1
|
Salam LB. Diverse hydrocarbon degradation genes, heavy metal resistome, and microbiome of a fluorene-enriched animal-charcoal polluted soil. Folia Microbiol (Praha) 2024; 69:59-80. [PMID: 37450270 DOI: 10.1007/s12223-023-01077-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Environmental compartments polluted with animal charcoal from the skin and hide cottage industries are rich in toxic heavy metals and diverse hydrocarbon classes, some of which are carcinogenic, mutagenic, and genotoxic, and thus require a bio-based eco-benign decommission strategies. A shotgun metagenomic approach was used to decipher the microbiome, hydrocarbon degradation genes, and heavy metal resistome of a microbial consortium (FN8) from an animal-charcoal polluted site enriched with fluorene. Structurally, the FN8 microbial consortium consists of 26 phyla, 53 classes, 119 orders, 245 families, 620 genera, and 1021 species. The dominant phylum, class, order, family, genus, and species in the consortium are Proteobacteria (51.37%), Gammaproteobacteria (39.01%), Bacillales (18.09%), Microbulbiferaceae (11.65%), Microbulbifer (12.21%), and Microbulbifer sp. A4B17 (19.65%), respectively. The microbial consortium degraded 57.56% (28.78 mg/L) and 87.14% (43.57 mg/L) of the initial fluorene concentration in 14 and 21 days. Functional annotation of the protein sequences (ORFs) of the FN8 metagenome using the KEGG GhostKOALA, KofamKOALA, NCBI's conserved domain database, and BacMet revealed the detection of hydrocarbon degradation genes for benzoate, aminobenzoate, polycyclic aromatic hydrocarbons (PAHs), chlorocyclohexane/chlorobenzene, chloroalkane/chloroalkene, toluene, xylene, styrene, naphthalene, nitrotoluene, and several others. The annotation also revealed putative genes for the transport, uptake, efflux, and regulation of heavy metals such as arsenic, cadmium, chromium, mercury, nickel, copper, zinc, and several others. Findings from this study have established that members of the FN8 consortium are well-adapted and imbued with requisite gene sets and could be a potential bioresource for on-site depuration of animal charcoal polluted sites.
Collapse
Affiliation(s)
- Lateef Babatunde Salam
- Department of Biological Sciences, Microbiology unit, Elizade University, Ilara-Mokin, Ondo State, Nigeria.
| |
Collapse
|
2
|
Wojtowicz K, Steliga T, Kapusta P, Brzeszcz J. Oil-Contaminated Soil Remediation with Biodegradation by Autochthonous Microorganisms and Phytoremediation by Maize ( Zea mays). Molecules 2023; 28:6104. [PMID: 37630356 PMCID: PMC10459520 DOI: 10.3390/molecules28166104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Biological methods are currently the most commonly used methods for removing hazardous substances from land. This research work focuses on the remediation of oil-contaminated land. The biodegradation of aliphatic hydrocarbons and PAHs as a result of inoculation with biopreparations B1 and B2 was investigated. Biopreparation B1 was developed on the basis of autochthonous bacteria, consisting of strains Dietzia sp. IN118, Gordonia sp. IN101, Mycolicibacterium frederiksbergense IN53, Rhodococcus erythropolis IN119, Rhodococcus globerulus IN113 and Raoultella sp. IN109, whereas biopreparation B2 was enriched with fungi, such as Aspergillus sydowii, Aspergillus versicolor, Candida sp., Cladosporium halotolerans, Penicillium chrysogenum. As a result of biodegradation tests conducted under ex situ conditions for soil inoculated with biopreparation B1, the concentrations of TPH and PAH were reduced by 31.85% and 27.41%, respectively. Soil inoculation with biopreparation B2 turned out to be more effective, as a result of which the concentration of TPH was reduced by 41.67% and PAH by 34.73%. Another issue was the phytoremediation of the pre-treated G6-3B2 soil with the use of Zea mays. The tests were carried out in three systems (system 1-soil G6-3B2 + Zea mays; system 2-soil G6-3B2 + biopreparation B2 + Zea mays; system 3-soil G6-3B2 + biopreparation B2 with γ-PGA + Zea mays) for 6 months. The highest degree of TPH and PAH reduction was obtained in system 3, amounting to 65.35% and 60.80%, respectively. The lowest phytoremediation efficiency was recorded in the non-inoculated system 1, where the concentration of TPH was reduced by 22.80% and PAH by 18.48%. Toxicological tests carried out using PhytotoxkitTM, OstracodtoxkitTM and Microtox® Solid Phase tests confirmed the effectiveness of remediation procedures and showed a correlation between the concentration of petroleum hydrocarbons in the soil and its toxicity. The results obtained during the research indicate the great potential of bioremediation practices with the use of microbial biopreparations and Zea mays in the treatment of soils contaminated with petroleum hydrocarbons.
Collapse
Affiliation(s)
- Katarzyna Wojtowicz
- Oil and Gas Institute—National Research Institute, ul. Lubicz 25 A, 31-503 Krakow, Poland; (T.S.); (P.K.); (J.B.)
| | | | | | | |
Collapse
|
3
|
Ma M, Gao W, Li Q, Han B, Zhu A, Yang H, Zheng L. Biodiversity and oil degradation capacity of oil-degrading bacteria isolated from deep-sea hydrothermal sediments of the South Mid-Atlantic Ridge. MARINE POLLUTION BULLETIN 2021; 171:112770. [PMID: 34492563 DOI: 10.1016/j.marpolbul.2021.112770] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Studies have reported that various hydrocarbons and hydrocarbon-degrading bacteria are found in global deep-sea hydrothermal regions. However, little is known about degradation characteristics of culturable hydrocarbon-degrading bacteria from these regions. We speculate that these bacteria can be used as resources for the bioremediation of oil pollution. In this study, six oil-degrading consortia were obtained from the hydrothermal region of the Southern Mid-Atlantic Ridge through room-temperature enrichment experiments. The dominant oil-degrading bacteria belonged to Nitratireductor, Pseudonocardia, Brevundimonas and Acinetobacter. More varieties of hydrocarbon-degrading bacteria were obtained from sediments (preserved at 4 °C) near hydrothermal vents. Most strains had the ability to degrade high molecular weight petroleum components. In addition, Pseudonocardia was shown to exhibit a high degradation ability for phytane and pristine for the first time. This study may provide new insights into the community structure and biodiversity of culturable oil-degrading bacteria in deep-sea hydrothermal regions.
Collapse
Affiliation(s)
- Meng Ma
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Wei Gao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
| | - Qian Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Bin Han
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Aimei Zhu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Huanghao Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Li Zheng
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China.
| |
Collapse
|
4
|
De Vela RJ, Wigley K, Baronian K, Gostomski PA. Effect of metabolic uncouplers on the performance of toluene-degrading biotrickling filter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41881-41895. [PMID: 33791957 DOI: 10.1007/s11356-021-13708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
The biomass control potential of three metabolic uncouplers (carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), carbonyl cyanide m-chlorophenylhydrazone (CCCP), and m-chlorophenol (m-CP)) was tested in biotrickling filters (BTFs) degrading toluene. The experiments employed two types of reactors: a traditional column design and a novel differential BTF (DBTF) reactor developed by De Vela and Gostomski (J Environ Eng 147:04020159, 2021). Uncouplers caused the toluene elimination capacity (EC) (~33 g/m3h for column reactors and ~600 g/m3h for DBTF) to decrease by 15-97% in a dose-dependent fashion. The EC completely recovered in the column reactor in 3 to 13 days, while only partial recovery happened in the DBTF. Short-term (1 to 3 days) true uncoupling was indicated by the 20-160% increase in %CO2 recovery, depending on concentration. FCCP and CCCP increased the pressure drop due to increased extracellular polymeric substances (EPS) production for protection against the uncouplers. The 4.0-mM m-CP weakened the biofilm in the BTF bed, as evidenced by the 130-500% increase in the total organic carbon in the liquid sump of the column and DBTF reactors. Moreover, a microbial shift led to the proliferation of genera that degrade uncouplers, further demonstrating that the uncouplers tested were not a sustainable biomass control strategy in BTFs.
Collapse
Affiliation(s)
- Roger Jay De Vela
- Chemical and Process Engineering Department, University of Canterbury, Christchurch, New Zealand.
- Camarines Norte State College, F. Pimentel Avenue, 4600, Daet, Camarines Norte, Philippines.
| | - Kathryn Wigley
- Chemical and Process Engineering Department, University of Canterbury, Christchurch, New Zealand
| | - Kim Baronian
- Chemical and Process Engineering Department, University of Canterbury, Christchurch, New Zealand
| | - Peter Alan Gostomski
- Chemical and Process Engineering Department, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
5
|
Balázs HE, Schmid CAO, Cruzeiro C, Podar D, Szatmari PM, Buegger F, Hufnagel G, Radl V, Schröder P. Post-reclamation microbial diversity and functions in hexachlorocyclohexane (HCH) contaminated soil in relation to spontaneous HCH tolerant vegetation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144653. [PMID: 33550064 DOI: 10.1016/j.scitotenv.2020.144653] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/24/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
The toxicity, volatility and persistence of the obsolete organochlorine pesticide hexachlorocyclohexane (HCH), makes reclamation of contaminated areas a priority for the health and welfare of neighboring human communities. Microbial diversity and functions and their relation to spontaneous vegetation in post-excavation situations, are essential indicators to consider in bioaugmentation or microbe-assisted phytoremediation strategies at field scale. Our study aimed to evaluate the effects of long-term HCH contamination on soil and plant-associated microbial communities, and whether contaminated soil has the potential to act as a bacterial inoculum in post-excavation bioremediation strategies. To scrutinize the role of vegetation, the potential nitrogen fixation of free-living and symbiotic diazotrophs of the legume Lotus tenuis was assessed as a measure of nutrient cycling functions in soil under HCH contamination. Potential nitrogen fixation was generally not affected by HCH, with the exception of lower nifH gene counts in excavated contaminated rhizospheres, most probably a short-term HCH effect on early bacterial succession in this compartment. HCH shaped microbial communities in long-term contaminated bulk soil, where we identified possible HCH tolerants such as Sphingomonas and Altererythrobacter. In L. tenuis rhizosphere, microbial community composition was additionally influenced by plant growth stage. Sphingobium and Massilia were the bacterial genera characteristic for HCH contaminated rhizospheres. Long-term HCH contamination negatively affected L. tenuis growth and development. However, root-associated bacterial community composition was driven solely by plant age, with negligible HCH effect. Results showed that L. tenuis acquired possible HCH tolerant bacteria such as the Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium clade, Sphingomonas, Massilia or Pantoea which could simultaneously offer plant growth promoting (PGP) benefits for the host. Finally, we identified an inoculum with possibly HCH tolerant, PGP bacteria transferred from the contaminated bulk soil to L. tenuis roots through the rhizosphere compartment, consisting of Mesorhizobium loti, Neorhizobium galegae, Novosphingobium lindaniclasticum, Pantoea agglomerans and Lysobacter bugurensis.
Collapse
Affiliation(s)
- Helga E Balázs
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Babeş-Bolyai University, Department of Taxonomy and Ecology, 1 Kogălniceanu St., 400084 Cluj-Napoca, Romania
| | - Christoph A O Schmid
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Catarina Cruzeiro
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Dorina Podar
- Babeş-Bolyai University, Department of Molecular Biology and Biotechnology, 1 Kogălniceanu St., 400084 Cluj-Napoca, Romania.
| | - Paul-Marian Szatmari
- Babeş-Bolyai University, Department of Taxonomy and Ecology, 1 Kogălniceanu St., 400084 Cluj-Napoca, Romania; Biological Research Center, Botanical Garden "Vasile Fati", 16 Wesselényi Miklós St., 455200 Jibou, Romania
| | - Franz Buegger
- Helmholtz Zentrum München GmbH, Research Unit for Biochemical Plant Pathology, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Gudrun Hufnagel
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Viviane Radl
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Peter Schröder
- Helmholtz Zentrum München GmbH, Research Unit for Comparative Microbiome Analysis, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| |
Collapse
|
6
|
Ma M, Zheng L, Yin X, Gao W, Han B, Li Q, Zhu A, Chen H, Yang H. Reconstruction and evaluation of oil-degrading consortia isolated from sediments of hydrothermal vents in the South Mid-Atlantic Ridge. Sci Rep 2021; 11:1456. [PMID: 33446871 PMCID: PMC7809451 DOI: 10.1038/s41598-021-80991-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/23/2020] [Indexed: 11/11/2022] Open
Abstract
In this study, sediments were collected from two different sites in the deep-sea hydrothermal region of the South Atlantic Ocean. Two microbial enrichment cultures (H7S and H11S), which were enriched from the sediments collected at two sample sites, could effectively degrade petroleum hydrocarbons. The bacterial diversity was analyzed by high-throughput sequencing method. The petroleum degradation ability were evaluated by gas chromatography–mass spectrometry and gravimetric analysis. We found that the dominant oil-degrading bacteria of enrichment cultures from the deep-sea hydrothermal area belonged to the genera Pseudomonas, Nitratireductor, Acinetobacter, and Brevundimonas. After a 14-day degradation experiment, the enrichment culture H11S, which was obtained near a hydrothermal vent, exhibited a higher degradation efficiency for alkanes (95%) and polycyclic aromatic hydrocarbons (88%) than the enrichment culture H7S. Interestingly, pristane and phytane as biomarkers were degraded up to 90% and 91% respectively by the enrichment culture H11S, and six culturable oil-degrading bacterial strains were isolated. Acinetobacter junii strain H11S-25, Nitratireductor sp. strain H11S-31 and Pseudomonas sp. strain H11S-28 were used at a density ratio of 95:4:1 to construct high-efficiency oil-degrading consortium H. After a three-day biodegradation experiment, consortium H showed high degradation efficiencies of 74.2% and 65.7% for total alkanes and PAHs, respectively. The degradation efficiency of biomarkers such as pristane and high-molecular-weight polycyclic aromatic hydrocarbons (such as CHR) reached 84.5% and 80.48%, respectively. The findings of this study indicate that the microorganisms in the deep-sea hydrothermal area are potential resources for degrading petroleum hydrocarbons. Consortium H, which was artificially constructed, showed a highly efficient oil-degrading capacity and has significant application prospects in oil pollution bioremediation.
Collapse
Affiliation(s)
- Meng Ma
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.,Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Li Zheng
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China. .,Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China.
| | - Xiaofei Yin
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Wei Gao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Bin Han
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Qian Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Aimei Zhu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Hao Chen
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Huanghao Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
7
|
Koshlaf E, Shahsavari E, Haleyur N, Osborn AM, Ball AS. Impact of necrophytoremediation on petroleum hydrocarbon degradation, ecotoxicity and soil bacterial community composition in diesel-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31171-31183. [PMID: 32474790 DOI: 10.1007/s11356-020-09339-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 05/18/2020] [Indexed: 05/25/2023]
Abstract
Hydrocarbon degradation is usually measured in laboratories under controlled conditions to establish the likely efficacy of a bioremediation process in the field. The present study used greenhouse-based bioremediation to investigate the effects of natural attenuation (NA) and necrophytoremediation (addition of pea straw (PS)) on hydrocarbon degradation, toxicity and the associated bacterial community structure and composition in diesel-contaminated soil. A significant reduction in total petroleum hydrocarbon (TPH) concentration was detected in both treatments; however, PS-treated soil showed more rapid degradation (87%) after 5 months together with a significant reduction in soil toxicity (EC50 = 91 mg diesel/kg). Quantitative PCR analysis revealed an increase in the number of 16S rRNA and alkB genes in the PS-amended soil. Substantial shifts in soil bacterial community were observed during the bioremediation, including an increased abundance of numerous hydrocarbon-degrading bacteria. The bacterial community shifted from dominance by Alphaproteobacteria and Gammaproteobacteria in the original soil to Actinobacteria during bioremediation. The dominance of two genera of bacteria, Sphingobacteria and Betaproteobacteria, in both NA- and PS-treated soil demonstrated changes occurring within the soil bacterial community through the incubation period. Additionally, pea straw itself was found to harbour a diverse hydrocarbonoclastic community including Luteimonas, Achromobacter, Sphingomonas, Rhodococcus and Microbacterium. At the end of the experiment, PS-amended soil exhibited reduced ecotoxicity and increased bacterial diversity as compared with the NA-treated soil. These findings suggest the rapid growth of species stimulated by the bioremediation treatment and strong selection for bacteria capable of degrading petroleum hydrocarbons during necrophytoremediation. Graphical abstract.
Collapse
Affiliation(s)
- Eman Koshlaf
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria, 3083, Australia.
| | - Esmaeil Shahsavari
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Nagalakshmi Haleyur
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Andrew Mark Osborn
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria, 3083, Australia
| |
Collapse
|
8
|
Czieborowski M, Hübenthal A, Poehlein A, Vogt I, Philipp B. Genetic and physiological analysis of biofilm formation on different plastic surfaces by Sphingomonas sp. strain S2M10 reveals an essential function of sphingan biosynthesis. MICROBIOLOGY-SGM 2020; 166:918-935. [PMID: 32762802 DOI: 10.1099/mic.0.000961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alphaproteobacteria belonging to the group of the sphingomonads are frequently found in biofilms colonizing pure-water systems, where they cause technical and hygienic problems. In this study, physiological properties of sphingomonads for biofilm formation on plastic surfaces were analysed. Sphingomonas sp. strain S2M10 was isolated from a used water-filtration membrane and submitted to transposon mutagenesis for isolating mutants with altered biofilm formation. Mutants showing strongly decreased biofilm formation carried transposon insertions in genes for the biosynthesis of the polysaccharide sphingan and for flagellar motility. Flagella-mediated attachment was apparently important for biofilm formation on plastic materials of intermediate hydrophobicity, while a mutant with defect in spnB, encoding the first enzyme in sphingan biosynthesis, showed no biofilm formation on all tested materials. Sphingan-dependent biofilm formation was induced in the presence of specific carbon sources while it was not induced in complex medium with yeast extract and tryptone. The regulation of sphingan-based biofilm formation was investigated by interfering with the CckA/ChpT/CtrA phosphorelay, a central signal-transduction pathway in most Alphaproteobacteria. Construction and ectopic expression of a kinase-deficient histidine kinase CckA caused cell elongation and massive sphingan-dependent cell aggregation. In addition, it caused increased activity of the promotor of spnB. In conclusion, these results indicate that sphingan-based biofilm formation by sphingomonads might be triggered by specific carbon sources under prototrophic conditions resembling a milieu that often prevails in pure-water systems.
Collapse
Affiliation(s)
- Michael Czieborowski
- Westfälische Wilhelms-Universität Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Corrensstr. 3, 48149 Münster, Germany
| | - Anna Hübenthal
- Present address: Institute for Technical Microbiology, Mannheim University of Applied Sciences, Mannheim, Germany.,Westfälische Wilhelms-Universität Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Corrensstr. 3, 48149 Münster, Germany
| | - Anja Poehlein
- Georg-August-Universität Göttingen, Department of Genomic and Applied Microbiology, Wilhelmsplatz 1, 37073 Göttingen, Germany
| | - Ines Vogt
- Westfälische Wilhelms-Universität Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Corrensstr. 3, 48149 Münster, Germany
| | - Bodo Philipp
- Westfälische Wilhelms-Universität Münster, Institut für Molekulare Mikrobiologie und Biotechnologie, Corrensstr. 3, 48149 Münster, Germany
| |
Collapse
|
9
|
Hidalgo KJ, Teramoto EH, Soriano AU, Valoni E, Baessa MP, Richnow HH, Vogt C, Chang HK, Oliveira VM. Taxonomic and functional diversity of the microbiome in a jet fuel contaminated site as revealed by combined application of in situ microcosms with metagenomic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135152. [PMID: 31812384 DOI: 10.1016/j.scitotenv.2019.135152] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Natural attenuation represents all processes that govern contaminant mass removal, which mainly occurs via microbial degradation in the environment. Although this process is intrinsic its rate and efficiency depend on multiple factors. This study aimed to characterize the microbial taxonomic and functional diversity in different aquifer sediments collected in the saturated zone and in situ microcosms (BACTRAP®s) amended with hydrocarbons (13C-labeled and non-labeled benzene, toluene and naphthalene) using 16S rRNA gene and "shotgun" Illumina high throughput sequencing at a jet-fuel contaminated site. The BACTRAP®s were installed to assess hydrocarbon metabolism by native bacteria. Results indicated that Proteobacteria, Actinobacteria and Firmicutes were the most dominant phyla (~98%) in the aquifer sediment samples. Meanwhile, in the benzene- and toluene-amended BACTRAP®s the phyla Firmicutes and Proteobacteria accounted for about 90% of total community. In the naphthalene-amended BACTRAP®, members of the SR-FBR-L83 family (Order Ignavibacteriales) accounted for almost 80% of bacterial community. Functional annotation of metagenomes showed that only the sediment sample located at the source zone border and with the lowest BTEX concentration, has metabolic potential to degrade hydrocarbons aerobically. On the other hand, in situ BACTRAP®s allowed enrichment of hydrocarbon-degrading bacteria. Metagenomic data suggest that fumarate addition is the main mechanism for hydrocarbon activation of toluene. Also, indications for methylation, hydroxylation and carboxylation as activation mechanisms for benzene anaerobic conversion were found. After 120 days of exposure in the contaminated groundwater, the isotopic analysis of fatty acids extracted from BACTRAP®s demonstrated the assimilation of isotopic labeled compounds in the cells of microbes expressed by strong isotopic enrichment. We propose that the microbiota in this jet-fuel contaminated site has metabolic potential to degrade benzene and toluene by a syntrophic process, between members of the families Geobacteraceae and Peptococcaceae (genus Pelotomaculum), coupled to nitrate, iron and/or sulfate reduction.
Collapse
Affiliation(s)
- K J Hidalgo
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Cidade Universitária, Campinas, SP. ZIP 13083-862, Brazil.
| | - E H Teramoto
- Laboratory of Basin Studies (LEBAC), São Paulo State University (UNESP), Rio Claro, Av. 24A, 1515 ZIP 13506-900, Brazil
| | - A U Soriano
- PETROBRAS/ R&D Center (CENPES), Av. Horácio Macedo, 950. ZIP 21941-915 Ilha do Fundão, Rio de Janeiro, Brazil
| | - E Valoni
- PETROBRAS/ R&D Center (CENPES), Av. Horácio Macedo, 950. ZIP 21941-915 Ilha do Fundão, Rio de Janeiro, Brazil
| | - M P Baessa
- PETROBRAS/ R&D Center (CENPES), Av. Horácio Macedo, 950. ZIP 21941-915 Ilha do Fundão, Rio de Janeiro, Brazil
| | - H H Richnow
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstrasse 15 04318 Leipzig, Germany
| | - C Vogt
- Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research (UFZ), Permoserstrasse 15 04318 Leipzig, Germany
| | - H K Chang
- Laboratory of Basin Studies (LEBAC), São Paulo State University (UNESP), Rio Claro, Av. 24A, 1515 ZIP 13506-900, Brazil
| | - V M Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas - UNICAMP, Paulínia, Brazil, Av. Alexandre Cazellato, 999, ZIP 13148-218, Brazil
| |
Collapse
|
10
|
Microaerobic conditions caused the overwhelming dominance of Acinetobacter spp. and the marginalization of Rhodococcus spp. in diesel fuel/crude oil mixture-amended enrichment cultures. Arch Microbiol 2019; 202:329-342. [PMID: 31664492 PMCID: PMC7012980 DOI: 10.1007/s00203-019-01749-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/02/2019] [Accepted: 10/10/2019] [Indexed: 02/03/2023]
Abstract
The aim of the present study was to reveal how different microbial communities evolve in diesel fuel/crude oil-contaminated environments under aerobic and microaerobic conditions. To investigate this question, aerobic and microaerobic bacterial enrichments amended with a diesel fuel/crude oil mixture were established and analysed. The representative aerobic enrichment community was dominated by Gammaproteobacteria (64.5%) with high an abundance of Betaproteobacteriales (36.5%), followed by Alphaproteobacteria (8.7%), Actinobacteria (5.6%), and Candidatus Saccharibacteria (4.5%). The most abundant alkane monooxygenase (alkB) genotypes in this enrichment could be linked to members of the genus Rhodococcus and to a novel Gammaproteobacterium, for which we generated a high-quality draft genome using genome-resolved metagenomics of the enrichment culture. Contrarily, in the microaerobic enrichment, Gammaproteobacteria (99%) overwhelmingly dominated the microbial community with a high abundance of the genera Acinetobacter (66.3%), Pseudomonas (11%) and Acidovorax (11%). Under microaerobic conditions, the vast majority of alkB gene sequences could be linked to Pseudomonas veronii. Consequently, results shed light on the fact that the excellent aliphatic hydrocarbon degrading Rhodococcus species favour clear aerobic conditions, while oxygen-limited conditions can facilitate the high abundance of Acinetobacter species in aliphatic hydrocarbon-contaminated subsurface environments.
Collapse
|
11
|
Farber R, Rosenberg A, Rozenfeld S, Banet G, Cahan R. Bioremediation of Artificial Diesel-Contaminated Soil Using Bacterial Consortium Immobilized to Plasma-Pretreated Wood Waste. Microorganisms 2019; 7:E497. [PMID: 31661854 PMCID: PMC6921085 DOI: 10.3390/microorganisms7110497] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/19/2019] [Accepted: 10/26/2019] [Indexed: 11/16/2022] Open
Abstract
Bioaugmentation is a bioremediation option based on increasing the natural in-situ microbial population that possesses the ability to degrade the contaminating pollutant. In this study, a diesel-degrading consortium was obtained from an oil-contaminated soil. The diesel-degrading consortium was grown on wood waste that was plasma-pretreated. This plasma treatment led to an increase of bacterial attachment and diesel degradation rates. On the 7th day the biofilm viability on the plasma-treated wood waste reached 0.53 ± 0.02 OD 540 nm, compared to the non-treated wood waste which was only 0.34 ± 0.02. Biofilm attached to plasma-treated and untreated wood waste which was inoculated into artificially diesel-contaminated soil (0.15% g/g) achieved a degradation rate of 9.3 mg day-1 and 7.8 mg day-1, respectively. While, in the soil that was inoculated with planktonic bacteria, degradation was only 5.7 mg day-1. Exposing the soil sample to high temperature (50 °C) or to different soil acidity did not influence the degradation rate of the biofilm attached to the plasma-treated wood waste. The two most abundant bacterial distributions at the family level were Xanthomonadaceae and Sphingomonadaceae. To our knowledge, this is the first study that showed the advantages of biofilm attached to plasma-pretreated wood waste for diesel biodegradation in soil.
Collapse
Affiliation(s)
- Ravit Farber
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel 40700, Israel.
| | - Alona Rosenberg
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel 40700, Israel.
| | - Shmuel Rozenfeld
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel 40700, Israel.
| | - Gabi Banet
- Dead Sea-Arava Science Center, Arava 86910, Israel.
| | - Rivka Cahan
- Department of Chemical Engineering and Biotechnology, Ariel University, Ariel 40700, Israel.
| |
Collapse
|
12
|
Coexistence of sulfate reducers with the other oil bacterial groups in Diyarbakır oil fields. Anaerobe 2019; 59:19-31. [DOI: 10.1016/j.anaerobe.2019.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 03/24/2019] [Accepted: 04/23/2019] [Indexed: 11/17/2022]
|
13
|
Yu X, Lee K, Ma B, Asiedu E, Ulrich AC. Indigenous microorganisms residing in oil sands tailings biodegrade residual bitumen. CHEMOSPHERE 2018; 209:551-559. [PMID: 29945048 DOI: 10.1016/j.chemosphere.2018.06.126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/22/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
The purpose of this study was to determine the capacity of indigenous microbes in tailings to degrade bitumen aerobically, and if acetate biostimulation further improved degradation. Fluid fine tailings, from Base Mine Lake (BML), were used as microbial inocula, and bitumen in the tailings served as a potential carbon source during the experiment. The tailings were capped with 0.22 μm-filtered BML surface water with or without BML bitumen and acetate addition and incubated for 100 days at 20 °C. CO2 production and petroleum hydrocarbon reductions (50-70% for the biostimulation treatment) in the tailings were observed. DNA was extracted directly from the tailings, and increased bacterial density was observed by qPCR targeting the rpoB gene in the biostimulated group. 16 S rRNA sequencing was used to determine microbial composition profiles in each treatment group. The microbial communities indigenous to the tailings shifted after the bitumen was added. Acidovorax, Rhodoferax, Pseudomonas and Pseudoxanthomonas spp. significantly increased compared to the original microbial community and demonstrated tolerance to bitumen-based toxicity. The first three genera showed more potential for biostimulation treatment with acetate and may be important bitumen/hydrocarbon-degraders in an oil sands end pit lake environment.
Collapse
Affiliation(s)
- Xiaoxuan Yu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2W2, Canada.
| | - Korris Lee
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2W2, Canada.
| | - Bin Ma
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2W2, Canada.
| | - Evelyn Asiedu
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, T6G 2B7, Canada.
| | - Ania C Ulrich
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2W2, Canada.
| |
Collapse
|
14
|
Zhao Y, Li Z, Ma J, Yun H, Qi M, Ma X, Wang H, Wang A, Liang B. Enhanced bioelectroremediation of a complexly contaminated river sediment through stimulating electroactive degraders with methanol supply. JOURNAL OF HAZARDOUS MATERIALS 2018; 349:168-176. [PMID: 29421353 DOI: 10.1016/j.jhazmat.2018.01.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Abstract
Bioelectroremediation is an efficient, sustainable, and environment-friendly remediation technology for the complexly contaminated sediments. Although various recalcitrant pollutants could be degraded in the electrode district, the degradation efficiency was generally confined by the low total organic carbon (TOC) content in the sediment. How to enhance the electroactive degraders' activity and efficiency remain poorly understood. Here we investigated the bioeletroremediation of a complexly contaminated river sediment with low TOC in a cylindric sediment microbial fuel cell stimulated by methanol. After 200 days treatment, the degradation efficiencies of total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAH), and cycloalkenes (CYE) in the electrode district with methanol stimulation were 1.45-4.38 times higher compared with those in the non-electrode district without methanol stimulation. The overall electrode district communities were significantly positively correlated with the variables of the enhanced TPH, PAH, CYE and TOC degradation efficiencies (p < .01). The joint electrical and exogenous methanol stimulation selectively enriched electroactive degraders (Geobacter and Desulfobulbus) in the anode biofilms, and their proportion was markedly positively correlated with the characteristic and total pollutants degradation efficiencies (p < .001). This study offers a new insight into the response of key electroactive degraders to the joint stimulation process.
Collapse
Affiliation(s)
- Youkang Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jincai Ma
- College of Environment and Resources, Jilin University, Changchun, 130021, China
| | - Hui Yun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Mengyuan Qi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiaodan Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hao Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
15
|
Salam LB, Ilori MO, Amund OO, LiiMien Y, Nojiri H. Characterization of bacterial community structure in a hydrocarbon-contaminated tropical African soil. ENVIRONMENTAL TECHNOLOGY 2018; 39:939-951. [PMID: 28393681 DOI: 10.1080/09593330.2017.1317838] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 04/03/2017] [Indexed: 06/07/2023]
Abstract
The bacterial community structure in a hydrocarbon-contaminated Mechanical Engineering Workshop (MWO) soil was deciphered using 16S rRNA gene clone library analysis. Four hundred and thirty-seven clones cutting across 13 bacterial phyla were recovered from the soil. The representative bacterial phyla identified from MWO soil are Proteobacteria, Bacteroidetes, Chloroflexi, Acidobacteria, Firmicutes, Actinobacteria, Verrucomicrobia, Planctomycetes, Ignavibacteriae, Spirochaetes, Chlamydiae, Candidatus Saccharibacteria and Parcubacteria. Proteobacteria is preponderant in the contaminated soil (51.2%) with all classes except Epsilonproteobacteria duly represented. Rarefaction analysis indicates 42%, 52% and 77% of the clone library is covered at the species, genus and family/class delineations with Shannon diversity (H') and Chao1 richness indices of 5.59 and 1126, respectively. A sizeable number of bacterial phylotypes in the clone library shared high similarities with strains previously described to be involved in hydrocarbon biodegradation. Novel uncultured genera were identified that have not been previously reported from tropical African soil to be associated with natural attenuation of hydrocarbon pollutants. This study establishes the involvement of a wide array of physiologically diverse bacterial groups in natural attenuation of hydrocarbon pollutants in soil.
Collapse
Affiliation(s)
- Lateef B Salam
- a Department of Microbiology , University of Lagos , Akoka , Lagos , Nigeria
- b Microbiology Unit, Department of Biological Sciences , Al-Hikmah University , Ilorin , Kwara , Nigeria
| | - Mathew O Ilori
- a Department of Microbiology , University of Lagos , Akoka , Lagos , Nigeria
| | - Olukayode O Amund
- a Department of Microbiology , University of Lagos , Akoka , Lagos , Nigeria
| | - Yee LiiMien
- c Biotechnology Research Center , The University of Tokyo , Tokyo , Japan
| | - Hideaki Nojiri
- c Biotechnology Research Center , The University of Tokyo , Tokyo , Japan
| |
Collapse
|
16
|
Kronenberg M, Trably E, Bernet N, Patureau D. Biodegradation of polycyclic aromatic hydrocarbons: Using microbial bioelectrochemical systems to overcome an impasse. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:509-523. [PMID: 28841503 DOI: 10.1016/j.envpol.2017.08.048] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are hardly biodegradable carcinogenic organic compounds. Bioremediation is a commonly used method for treating PAH contaminated environments such as soils, sediment, water bodies and wastewater. However, bioremediation has various drawbacks including the low abundance, diversity and activity of indigenous hydrocarbon degrading bacteria, their slow growth rates and especially a limited bioavailability of PAHs in the aqueous phase. Addition of nutrients, electron acceptors or co-substrates to enhance indigenous microbial activity is costly and added chemicals often diffuse away from the target compound, thus pointing out an impasse for the bioremediation of PAHs. A promising solution is the adoption of bioelectrochemical systems. They guarantee a permanent electron supply and withdrawal for microorganisms, thereby circumventing the traditional shortcomings of bioremediation. These systems combine biological treatment with electrochemical oxidation/reduction by supplying an anode and a cathode that serve as an electron exchange facility for the biocatalyst. Here, recent achievements in polycyclic aromatic hydrocarbon removal using bioelectrochemical systems have been reviewed. This also concerns PAH precursors: total petroleum hydrocarbons and diesel. Removal performances of PAH biodegradation in bioelectrochemical systems are discussed, focussing on configurational parameters such as anode and cathode designs as well as environmental parameters like porosity, salinity, adsorption and conductivity of soil and sediment that affect PAH biodegradation in BESs. The still scarcely available information on microbiological aspects of bioelectrochemical PAH removal is summarised here. This comprehensive review offers a better understanding of the parameters that affect the removal of PAHs within bioelectrochemical systems. In addition, future experimental setups are proposed in order to study syntrophic relationships between PAH degraders and exoelectrogens. This synopsis can help as guide for researchers in their choices for future experimental designs aiming at increasing the power densities and PAH biodegradation rates using microbial bioelectrochemistry.
Collapse
Affiliation(s)
| | - Eric Trably
- LBE, INRA, 102 avenue des Etangs, 11100 Narbonne, France
| | - Nicolas Bernet
- LBE, INRA, 102 avenue des Etangs, 11100 Narbonne, France
| | | |
Collapse
|
17
|
Salam LB, Obayori SO, Nwaokorie FO, Suleiman A, Mustapha R. Metagenomic insights into effects of spent engine oil perturbation on the microbial community composition and function in a tropical agricultural soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:7139-7159. [PMID: 28093673 DOI: 10.1007/s11356-017-8364-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
Analyzing the microbial community structure and functions become imperative for ecological processes. To understand the impact of spent engine oil (SEO) contamination on microbial community structure of an agricultural soil, soil microcosms designated 1S (agricultural soil) and AB1 (agricultural soil polluted with SEO) were set up. Metagenomic DNA extracted from the soil microcosms and sequenced using Miseq Illumina sequencing were analyzed for their taxonomic and functional properties. Taxonomic profiling of the two microcosms by MG-RAST revealed the dominance of Actinobacteria (23.36%) and Proteobacteria (52.46%) phyla in 1S and AB1 with preponderance of Streptomyces (12.83%) and Gemmatimonas (10.20%) in 1S and Geodermatophilus (26.24%), Burkholderia (15.40%), and Pseudomonas (12.72%) in AB1, respectively. Our results showed that soil microbial diversity significantly decreased in AB1. Further assignment of the metagenomic reads to MG-RAST, Cluster of Orthologous Groups (COG) of proteins, Kyoto Encyclopedia of Genes and Genomes (KEGG), GhostKOALA, and NCBI's CDD hits revealed diverse metabolic potentials of the autochthonous microbial community. It also revealed the adaptation of the community to various environmental stressors such as hydrocarbon hydrophobicity, heavy metal toxicity, oxidative stress, nutrient starvation, and C/N/P imbalance. To the best of our knowledge, this is the first study that investigates the effect of SEO perturbation on soil microbial communities through Illumina sequencing. The results indicated that SEO contamination significantly affects soil microbial community structure and functions leading to massive loss of nonhydrocarbon degrading indigenous microbiota and enrichment of hydrocarbonoclastic organisms such as members of Proteobacteria and Actinobacteria.
Collapse
Affiliation(s)
- Lateef B Salam
- Microbiology Unit, Department of Biological Sciences, Al-Hikmah University, Ilorin, Kwara, Nigeria.
| | - Sunday O Obayori
- Department of Microbiology, Lagos State University, Ojo, Lagos, Nigeria
| | - Francisca O Nwaokorie
- Department of Medical Laboratory Science, College of Medicine, University of Lagos, Akoka, Lagos, Nigeria
| | - Aisha Suleiman
- Microbiology Unit, Department of Biological Sciences, Al-Hikmah University, Ilorin, Kwara, Nigeria
| | - Raheemat Mustapha
- Microbiology Unit, Department of Biological Sciences, Al-Hikmah University, Ilorin, Kwara, Nigeria
| |
Collapse
|
18
|
Tardif S, Yergeau É, Tremblay J, Legendre P, Whyte LG, Greer CW. The Willow Microbiome Is Influenced by Soil Petroleum-Hydrocarbon Concentration with Plant Compartment-Specific Effects. Front Microbiol 2016; 7:1363. [PMID: 27660624 PMCID: PMC5015464 DOI: 10.3389/fmicb.2016.01363] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/17/2016] [Indexed: 11/13/2022] Open
Abstract
The interaction between plants and microorganisms, which is the driving force behind the decontamination of petroleum hydrocarbon (PHC) contamination in phytoremediation technology, is poorly understood. Here, we aimed at characterizing the variations between plant compartments in the microbiome of two willow cultivars growing in contaminated soils. A field experiment was set-up at a former petrochemical plant in Canada and after two growing seasons, bulk soil, rhizosphere soil, roots, and stems samples of two willow cultivars (Salix purpurea cv. FishCreek, and Salix miyabeana cv. SX67) growing at three PHC contamination concentrations were taken. DNA was extracted and bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) regions were amplified and sequenced using an Ion Torrent Personal Genome Machine (PGM). Following multivariate statistical analyses, the level of PHC-contamination appeared as the primary factor influencing the willow microbiome with compartment-specific effects, with significant differences between the responses of bacterial, and fungal communities. Increasing PHC contamination levels resulted in shifts in the microbiome composition, favoring putative hydrocarbon degraders, and microorganisms previously reported as associated with plant health. These shifts were less drastic in the rhizosphere, root, and stem tissues as compared to bulk soil, probably because the willows provided a more controlled environment, and thus, protected microbial communities against increasing contamination levels. Insights from this study will help to devise optimal plant microbiomes for increasing the efficiency of phytoremediation technology.
Collapse
Affiliation(s)
- Stacie Tardif
- Department of Natural Resource Sciences, McGill UniversitySainte-Anne-de-Bellevue, QC, Canada; Section of Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of CopenhagenCopenhagen, Denmark
| | - Étienne Yergeau
- Energy, Mining, and Environment, National Research Council CanadaMontréal, QC, Canada; Centre INRS-Institut Armand-Frappier, Institut national de la recherche scientifiqueLaval, QC, Canada
| | - Julien Tremblay
- Energy, Mining, and Environment, National Research Council Canada Montréal, QC, Canada
| | - Pierre Legendre
- Département de Sciences Biologiques, Université de Montréal Montréal, QC, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, McGill University Sainte-Anne-de-Bellevue, QC, Canada
| | - Charles W Greer
- Department of Natural Resource Sciences, McGill UniversitySainte-Anne-de-Bellevue, QC, Canada; Energy, Mining, and Environment, National Research Council CanadaMontréal, QC, Canada
| |
Collapse
|
19
|
Subrahmanyam G, Shen JP, Liu YR, Archana G, Zhang LM. Effect of long-term industrial waste effluent pollution on soil enzyme activities and bacterial community composition. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:112. [PMID: 26803661 DOI: 10.1007/s10661-016-5099-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
Although numerous studies have addressed the influence of exogenous pollutants on microorganisms, the effect of long-term industrial waste effluent (IWE) pollution on the activity and diversity of soil bacteria was still unclear. Three soil samples characterized as uncontaminated (R1), moderately contaminated (R2), and highly contaminated (R3) receiving mixed organic and heavy metal pollutants for more than 20 years through IWE were collected along the Mahi River basin, Gujarat, western India. Basal soil respiration and in situ enzyme activities indicated an apparent deleterious effect of IWE on microbial activity and soil function. Community composition profiling of soil bacteria using 16S rRNA gene amplification and denaturing gradient gel electrophoresis (DGGE) method indicated an apparent bacterial community shift in the IWE-affected soils. Cloning and sequencing of DGGE bands revealed that the dominated bacterial phyla in polluted soil were affiliated with Firmicutes, Acidobacteria, and Actinobacteria, indicating that these bacterial phyla may have a high tolerance to pollutants. We suggested that specific bacterial phyla along with soil enzyme activities could be used as relevant biological indicators for long-term pollution assessment on soil quality. Graphical Abstract Bacterial community profiling and soil enzyme activities in long-term industrial waste effluent polluted soils.
Collapse
Affiliation(s)
- Gangavarapu Subrahmanyam
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China
- Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
- Central Muga Eri Research and Training Institute, Lahdoigarh, Jorhat, 785700, Assam, India
| | - Ju-Pei Shen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China
| | - Yu-Rong Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China
| | - Gattupalli Archana
- Department of Microbiology and Biotechnology Centre, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, India
| | - Li-Mei Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China.
| |
Collapse
|
20
|
Fernet JL, Lawrence JR, Germida JJ. Naturally occurring phenanthrene degrading bacteria associated with seeds of various plant species. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:423-425. [PMID: 26515514 DOI: 10.1080/15226514.2015.1109593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Seeds of 11 of 19 plant species tested yielded naturally occurring phenanthrene degrading bacteria when placed on phenanthrene impression plates. Seed associated phenanthrene degrading bacteria were mostly detected on caragana, Canada thistle, creeping red fescue, western wheatgrass, and tall wheat grass. Based on 16S rRNA analysis the most common bacteria isolated from these seeds were strains belonging to the genera Enterobacteria, Erwinia, Burkholderia, Pantoea, Pseudomonas, and Sphingomonas. These plants may provide an excellent source of pre-adapted bacterial-plant associations highly suitable for use in remediation of contaminated soil environments.
Collapse
Affiliation(s)
- Jennifer L Fernet
- a Department of Soil Science , University of Saskatchewan , Saskatoon , SK , Canada
| | | | - James J Germida
- a Department of Soil Science , University of Saskatchewan , Saskatoon , SK , Canada
| |
Collapse
|
21
|
Venkidusamy K, Megharaj M, Marzorati M, Lockington R, Naidu R. Enhanced removal of petroleum hydrocarbons using a bioelectrochemical remediation system with pre-cultured anodes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 539:61-69. [PMID: 26360455 DOI: 10.1016/j.scitotenv.2015.08.098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/02/2015] [Accepted: 08/16/2015] [Indexed: 05/20/2023]
Abstract
Bioelectrochemical remediation (BER) systems such as microbial fuel cells (MFCs) have recently emerged as a green technology for the effective remediation of petroleum hydrocarbon contaminants (PH) coupled with simultaneous energy recovery. Recent research has shown that biofilms previously enriched for substrate degrading bacteria resulted in excellent performance in terms of substrate removal and electricity generation but the effects on hydrocarbon contaminant degradation were not examined. Here we investigate the differences between enriched biofilm anodes and freshly inoculated new anodes in diesel fed single chamber mediatorless microbial fuel cells (DMFC) using various techniques for the enhancement of PH contaminant remediation with concomitant electricity generation. An anodophilic microbial consortium previously selected for over a year through continuous culturing with a diesel concentration of about 800mgl(-1) and which now showed complete removal of this concentration of diesel within 30days was compared to that of a freshly inoculated new anode MFC (showing 83.4% removal of diesel) with a simultaneous power generation of 90.81mW/m(2) and 15.04mW/m(2) respectively. The behaviour of pre-cultured anodes at a higher concentration of PH (8000mgl(-1)) was also investigated. Scanning electron microscopy observation revealed a thick biofilm covering the pre-cultured anodic electrode but not the anode from the freshly inoculated MFC. High resolution imaging showed the presence of thin 60nm diametre pilus-like projections emanating from the cells. Anodic microbial community profiling confirmed that the selection for diesel degrading exoelectrogenic bacteria had occurred. Identification of a biodegradative gene (alkB) provided strong evidence of the catabolic pathway used for diesel degradation in the DMFCs.
Collapse
Affiliation(s)
- Krishnaveni Venkidusamy
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRCCARE), Mawson Lakes, SA5095, Australia
| | - Mallavarapu Megharaj
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRCCARE), Mawson Lakes, SA5095, Australia; Global Centre for Environmental Remediation, Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Massimo Marzorati
- Laboratory for Microbial Ecology and Technology (LabMET), Gent University, 9000 Gent, Belgium
| | - Robin Lockington
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRCCARE), Mawson Lakes, SA5095, Australia
| | - Ravi Naidu
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRCCARE), Mawson Lakes, SA5095, Australia; Global Centre for Environmental Remediation, Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
22
|
Olapade OA, Ronk AJ. Isolation, characterization and community diversity of indigenous putative toluene-degrading bacterial populations with catechol-2,3-dioxygenase genes in contaminated soils. MICROBIAL ECOLOGY 2015; 69:59-65. [PMID: 25052383 DOI: 10.1007/s00248-014-0466-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/09/2014] [Indexed: 06/03/2023]
Abstract
Indigenous bacterial assemblages with putative hydrocarbon-degrading capabilities were isolated, characterized and screened for the presence of the catechol-2,3-dioxygenase (C23O) gene after exposure to toluene in two different (i.e., pristine and conditioned) soil communities. The indigenous bacterial populations were exposed to the hydrocarbon substrate by the addition of toluene concentrations, ranging from 0.5 % to 10 % V/W in 10 g of each soil and incubated at 30 °C for upwards of 12 days. In total, 25 isolates (11 in pristine soil and 14 in conditioned soil) were phenotypically characterized according to standard microbiological methods and also screened for the 238-bp C23O gene fragment. Additionally, 16S rRNA analysis of the isolates identified some of them as belonging to the genera Bacillus, Exiguobacterium, Enterobacter, Pseudomonas and Stenotrophomonas. Furthermore, the two clone libraries that were constructed from these toluene-contaminated soils also revealed somewhat disparate phylotypes (i.e., 70 % Actinobacteria and Firmicutes to 30 % Proteobacteria in conditioned soil, whereas in pristine soil: 66 % Actinobacteria and Firmicutes; 21 % Proteobacteria and 13 % Bacteroidetes). The differences observed in bacterial phylotypes between these two soil communities may probably be associated with previous exposure to hydrocarbon sources by indigenous populations in the conditioned soil as compared to the pristine soil.
Collapse
Affiliation(s)
- Ola A Olapade
- Department of Biology and the Center for Sustainability and the Environment, Albion College, 611 East Porter Street, Albion, MI, 49224, USA,
| | | |
Collapse
|
23
|
Hydrocarbon removal and bacterial community structure in on-site biostimulated biopile systems designed for bioremediation of diesel-contaminated Antarctic soil. Polar Biol 2014. [DOI: 10.1007/s00300-014-1630-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Jones MD, Rodgers-Vieira EA, Hu J, Aitken MD. Association of Growth Substrates and Bacterial Genera with Benzo[ a]pyrene Mineralization in Contaminated Soil. ENVIRONMENTAL ENGINEERING SCIENCE 2014; 31:689-697. [PMID: 25469077 PMCID: PMC4245834 DOI: 10.1089/ees.2014.0275] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/27/2014] [Indexed: 05/24/2023]
Abstract
Benzo[a]pyrene (BaP) is a carcinogenic polycyclic aromatic hydrocarbon (PAH) that is not known to be a bacterial growth substrate. Organisms capable of cometabolizing BaP in complex field-contaminated systems have not previously been identified. We evaluated BaP mineralization by a bacterial community from a bioreactor treating PAH-contaminated soil during coincubation with or after pre-enrichment on various PAHs as growth substrates. Pyrosequence libraries of 16S rRNA genes were used to identify bacteria that were enriched on the added growth substrate as a means of associating specific organisms with BaP mineralization. Coincubating the bioreactor-treated soil with naphthalene, phenanthrene, or pyrene inhibited BaP mineralization, whereas pre-enriching the soil on the same three PAHs enhanced BaP mineralization. Combined, these results suggest that bacteria in the bioreactor community that are capable of growing on naphthalene, phenanthrene, and/or pyrene can metabolize BaP, with coincubation competitively inhibiting BaP metabolism. Anthracene, fluoranthene, and benz[a]anthracene had little effect on BaP mineralization compared to incubations without an added growth substrate under either coincubation or pre-enrichment conditions. Substantial increases in relative abundance after pre-enrichment with phenanthrene, naphthalene, or pyrene, but not the other PAHs, suggest that members of the genera Cupriavidus and Luteimonas may have been associated with BaP mineralization.
Collapse
Affiliation(s)
- Maiysha D. Jones
- Present Address: The Procter & Gamble Company, Mason Business Center, 8700 S. Mason Montgomery Road, Mason, OH 45040. Phone:+1-513-622-5592; E-mail:
| | | | - Jing Hu
- Present Address: The Dow Chemical Company, 1803 Building, Midland, MI 48674. Phone:+1-989-638-4847; E-mail:
| | | |
Collapse
|
25
|
Das R, Kazy SK. Microbial diversity, community composition and metabolic potential in hydrocarbon contaminated oily sludge: prospects for in situ bioremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:7369-89. [PMID: 24682711 DOI: 10.1007/s11356-014-2640-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 02/10/2014] [Indexed: 05/20/2023]
Abstract
Microbial community composition and metabolic potential have been explored in petroleum-hydrocarbon-contaminated sludge of an oil storage facility. Culture-independent clone library-based 16S rRNA gene analyses revealed that the bacterial community within the sludge was dominated by the members of β-Proteobacteria (35%), followed by Firmicutes (13%), δ-Proteobacteria (11%), Bacteroidetes (10%), Acidobacteria (6%), α-Proteobacteria (3%), Lentisphaerae (2%), Spirochaetes (2%), and unclassified bacteria (5%), whereas the archaeal community was composed of Thermoprotei (54%), Methanocellales (33%), Methanosarcinales/Methanosaeta (8%) and Methanoculleus (1%) members. Methyl coenzyme M reductase A (mcrA) gene (a functional biomarker) analyses also revealed predominance of hydrogenotrophic, methanogenic Archaea (Methanocellales, Methanobacteriales and Methanoculleus members) over acetoclastic methanogens (Methanosarcinales members). In order to explore the cultivable bacterial population, a total of 28 resident strains were identified and characterized in terms of their physiological and metabolic capabilities. Most of these could be taxonomically affiliated to the members of the genera Bacillus, Paenibacillus, Micrococcus, Brachybacterium, Aerococcus, and Zimmermannella, while two strains were identified as Pseudomonas and Pseudoxanthomonas. Metabolic profiling exhibited that majority of these isolates were capable of growing in presence of a variety of petroleum hydrocarbons as sole source of carbon, tolerating different heavy metals at higher concentrations (≥1 mM) and producing biosurfactant during growth. Many strains could grow under a wide range of pH, temperature, or salinity as well as under anaerobic conditions in the presence of different electron acceptors and donors in the growth medium. Correlation between the isolates and their metabolic properties was estimated by the unweighted pair group method with arithmetic mean (UPGMA) analysis. Overall observation indicated the presence of diverse groups of microorganisms including hydrocarbonoclastic, nitrate reducing, sulphate reducing, fermentative, syntrophic, methanogenic and methane-oxidizing bacteria and Archaea within the sludge community, which can be exploited for in situ bioremediation of the oily sludge.
Collapse
Affiliation(s)
- Ranjit Das
- Department of Biotechnology, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, Durgapur, 713 209, West Bengal, India
| | | |
Collapse
|
26
|
Metagenomics of petroleum muck: revealing microbial diversity and depicting microbial syntrophy. Arch Microbiol 2014; 196:531-44. [DOI: 10.1007/s00203-014-0992-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 04/06/2014] [Accepted: 05/08/2014] [Indexed: 10/25/2022]
|
27
|
Yang S, Wen X, Zhao L, Shi Y, Jin H. Crude oil treatment leads to shift of bacterial communities in soils from the deep active layer and upper permafrost along the China-Russia Crude Oil Pipeline route. PLoS One 2014; 9:e96552. [PMID: 24794099 PMCID: PMC4008593 DOI: 10.1371/journal.pone.0096552] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/08/2014] [Indexed: 11/25/2022] Open
Abstract
The buried China-Russia Crude Oil Pipeline (CRCOP) across the permafrost-associated cold ecosystem in northeastern China carries a risk of contamination to the deep active layers and upper permafrost in case of accidental rupture of the embedded pipeline or migration of oil spills. As many soil microbes are capable of degrading petroleum, knowledge about the intrinsic degraders and the microbial dynamics in the deep subsurface could extend our understanding of the application of in-situ bioremediation. In this study, an experiment was conducted to investigate the bacterial communities in response to simulated contamination to deep soil samples by using 454 pyrosequencing amplicons. The result showed that bacterial diversity was reduced after 8-weeks contamination. A shift in bacterial community composition was apparent in crude oil-amended soils with Proteobacteria (esp. α-subdivision) being the dominant phylum, together with Actinobacteria and Firmicutes. The contamination led to enrichment of indigenous bacterial taxa like Novosphingobium, Sphingobium, Caulobacter, Phenylobacterium, Alicylobacillus and Arthrobacter, which are generally capable of degrading polycyclic aromatic hydrocarbons (PAHs). The community shift highlighted the resilience of PAH degraders and their potential for in-situ degradation of crude oil under favorable conditions in the deep soils.
Collapse
Affiliation(s)
- Sizhong Yang
- State Key Laboratory of Frozen Soils Engineering (SKLFSE), Cold and Arid Regions Environmental and Engineering Research Institute (CAREERI), Chinese Academy of Sciences, Lanzhou, Gansu, China
- * E-mail:
| | - Xi Wen
- College of Electrical Engineering, Northwest University for Nationalities, Lanzhou, Gansu, China
| | - Liang Zhao
- State Key Laboratory of Frozen Soils Engineering (SKLFSE), Cold and Arid Regions Environmental and Engineering Research Institute (CAREERI), Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Yulan Shi
- State Key Laboratory of Frozen Soils Engineering (SKLFSE), Cold and Arid Regions Environmental and Engineering Research Institute (CAREERI), Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Huijun Jin
- State Key Laboratory of Frozen Soils Engineering (SKLFSE), Cold and Arid Regions Environmental and Engineering Research Institute (CAREERI), Chinese Academy of Sciences, Lanzhou, Gansu, China
| |
Collapse
|
28
|
Lu L, Huggins T, Jin S, Zuo Y, Ren ZJ. Microbial metabolism and community structure in response to bioelectrochemically enhanced remediation of petroleum hydrocarbon-contaminated soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:4021-9. [PMID: 24628095 DOI: 10.1021/es4057906] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This study demonstrates that electrodes in a bioelectrochemical system (BES) can potentially serve as a nonexhaustible electron acceptor for in situ bioremediation of hydrocarbon contaminated soil. The deployment of BES not only eliminates aeration or supplement of electron acceptors as in contemporary bioremediation but also significantly shortens the remediation period and produces sustainable electricity. More interestingly, the study reveals that microbial metabolism and community structure distinctively respond to the bioelectrochemically enhanced remediation. Tubular BESs with carbon cloth anode (CCA) or biochar anode (BCA) were inserted into raw water saturated soils containing petroleum hydrocarbons for enhancing in situ remediation. Results show that total petroleum hydrocarbon (TPH) removal rate almost doubled in soils close to the anode (63.5-78.7%) than that in the open circuit positive controls (37.6-43.4%) during a period of 64 days. The maximum current density from the BESs ranged from 73 to 86 mA/m(2). Comprehensive microbial and chemical characterizations and statistical analyses show that the residual TPH has a strongly positive correlation with hydrocarbon-degrading microorganisms (HDM) numbers, dehydrogenase activity, and lipase activity and a negative correlation with soil pH, conductivity, and catalase activity. Distinctive microbial communities were identified at the anode, in soil with electrodes, and soil without electrodes. Uncommon electrochemically active bacteria capable of hydrocarbon degradation such as Comamonas testosteroni, Pseudomonas putida, and Ochrobactrum anthropi were selectively enriched on the anode, while hydrocarbon oxidizing bacteria were dominant in soil samples. Results from genus or phylum level characterizations well agree with the data from cluster analysis. Data from this study suggests that a unique constitution of microbial communities may play a key role in BES enhancement of petroleum hydrocarbons biodegradation in soils.
Collapse
Affiliation(s)
- Lu Lu
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | | | | | | | | |
Collapse
|
29
|
Characterization of culturable heterotrophic bacteria in hydrocarbon-contaminated soil from an alpine former military site. World J Microbiol Biotechnol 2014; 30:1717-24. [PMID: 24402300 DOI: 10.1007/s11274-013-1594-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 12/30/2013] [Indexed: 10/25/2022]
Abstract
We characterized the culturable, heterotrophic bacterial community in soil collected from a former alpine military site contaminated with petroleum hydrocarbons. The physiologically active eubacterial community, as revealed by fluorescence-in situ-hybridization, accounted for 14.9 % of the total (DAPI-stained) bacterial community. 4.0 and 1.2 % of the DAPI-stained cells could be attributed to culturable, heterotrophic bacteria able to grow at 20 and 10 °C, respectively. The majority of culturable bacterial isolates (23/28 strains) belonged to the Proteobacteria with a predominance of Alphaproteobacteria. The remaining isolates were affiliated with the Firmicutes, Actinobacteria and Bacteroidetes. Five strains could be identified as representatives of novel species. Characterization of the 28 strains demonstrated their adaptation to the temperature and nutrient conditions prevailing in the studied soil. One-third of the strains was able to grow at subzero temperatures (-5 °C). Studies on the effect of temperature on growth and lipase production with two selected strains demonstrated their low-temperature adaptation.
Collapse
|
30
|
Hexadecane-degradation by Teskumurella and Stenotrophomonas Strains Isolated From Hydrocarbon Contaminated Soils. Jundishapur J Microbiol 2013. [DOI: 10.5812/jjm.9182] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
31
|
Hasegawa R, Toyama K, Miyanaga K, Tanji Y. Identification of crude-oil components and microorganisms that cause souring under anaerobic conditions. Appl Microbiol Biotechnol 2013; 98:1853-61. [DOI: 10.1007/s00253-013-5107-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/07/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
|
32
|
Wu M, Chen L, Tian Y, Ding Y, Dick WA. Degradation of polycyclic aromatic hydrocarbons by microbial consortia enriched from three soils using two different culture media. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 178:152-8. [PMID: 23570783 DOI: 10.1016/j.envpol.2013.03.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/18/2013] [Accepted: 03/01/2013] [Indexed: 05/08/2023]
Abstract
A consortium composed of many different bacterial species is required to efficiently degrade polycyclic aromatic hydrocarbons (PAH) in oil-contaminated soil. We obtained six PAH-degrading microbial consortia from three oil-contaminated soils using two different isolation culture media. Denaturing gradient gel electrophoresis (DGGE) and sequence analyses of amplified 16s rRNA genes confirmed the bacterial community was greatly affected by both the culture medium and the soil from which the consortia were enriched. Three bacterial consortia enriched using malt yeast extract (MYE) medium showed higher degradation rates of PAHs than consortia enriched using Luria broth (LB) medium. Consortia obtained from a soil and then added back to that same soil was more effective in degrading PAHs than adding, to the same soil, consortia isolated from other, unrelated soils. This suggests that inoculum used for bioremediation should be from the same, or very similar nearby soils, as the soil that is actually being bioremediated.
Collapse
Affiliation(s)
- Manli Wu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, Shaanxi Province 710055, China
| | | | | | | | | |
Collapse
|
33
|
Impact of long-term diesel contamination on soil microbial community structure. Appl Environ Microbiol 2012; 79:619-30. [PMID: 23144139 DOI: 10.1128/aem.02747-12] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Microbial community composition and diversity at a diesel-contaminated railway site were investigated by pyrosequencing of bacterial and archaeal 16S rRNA gene fragments to understand the interrelationships among microbial community composition, pollution level, and soil geochemical and physical properties. To this end, 26 soil samples from four matrix types with various geochemical characteristics and contaminant concentrations were investigated. The presence of diesel contamination significantly impacted microbial community composition and diversity, regardless of the soil matrix type. Clean samples showed higher diversity than contaminated samples (P < 0.001). Bacterial phyla with high relative abundances in all samples included Proteobacteria, Firmicutes, Actinobacteria, Acidobacteria, and Chloroflexi. High relative abundances of Archaea, specifically of the phylum Euryarchaeota, were observed in contaminated samples. Redundancy analysis indicated that increased relative abundances of the phyla Chloroflexi, Firmicutes, and Euryarchaeota correlated with the presence of contamination. Shifts in the chemical composition of diesel constituents across the site and the abundance of specific operational taxonomic units (OTUs; defined using a 97% sequence identity threshold) in contaminated samples together suggest that natural attenuation of contamination has occurred. OTUs with sequence similarity to strictly anaerobic Anaerolineae within the Chloroflexi, as well as to Methanosaeta of the phylum Euryarchaeota, were detected. Anaerolineae and Methanosaeta are known to be associated with anaerobic degradation of oil-related compounds; therefore, their presence suggests that natural attenuation has occurred under anoxic conditions. This research underscores the usefulness of next-generation sequencing techniques both to understand the ecological impact of contamination and to identify potential molecular proxies for detection of natural attenuation.
Collapse
|
34
|
Narancic T, Kenny S, Djokic L, Vasiljevic B, O'Connor K, Nikodinovic-Runic J. Medium-chain-length polyhydroxyalkanoate production by newly isolated Pseudomonas sp. TN301 from a wide range of polyaromatic and monoaromatic hydrocarbons. J Appl Microbiol 2012; 113:508-20. [DOI: 10.1111/j.1365-2672.2012.05353.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/13/2012] [Accepted: 05/24/2012] [Indexed: 11/29/2022]
Affiliation(s)
- T. Narancic
- Institute of Molecular Genetics and Genetic Engineering; University of Belgrade; Belgrade; Serbia
| | - S.T. Kenny
- School of Biomolecular and Biomedical Sciences; Centre for Synthesis and Chemical Biology; University College Dublin; Dublin; Ireland
| | - L. Djokic
- Institute of Molecular Genetics and Genetic Engineering; University of Belgrade; Belgrade; Serbia
| | - B. Vasiljevic
- Institute of Molecular Genetics and Genetic Engineering; University of Belgrade; Belgrade; Serbia
| | - K.E. O'Connor
- School of Biomolecular and Biomedical Sciences; Centre for Synthesis and Chemical Biology; University College Dublin; Dublin; Ireland
| | - J. Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering; University of Belgrade; Belgrade; Serbia
| |
Collapse
|
35
|
I. Hussein E, A. Al-Hora F, I. Malkawi H. Bioremediation Capabilities of Oil-degrading Bacterial Consortia Isolated from
Oil-contaminated Sites at the Gulf of Aqaba (Jordan). ACTA ACUST UNITED AC 2012. [DOI: 10.3923/biotech.2012.189.198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Zhang DC, Mörtelmaier C, Margesin R. Characterization of the bacterial archaeal diversity in hydrocarbon-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 421-422:184-196. [PMID: 22386232 DOI: 10.1016/j.scitotenv.2012.01.043] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 05/31/2023]
Abstract
A polyphasic approach combining culture-based methods with molecular methods is useful to expand knowledge on microbial diversity in contaminated soil. Microbial diversity was examined in soil samples from a former industrial site in the European Alps (mainly used for aluminum production and heavily contaminated with petroleum hydrocarbons) by culture-dependent and culture-independent methods. The physiologically active eubacterial community, as revealed by fluorescence-in-situ-hybridization (FISH), accounted for 6.7% of the total (DAPI-stained) bacterial community. 4.4% and 2.0% of the DAPI-stained cells could be attributed to culturable, heterotrophic bacteria able to grow at 20°C and 10°C, respectively. The majority of culturable bacterial isolates (34/48) belonged to the Proteobacteria (with a predominance of Alphaproteobacteria and Gammaproteobacteria), while the remaining isolates were affiliated with the Actinobacteria, Cytophaga-Flavobacterium-Bacteroides and Firmicutes. A high fraction of the culturable, heterotrophic bacterial population was able to utilize hydrocarbons. Actinobacteria were the most versatile and efficient degraders of diesel oil, n-alkanes, phenol and PAHs. The bacterial 16S rRNA gene clone library contained 390 clones that grouped into 68 phylotypes related to the Proteobacteria, Bacteroidetes, Actinobacteria and Spirochaetes. The archaeal 16S rRNA gene library contained 202 clones and 15 phylotypes belonging to the phylum Euryarchaeota; sequences were closely related to those of methanogenic archaea of the orders Methanomicrobiales, Methanosarcinales, Methanobacteriales and Thermoplasmatales. A number of bacterial and archaeal phylotypes in the clone libraries shared high similarities with strains previously described to be involved in hydrocarbon biodegradation. Knowledge of the bacterial and archaeal diversity in the studied soil is important in order to get a better insight into the microbial structure of contaminated environments and to better exploit the bioremediation potential by identifying potential hydrocarbon degraders and consequently developing appropriate bioremediation strategies.
Collapse
Affiliation(s)
- De-Chao Zhang
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | | | | |
Collapse
|
37
|
Chikere CB, Surridge K, Okpokwasili GC, Cloete TE. Dynamics of indigenous bacterial communities associated with crude oil degradation in soil microcosms during nutrient-enhanced bioremediation. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2012; 30:225-36. [PMID: 21824988 DOI: 10.1177/0734242x11410114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Bacterial population dynamics were examined during bioremediation of an African soil contaminated with Arabian light crude oil and nutrient enrichment (biostimulation). Polymerase chain reaction followed by denaturing gradient gel electrophoresis (DGGE) were used to generate bacterial community fingerprints of the different treatments employing the 16S ribosomal ribonucleic acid (rRNA) gene as molecular marker. The DGGE patterns of the nutrient-amended soils indicated the presence of distinguishable bands corresponding to the oil-contaminated-nutrient-enriched soils, which were not present in the oil-contaminated and pristine control soils. Further characterization of the dominant DGGE bands after excision, reamplification and sequencing revealed that Corynebacterium spp., Dietzia spp., Rhodococcus erythropolis sp., Nocardioides sp., Low G+C (guanine plus cytosine) Gram positive bacterial clones and several uncultured bacterial clones were the dominant bacterial groups after biostimulation. Prominent Corynebacterium sp. IC10 sequence was detected across all nutrient-amended soils but not in oil-contaminated control soil. Total heterotrophic and hydrocarbon utilizing bacterial counts increased significantly in the nutrient-amended soils 2 weeks post contamination whereas oil-contaminated and pristine control soils remained fairly stable throughout the experimental period. Gas chromatographic analysis of residual hydrocarbons in biostimulated soils showed marked attenuation of contaminants starting from the second to the sixth week after contamination whereas no significant reduction in hydrocarbon peaks were seen in the oil-contaminated control soil throughout the 6-week experimental period. Results obtained indicated that nutrient amendment of oil-contaminated soil selected and enriched the bacterial communities mainly of the Actinobacteria phylogenetic group capable of surviving in toxic contamination with concomitant biodegradation of the hydrocarbons. The present study therefore demonstrated that the soil investigated harbours hydrocarbon-degrading bacterial populations which can be biostimulated to achieve effective bioremediation of oil-contaminated soil.
Collapse
Affiliation(s)
- Chioma B Chikere
- Department of Microbiology, University of Port-Harcourt, P.M.B. 5323, Port Harcourt, Rivers State, Nigeria.
| | | | | | | |
Collapse
|
38
|
Adegoke AA, Mvuyo T, Okoh AI. UbiquitousAcinetobacterspecies as beneficial commensals but gradually being emboldened with antibiotic resistance genes. J Basic Microbiol 2012; 52:620-7. [DOI: 10.1002/jobm.201100323] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 08/08/2011] [Indexed: 11/08/2022]
|
39
|
Santala S, Karp M, Santala V. Monitoring alkane degradation by single BioBrick integration to an optimal cellular framework. ACS Synth Biol 2012; 1:60-4. [PMID: 23651046 DOI: 10.1021/sb2000066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthetic biology enables rewiring and reconstruction of desirable biochemical routes using well-characterized BioBricks. One goal is to optimize these biological systems in terms of robustness, functionality, and simplicity. Thus, in addition to optimizing the molecular level of the metabolic network, choosing an optimal "chassis" can have a great significance in the constructed system. As an example, this study presents a simplified system for monitoring and studying long-chain n-alkane degradation in Acinetobacter baylyi ADP1 online, provided by a single BioBrick insertion, bacterial luciferase luxAB. The system exploits the natural alkane degradation machinery of ADP1 and a sensitive response of bacterial luciferase to a specific intermediate, providing important aspects to natural alkane degradation kinetics. The study suggests the monitoring system to be applicable in the field of environmental biotechnology and emphasizes the utility of ADP1 as a host in both model systems and applications.
Collapse
Affiliation(s)
- Suvi Santala
- Department of Chemistry and Bioengineering, Tampere University of Technology, Tampere, Finland
| | - Matti Karp
- Department of Chemistry and Bioengineering, Tampere University of Technology, Tampere, Finland
| | - Ville Santala
- Department of Chemistry and Bioengineering, Tampere University of Technology, Tampere, Finland
| |
Collapse
|
40
|
Chikere CB, Okpokwasili GC, Chikere BO. Monitoring of microbial hydrocarbon remediation in the soil. 3 Biotech 2011; 1:117-138. [PMID: 22611524 PMCID: PMC3339601 DOI: 10.1007/s13205-011-0014-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 06/06/2011] [Indexed: 11/09/2022] Open
Abstract
Bioremediation of hydrocarbon pollutants is advantageous owing to the cost-effectiveness of the technology and the ubiquity of hydrocarbon-degrading microorganisms in the soil. Soil microbial diversity is affected by hydrocarbon perturbation, thus selective enrichment of hydrocarbon utilizers occurs. Hydrocarbons interact with the soil matrix and soil microorganisms determining the fate of the contaminants relative to their chemical nature and microbial degradative capabilities, respectively. Provided the polluted soil has requisite values for environmental factors that influence microbial activities and there are no inhibitors of microbial metabolism, there is a good chance that there will be a viable and active population of hydrocarbon-utilizing microorganisms in the soil. Microbial methods for monitoring bioremediation of hydrocarbons include chemical, biochemical and microbiological molecular indices that measure rates of microbial activities to show that in the end the target goal of pollutant reduction to a safe and permissible level has been achieved. Enumeration and characterization of hydrocarbon degraders, use of micro titer plate-based most probable number technique, community level physiological profiling, phospholipid fatty acid analysis, 16S rRNA- and other nucleic acid-based molecular fingerprinting techniques, metagenomics, microarray analysis, respirometry and gas chromatography are some of the methods employed in bio-monitoring of hydrocarbon remediation as presented in this review.
Collapse
Affiliation(s)
- Chioma Blaise Chikere
- Department of Microbiology, University of Port-Harcourt, P.M.B. 5323, Port Harcourt, Rivers State Nigeria
| | | | | |
Collapse
|
41
|
Vitte I, Duran R, Jézéquel R, Caumette P, Cravo-Laureau C. Effect of oxic/anoxic switches on bacterial communities and PAH biodegradation in an oil-contaminated sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 18:1022-32. [PMID: 21387203 DOI: 10.1007/s11356-010-0435-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 12/23/2010] [Indexed: 05/13/2023]
Abstract
PURPOSE We studied the effect of alternations of aeration on both the autochthonous bacterial communities from an oily sludge to the endogenous polycyclic aromatic hydrocarbons (PAH) biodegradation compared to a permanent oxic condition. METHODS Genomic and transcriptional analyses associated with chemical measurements were used to assess the dynamics of bacteria coupled to PAH removal during an incubation of 26 days. RESULTS AND CONCLUSIONS The autochthonous bacterial communities of an oil sludge showed a strong potential to adapt and degrade PAH when they were subjected to alternating anoxic/oxic conditions, as well as under an oxic condition. In addition, changes in the bacterial communities were related to the different phases of hydrocarbon degradation, and the removal efficiency of PAH was similar in both switching and permanent oxic conditions. This methodology could be useful for an alternative solution of oil sludge treatment with a low-cost processing, as its efficiency is similar to that of a permanent oxic incubation which is more expensive in oxygen supply.
Collapse
Affiliation(s)
- Isabelle Vitte
- Equipe Environnement et Microbiologie, IPREM UMR/CNRS 5254, Université de Pau, 64013 Pau Cedex, France
| | | | | | | | | |
Collapse
|
42
|
Steliga T, Jakubowicz P, Kapusta P. Optimisation research of petroleum hydrocarbon biodegradation in weathered drilling wastes from waste pits. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2010; 28:1065-1075. [PMID: 20022901 DOI: 10.1177/0734242x09351906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The aim of this article is to discuss the problem of drilling waste remediation. Analyses and research showed that material stored in waste pits could be classified as soil with a high level of petroleum impurities (total petroleum hydrocarbons [TPH] = 102,417-132,472 mg kg(-1) dry mass). While preparing the complex technology of soil decontamination (which included primary reclamation, basic bioremediation and inoculation with biopreparations based on indigenous bacteria and fungi), laboratory tests indicated the use of an ex-situ method was fundamental. Remediation was controlled with a chromatographic method of qualitative and quantitative determination of petroleum hydrocarbons. Based on analytical data, there was the possibility to determine the effectiveness of consecutive purifying phases. Laboratory tests, following 135 days of basic bioremediation stimulated by optimum conditions to activate the growth of indigenous micro-organisms, resulted in a decrease in the TPH content, which was in the range of 52.3-72.5%. The next phase of soil decontamination lasted 135 days and involved the use of inoculation with biopreparations based on indigenous micro-organisms and fungi. This process enabled a TPH decrease of 93.8- 94.3%. Laboratory biodegradation research was done with the use of the biomarker C30-17α(H)21β(H)-hopane to normalize analyte (TPH, Σn-C8-n-C22 and Σn-C23-n-C36) concentrations. The calculated first-order biodegradation constants enable estimation of the purification stage dynamics and the effectiveness of the applied biopreparations. Furthermore, they represent the biodegradation degree of individual n-alkanes in subsequent stages of the soil purification process.
Collapse
|
43
|
Houghton JL, Seyfried WE. An experimental and theoretical approach to determining linkages between geochemical variability and microbial biodiversity in seafloor hydrothermal chimneys. GEOBIOLOGY 2010; 8:457-470. [PMID: 20726900 DOI: 10.1111/j.1472-4669.2010.00255.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
New experimental results of fluid-mineral reactions at hydrothermal conditions relevant to life demonstrate that key redox reactions involving iron, sulfur, and hydrogen remain at disequilibrium at 100 °C, even in a heterogeneous system and thus are energetically favorable for microbial metabolism. Predictions from geochemical models utilizing the experimental results and specific to two contrasting case studies from the East Pacific Rise were statistically characterized and correlated to the energetics of redox reactions available for intra-chimney microbial populations. In general, predictions of available energy for autotrophic metabolism are largely similar between the mature and the nascent chimneys, although important differences still exist. Metabolic processes predicted by energetics exhibit the same trends observed in the field data for the mature chimney, but overestimate the diversity observed in the nascent chimney. Several combinations of redox reaction pairs are predicted to support mixed consortia, while some combinations appear to favor more versatile microbes capable of utilizing several reactions under rapidly changing environmental conditions within chimney walls. In addition, conditions favorable to elemental sulfur reduction and methanogenesis exhibit a negative control on the diversity of microbial populations within these chimney walls, whereas H₂S oxidation, elemental sulfur oxidation and the knallgas reaction are positively correlated with both abundance and diversity of micro-organisms. Coupling field observations of both microbial diversity and geochemical heterogeneity with lab-based experimental and theoretical modeling can facilitate translation of the observed genetic diversity into physiological diversity, thus enhancing understanding of linked phenomena of microbially induced biogeochemical transformations in complex heterogeneous systems.
Collapse
Affiliation(s)
- J L Houghton
- Department of Biology, Rhodes College, Memphis, TN, USA.
| | | |
Collapse
|
44
|
Militon C, Boucher D, Vachelard C, Perchet G, Barra V, Troquet J, Peyretaillade E, Peyret P. Bacterial community changes during bioremediation of aliphatic hydrocarbon-contaminated soil. FEMS Microbiol Ecol 2010; 74:669-81. [PMID: 21044099 DOI: 10.1111/j.1574-6941.2010.00982.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The microbial community response during the oxygen biostimulation process of aged oil-polluted soils is poorly documented and there is no reference for the long-term monitoring of the unsaturated zone. To assess the potential effect of air supply on hydrocarbon fate and microbial community structure, two treatments (0 and 0.056 mol h⁻¹ molar flow rate of oxygen) were performed in fixed bed reactors containing oil-polluted soil. Microbial activity was monitored continuously over 2 years throughout the oxygen biostimulation process. Microbial community structure before and after treatment for 12 and 24 months was determined using a dual rRNA/rRNA gene approach, allowing us to characterize bacteria that were presumably metabolically active and therefore responsible for the functionality of the community in this polluted soil. Clone library analysis revealed that the microbial community contained many rare phylotypes. These have never been observed in other studied ecosystems. The bacterial community shifted from Gammaproteobacteria to Actinobacteria during the treatment. Without aeration, the samples were dominated by a phylotype linked to the Streptomyces. Members belonging to eight dominant phylotypes were well adapted to the aeration process. Aeration stimulated an Actinobacteria phylotype that might be involved in restoring the ecosystem studied. Phylogenetic analyses suggested that this phylotype is a novel, deep-branching member of the Actinobacteria related to the well-studied genus Acidimicrobium.
Collapse
Affiliation(s)
- Cécile Militon
- Clermont Université, Université d'Auvergne, Laboratoire: Microorganismes Génome et Environnement, Clermont-Ferrand, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Liu R, Zhang Y, Ding R, Li D, Gao Y, Yang M. Comparison of archaeal and bacterial community structures in heavily oil-contaminated and pristine soils. J Biosci Bioeng 2010; 108:400-7. [PMID: 19804864 DOI: 10.1016/j.jbiosc.2009.05.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 04/27/2009] [Accepted: 05/16/2009] [Indexed: 11/16/2022]
Abstract
Archaeal and bacterial community structures in heavily oil-contaminated and pristine soils were compared using denaturing gradient gel electrophoresis and 16S rRNA gene libraries. The results showed that archaeal diversity was more complex in the contaminated soil than in the uncontaminated control soil. Archaeal populations in the contaminated soil consisted mainly of Euryarchaeota, with abundant methanogen-like operational taxonomic units (OTUs) and OTUs related to the phylogenetically diverse group, candidate division I, corresponding to rice cluster V. In contrast, only halophilic archaea were found in the pristine soil. Bacterial community structures also differed significantly between the contaminated and pristine soils. More clones from the contaminated soil were related to known hydrocarbon-degrading bacteria, implying that microorganisms with the potential to degrade petroleum were well-established. These results provide further insights into the composition of microbial communities in oil-contaminated soils.
Collapse
Affiliation(s)
- Ruyin Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | | | | | | | | | | |
Collapse
|
46
|
Enhancement of the microbial community biomass and diversity during air sparging bioremediation of a soil highly contaminated with kerosene and BTEX. Appl Microbiol Biotechnol 2009; 82:565-77. [DOI: 10.1007/s00253-009-1868-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 01/09/2009] [Accepted: 01/10/2009] [Indexed: 10/21/2022]
|
47
|
Salicylic-Acid-Mediated Enhanced Biological Treatment of Wastewater. Appl Biochem Biotechnol 2009; 160:704-18. [DOI: 10.1007/s12010-009-8538-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 01/20/2009] [Indexed: 10/21/2022]
|
48
|
Kashama J, Prince V, Simao-Beaunoir AM, Beaulieu C. Carbon utilization profiles of bacteria colonizing the headbox water of two paper machines in a Canadian mill. J Ind Microbiol Biotechnol 2009; 36:391-9. [PMID: 19137341 DOI: 10.1007/s10295-008-0509-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 12/03/2008] [Indexed: 10/21/2022]
Abstract
Forty-one bacterial strains isolated from the headbox water of two machines in a Canadian paper mill were associated with the genera Asticcacaulis, Acidovorax, Bacillus, Exiguobacterium, Hydrogenophaga, Pseudomonas, Pseudoxanthomonas, Staphylococcus, Stenotrophomonas based on the sequence of their 16S rRNA genes. The metabolic profile of these strains were determined using Biolog EcoPlate, and the bacteria were divided into four metabolic groups. Metabolic profiles of the bacterial communities colonizing the headbox water of two paper machines was also determined weekly over a 1 year period. The only compound that was not reduced by the bacterial community was 2-hydroxybenzoic acid. Utilization frequency of the other carbon sources in the Biolog EcoPlate ranged from 3 to 100%. The metabolic profiles of the bacterial community did not vary considerably between the two paper machines. However, the metabolic profile varied among the sampling dates.
Collapse
Affiliation(s)
- Johnny Kashama
- Centre d'Etude et de Valorisation de la Diversité Microbienne, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | | | | | | |
Collapse
|
49
|
Zrafi-Nouira I, Guermazi S, Chouari R, Safi NMD, Pelletier E, Bakhrouf A, Saidane-Mosbahi D, Sghir A. Molecular diversity analysis and bacterial population dynamics of an adapted seawater microbiota during the degradation of Tunisian zarzatine oil. Biodegradation 2008; 20:467-86. [PMID: 19052881 DOI: 10.1007/s10532-008-9235-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 11/10/2008] [Indexed: 10/21/2022]
Abstract
The indigenous microbiota of polluted coastal seawater in Tunisia was enriched by increasing the concentration of zarzatine crude oil. The resulting adapted microbiota was incubated with zarzatine crude oil as the only carbon and energy source. Crude oil biodegradation capacity and bacterial population dynamics of the microbiota were evaluated every week for 28 days (day 7, day 14, day 21, and day 28). Results show that the percentage of petroleum degradation was 23.9, 32.1, 65.3, and 77.8%, respectively. At day 28, non-aromatic and aromatic hydrocarbon degradation rates reached 92.6 and 68.7%, respectively. Bacterial composition of the adapted microflora was analysed by 16S rRNA gene cloning and sequencing, using total genomic DNA extracted from the adapted microflora at days 0, 7, 14, 21, and 28. Five clone libraries were constructed and a total of 430 sequences were generated and grouped into OTUs using the ARB software package. Phylogenetic analysis of the adapted microbiota shows the presence of four phylogenetic groups: Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. Diversity indices show a clear decrease in bacterial diversity of the adapted microflora according to the incubation time. The Proteobacteria are the most predominant (>80%) at day 7, day 14 and day 21 but not at day 28 for which the microbiota was reduced to only one OTU affiliated with the genus Kocuria of the Actinobacteria. This study shows that the degradation of zarzatine crude oil components depends on the activity of a specialized and dynamic seawater consortium composed of different phylogenetic taxa depending on the substrate complexity.
Collapse
Affiliation(s)
- Ines Zrafi-Nouira
- Laboratoire d'Analyse, Traitement et Valorisation des Polluants de l'Environnement et des Produits, Faculté de Pharmacie de Monastir, Monastir, Tunisia.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Nikodinovic J, Kenny ST, Babu RP, Woods T, Blau WJ, O'Connor KE. The conversion of BTEX compounds by single and defined mixed cultures to medium-chain-length polyhydroxyalkanoate. Appl Microbiol Biotechnol 2008; 80:665-73. [PMID: 18629491 DOI: 10.1007/s00253-008-1593-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 06/20/2008] [Accepted: 06/23/2008] [Indexed: 11/25/2022]
Abstract
Here, we report the use of petrochemical aromatic hydrocarbons as a feedstock for the biotechnological conversion into valuable biodegradable plastic polymers--polyhydroxyalkanoates (PHAs). We assessed the ability of the known Pseudomonas putida species that are able to utilize benzene, toluene, ethylbenzene, p-xylene (BTEX) compounds as a sole carbon and energy source for their ability to produce PHA from the single substrates. P. putida F1 is able to accumulate medium-chain-length (mcl) PHA when supplied with toluene, benzene, or ethylbenzene. P. putida mt-2 accumulates mcl-PHA when supplied with toluene or p-xylene. The highest level of PHA accumulated by cultures in shake flask was 26% cell dry weight for P. putida mt-2 supplied with p-xylene. A synthetic mixture of benzene, toluene, ethylbenzene, p-xylene, and styrene (BTEXS) which mimics the aromatic fraction of mixed plastic pyrolysis oil was supplied to a defined mixed culture of P. putida F1, mt-2, and CA-3 in the shake flasks and fermentation experiments. PHA was accumulated to 24% and to 36% of the cell dry weight of the shake flask and fermentation grown cultures respectively. In addition a three-fold higher cell density was achieved with the mixed culture grown in the bioreactor compared to shake flask experiments. A run in the 5-l fermentor resulted in the utilization of 59.6 g (67.5 ml) of the BTEXS mixture and the production of 6 g of mcl-PHA. The monomer composition of PHA accumulated by the mixed culture was the same as that accumulated by single strains supplied with single substrates with 3-hydroxydecanoic acid occurring as the predominant monomer. The purified polymer was partially crystalline with an average molecular weight of 86.9 kDa. It has a thermal degradation temperature of 350 degrees C and a glass transition temperature of -48.5 degrees C.
Collapse
Affiliation(s)
- Jasmina Nikodinovic
- School of Biomolecular and Biomedical Sciences, Ardmore House, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | |
Collapse
|