to alter a major surface determinant, which allows immune avoidance and promotes infection. We discuss the trans- and cis- acting factors which facilitate pilin antigenic variation and present the current understanding of the mechanisms involved in the process.
Collapse
|
7
|
Han JX, Ng GZ, Cecchini P, Chionh YT, Saeed MA, Næss LM, Joachim M, Blandford LE, Strugnell RA, Colaco CA, Sutton P. Heat shock protein complex vaccines induce antibodies against Neisseria meningitidis via a MyD88-independent mechanism. Vaccine 2016; 34:1704-11. [DOI: 10.1016/j.vaccine.2016.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 01/14/2016] [Accepted: 02/02/2016] [Indexed: 12/17/2022]
|
8
|
Wörmann ME, Horien CL, Johnson E, Liu G, Aho E, Tang CM, Exley RM. Neisseria cinerea isolates can adhere to human epithelial cells by type IV pilus-independent mechanisms. MICROBIOLOGY-SGM 2016; 162:487-502. [PMID: 26813911 DOI: 10.1099/mic.0.000248] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In pathogenic Neisseria species the type IV pili (Tfp) are of primary importance in host-pathogen interactions. Tfp mediate initial bacterial attachment to cell surfaces and formation of microcolonies via pilus-pilus interactions. Based on genome analysis, many non-pathogenic Neisseria species are predicted to express Tfp, but aside from studies on Neisseria elongata, relatively little is known about the formation and function of pili in these organisms. Here, we have analysed pilin expression and the role of Tfp in Neisseria cinerea. This non-pathogenic species shares a close taxonomic relationship to the pathogen Neisseria meningitidis and also colonizes the human oropharyngeal cavity. Through analysis of non-pathogenic Neisseria genomes we identified two genes with homology to pilE, which encodes the major pilin of N. meningitidis. We show which of the two genes is required for Tfp expression in N. cinerea and that Tfp in this species are required for DNA competence, similar to other Neisseria. However, in contrast to the meningococcus, deletion of the pilin gene did not impact the association of N. cinerea to human epithelial cells, demonstrating that N. cinerea isolates can adhere to human epithelial cells by Tfp-independent mechanisms.
Collapse
Affiliation(s)
- Mirka E Wörmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Corey L Horien
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Errin Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Guangyu Liu
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Ellen Aho
- Department of Biology, Concordia College, Moorhead, MN, USA
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Rachel M Exley
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
9
|
Microbial Virulence and Interactions With Metals. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:27-49. [DOI: 10.1016/bs.pmbts.2016.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Shah S, Heddle JG. Squaring up to DNA: pentapeptide repeat proteins and DNA mimicry. Appl Microbiol Biotechnol 2014; 98:9545-60. [PMID: 25343976 DOI: 10.1007/s00253-014-6151-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/08/2014] [Accepted: 10/09/2014] [Indexed: 02/01/2023]
Abstract
Pentapeptide repeats are a class of proteins characterized by the presence of multiple repeating sequences five amino acids in length. The sequences fold into a right-handed β-helix with a roughly square-shaped cross section. Pentapeptide repeat proteins include a number of examples which are thought to function as structural mimics of DNA and act to competitively bind to the type II topoisomerase DNA gyrase, an important antibacterial target. DNA gyrase-targeting pentapeptide repeat proteins can both inhibit DNA gyrase-a potentially useful therapeutic property-and contribute to resistance to quinolone antibacterials (by acting to prevent them forming a lethal complex with the DNA and enzyme). Pentapeptide repeat proteins are therefore of wide interest not only because of their unusual structure, function, and potential as an antibacterial target, but also because knowledge of their mechanism of action may lead to both a greater understanding of the details of DNA gyrase function as well as being a useful template for the design of new DNA gyrase inhibitors. However, many puzzling aspects as to how these DNA mimics function and indeed even their ability to act as DNA mimics itself remains open to question. This review summarizes the current state of knowledge regarding pentapeptide repeat proteins, focusing on those that are thought to mimic DNA, and speculates on potential structure-function relationships which may account for their differing specificities.
Collapse
Affiliation(s)
- Shama Shah
- Heddle Initiative Research Unit, RIKEN, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
11
|
Schoen C, Kischkies L, Elias J, Ampattu BJ. Metabolism and virulence in Neisseria meningitidis. Front Cell Infect Microbiol 2014; 4:114. [PMID: 25191646 PMCID: PMC4138514 DOI: 10.3389/fcimb.2014.00114] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/31/2014] [Indexed: 01/14/2023] Open
Abstract
A longstanding question in infection biology addresses the genetic basis for invasive behavior in commensal pathogens. A prime example for such a pathogen is Neisseria meningitidis. On the one hand it is a harmless commensal bacterium exquisitely adapted to humans, and on the other hand it sometimes behaves like a ferocious pathogen causing potentially lethal disease such as sepsis and acute bacterial meningitis. Despite the lack of a classical repertoire of virulence genes in N. meningitidis separating commensal from invasive strains, molecular epidemiology suggests that carriage and invasive strains belong to genetically distinct populations. In recent years, it has become increasingly clear that metabolic adaptation enables meningococci to exploit host resources, supporting the concept of nutritional virulence as a crucial determinant of invasive capability. Here, we discuss the contribution of core metabolic pathways in the context of colonization and invasion with special emphasis on results from genome-wide surveys. The metabolism of lactate, the oxidative stress response, and, in particular, glutathione metabolism as well as the denitrification pathway provide examples of how meningococcal metabolism is intimately linked to pathogenesis. We further discuss evidence from genome-wide approaches regarding potential metabolic differences between strains from hyperinvasive and carriage lineages and present new data assessing in vitro growth differences of strains from these two populations. We hypothesize that strains from carriage and hyperinvasive lineages differ in the expression of regulatory genes involved particularly in stress responses and amino acid metabolism under infection conditions.
Collapse
Affiliation(s)
- Christoph Schoen
- Institute for Hygiene and Microbiology, University of Würzburg Würzburg, Germany ; Research Center for Infectious Diseases (ZINF), University of Würzburg Würzburg, Germany
| | - Laura Kischkies
- Institute for Hygiene and Microbiology, University of Würzburg Würzburg, Germany
| | - Johannes Elias
- Institute for Hygiene and Microbiology, University of Würzburg Würzburg, Germany ; National Reference Centre for Meningococci and Haemophilus influenzae (NRZMHi), University of Würzburg Würzburg, Germany
| | - Biju Joseph Ampattu
- Institute for Hygiene and Microbiology, University of Würzburg Würzburg, Germany
| |
Collapse
|
12
|
Wang HC, Ho CH, Hsu KC, Yang JM, Wang AHJ. DNA mimic proteins: functions, structures, and bioinformatic analysis. Biochemistry 2014; 53:2865-74. [PMID: 24766129 DOI: 10.1021/bi5002689] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
DNA mimic proteins have DNA-like negative surface charge distributions, and they function by occupying the DNA binding sites of DNA binding proteins to prevent these sites from being accessed by DNA. DNA mimic proteins control the activities of a variety of DNA binding proteins and are involved in a wide range of cellular mechanisms such as chromatin assembly, DNA repair, transcription regulation, and gene recombination. However, the sequences and structures of DNA mimic proteins are diverse, making them difficult to predict by bioinformatic search. To date, only a few DNA mimic proteins have been reported. These DNA mimics were not found by searching for functional motifs in their sequences but were revealed only by structural analysis of their charge distribution. This review highlights the biological roles and structures of 16 reported DNA mimic proteins. We also discuss approaches that might be used to discover new DNA mimic proteins.
Collapse
Affiliation(s)
- Hao-Ching Wang
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University , Taipei 110, Taiwan
| | | | | | | | | |
Collapse
|
13
|
Tettelin H, Medini D, Donati C, Masignani V. Towards a universal group BStreptococcusvaccine using multistrain genome analysis. Expert Rev Vaccines 2014; 5:687-94. [PMID: 17181441 DOI: 10.1586/14760584.5.5.687] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genomics has revolutionized the way in which novel vaccine candidates are identified for the development of efficacious vaccines. Reverse vaccinology, whereby all candidates of interest are identified by analysis of a pathogen's genome, enables characterization of many candidates simultaneously. It accelerates the initial steps of vaccine development and greatly increases the chances of obtaining reliable candidates or cocktails thereof. The availability of one or two genome sequences for any given pathogen provides access to strain-specific vaccine candidates but often fails to identify candidates that would confer general protection. The analysis of multiple genomes of group B Streptococcus revealed tremendous diversity and identified candidates that are not shared by all the strains sequenced, but provide general protection when combined.
Collapse
Affiliation(s)
- Hervé Tettelin
- Department of Microbial Genomics, The Institute for Genomic Research (TIGR), 9712 Medical Center Drive, Rockville, MD 20850, USA.
| | | | | | | |
Collapse
|
14
|
John CM, Liu M, Phillips NJ, Yang Z, Funk CR, Zimmerman LI, Griffiss JM, Stein DC, Jarvis GA. Lack of lipid A pyrophosphorylation and functional lptA reduces inflammation by Neisseria commensals. Infect Immun 2012; 80:4014-26. [PMID: 22949553 PMCID: PMC3486066 DOI: 10.1128/iai.00506-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 08/29/2012] [Indexed: 11/20/2022] Open
Abstract
The interaction of the immune system with Neisseria commensals remains poorly understood. We have previously shown that phosphoethanolamine on the lipid A portion of lipooligosaccharide (LOS) plays an important role in Toll-like receptor 4 (TLR4) signaling. For pathogenic Neisseria, phosphoethanolamine is added to lipid A by the phosphoethanolamine transferase specific for lipid A, which is encoded by lptA. Here, we report that Southern hybridizations and bioinformatics analyses of genomic sequences from all eight commensal Neisseria species confirmed that lptA was absent in 15 of 17 strains examined but was present in N. lactamica. Mass spectrometry of lipid A and intact LOS revealed the lack of both pyrophosphorylation and phosphoethanolaminylation in lipid A of commensal species lacking lptA. Inflammatory signaling in human THP-1 monocytic cells was much greater with pathogenic than with commensal Neisseria strains that lacked lptA, and greater sensitivity to polymyxin B was consistent with the absence of phosphoethanolamine. Unlike the other commensals, whole bacteria of two N. lactamica commensal strains had low inflammatory potential, whereas their lipid A had high-level pyrophosphorylation and phosphoethanolaminylation and induced high-level inflammatory signaling, supporting previous studies indicating that this species uses mechanisms other than altering lipid A to support commensalism. A meningococcal lptA deletion mutant had reduced inflammatory potential, further illustrating the importance of lipid A pyrophosphorylation and phosphoethanolaminylation in the bioactivity of LOS. Overall, our results indicate that lack of pyrophosphorylation and phosphoethanolaminylation of lipid A contributes to the immune privilege of most commensal Neisseria strains by reducing the inflammatory potential of LOS.
Collapse
Affiliation(s)
- Constance M. John
- Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, California, USA
| | - Mingfeng Liu
- Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, California, USA
- Department of Laboratory Medicine
| | - Nancy J. Phillips
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | - Zhijie Yang
- Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, California, USA
| | - Courtney R. Funk
- Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, California, USA
| | - Lindsey I. Zimmerman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - J. McLeod Griffiss
- Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, California, USA
- Department of Laboratory Medicine
| | - Daniel C. Stein
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Gary A. Jarvis
- Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, California, USA
- Department of Laboratory Medicine
| |
Collapse
|
15
|
Wang HC, Ko TP, Wu ML, Ku SC, Wu HJ, Wang AHJ. Neisseria conserved protein DMP19 is a DNA mimic protein that prevents DNA binding to a hypothetical nitrogen-response transcription factor. Nucleic Acids Res 2012; 40:5718-30. [PMID: 22373915 PMCID: PMC3384305 DOI: 10.1093/nar/gks177] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 02/01/2012] [Accepted: 02/03/2012] [Indexed: 11/14/2022] Open
Abstract
DNA mimic proteins occupy the DNA binding sites of DNA-binding proteins, and prevent these sites from being accessed by DNA. We show here that the Neisseria conserved hypothetical protein DMP19 acts as a DNA mimic. The crystal structure of DMP19 shows a dsDNA-like negative charge distribution on the surface, suggesting that this protein should be added to the short list of known DNA mimic proteins. The crystal structure of another related protein, NHTF (Neisseria hypothetical transcription factor), provides evidence that it is a member of the xenobiotic-response element (XRE) family of transcriptional factors. NHTF binds to a palindromic DNA sequence containing a 5'-TGTNAN(11)TNACA-3' recognition box that controls the expression of an NHTF-related operon in which the conserved nitrogen-response protein [i.e. (Protein-PII) uridylyltransferase] is encoded. The complementary surface charges between DMP19 and NHTF suggest specific charge-charge interaction. In a DNA-binding assay, we found that DMP19 can prevent NHTF from binding to its DNA-binding sites. Finally, we used an in situ gene regulation assay to provide evidence that NHTF is a repressor of its down-stream genes and that DMP19 can neutralize this effect. We therefore conclude that the interaction of DMP19 and NHTF provides a novel gene regulation mechanism in Neisseria spps.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrew H.-J. Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
16
|
Bratcher HB, Bennett JS, Maiden MCJ. Evolutionary and genomic insights into meningococcal biology. Future Microbiol 2012; 7:873-85. [PMID: 22827308 PMCID: PMC3492750 DOI: 10.2217/fmb.12.62] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epidemic disease caused by Neisseria meningitidis, the meningococcus, has been recognized for two centuries, but remains incompletely controlled and understood. There have been dramatic reductions in serogroup A and C meningococcal disease following the introduction of protein-polysaccharide conjugate vaccines, but there is currently no comprehensive vaccine against serogroup B meningococci. Genetic analyses of meningococcal populations have provided many insights into the biology, evolution and pathogenesis of this important pathogen. The meningococcus, and its close relative the gonococcus, are the only pathogenic members of the genus Neisseria, and the invasive propensity of meningococci varies widely, with approximately a dozen 'hyperinvasive lineages' responsible for most disease. Despite this, attempts to identify a 'pathogenome', a subset of genes associated with the invasive phenotypes, have failed; however, genome-wide studies of representative meningococcal isolates using high-throughput sequencing are beginning to provide details on the relationship of invasive phenotype and genotype in this fascinating organism and how this relationship has evolved.
Collapse
|
17
|
Hedman AK, Li MS, Langford PR, Kroll JS. Transcriptional profiling of serogroup B Neisseria meningitidis growing in human blood: an approach to vaccine antigen discovery. PLoS One 2012; 7:e39718. [PMID: 22745818 PMCID: PMC3382141 DOI: 10.1371/journal.pone.0039718] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/25/2012] [Indexed: 12/14/2022] Open
Abstract
Neisseria meningitidis is a nasopharyngeal commensal of humans which occasionally invades the blood to cause septicaemia. The transcriptome of N. meningitidis strain MC58 grown in human blood for up to 4 hours was determined and around 10% of the genome was found to be differentially regulated. The nuo, pet and atp operons, involved in energy metabolism, were up-regulated, while many house-keeping genes were down-regulated. Genes encoding protein chaperones and proteases, involved in the stress response; complement resistant genes encoding enzymes for LOS sialylation and biosynthesis; and fHbp (NMB1870) and nspA (NMB0663), encoding vaccine candidates, were all up-regulated. Genes for glutamate uptake and metabolism, and biosynthesis of purine and pyrimidine were also up-regulated. Blood grown meningococci are under stress and undergo a metabolic adaptation and energy conservation strategy. The localisation of four putative outer membrane proteins encoded by genes found to be up-regulated in blood was assessed by FACS using polyclonal mouse antisera, and one (NMB0390) showed evidence of surface expression, supporting its vaccine candidacy.
Collapse
Affiliation(s)
- Asa K. Hedman
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary’s Campus, London, United Kingdom
| | - Ming-Shi Li
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary’s Campus, London, United Kingdom
| | - Paul R. Langford
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary’s Campus, London, United Kingdom
| | - J. Simon Kroll
- Section of Paediatrics, Department of Medicine, Imperial College London, St. Mary’s Campus, London, United Kingdom
| |
Collapse
|
18
|
Neisseria meningitidis and Neisseria gonorrhoeae are differently adapted in the regulation of denitrification: single nucleotide polymorphisms that enable species-specific tuning of the aerobic–anaerobic switch. Biochem J 2012; 445:69-79. [DOI: 10.1042/bj20111984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The closely related pathogenic Neisseria species N. meningitidis and N. gonorrhoeae are able to respire in the absence of oxygen, using nitrite as an alternative electron acceptor. aniA (copper-containing nitrite reductase) is tightly regulated by four transcriptional regulators: FNR (fumarate and nitrate reductase), NarP, FUR (Ferric uptake regulator) and NsrR. The four regulators control expression of aniA in N. meningitidis by binding to specific and distinct regions of the promoter. We show in the present study that FUR and NarP are both required for the induction of expression of aniA in N. meningitidis, and that they bind adjacent to one another in a non-co-operative manner. Activation via FUR/NarP is dependent on their topological arrangement relative to the RNA polymerase-binding site. Analysis of the sequence of the aniA promoters from multiple N. meningitidis and N. gonorrhoeae strains indicates that there are species-specific single nucleotide polymorphisms, in regions predicted to be important for regulator binding. These sequence differences alter both the in vitro DNA binding and the promoter activation in intact cells by key activators FNR (oxygen sensor) and NarP (which is activated by nitrite in N. meningitidis). The weak relative binding of FNR to the N. gonorrhoeae aniA promoter (compared to N. meningitidis) is compensated for by a higher affinity of the gonococcal aniA promoter for NarP. Despite containing nearly identical genes for catalysing and regulating denitrification, variations in the promoter for the aniA gene appear to have been selected to enable the two pathogens to tune differentially their responses to environmental variables during the aerobic–anaerobic switch.
Collapse
|
19
|
Jackson LA, Dyer DW. Protocol for gene expression profiling using DNA microarrays in Neisseria gonorrhoeae. Methods Mol Biol 2012; 903:343-57. [PMID: 22782831 DOI: 10.1007/978-1-61779-937-2_24] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gene expression profiling using DNA microarrays has become commonplace in current molecular biology practices, and has dramatically enhanced our understanding of the biology of Neisseria spp., and the interaction of these organisms with the host. With the choice of microarray platforms offered for gene expression profiling and commercially available arrays, investigators must ask several central questions to make decisions based on their research focus. Are arrays on hand for their organism and if not then would it be cost-effective to design custom arrays. Other important considerations; what types of specialized equipment for array hybridization and signal detection are required and is the specificity and sensitivity of the array adequate for your application. Here, we describe the use of a custom 12K CombiMatrix ElectraSense™ oligonucleotide microarray format for assessing global gene expression profiles in Neisseria spp.
Collapse
Affiliation(s)
- Lydgia A Jackson
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | | |
Collapse
|
20
|
Mendum TA, Newcombe J, Mannan AA, Kierzek AM, McFadden J. Interrogation of global mutagenesis data with a genome scale model of Neisseria meningitidis to assess gene fitness in vitro and in sera. Genome Biol 2011; 12:R127. [PMID: 22208880 PMCID: PMC3334622 DOI: 10.1186/gb-2011-12-12-r127] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 11/26/2011] [Accepted: 12/30/2011] [Indexed: 11/10/2022] Open
Abstract
Background Neisseria meningitidis is an important human commensal and pathogen that causes several thousand deaths each year, mostly in young children. How the pathogen replicates and causes disease in the host is largely unknown, particularly the role of metabolism in colonization and disease. Completed genome sequences are available for several strains but our understanding of how these data relate to phenotype remains limited. Results To investigate the metabolism of N. meningitidis we generated and then selected a representative Tn5 library on rich medium, a minimal defined medium and in human serum to identify genes essential for growth under these conditions. To relate these data to a systems-wide understanding of the pathogen's biology we constructed a genome-scale metabolic network: Nmb_iTM560. This model was able to distinguish essential and non-essential genes as predicted by the global mutagenesis. These essentiality data, the library and the Nmb_iTM560 model are powerful and widely applicable resources for the study of meningococcal metabolism and physiology. We demonstrate the utility of these resources by predicting and demonstrating metabolic requirements on minimal medium, such as a requirement for phosphoenolpyruvate carboxylase, and by describing the nutritional and biochemical status of N. meningitidis when grown in serum, including a requirement for both the synthesis and transport of amino acids. Conclusions This study describes the application of a genome scale transposon library combined with an experimentally validated genome-scale metabolic network of N. meningitidis to identify essential genes and provide novel insight into the pathogen's metabolism both in vitro and during infection.
Collapse
Affiliation(s)
- Tom A Mendum
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | | | | | | | | |
Collapse
|
21
|
Donatin E, Drancourt M. Diagnostic des infections bactériennes par les puces à ADN. BIO TRIBUNE MAGAZINE 2011. [PMCID: PMC7149027 DOI: 10.1007/s11834-011-0051-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Le diagnostic des infections bactériennes repose sur l’isolement du pathogène, qui ne peut pas être réalisé dans le temps du soin. Egalement, la culture est mal adaptée au diagnostic des infections polymicrobiennes. Une alternative est la détection de séquences ADN spécifiques dans l’échantillon clinique par les puces à ADN. La première utilisation des puces à ADN en tant qu’outil diagnostic date de 1995. Cette revue porte sur la mise au point de différentes puces à ADN pour la détection des bactéries pathogènes au cours des infections respiratoires, digestives et systémiques. Ces études ont permis de montrer que les puces à ADN sont un outil fiable, rapide et reproductible pour le diagnostic des maladies infectieuses d’origine bactérienne. Le coût et la technicité demeurent deux freins au déploiement en routine de cette technologie pour le diagnostic des infections bactériennes.
Collapse
Affiliation(s)
- E. Donatin
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR CNRS 6236 IRD 3R198, IFR 48 Institut Hospitalier Universitaire POLMIT, Université de la Méditerranée, Marseille, France
| | - M. Drancourt
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, UMR CNRS 6236 IRD 3R198, IFR 48 Institut Hospitalier Universitaire POLMIT, Université de la Méditerranée, Marseille, France
- Faculté de Médecine, Unité des Rickettsies, 27, Boulevard Jean Moulin, cedex 5, France
| |
Collapse
|
22
|
Trivedi K, Tang CM, Exley RM. Mechanisms of meningococcal colonisation. Trends Microbiol 2011; 19:456-63. [PMID: 21816616 DOI: 10.1016/j.tim.2011.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/16/2011] [Accepted: 06/28/2011] [Indexed: 01/05/2023]
Abstract
Despite advances against infectious diseases over the past century, Neisseria meningitidis remains a major causative agent of meningitis and septicaemia worldwide. Its adaptation for survival in the human nasopharynx makes the meningococcus a highly successful commensal bacterium. Recent progress has been made in understanding the mechanisms that enable neisserial colonisation, in terms of the role of type IV pili, the impact of other adhesins, biofilm formation, nutrient acquisition and resistance to host immune defences. Refinements in cell-based and in vivo models will lead to improved understanding of the colonisation process, and hopefully to more effective vaccines and therapeutic strategies.
Collapse
Affiliation(s)
- Kaushali Trivedi
- Centre for Molecular Microbiology and Infection, Faculty of Medicine, Flowers Building, Imperial College London, London SW7 2AZ, UK
| | | | | |
Collapse
|
23
|
Using single-nucleotide polymorphisms to discriminate disease-associated from carried genomes of Neisseria meningitidis. J Bacteriol 2011; 193:3633-41. [PMID: 21622743 DOI: 10.1128/jb.01198-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neisseria meningitidis is one of the main agents of bacterial meningitis, causing substantial morbidity and mortality worldwide. However, most of the time N. meningitidis is carried as a commensal not associated with invasive disease. The genomic basis of the difference between disease-associated and carried isolates of N. meningitidis may provide critical insight into mechanisms of virulence, yet it has remained elusive. Here, we have taken a comparative genomics approach to interrogate the difference between disease-associated and carried isolates of N. meningitidis at the level of individual nucleotide variations (i.e., single nucleotide polymorphisms [SNPs]). We aligned complete genome sequences of 8 disease-associated and 4 carried isolates of N. meningitidis to search for SNPs that show mutually exclusive patterns of variation between the two groups. We found 63 SNPs that distinguish the 8 disease-associated genomes from the 4 carried genomes of N. meningitidis, which is far more than can be expected by chance alone given the level of nucleotide variation among the genomes. The putative list of SNPs that discriminate between disease-associated and carriage genomes may be expected to change with increased sampling or changes in the identities of the isolates being compared. Nevertheless, we show that these discriminating SNPs are more likely to reflect phenotypic differences than shared evolutionary history. Discriminating SNPs were mapped to genes, and the functions of the genes were evaluated for possible connections to virulence mechanisms. A number of overrepresented functional categories related to virulence were uncovered among SNP-associated genes, including genes related to the category "symbiosis, encompassing mutualism through parasitism."
Collapse
|
24
|
Joseph B, Schwarz RF, Linke B, Blom J, Becker A, Claus H, Goesmann A, Frosch M, Müller T, Vogel U, Schoen C. Virulence evolution of the human pathogen Neisseria meningitidis by recombination in the core and accessory genome. PLoS One 2011; 6:e18441. [PMID: 21541312 PMCID: PMC3082526 DOI: 10.1371/journal.pone.0018441] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 02/28/2011] [Indexed: 11/18/2022] Open
Abstract
Background Neisseria meningitidis is a naturally transformable, facultative pathogen colonizing the human nasopharynx. Here, we analyze on a genome-wide level the impact of recombination on gene-complement diversity and virulence evolution in N. meningitidis. We combined comparative genome hybridization using microarrays (mCGH) and multilocus sequence typing (MLST) of 29 meningococcal isolates with computational comparison of a subset of seven meningococcal genome sequences. Principal Findings We found that lateral gene transfer of minimal mobile elements as well as prophages are major forces shaping meningococcal population structure. Extensive gene content comparison revealed novel associations of virulence with genetic elements besides the recently discovered meningococcal disease associated (MDA) island. In particular, we identified an association of virulence with a recently described canonical genomic island termed IHT-E and a differential distribution of genes encoding RTX toxin- and two-partner secretion systems among hyperinvasive and non-hyperinvasive lineages. By computationally screening also the core genome for signs of recombination, we provided evidence that about 40% of the meningococcal core genes are affected by recombination primarily within metabolic genes as well as genes involved in DNA replication and repair. By comparison with the results of previous mCGH studies, our data indicated that genetic structuring as revealed by mCGH is stable over time and highly similar for isolates from different geographic origins. Conclusions Recombination comprising lateral transfer of entire genes as well as homologous intragenic recombination has a profound impact on meningococcal population structure and genome composition. Our data support the hypothesis that meningococcal virulence is polygenic in nature and that differences in metabolism might contribute to virulence.
Collapse
Affiliation(s)
- Biju Joseph
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Roland F. Schwarz
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom
| | - Burkhard Linke
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Jochen Blom
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Anke Becker
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Heike Claus
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
- National Reference Laboratory for Meningococci (NRZM), Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | | | - Matthias Frosch
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
- National Reference Laboratory for Meningococci (NRZM), Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Tobias Müller
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Ulrich Vogel
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
- National Reference Laboratory for Meningococci (NRZM), Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Christoph Schoen
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
25
|
Bennett JS, Bentley SD, Vernikos GS, Quail MA, Cherevach I, White B, Parkhill J, Maiden MCJ. Independent evolution of the core and accessory gene sets in the genus Neisseria: insights gained from the genome of Neisseria lactamica isolate 020-06. BMC Genomics 2010; 11:652. [PMID: 21092259 PMCID: PMC3091772 DOI: 10.1186/1471-2164-11-652] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 11/23/2010] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The genus Neisseria contains two important yet very different pathogens, N. meningitidis and N. gonorrhoeae, in addition to non-pathogenic species, of which N. lactamica is the best characterized. Genomic comparisons of these three bacteria will provide insights into the mechanisms and evolution of pathogenesis in this group of organisms, which are applicable to understanding these processes more generally. RESULTS Non-pathogenic N. lactamica exhibits very similar population structure and levels of diversity to the meningococcus, whilst gonococci are essentially recent descendents of a single clone. All three species share a common core gene set estimated to comprise around 1190 CDSs, corresponding to about 60% of the genome. However, some of the nucleotide sequence diversity within this core genome is particular to each group, indicating that cross-species recombination is rare in this shared core gene set. Other than the meningococcal cps region, which encodes the polysaccharide capsule, relatively few members of the large accessory gene pool are exclusive to one species group, and cross-species recombination within this accessory genome is frequent. CONCLUSION The three Neisseria species groups represent coherent biological and genetic groupings which appear to be maintained by low rates of inter-species horizontal genetic exchange within the core genome. There is extensive evidence for exchange among positively selected genes and the accessory genome and some evidence of hitch-hiking of housekeeping genes with other loci. It is not possible to define a 'pathogenome' for this group of organisms and the disease causing phenotypes are therefore likely to be complex, polygenic, and different among the various disease-associated phenotypes observed.
Collapse
|
26
|
Cuff WR, Duvvuri VRSK, Liang B, Duvvuri B, Wu GE, Wu J, Tsang RSW. A novel interpretation of structural dot plots of genomes derived from the analysis of two strains of Neisseria meningitidis. GENOMICS PROTEOMICS & BIOINFORMATICS 2010; 8:159-69. [PMID: 20970744 PMCID: PMC5054114 DOI: 10.1016/s1672-0229(10)60018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neisseria meningitidis is the agent of invasive meningococcal disease, including cerebral meningitis and septicemia. Because the diseases caused by different clonal groups (sequence types) have their own epidemiological characteristics, it is important to understand the differences among the genomes of the N. meningitidis clonal groups. To this end, a novel interpretation of a structural dot plot of genomes was devised and applied; exact nucleotide matches between the genomes of N. meningitidis serogroup A strain Z2491 and serogroup B strain MC58 were identified, leading to the specification of various structural regions. Known and putative virulence genes for each N. meningitidis strain were then classified into these regions. We found that virulence genes of MC58 tend more to the translocated regions (chromosomal segments in new sequence contexts) than do those of Z2491, notably tending towards the interface between one of the translocated regions and the collinear region. Within the collinear region, virulence genes tend to occur within 16 kb of gaps in the exact matches. Verification of these tendencies using genes clustered in the cps locus was sufficiently supportive to suggest that these tendencies can be used to focus the search for and understanding of virulence genes and mechanisms of pathogenicity in these two organisms.
Collapse
Affiliation(s)
- Wilfred R Cuff
- Public Health Agency of Canada, Canadian Science Centre for Human and Animal Health, Winnipeg, Canada.
| | | | | | | | | | | | | |
Collapse
|
27
|
Schwarz R, Joseph B, Gerlach G, Schramm-Glück A, Engelhard K, Frosch M, Müller T, Schoen C. Evaluation of one- and two-color gene expression arrays for microbial comparative genome hybridization analyses in routine applications. J Clin Microbiol 2010; 48:3105-10. [PMID: 20592156 PMCID: PMC2937706 DOI: 10.1128/jcm.00233-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/29/2010] [Accepted: 06/21/2010] [Indexed: 11/20/2022] Open
Abstract
DNA microarray technology has already revolutionized basic research in infectious diseases, and whole-genome sequencing efforts have allowed for the fabrication of tailor-made spotted microarrays for an increasing number of bacterial pathogens. However, the application of microarrays in diagnostic microbiology is currently hampered by the high costs associated with microarray experiments and the specialized equipment needed. Here, we show that a thorough bioinformatic postprocessing of the microarray design to reduce the amount of unspecific noise also allows the reliable use of spotted gene expression microarrays for gene content analyses. We further demonstrate that the use of only single-color labeling to halve the costs for dye-labeled nucleotides results in only a moderate decrease in overall specificity and sensitivity. Therefore, gene expression microarrays using only single-color labeling can also reliably be used for gene content analyses, thus reducing the costs for potential routine applications such as genome-based pathogen detection or strain typing.
Collapse
Affiliation(s)
- Roland Schwarz
- Department of Bioinformatics, Institute for Hygiene and Microbiology, University of Würzburg, 98070 Würzburg, Germany
| | - Biju Joseph
- Department of Bioinformatics, Institute for Hygiene and Microbiology, University of Würzburg, 98070 Würzburg, Germany
| | - Gabriele Gerlach
- Department of Bioinformatics, Institute for Hygiene and Microbiology, University of Würzburg, 98070 Würzburg, Germany
| | - Anja Schramm-Glück
- Department of Bioinformatics, Institute for Hygiene and Microbiology, University of Würzburg, 98070 Würzburg, Germany
| | - Kathrin Engelhard
- Department of Bioinformatics, Institute for Hygiene and Microbiology, University of Würzburg, 98070 Würzburg, Germany
| | - Matthias Frosch
- Department of Bioinformatics, Institute for Hygiene and Microbiology, University of Würzburg, 98070 Würzburg, Germany
| | - Tobias Müller
- Department of Bioinformatics, Institute for Hygiene and Microbiology, University of Würzburg, 98070 Würzburg, Germany
| | - Christoph Schoen
- Department of Bioinformatics, Institute for Hygiene and Microbiology, University of Würzburg, 98070 Würzburg, Germany
| |
Collapse
|
28
|
Aspholm M, Aas FE, Harrison OB, Quinn D, Vik Å, Viburiene R, Tønjum T, Moir J, Maiden MCJ, Koomey M. Structural alterations in a component of cytochrome c oxidase and molecular evolution of pathogenic Neisseria in humans. PLoS Pathog 2010; 6:e1001055. [PMID: 20808844 PMCID: PMC2924362 DOI: 10.1371/journal.ppat.1001055] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 07/21/2010] [Indexed: 12/26/2022] Open
Abstract
Three closely related bacterial species within the genus Neisseria are of importance to human disease and health. Neisseria meningitidis is a major cause of meningitis, while Neisseria gonorrhoeae is the agent of the sexually transmitted disease gonorrhea and Neisseria lactamica is a common, harmless commensal of children. Comparative genomics have yet to yield clear insights into which factors dictate the unique host-parasite relationships exhibited by each since, as a group, they display remarkable conservation at the levels of nucleotide sequence, gene content and synteny. Here, we discovered two rare alterations in the gene encoding the CcoP protein component of cytochrome cbb3 oxidase that are phylogenetically informative. One is a single nucleotide polymorphism resulting in CcoP truncation that acts as a molecular signature for the species N. meningitidis. We go on to show that the ancestral ccoP gene arose by a unique gene duplication and fusion event and is specifically and completely distributed within species of the genus Neisseria. Surprisingly, we found that strains engineered to express either of the two CcoP forms conditionally differed in their capacity to support nitrite-dependent, microaerobic growth mediated by NirK, a nitrite reductase. Thus, we propose that changes in CcoP domain architecture and ensuing alterations in function are key traits in successive, adaptive radiations within these metapopulations. These findings provide a dramatic example of how rare changes in core metabolic proteins can be connected to significant macroevolutionary shifts. They also show how evolutionary change at the molecular level can be linked to metabolic innovation and its reversal as well as demonstrating how genotype can be used to infer alterations of the fitness landscape within a single host. The closely related bacterial species N. meningitidis, N. gonorrhoeae and N. lactamica exclusively colonise mucosal surfaces in humans. While N. gonorrhoeae leads to gonorrhea, the other two species persist mainly in their host in the absence of disease. N. meningitidis does occasionally cause severe, life threatening illness, however. Little is known about the factors and elements that dictate the unique human interactions exhibited by each species. Moreover, the evolutionary relationships between these species are poorly characterized. Here, we describe two successive alterations in a single gene that can be linked first to all species within the genus Neisseria and then the species N. meningitidis. We also show these signature alterations have phenotypic consequences by affecting core respiratory metabolic processes. These findings have significant implications for the evolution of related bacterial species within a single host and provide a novel perspective on the episodic and reversible nature of innovative adaptation.
Collapse
Affiliation(s)
- Marina Aspholm
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
- Centre for Molecular Biology and Neuroscience, University of Oslo, Oslo, Norway
| | - Finn Erik Aas
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
- Centre for Molecular Biology and Neuroscience, University of Oslo, Oslo, Norway
| | | | - Diana Quinn
- Department of Biology (Area 10), University of York, Heslington, York, United Kingdom
| | - Åshild Vik
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
- Centre for Molecular Biology and Neuroscience, University of Oslo, Oslo, Norway
| | - Raimonda Viburiene
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
- Centre for Molecular Biology and Neuroscience, University of Oslo, Oslo, Norway
| | - Tone Tønjum
- Centre for Molecular Biology and Neuroscience, University of Oslo, Oslo, Norway
- Institute of Microbiology, University of Oslo, Oslo, Norway
| | - James Moir
- Department of Biology (Area 10), University of York, Heslington, York, United Kingdom
| | | | - Michael Koomey
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
- Centre for Molecular Biology and Neuroscience, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
29
|
Comparative genome biology of a serogroup B carriage and disease strain supports a polygenic nature of meningococcal virulence. J Bacteriol 2010; 192:5363-77. [PMID: 20709895 DOI: 10.1128/jb.00883-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neisseria meningitidis serogroup B strains are responsible for most meningococcal cases in the industrialized countries, and strains belonging to the clonal complex ST-41/44 are among the most prevalent serogroup B strains in carriage and disease. Here, we report the first genome and transcriptome comparison of a serogroup B carriage strain from the clonal complex ST-41/44 to the serogroup B disease strain MC58 from the clonal complex ST-32. Both genomes are highly colinear, with only three major genome rearrangements that are associated with the integration of mobile genetic elements. They further differ in about 10% of their gene content, with the highest variability in gene presence as well as gene sequence found for proteins involved in host cell interactions, including Opc, NadA, TonB-dependent receptors, RTX toxin, and two-partner secretion system proteins. Whereas housekeeping genes coding for metabolic functions were highly conserved, there were considerable differences in their expression pattern upon adhesion to human nasopharyngeal cells between both strains, including differences in energy metabolism and stress response. In line with these genomic and transcriptomic differences, both strains also showed marked differences in their in vitro infectivity and in serum resistance. Taken together, these data support the concept of a polygenic nature of meningococcal virulence comprising differences in the repertoire of adhesins as well as in the regulation of metabolic genes and suggest a prominent role for immune selection and genetic drift in shaping the meningococcal genome.
Collapse
|
30
|
Genome sequencing reveals widespread virulence gene exchange among human Neisseria species. PLoS One 2010; 5:e11835. [PMID: 20676376 PMCID: PMC2911385 DOI: 10.1371/journal.pone.0011835] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 06/01/2010] [Indexed: 11/19/2022] Open
Abstract
Commensal bacteria comprise a large part of the microbial world, playing important roles in human development, health and disease. However, little is known about the genomic content of commensals or how related they are to their pathogenic counterparts. The genus Neisseria, containing both commensal and pathogenic species, provides an excellent opportunity to study these issues. We undertook a comprehensive sequencing and analysis of human commensal and pathogenic Neisseria genomes. Commensals have an extensive repertoire of virulence alleles, a large fraction of which has been exchanged among Neisseria species. Commensals also have the genetic capacity to donate DNA to, and take up DNA from, other Neisseria. Our findings strongly suggest that commensal Neisseria serve as reservoirs of virulence alleles, and that they engage extensively in genetic exchange.
Collapse
|
31
|
Regulation of pga operon expression and biofilm formation in Actinobacillus pleuropneumoniae by sigmaE and H-NS. J Bacteriol 2010; 192:2414-23. [PMID: 20207760 DOI: 10.1128/jb.01513-09] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clinical isolates of the porcine pathogen Actinobacillus pleuropneumoniae often form adherent colonies on agar plates due to expression of an operon, pgaABCD, encoding a poly-beta-1,6-N-acetyl-D-glucosamine (PGA) extracellular matrix. The adherent colony phenotype, which correlates with the ability to form biofilms on the surfaces of polystyrene plates, is lost following serial passage in broth culture, and repeated passage of the nonadherent variants on solid media does not result in reversion to the adherent colony phenotype. In order to investigate the regulation of PGA expression and biofilm formation in A. pleuropneumoniae, we screened a bank of transposon mutants of the nonadherent serovar 1 strain S4074(T) and identified mutations in two genes, rseA and hns, which resulted in the formation of the adherent colony phenotype. In other bacteria, including the Enterobacteriaceae, H-NS acts as a global gene regulator, and RseA is a negative regulator of the extracytoplasmic stress response sigma factor sigma(E). Transcription profiling of A. pleuropneumoniae rseA and hns mutants revealed that both sigma(E) and H-NS independently regulate expression of the pga operon. Transcription of the pga operon is initiated from a sigma(E) promoter site in the absence of H-NS, and upregulation of sigma(E) is sufficient to displace H-NS, allowing transcription to proceed. In A. pleuropneumoniae, H-NS does not act as a global gene regulator but rather specifically regulates biofilm formation via repression of the pga operon. Positive regulation of the pga operon by sigma(E) indicates that biofilm formation is part of the extracytoplasmic stress response in A. pleuropneumoniae.
Collapse
|
32
|
Abstract
The physical properties of most bacterial genomes are largely unexplored. We have previously demonstrated that the strict human pathogen Neisseria gonorrhoeae is polyploid, carrying an average of three chromosome copies per cell and only maintaining one pair of replication forks per chromosome (D. M. Tobiason and H. S. Seifert, PLos Biol. 4:1069-1078, 2006). We are following up this initial report to test several predictions of the polyploidy model of gonococcal chromosome organization. We demonstrate that the N. gonorrhoeae chromosomes exist solely as monomers and not covalently linked dimers, and in agreement with the monomer status, we show that distinct nucleoid regions can be detected by electron microscopy. Two different approaches to isolate heterozygous N. gonorrhoeae resulted in the formation of merodiploids, showing that even with more than one chromosome copy, these bacteria are genetically haploid. We show that the closely related bacterium Neisseria meningitidis is also polyploid, while the commensal organism Neisseria lactamica maintains chromosomes in single copy. We conclude that the pathogenic Neisseria strains are homozygous diploids.
Collapse
|
33
|
Abstract
The human species is the only natural host of Neisseria meningitidis, an important cause of bacterial meningitis globally, and, despite its association with devastating diseases, N. meningitidis is a commensal organism found frequently in the respiratory tract of healthy individuals. To date, antibiotic resistance is relatively uncommon in N. meningitidis isolates but, due to the rapid onset of disease in susceptible hosts, the mortality rate remains approx. 10%. Additionally, patients who survive meningococcal disease often endure numerous debilitating sequelae. N. meningitidis strains are classified primarily into serogroups based on the type of polysaccharide capsule expressed. In total, 13 serogroups have been described; however, the majority of disease is caused by strains belonging to one of only five serogroups. Although vaccines have been developed against some of these, a universal meningococcal vaccine remains a challenge due to successful immune evasion strategies of the organism, including mimicry of host structures as well as frequent antigenic variation. N. meningitidis express a range of virulence factors including capsular polysaccharide, lipopolysaccharide and a number of surface-expressed adhesive proteins. Variation of these surface structures is necessary for meningococci to evade killing by host defence mechanisms. Nonetheless, adhesion to host cells and tissues needs to be maintained to enable colonization and ensure bacterial survival in the niche. The aims of the present review are to provide a brief outline of meningococcal carriage, disease and burden to society. With this background, we discuss several bacterial strategies that may enable its survival in the human respiratory tract during colonization and in the blood during infection. We also examine several known meningococcal adhesion mechanisms and conclude with a section on the potential processes that may operate in vivo as meningococci progress from the respiratory niche through the blood to reach the central nervous system.
Collapse
|
34
|
Ho Sui SJ, Fedynak A, Hsiao WWL, Langille MGI, Brinkman FSL. The association of virulence factors with genomic islands. PLoS One 2009; 4:e8094. [PMID: 19956607 PMCID: PMC2779486 DOI: 10.1371/journal.pone.0008094] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 11/07/2009] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND It has been noted that many bacterial virulence factor genes are located within genomic islands (GIs; clusters of genes in a prokaryotic genome of probable horizontal origin). However, such studies have been limited to single genera or isolated observations. We have performed the first large-scale analysis of multiple diverse pathogens to examine this association. We additionally identified genes found predominantly in pathogens, but not non-pathogens, across multiple genera using 631 complete bacterial genomes, and we identified common trends in virulence for genes in GIs. Furthermore, we examined the relationship between GIs and clustered regularly interspaced palindromic repeats (CRISPRs) proposed to confer resistance to phage. METHODOLOGY/PRINCIPAL FINDINGS We show quantitatively that GIs disproportionately contain more virulence factors than the rest of a given genome (p<1E-40 using three GI datasets) and that CRISPRs are also over-represented in GIs. Virulence factors in GIs and pathogen-associated virulence factors are enriched for proteins having more "offensive" functions, e.g. active invasion of the host, and are disproportionately components of type III/IV secretion systems or toxins. Numerous hypothetical pathogen-associated genes were identified, meriting further study. CONCLUSIONS/SIGNIFICANCE This is the first systematic analysis across diverse genera indicating that virulence factors are disproportionately associated with GIs. "Offensive" virulence factors, as opposed to host-interaction factors, may more often be a recently acquired trait (on an evolutionary time scale detected by GI analysis). Newly identified pathogen-associated genes warrant further study. We discuss the implications of these results, which cement the significant role of GIs in the evolution of many pathogens.
Collapse
Affiliation(s)
- Shannan J. Ho Sui
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Amber Fedynak
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - William W. L. Hsiao
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Morgan G. I. Langille
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Fiona S. L. Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| |
Collapse
|
35
|
Rusniok C, Vallenet D, Floquet S, Ewles H, Mouzé-Soulama C, Brown D, Lajus A, Buchrieser C, Médigue C, Glaser P, Pelicic V. NeMeSys: a biological resource for narrowing the gap between sequence and function in the human pathogen Neisseria meningitidis. Genome Biol 2009; 10:R110. [PMID: 19818133 PMCID: PMC2784325 DOI: 10.1186/gb-2009-10-10-r110] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 08/19/2009] [Accepted: 10/09/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genome sequences, now available for most pathogens, hold promise for the rational design of new therapies. However, biological resources for genome-scale identification of gene function (notably genes involved in pathogenesis) and/or genes essential for cell viability, which are necessary to achieve this goal, are often sorely lacking. This holds true for Neisseria meningitidis, one of the most feared human bacterial pathogens that causes meningitis and septicemia. RESULTS By determining and manually annotating the complete genome sequence of a serogroup C clinical isolate of N. meningitidis (strain 8013) and assembling a library of defined mutants in up to 60% of its non-essential genes, we have created NeMeSys, a biological resource for Neisseria meningitidis systematic functional analysis. To further enhance the versatility of this toolbox, we have manually (re)annotated eight publicly available Neisseria genome sequences and stored all these data in a publicly accessible online database. The potential of NeMeSys for narrowing the gap between sequence and function is illustrated in several ways, notably by performing a functional genomics analysis of the biogenesis of type IV pili, one of the most widespread virulence factors in bacteria, and by identifying through comparative genomics a complete biochemical pathway (for sulfur metabolism) that may potentially be important for nasopharyngeal colonization. CONCLUSIONS By improving our capacity to understand gene function in an important human pathogen, NeMeSys is expected to contribute to the ongoing efforts aimed at understanding a prokaryotic cell comprehensively and eventually to the design of new therapies.
Collapse
Affiliation(s)
- Christophe Rusniok
- Génomique des Microorganismes Pathogènes, Institut Pasteur, rue du Dr Roux, Paris 75015, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pritchard L, Liu H, Booth C, Douglas E, François P, Schrenzel J, Hedley PE, Birch PRJ, Toth IK. Microarray comparative genomic hybridisation analysis incorporating genomic organisation, and application to enterobacterial plant pathogens. PLoS Comput Biol 2009; 5:e1000473. [PMID: 19696881 PMCID: PMC2718846 DOI: 10.1371/journal.pcbi.1000473] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 07/16/2009] [Indexed: 11/18/2022] Open
Abstract
Microarray comparative genomic hybridisation (aCGH) provides an estimate of the relative abundance of genomic DNA (gDNA) taken from comparator and reference organisms by hybridisation to a microarray containing probes that represent sequences from the reference organism. The experimental method is used in a number of biological applications, including the detection of human chromosomal aberrations, and in comparative genomic analysis of bacterial strains, but optimisation of the analysis is desirable in each problem domain.We present a method for analysis of bacterial aCGH data that encodes spatial information from the reference genome in a hidden Markov model. This technique is the first such method to be validated in comparisons of sequenced bacteria that diverge at the strain and at the genus level: Pectobacterium atrosepticum SCRI1043 (Pba1043) and Dickeya dadantii 3937 (Dda3937); and Lactococcus lactis subsp. lactis IL1403 and L. lactis subsp. cremoris MG1363. In all cases our method is found to outperform common and widely used aCGH analysis methods that do not incorporate spatial information. This analysis is applied to comparisons between commercially important plant pathogenic soft-rotting enterobacteria (SRE) Pba1043, P. atrosepticum SCRI1039, P. carotovorum 193, and Dda3937.Our analysis indicates that it should not be assumed that hybridisation strength is a reliable proxy for sequence identity in aCGH experiments, and robustly extends the applicability of aCGH to bacterial comparisons at the genus level. Our results in the SRE further provide evidence for a dynamic, plastic 'accessory' genome, revealing major genomic islands encoding gene products that provide insight into, and may play a direct role in determining, variation amongst the SRE in terms of their environmental survival, host range and aetiology, such as phytotoxin synthesis, multidrug resistance, and nitrogen fixation.
Collapse
Affiliation(s)
- Leighton Pritchard
- Plant Pathology Programme, SCRI, Dundee, Scotland, United Kingdom
- * E-mail: (LP); (IKT)
| | - Hui Liu
- Plant Pathology Programme, SCRI, Dundee, Scotland, United Kingdom
| | - Clare Booth
- Genetics Programme, SCRI, Dundee, Scotland, United Kingdom
| | - Emma Douglas
- Plant Pathology Programme, SCRI, Dundee, Scotland, United Kingdom
| | - Patrice François
- Genomic Research Laboratory, Infectious Diseases Service, Geneva University Hospitals and the University of Geneva, Geneva, Switzerland
| | - Jacques Schrenzel
- Genomic Research Laboratory, Infectious Diseases Service, Geneva University Hospitals and the University of Geneva, Geneva, Switzerland
| | | | - Paul R. J. Birch
- Plant Pathology Programme, SCRI, Dundee, Scotland, United Kingdom
- Division of Plant Science, College of Life Sciences, University of Dundee at SCRI, Dundee, Scotland, United Kingdom
| | - Ian K. Toth
- Plant Pathology Programme, SCRI, Dundee, Scotland, United Kingdom
- * E-mail: (LP); (IKT)
| |
Collapse
|
37
|
Abstract
Porphyromonas gingivalis is implicated in the etiology of chronic periodontitis. Genotyping studies suggest that genetic variability exists among P. gingivalis strains; however, the extent of variability remains unclear and regions of variability remain largely unidentified. To assess P. gingivalis strain diversity, we previously used heteroduplex analysis of the ribosomal operon intergenic spacer region (ISR) to type strains in clinical samples and identified 22 heteroduplex types. Additionally, we used ISR sequence analysis to determine the relatedness of P. gingivalis strains to one another and demonstrated a link between ISR sequence phylogeny and the disease-associated phenotype of the strains. In the current study, heteroduplex analysis of the ISR was used to determine the worldwide genetic variability and distribution of P. gingivalis, and microarray-based comparative genomic hybridization (CGH) analysis was used to more comprehensively examine the variability of major heteroduplex type strains by using the entire genome. Heteroduplex analysis of clinical samples from geographically diverse populations identified 6 predominant geographically widespread heteroduplex types (prevalence, > or = 5%) and 14 rare heteroduplex types (prevalence, <2%) which are found in one or a few locations. CGH analysis of the genomes of seven clinically prevalent heteroduplex type strains identified 133 genes from strain W83 that were divergent in at least one of the other strains. The relatedness of the strains to one another determined on the basis of genome content (microarray) analysis was highly similar to their relatedness determined on the basis of ISR sequence analysis, and a striking correlation between the genome contents and disease-associated phenotypes of the strains was observed.
Collapse
|
38
|
Beddek AJ, Li MS, Kroll JS, Jordan TW, Martin DR. Evidence for capsule switching between carried and disease-causing Neisseria meningitidis strains. Infect Immun 2009; 77:2989-94. [PMID: 19451248 PMCID: PMC2708544 DOI: 10.1128/iai.00181-09] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 03/25/2009] [Accepted: 05/05/2009] [Indexed: 11/20/2022] Open
Abstract
Changing antigenic structure such as with capsule polysaccharide is a common strategy for bacterial pathogens to evade a host immune system. The recent emergence of an invasive W:2a:P1.7-2,4 sequence type 11 (ST-11) strain of Neisseria meningitidis in New Zealand, an uncommon serogroup/serotype in New Zealand disease cases, was investigated for its genetic origins. Molecular typing of 107 meningococcal isolates with similar serotyping characteristics was undertaken to determine genetic relationships. Results indicated that the W:2a:P1.7-2,4 strain had emerged via capsule switching from a group C strain (C:2a:P1.7-2,4). Neither the upstream nor downstream sites of recombination could be elucidated, but sequence analysis demonstrated that at least 45 kb of DNA was involved in the recombination, including the entire capsule gene cluster. The oatWY gene carried by the W:2a:P1.7-2,4 strain contained the insertion sequence element IS1301, one of five variants of oatWY found in group W135 strains belonging to the carriage-associated ST-22 clonal complex. This suggested that the origin of the capsule genes carried by the invasive W:2a:P1.7-2,4 strain is carriage associated. These results provide novel evidence for the long-standing dogma that disease-associated strains acquire antigenic structure from carriage-associated strains. Moreover, the capsule switch described here has arisen from the exchange of the entire capsule locus.
Collapse
Affiliation(s)
- Amanda J Beddek
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | | | | | | | |
Collapse
|
39
|
Caugant DA, Maiden MCJ. Meningococcal carriage and disease--population biology and evolution. Vaccine 2009; 27 Suppl 2:B64-70. [PMID: 19464092 PMCID: PMC2719693 DOI: 10.1016/j.vaccine.2009.04.061] [Citation(s) in RCA: 267] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Meningococcal disease occurs worldwide with incidence rates varying from 1 to 1000 cases per 100,000. The causative organism, Neisseria meningitidis, is an obligate commensal of humans, which normally colonizes the mucosa of the upper respiratory tract without causing invasive disease, a phenomenon known as carriage. Studies using molecular methods have demonstrated the extensive genetic diversity of meningocococci isolated from carriers, in contrast to a limited number of genetic types, known as the hyperinvasive lineages, associated with invasive disease. Population and evolutionary models that invoke positive selection can be used to resolve the apparent paradox of virulent lineages persisting during the global spread of a non-clonal and normally commensal bacterium. The application of insights gained from studies of meningococcal population biology and evolution is important in understanding the spread of disease, as well as in vaccine development and implementation, especially with regard to the challenge of producing comprehensive vaccines based on sub-capsular antigens and measuring their effectiveness.
Collapse
Affiliation(s)
- Dominique A Caugant
- WHO Collaborating Centre for Reference and Research on Meningococci, Norwegian Institute of Public Health, Oslo, Norway.
| | | |
Collapse
|
40
|
Kugelberg E, Gollan B, Tang CM. Mechanisms in Neisseria meningitidis for resistance against complement-mediated killing. Vaccine 2009; 26 Suppl 8:I34-9. [PMID: 19388162 PMCID: PMC2686086 DOI: 10.1016/j.vaccine.2008.11.059] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial meningitis and septicaemia is a global health problem often caused by Neisseria meningitidis. The complement system is the most important aspect of host defence against this pathogen, and the critical interaction between the two is influenced by genetic polymorphisms on both the bacterial and the host side; variations of the meningococcus may lead to increased survival in human sera, whereas humans with complement deficiencies are more susceptible to meningococcal infections. Here we discuss the mechanisms of meningococcal resistance against complement-mediated killing and the influence of both bacterial and host genetic factors.
Collapse
Affiliation(s)
- Elisabeth Kugelberg
- Centre for Molecular Microbiology and Infection, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
41
|
O'Dwyer CA, Li MS, Langford PR, Kroll JS. Meningococcal biofilm growth on an abiotic surface - a model for epithelial colonization? MICROBIOLOGY-SGM 2009; 155:1940-1952. [PMID: 19383679 DOI: 10.1099/mic.0.026559-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neisseria meningitidis colonizes the human nasopharynx asymptomatically, often for prolonged periods, but occasionally invades from this site to cause life-threatening infection. In the nasopharynx aggregated organisms are closely attached to the epithelial surface, in a state in which the expression of components of the bacterial envelope differs significantly from that found in organisms multiplying exponentially in liquid phase culture or in the blood. We and others have hypothesized that here they are in the biofilm state, and to explore this we have investigated biofilm formation by the serogroup B strain MC58 on an abiotic surface, in a sorbarod system. Transcriptional changes were analysed, focusing on alteration in gene expression relevant to polysaccharide capsulation, lipooligosaccharide and outer-membrane protein synthesis - all phenotypes of importance in epithelial colonization. We report downregulation of genes controlling capsulation and the production of core oligosaccharide, and upregulation of genes encoding a range of outer-membrane components, reflecting phenotypic changes that have been established to occur in the colonizing state. A limited comparison with organisms recovered from an extended period of co-cultivation with epithelial cells suggests that this model system may better mirror natural colonization than do short-term meningococcal/epithelial cell co-cultivation systems. Modelling prolonged meningococcal colonization with a sorbarod system offers insight into gene expression during this important, but experimentally relatively inaccessible, phase of human infection.
Collapse
Affiliation(s)
- Clíona A O'Dwyer
- Molecular Infectious Diseases Group, Department of Paediatrics, Faculty of Medicine, Imperial College London, Wright-Fleming Institute, St Mary's Hospital Campus, Norfolk Place, London W2 1PG, UK
| | - Ming-Shi Li
- Molecular Infectious Diseases Group, Department of Paediatrics, Faculty of Medicine, Imperial College London, Wright-Fleming Institute, St Mary's Hospital Campus, Norfolk Place, London W2 1PG, UK
| | - Paul R Langford
- Molecular Infectious Diseases Group, Department of Paediatrics, Faculty of Medicine, Imperial College London, Wright-Fleming Institute, St Mary's Hospital Campus, Norfolk Place, London W2 1PG, UK
| | - J Simon Kroll
- Molecular Infectious Diseases Group, Department of Paediatrics, Faculty of Medicine, Imperial College London, Wright-Fleming Institute, St Mary's Hospital Campus, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
42
|
Sannigrahi S, Zhang X, Tzeng YL. Regulation of the type I protein secretion system by the MisR/MisS two-component system in Neisseria meningitidis. MICROBIOLOGY-SGM 2009; 155:1588-1601. [PMID: 19372150 DOI: 10.1099/mic.0.023945-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neisseria meningitidis, an obligate human pathogen, remains a leading cause of meningitis and fatal sepsis. Meningococci are known to secrete a family of proteins, such as FrpC, with sequence similarity to the repeat-in-toxin (RTX) proteins via the type I secretion system. The meningococcal type I secretion proteins are encoded at two distant genetic loci, NMB1400 (hlyB) and NMB1738/1737 (hlyD/tolC), and are separated from the RTX toxin-like substrates. We have characterized the promoter elements of both hlyB and hlyD by primer extension and lacZ reporter fusions and revealed the growth phase-dependent upregulation of both genes. In addition, we showed that the MisR/MisS two-component system negatively regulates the expression of hlyB and hlyD/tolC. Direct binding of MisR to hlyB and hlyD promoters was demonstrated by electrophoretic mobility shift assay (EMSA), and DNase I protection assays identified MisR binding sites overlapping the promoter elements. Direct repression of hlyB transcription by MisR was supported by in vitro transcription assays. Mutations in the MisR/S system affected, but did not eliminate, the growth phase-dependent upregulation of hlyB, suggesting additional regulatory mechanisms. Increased secretion of RTX toxin-like proteins was detected in the cell-free media from misS mutant cultures, indicating that the amounts of extracellular RTX toxin-like proteins are, in part, controlled by the abundance of the type I secretion apparatus. This is, to our knowledge, the first example of a two-component system mediating secretion of cytotoxin family proteins by controlling expression of the type I secretion proteins.
Collapse
Affiliation(s)
- Soma Sannigrahi
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xinjian Zhang
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yih-Ling Tzeng
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
43
|
Role of HrpA in biofilm formation of Neisseria meningitidis and regulation of the hrpBAS transcripts. Infect Immun 2009; 77:2285-93. [PMID: 19289515 DOI: 10.1128/iai.01502-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Two-partner secretion systems of gram-negative organisms are utilized in adherence, invasion, and biofilm formation. The HrpAB proteins of Neisseria meningitidis are members of a two-partner secretion system, and HrpA is established as being important to adherence and intracellular escape. This study set out to determine the expression pattern of members of the hrpBAS putative operon and to find a functional role for the HrpA protein. The upregulation of these genes was found in situations of anaerobiosis and cell contact. These observations prompted the study of the function of HrpA in biofilms on human bronchial epithelial cells. HrpA mutants in encapsulated and unencapsulated NMB strains demonstrated biofilm growth equivalent to that of the wild-type strain at 6 h but a decreased ability to form biofilms at 48 h. Biofilms formed by hrpA mutants for 48 h on collagen-coated coverslips demonstrated significant reductions compared to those of wild-type strains. Taken together, these observations imply a role for HrpA in the biofilm structure. Further analysis demonstrated the presence of HrpA on the surface of the bacterium.
Collapse
|
44
|
Biofilm formation on human airway epithelia by encapsulated Neisseria meningitidis serogroup B. Microbes Infect 2008; 11:281-7. [PMID: 19114123 DOI: 10.1016/j.micinf.2008.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 11/10/2008] [Accepted: 12/02/2008] [Indexed: 11/23/2022]
Abstract
Neisseria meningitidis is the etiologic agent of meningococcal meningitis. We compared 48-h biofilm formation by N. meningitidis serogroup B strains NMB, MC58, C311 and isogenic mutants defective in capsule formation on SV-40 transformed human bronchial epithelial (HBE) cells in a flow cell. We demonstrated that strains NMB and NMB siaA-D were defective in biofilm formation over glass, and there was a partial rescue of biofilm growth for strain NMB on collagen-coated coverslips at 48 h. We demonstrated all three serogroup B strains form biofilms of statistically equivalent average height on HBE cells as their isogenic capsular mutants. Strain NMB also formed a biofilm of statistically equivalent biomass as the NMB siaA-D mutant on HBE cells at 6 and 48 h. These biofilms are significantly larger than biofilms formed over glass or collagen. Verification that strain NMB expressed capsule in biofilms on HBE cells was demonstrated by staining with 2.2.B, a monoclonal antibody with specificity for the serogroup B capsule. ELISA analysis demonstrated that strains MC58 and C311 also produced capsules during biofilm growth. These findings suggest that encapsulated meningococci can form biofilms on epithelial cells suggesting that biofilm formation may play a role in nasopharyngeal colonization.
Collapse
|
45
|
Li MS, Chow NYS, Sinha S, Halliwell D, Finney M, Gorringe AR, Watson MW, Kroll JS, Langford PR, Webb SAR. A Neisseria meningitidis NMB1966 mutant is impaired for invasion of respiratory epithelial cells, survival in human blood and for virulence in vivo. Med Microbiol Immunol 2008; 198:57-67. [PMID: 19050914 DOI: 10.1007/s00430-008-0105-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Indexed: 11/26/2022]
Abstract
We sought to determine whether NMB1966, encoding a putative ABC transporter, has a role in pathogenesis. Compared to its isogenic wild-type parent strain Neisseria meningitidis MC58, the NMB1966 knockout mutant was less adhesive and invasive for human bronchial epithelial cells, had reduced survival in human blood and was attenuated in a systemic mouse model of infection. The transcriptome of the wild-type and the NMB1966 mutant was compared. The data are consistent with a previous functional assignment of NMB1966 being the ABC transporter component of a glutamate transporter operon. Forty-seven percent of all the differentially regulated genes encoded known outer membrane proteins or pathways generating complex surface structures such as adhesins, peptidoglycan and capsule. The data show that NMB1966 has a role in virulence and that remodelling of the outer membrane and surface/structures is associated with attenuation of the NMB1966 mutant.
Collapse
Affiliation(s)
- Ming-Shi Li
- Department of Paediatrics, Imperial College London, London, W2 1PG, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Identification of meningococcal genes necessary for colonization of human upper airway tissue. Infect Immun 2008; 77:45-51. [PMID: 18936183 DOI: 10.1128/iai.00968-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neisseria meningitidis is an exclusively human pathogen that has evolved primarily to colonize the nasopharynx rather than to cause systemic disease. Colonization is the most frequent outcome following meningococcal infection and a prerequisite for invasive disease. The mechanism of colonization involves attachment of the organism to epithelial cells via bacterial type IV pili (Tfp), but subsequent events during colonization remain largely unknown. We analyzed 576 N. meningitidis mutants for their capacity to colonize human nasopharyngeal tissue in an organ culture model to identify bacterial genes required for colonization. Eight colonization-defective mutants were isolated. Two mutants were unable to express Tfp and were defective for adhesion to epithelial cells, which is likely to be the basis of their attenuation in nasopharyngeal tissue. Three other mutants are predicted to have lost previously uncharacterized surface molecules, while the remaining mutants have transposon insertions in genes of unknown function. We have identified novel meningococcal colonization factors, and this should provide insights into the survival of this important pathogen in its natural habitat.
Collapse
|
47
|
Maiden MC. Population genomics: diversity and virulence in the Neisseria. Curr Opin Microbiol 2008; 11:467-71. [PMID: 18822386 PMCID: PMC2612085 DOI: 10.1016/j.mib.2008.09.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 09/02/2008] [Indexed: 01/28/2023]
Abstract
Advances in high-throughput nucleotide sequencing and bioinformatics make the study of genomes at the population level feasible. Preliminary population genomic studies have explored the relationships among three closely related bacteria, Neisseria meningitidis, Neisseria gonorrhoeae and Neisseria lactamica, which exhibit very different phenotypes with respect to human colonisation. The data obtained have been especially valuable in the establishing of the role of horizontal genetic exchange in bacterial speciation and shaping population structure. In the meningococcus, they have been used to define invasive genetic types, search for virulence factors and potential vaccine components and investigate the effects of vaccines on population structure. These are generic approaches and their application to the Neisseria provides a foretaste for their application to the wider bacterial world.
Collapse
Affiliation(s)
- Martin Cj Maiden
- Department of Zoology, South Parks Road, Oxford OX1 2PS, United Kingdom.
| |
Collapse
|
48
|
Two-partner secretion systems of Neisseria meningitidis associated with invasive clonal complexes. Infect Immun 2008; 76:4649-58. [PMID: 18678657 DOI: 10.1128/iai.00393-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The two-partner secretion (TPS) pathway is widespread among gram-negative bacteria and facilitates the secretion of very large and often virulence-related proteins. TPS systems consist of a secreted TpsA protein and a TpsB protein involved in TpsA transport across the outer membrane. Sequenced Neisseria meningitidis genomes contain up to five TpsA- and two TpsB-encoding genes. Here, we investigated the distribution of TPS-related open reading frames in a collection of disease isolates. Three distinct TPS systems were identified among meningococci. System 1 was ubiquitous, while systems 2 and 3 were significantly more prevalent among isolates of hyperinvasive clonal complexes than among isolates of poorly invasive clonal complexes. In laboratory cultures, systems 1 and 2 were expressed. However, several sera from patients recovering from disseminated meningococcal disease recognized the TpsAs of systems 2 and 3, indicating the expression of these systems during infection. Furthermore, we showed that the major secreted TpsAs of systems 1 and 2 depend on their cognate TpsBs for transport across the outer membrane and that the system 1 TpsAs undergo processing. Together, our data indicate that TPS systems may contribute to the virulence of N. meningitidis.
Collapse
|
49
|
Whole-genome comparison of disease and carriage strains provides insights into virulence evolution in Neisseria meningitidis. Proc Natl Acad Sci U S A 2008; 105:3473-8. [PMID: 18305155 DOI: 10.1073/pnas.0800151105] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neisseria meningitidis is a leading cause of infectious childhood mortality worldwide. Most research efforts have hitherto focused on disease isolates belonging to only a few hypervirulent clonal lineages. However, up to 10% of the healthy human population is temporarily colonized by genetically diverse strains mostly with little or no pathogenic potential. Currently, little is known about the biology of carriage strains and their evolutionary relationship with disease isolates. The expression of a polysaccharide capsule is the only trait that has been convincingly linked to the pathogenic potential of N. meningitidis. To gain insight into the evolution of virulence traits in this species, whole-genome sequences of three meningococcal carriage isolates were obtained. Gene content comparisons with the available genome sequences from three disease isolates indicate that there is no core pathogenome in N. meningitidis. A comparison of the chromosome structure suggests that a filamentous prophage has mediated large chromosomal rearrangements and the translocation of some candidate virulence genes. Interspecific comparison of the available Neisseria genome sequences and dot blot hybridizations further indicate that the insertion sequence IS1655 is restricted only to N. meningitidis; its low sequence diversity is an indicator of an evolutionarily recent population bottleneck. A genome-based phylogenetic reconstruction provides evidence that N. meningitidis has emerged as an unencapsulated human commensal from a common ancestor with Neisseria gonorrhoeae and Neisseria lactamica and consecutively acquired the genes responsible for capsule synthesis via horizontal gene transfer.
Collapse
|
50
|
La MV, Crapoulet N, Barbry P, Raoult D, Renesto P. Comparative genomic analysis of Tropheryma whipplei strains reveals that diversity among clinical isolates is mainly related to the WiSP proteins. BMC Genomics 2007; 8:349. [PMID: 17910761 PMCID: PMC2078596 DOI: 10.1186/1471-2164-8-349] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 10/02/2007] [Indexed: 12/18/2022] Open
Abstract
Background The aim of this study was to analyze the genomic diversity of several Tropheryma whipplei strains by microarray-based comparative genomic hybridization. Fifteen clinical isolates originating from biopsy samples recovered from different countries were compared with the T. whipplei Twist strain. For each isolate, the genes were defined as either present or absent/divergent using the GACK analysis software. Genomic changes were then further characterized by PCR and sequencing. Results The results revealed a limited genetic variation among the T. whipplei isolates, with at most 2.24% of the probes exhibiting differential hybridization against the Twist strain. The main variation was found in genes encoding the WiSP membrane protein family. This work also demonstrated a 19.2 kb-pair deletion within the T. whipplei DIG15 strain. This deletion occurs in the same region as the previously described large genomic rearrangement between Twist and TW08/27. Thus, this can be considered as a major hot-spot for intra-specific T. whipplei differentiation. Analysis of this deleted region confirmed the role of WND domains in generating T. whipplei diversity. Conclusion This work provides the first comprehensive genomic comparison of several T. whipplei isolates. It reveals that clinical isolates originating from various geographic and biological sources exhibit a high conservation rate, indicating that T. whipplei rarely interacts with exogenous DNA. Remarkably, frequent inter-strain variations were dicovered that affected members of the WiSP family.
Collapse
Affiliation(s)
- My-Van La
- Unité des Rickettsies, CNRS-UMR6020, IFR48, Faculté de Médecine, 27 Bd Jean Moulin, Marseille, F13385, France
| | - Nicolas Crapoulet
- Unité des Rickettsies, CNRS-UMR6020, IFR48, Faculté de Médecine, 27 Bd Jean Moulin, Marseille, F13385, France
| | - Pascal Barbry
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, F06560, France
- Université de Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Sophia Antipolis, F06560, France
| | - Didier Raoult
- Unité des Rickettsies, CNRS-UMR6020, IFR48, Faculté de Médecine, 27 Bd Jean Moulin, Marseille, F13385, France
| | - Patricia Renesto
- Unité des Rickettsies, CNRS-UMR6020, IFR48, Faculté de Médecine, 27 Bd Jean Moulin, Marseille, F13385, France
| |
Collapse
|