1
|
Biermann AR, Hogan DA. Transcriptional Response of Candida auris to the Mrr1 Inducers Methylglyoxal and Benomyl. mSphere 2022; 7:e0012422. [PMID: 35473297 PMCID: PMC9241502 DOI: 10.1128/msphere.00124-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
Candida auris is an urgent threat to human health due to its rapid spread in health care settings and its repeated development of multidrug resistance. Diseases that increase risk for C. auris infection, such as diabetes, kidney failure, or immunocompromising conditions, are associated with elevated levels of methylglyoxal (MG), a reactive dicarbonyl compound derived from several metabolic processes. In other Candida species, expression of MG reductase enzymes that catabolize and detoxify MG are controlled by Mrr1, a multidrug resistance-associated transcription factor, and MG induces Mrr1 activity. Here, we used transcriptomics and genetic assays to determine that C. auris MRR1a contributes to MG resistance, and that the main Mrr1a targets are an MG reductase and MDR1, which encodes a drug efflux protein. The C. auris Mrr1a regulon is smaller than Mrr1 regulons described in other species. In addition to MG, benomyl (BEN), a known Mrr1 stimulus, induces C. auris Mrr1 activity, and characterization of the MRR1a-dependent and -independent transcriptional responses revealed substantial overlap in genes that were differentially expressed in response to each compound. Additionally, we found that an MRR1 allele specific to one C. auris phylogenetic clade, clade III, encodes a hyperactive Mrr1 variant, and this activity correlated with higher MG resistance. C. auris MRR1a alleles were functional in Candida lusitaniae and were inducible by BEN, but not by MG, suggesting that the two Mrr1 inducers act via different mechanisms. Together, the data presented in this work contribute to the understanding of Mrr1 activity and MG resistance in C. auris. IMPORTANCE Candida auris is a fungal pathogen that has spread since its identification in 2009 and is of concern due to its high incidence of resistance against multiple classes of antifungal drugs. In other Candida species, the transcription factor Mrr1 plays a major role in resistance against azole antifungals and other toxins. More recently, Mrr1 has been recognized to contribute to resistance to methylglyoxal (MG), a toxic metabolic product that is often elevated in different disease states. MG can activate Mrr1 and its induction of Mdr1 which can protect against diverse challenges. The significance of this work lies in showing that MG is also an inducer of Mrr1 in C. auris, and that one of the major pathogenic C. auris lineages has an activating Mrr1 mutation that confers protection against MG.
Collapse
Affiliation(s)
- Amy R. Biermann
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
2
|
Chen F, Miao X, Lin Z, Xiu Y, Shi L, Zhang Q, Liang D, Lin S, He B. Disruption of metabolic function and redox homeostasis as antibacterial mechanism of Lindera glauca fruit essential oil against Shigella flexneri. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
3
|
Demers EG, Stajich JE, Ashare A, Occhipinti P, Hogan DA. Balancing Positive and Negative Selection: In Vivo Evolution of Candida lusitaniae MRR1. mBio 2021; 12:e03328-20. [PMID: 33785623 PMCID: PMC8092287 DOI: 10.1128/mbio.03328-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
The evolution of pathogens in response to selective pressures present during chronic infections can influence their persistence and virulence and the outcomes of antimicrobial therapy. Because subpopulations within an infection can be spatially separated and the host environment can fluctuate, an appreciation of the pathways under selection may be most easily revealed through the analysis of numerous isolates from single infections. Here, we continued our analysis of a set of clonally derived Clavispora (Candida) lusitaniae isolates from a single chronic lung infection with a striking enrichment in the number of alleles of MRR1 Genetic and genomic analyses found evidence for repeated acquisition of gain-of-function mutations that conferred constitutive Mrr1 activity. In the same population, there were multiple alleles with both gain-of-function mutations and secondary suppressor mutations that either attenuated or abolished the constitutive activity, suggesting the presence of counteracting selective pressures. Our studies demonstrated trade-offs between high Mrr1 activity, which confers resistance to the antifungal fluconazole, host factors, and bacterial products through its regulation of MDR1, and resistance to hydrogen peroxide, a reactive oxygen species produced in the neutrophilic environment associated with this infection. This inverse correlation between high Mrr1 activity and hydrogen peroxide resistance was observed in multiple Candida species and in serially collected populations from this individual over 3 years. These data lead us to propose that dynamic or variable selective pressures can be reflected in population genomics and that these dynamics can complicate the drug resistance profile of the population.IMPORTANCE Understanding microbial evolution within patients is critical for managing chronic infections and understanding host-pathogen interactions. Here, our analysis of multiple MRR1 alleles in isolates from a single Clavispora (Candida) lusitaniae infection revealed the selection for both high and low Mrr1 activity. Our studies reveal trade-offs between high Mrr1 activity, which confers resistance to the commonly used antifungal fluconazole, host antimicrobial peptides, and bacterial products, and resistance to hydrogen peroxide. This work suggests that spatial or temporal differences within chronic infections can support a large amount of dynamic and parallel evolution and that Mrr1 activity is under both positive and negative selective pressure to balance different traits that are important for microbial survival.
Collapse
Affiliation(s)
- Elora G Demers
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jason E Stajich
- Department of Microbiology & Plant Pathology and Institute for Integrative Genome Biology, University of California-Riverside, Riverside, California, USA
| | - Alix Ashare
- Dartmouth-Hitchcock Medical Center, Section of Pulmonary and Critical Care Medicine, Lebanon, New Hampshire, USA
| | - Patricia Occhipinti
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
4
|
Suchodolski J, Krasowska A. Fructose Induces Fluconazole Resistance in Candida albicans through Activation of Mdr1 and Cdr1 Transporters. Int J Mol Sci 2021; 22:ijms22042127. [PMID: 33669913 PMCID: PMC7924610 DOI: 10.3390/ijms22042127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Candida albicans is a pathogenic fungus that is increasingly developing multidrug resistance (MDR), including resistance to azole drugs such as fluconazole (FLC). This is partially a result of the increased synthesis of membrane efflux transporters Cdr1p, Cdr2p, and Mdr1p. Although all these proteins can export FLC, only Cdr1p is expressed constitutively. In this study, the effect of elevated fructose, as a carbon source, on the MDR was evaluated. It was shown that fructose, elevated in the serum of diabetics, promotes FLC resistance. Using C. albicans strains with green fluorescent protein (GFP) tagged MDR transporters, it was determined that the FLC-resistance phenotype occurs as a result of Mdr1p activation and via the increased induction of higher Cdr1p levels. It was observed that fructose-grown C. albicans cells displayed a high efflux activity of both transporters as opposed to glucose-grown cells, which synthesize Cdr1p but not Mdr1p. Additionally, it was concluded that elevated fructose serum levels induce the de novo production of Mdr1p after 60 min. In combination with glucose, however, fructose induces Mdr1p production as soon as after 30 min. It is proposed that fructose may be one of the biochemical factors responsible for Mdr1p production in C. albicans cells.
Collapse
|
5
|
Xue W, Yin Y, Ismail F, Hu C, Zhou M, Cao X, Li S, Sun X. Transcription factor CCG-8 plays a pivotal role in azole adaptive responses of Neurospora crassa by regulating intracellular azole accumulation. Curr Genet 2019; 65:735-745. [DOI: 10.1007/s00294-018-0924-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 11/24/2022]
|
6
|
Emerging Mechanisms of Drug Resistance in Candida albicans. YEASTS IN BIOTECHNOLOGY AND HUMAN HEALTH 2019; 58:135-153. [DOI: 10.1007/978-3-030-13035-0_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Targeting Candida spp. to develop antifungal agents. Drug Discov Today 2018; 23:802-814. [PMID: 29353694 DOI: 10.1016/j.drudis.2018.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/09/2017] [Accepted: 01/04/2018] [Indexed: 01/15/2023]
Abstract
Invasive fungal infections are a complex challenge throughout the world because of their high incidence, mainly in critically ill patients, and high mortality rates. The antifungal agents currently available are limited; thus, there is a need for the rapid development of new drugs. In silico methods are a modern strategy to explore interactions between new compounds and specific fungal targets, but they depend on precise genetic information. Here, we discuss the main Candida spp. target genes, including information about null mutants, virulence, cytolocalization, co-regulatory genes, and compounds that are related to protein expression. These data will provide a basis for the future in silico development of antifungal drugs.
Collapse
|
8
|
Candida albicans Swi/Snf and Mediator Complexes Differentially Regulate Mrr1-Induced MDR1 Expression and Fluconazole Resistance. Antimicrob Agents Chemother 2017; 61:AAC.01344-17. [PMID: 28807921 DOI: 10.1128/aac.01344-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/09/2017] [Indexed: 02/07/2023] Open
Abstract
Long-term azole treatment of patients with chronic Candida albicans infections can lead to drug resistance. Gain-of-function (GOF) mutations in the transcription factor Mrr1 and the consequent transcriptional activation of MDR1, a drug efflux coding gene, is a common pathway by which this human fungal pathogen acquires fluconazole resistance. This work elucidates the previously unknown downstream transcription mechanisms utilized by hyperactive Mrr1. We identified the Swi/Snf chromatin remodeling complex as a key coactivator for Mrr1, which is required to maintain basal and induced open chromatin, and Mrr1 occupancy, at the MDR1 promoter. Deletion of snf2, the catalytic subunit of Swi/Snf, largely abrogates the increases in MDR1 expression and fluconazole MIC observed in MRR1GOF mutant strains. Mediator positively and negatively regulates key Mrr1 target promoters. Deletion of the Mediator tail module med3 subunit reduces, but does not eliminate, the increased MDR1 expression and fluconazole MIC conferred by MRR1GOF mutations. Eliminating the kinase activity of the Mediator Ssn3 subunit suppresses the decreased MDR1 expression and fluconazole MIC of the snf2 null mutation in MRR1GOF strains. Ssn3 deletion also suppresses MDR1 promoter histone displacement defects in snf2 null mutants. The combination of this work with studies on other hyperactive zinc cluster transcription factors that confer azole resistance in fungal pathogens reveals a complex picture where the induction of drug efflux pump expression requires the coordination of multiple coactivators. The observed variations in transcription factor and target promoter dependence of this process may make the search for azole sensitivity-restoring small molecules more complicated.
Collapse
|
9
|
Mediator Tail Module Is Required for Tac1-Activated CDR1 Expression and Azole Resistance in Candida albicans. Antimicrob Agents Chemother 2017; 61:AAC.01342-17. [PMID: 28807920 DOI: 10.1128/aac.01342-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/09/2017] [Indexed: 02/08/2023] Open
Abstract
The human fungal pathogen Candida albicans develops drug resistance after long-term exposure to azole drugs in the treatment of chronic candidiasis. Gain-of-function (GOF) mutations in the transcription factor Tac1 and the consequent expression of its targets, drug efflux pumps Cdr1 and Cdr2, are a common mechanism by which C. albicans acquires fluconazole resistance. The mechanism by which GOF mutations hyperactivate Tac1 is currently unknown. Here, we define a transcriptional activation domain (TAD) at the C terminus of Tac1. GOF mutations within the Tac1 TAD, outside the context of full-length Tac1, generally do not enhance its absolute potential as a transcriptional activator. Negative regulation of the Tac1 TAD by the Tac1 middle region is necessary for the activating effect of GOF mutations or fluphenazine to be realized. We have found that full-length Tac1, when hyperactivated by xenobiotics or GOF mutations, facilitates the recruitment of the Mediator coactivator complex to the CDR1 promoter. Azole resistance and the activation of Tac1 target genes, such as CDR1, are dependent on the Tac1 TAD and subunits of the Mediator tail module. The dependence of different Tac1 target promoters on the Mediator tail module, however, varies widely. Lastly, we show that hyperactivation of Tac1 is correlated with its Mediator-dependent phosphorylation, a potentially useful biomarker for Tac1 hyperactivation. The role of Mediator in events downstream of Tac1 hyperactivation in fluconazole-resistant clinical isolates is complex and provides opportunities and challenges for therapeutic intervention.
Collapse
|
10
|
Chen LH, Tsai HC, Yu PL, Chung KR. A Major Facilitator Superfamily Transporter-Mediated Resistance to Oxidative Stress and Fungicides Requires Yap1, Skn7, and MAP Kinases in the Citrus Fungal Pathogen Alternaria alternata. PLoS One 2017; 12:e0169103. [PMID: 28060864 PMCID: PMC5218470 DOI: 10.1371/journal.pone.0169103] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 12/12/2016] [Indexed: 12/19/2022] Open
Abstract
Major Facilitator Superfamily (MFS) transporters play an important role in multidrug resistance in fungi. We report an AaMFS19 gene encoding a MFS transporter required for cellular resistance to oxidative stress and fungicides in the phytopathogenic fungus Alternaria alternata. AaMFS19, containing 12 transmembrane domains, displays activity toward a broad range of substrates. Fungal mutants lacking AaMFS19 display profound hypersensitivities to cumyl hydroperoxide, potassium superoxide, many singlet oxygen-generating compounds (eosin Y, rose Bengal, hematoporphyrin, methylene blue, and cercosporin), and the cell wall biosynthesis inhibitor, Congo red. AaMFS19 mutants also increase sensitivity to copper ions, clotrimazole, fludioxonil, and kocide fungicides, 2-chloro-5-hydroxypyridine (CHP), and 2,3,5-triiodobenzoic acid (TIBA). AaMFS19 mutants induce smaller necrotic lesions on leaves of a susceptible citrus cultivar. All observed phenotypes in the mutant are restored by introducing and expressing a wild-type copy of AaMFS19. The wild-type strain of A. alternata treated with either CHP or TIBA reduces radial growth and formation and germination of conidia, increases hyphal branching, and results in decreased expression of the AaMFS19 gene. The expression of AaMFS19 is regulated by the Yap1 transcription activator, the Hog1 and Fus3 mitogen-activated protein (MAP) kinases, the ‘two component’ histidine kinase, and the Skn7 response regulator. Our results demonstrate that A. alternata confers resistance to different chemicals via a membrane-bound MFS transporter.
Collapse
Affiliation(s)
- Li-Hung Chen
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung-Hsing University, Taichung, Taiwan
| | - Hsieh-Chin Tsai
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung-Hsing University, Taichung, Taiwan
| | - Pei-Ling Yu
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung-Hsing University, Taichung, Taiwan
| | - Kuang-Ren Chung
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung-Hsing University, Taichung, Taiwan
- Biotechnology Center, NCHU, Taichung, Taiwan
- NCHU-UCD Plant and Food Biotechnology Center, NCHU, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
11
|
Abstract
Invasive fungal infections remain a major source of global morbidity and mortality, especially among patients with underlying immune suppression. Successful patient management requires antifungal therapy. Yet, treatment choices are restricted due to limited classes of antifungal agents and the emergence of antifungal drug resistance. In some settings, the evolution of multidrug-resistant strains insensitive to several classes of antifungal agents is a major concern. The resistance mechanisms responsible for acquired resistance are well characterized and include changes in drug target affinity and abundance, and reduction in the intracellular level of drug by biofilms and efflux pumps. The development of high-level and multidrug resistance occurs through a stepwise evolution of diverse mechanisms. The genetic factors that influence these mechanisms are emerging and they form a complex symphony of cellular interactions that enable the cell to adapt and/or overcome drug-induced stress. Drivers of resistance involve a complex blend of host and microbial factors. Understanding these mechanisms will facilitate development of better diagnostics and therapeutic strategies to overcome and prevent antifungal resistance.
Collapse
Affiliation(s)
- David S Perlin
- Public Health Research Institute, Rutgers Biomedical and Health Sciences, New Jersey Medical School, 185 S Orange Ave, Newark, NJ 07103, USA
| | - Erika Shor
- Public Health Research Institute, Rutgers Biomedical and Health Sciences, New Jersey Medical School, 185 S Orange Ave, Newark, NJ 07103, USA
| | - Yanan Zhao
- Public Health Research Institute, Rutgers Biomedical and Health Sciences, New Jersey Medical School, 185 S Orange Ave, Newark, NJ 07103, USA
| |
Collapse
|
12
|
Sun LM, Liao K, Liang S, Yu PH, Wang DY. Synergistic activity of magnolol with azoles and its possible antifungal mechanism against Candida albicans. J Appl Microbiol 2015; 118:826-38. [DOI: 10.1111/jam.12737] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/09/2014] [Accepted: 12/22/2014] [Indexed: 11/30/2022]
Affiliation(s)
- L.-M. Sun
- Department of Pharmacology; Medical School of Southeast University; Nanjing China
| | - K. Liao
- Department of Pathology and Pathophysiology; Medical School; Southeast University; Nanjing China
| | - S. Liang
- Department of Pharmacology; Medical School of Southeast University; Nanjing China
| | - P.-H. Yu
- Department of Pharmacology; Medical School of Southeast University; Nanjing China
| | - D.-Y. Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education; Medical School of Southeast University; Nanjing China
| |
Collapse
|
13
|
Moye-Rowley WS. Multiple mechanisms contribute to the development of clinically significant azole resistance in Aspergillus fumigatus. Front Microbiol 2015; 6:70. [PMID: 25713565 PMCID: PMC4322724 DOI: 10.3389/fmicb.2015.00070] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/20/2015] [Indexed: 01/30/2023] Open
Abstract
Infections caused by the filamentous fungus Aspergillus fumigatus are a significant clinical issue and represent the second most-common form of fungal infection. Azole drugs are effective against this pathogen but resistant isolates are being found more frequently. Infections associated with azole resistant A. fumigatus have a significantly increased mortality making understanding drug resistance in this organism a priority. The target of azole drugs is the lanosterol α-14 demethylase enzyme encoded by the cyp51A gene in A. fumigatus. Mutations in cyp51A have been described that give rise to azole resistance and been argued to be the primary, if not sole, contributor to azole resistance. Here, I discuss recent developments that indicate multiple mechanisms, including increased expression of ATP-binding cassette (ABC) transporter proteins, contribute to azole resistance. ABC transporters are well-established determinants of drug resistance in other fungal pathogens and seem likely to play a similar role in A. fumigatus.
Collapse
Affiliation(s)
- W S Moye-Rowley
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa Iowa City, IA, USA
| |
Collapse
|
14
|
Induction of Candida albicans drug resistance genes by hybrid zinc cluster transcription factors. Antimicrob Agents Chemother 2014; 59:558-69. [PMID: 25385116 DOI: 10.1128/aac.04448-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The pathogenic yeast Candida albicans can develop resistance to azole antifungal drugs by overexpressing ERG11, which encodes the drug target, or the multidrug efflux pumps MDR1 and CDR1/CDR2. The constitutive upregulation of these genes is usually caused by gain-of-function mutations in the zinc cluster transcription factors Upc2, Mrr1, and Tac1, respectively. These transcription factors are also required for the induction of their target genes in drug-susceptible strains in the presence of specific stimuli. By swapping the DNA-binding domains of Mrr1, Tac1, and Upc2 we investigated if the hybrid transcription factors could activate their new target genes in response to the same signals. When Tac1 was targeted to the MDR1 and ERG11 promoters, the expression of these genes became inducible by fluphenazine. Similarly, MDR1 and CDR2 were strongly upregulated by fluconazole when Upc2 was fused to the DNA-binding domains of Mrr1 and Tac1, respectively. In contrast, Mrr1 was unable to promote gene expression in response to benomyl when it was targeted to the CDR2 and ERG11 promoters instead of the MDR1 promoter. These results suggest that Tac1 and Upc2 themselves are activated by the inducers fluphenazine and fluconazole, respectively, whereas benomyl does not activate Mrr1 itself but a coregulatory factor that is present at the promoters of Mrr1 target genes. Strains in which the expression levels of Mrr1 and Tac1 target genes were controlled by Upc2 exhibited increased fluconazole resistance, demonstrating that the ability to efficiently upregulate the expression of efflux pumps in the presence of the drug results in enhanced intrinsic fluconazole resistance.
Collapse
|
15
|
Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS. Mechanisms of Antifungal Drug Resistance. Cold Spring Harb Perspect Med 2014; 5:a019752. [PMID: 25384768 DOI: 10.1101/cshperspect.a019752] [Citation(s) in RCA: 373] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Antifungal therapy is a central component of patient management for acute and chronic mycoses. Yet, treatment choices are restricted because of the sparse number of antifungal drug classes. Clinical management of fungal diseases is further compromised by the emergence of antifungal drug resistance, which eliminates available drug classes as treatment options. Once considered a rare occurrence, antifungal drug resistance is on the rise in many high-risk medical centers. Most concerning is the evolution of multidrug- resistant organisms refractory to several different classes of antifungal agents, especially among common Candida species. The mechanisms responsible are mostly shared by both resistant strains displaying inherently reduced susceptibility and those acquiring resistance during therapy. The molecular mechanisms include altered drug affinity and target abundance, reduced intracellular drug levels caused by efflux pumps, and formation of biofilms. New insights into genetic factors regulating these mechanisms, as well as cellular factors important for stress adaptation, provide a foundation to better understand the emergence of antifungal drug resistance.
Collapse
Affiliation(s)
- Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Dominique Sanglard
- University of Lausanne and University Hospital Center, Institute of Microbiology, 1011 Lausanne, Switzerland
| | - Susan J Howard
- University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - P David Rogers
- College of Pharmacy, The University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - David S Perlin
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103
| |
Collapse
|
16
|
SAGA/ADA complex subunit Ada2 is required for Cap1- but not Mrr1-mediated upregulation of the Candida albicans multidrug efflux pump MDR1. Antimicrob Agents Chemother 2014; 58:5102-10. [PMID: 24936593 DOI: 10.1128/aac.03065-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Overexpression of the multidrug efflux pump MDR1 is one mechanism by which the pathogenic yeast Candida albicans develops resistance to the antifungal drug fluconazole. The constitutive upregulation of MDR1 in fluconazole-resistant, clinical C. albicans isolates is caused by gain-of-function mutations in the zinc cluster transcription factor Mrr1. It has been suggested that Mrr1 activates MDR1 transcription by recruiting Ada2, a subunit of the SAGA/ADA coactivator complex. However, MDR1 expression is also regulated by the bZIP transcription factor Cap1, which mediates the oxidative stress response in C. albicans. Here, we show that a hyperactive Mrr1 containing a gain-of-function mutation promotes MDR1 overexpression independently of Ada2. In contrast, a C-terminally truncated, hyperactive Cap1 caused MDR1 overexpression in a wild-type strain but only weakly in mutants lacking ADA2. In the presence of benomyl or H2O2, compounds that induce MDR1 expression in an Mrr1- and Cap1-dependent fashion, MDR1 was upregulated with the same efficiency in wild-type and ada2Δ cells. These results indicate that Cap1, but not Mrr1, recruits Ada2 to the MDR1 promoter to induce the expression of this multidrug efflux pump and that Ada2 is not required for MDR1 overexpression in fluconazole-resistant C. albicans strains containing gain-of-function mutations in Mrr1.
Collapse
|
17
|
Paul S, Moye-Rowley WS. Multidrug resistance in fungi: regulation of transporter-encoding gene expression. Front Physiol 2014; 5:143. [PMID: 24795641 PMCID: PMC3997011 DOI: 10.3389/fphys.2014.00143] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/25/2014] [Indexed: 11/24/2022] Open
Abstract
A critical risk to the continued success of antifungal chemotherapy is the acquisition of resistance; a risk exacerbated by the few classes of effective antifungal drugs. Predictably, as the use of these drugs increases in the clinic, more resistant organisms can be isolated from patients. A particularly problematic form of drug resistance that routinely emerges in the major fungal pathogens is known as multidrug resistance. Multidrug resistance refers to the simultaneous acquisition of tolerance to a range of drugs via a limited or even single genetic change. This review will focus on recent progress in understanding pathways of multidrug resistance in fungi including those of most medical relevance. Analyses of multidrug resistance in Saccharomyces cerevisiae have provided the most detailed outline of multidrug resistance in a eukaryotic microorganism. Multidrug resistant isolates of S. cerevisiae typically result from changes in the activity of a pair of related transcription factors that in turn elicit overproduction of several target genes. Chief among these is the ATP-binding cassette (ABC)-encoding gene PDR5. Interestingly, in the medically important Candida species, very similar pathways are involved in acquisition of multidrug resistance. In both C. albicans and C. glabrata, changes in the activity of transcriptional activator proteins elicits overproduction of a protein closely related to S. cerevisiae Pdr5 called Cdr1. The major filamentous fungal pathogen, Aspergillus fumigatus, was previously thought to acquire resistance to azole compounds (the principal antifungal drug class) via alterations in the azole drug target-encoding gene cyp51A. More recent data indicate that pathways in addition to changes in the cyp51A gene are important determinants in A. fumigatus azole resistance. We will discuss findings that suggest azole resistance in A. fumigatus and Candida species may share more mechanistic similarities than previously thought.
Collapse
Affiliation(s)
- Sanjoy Paul
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa Iowa City, IA, USA
| | - W Scott Moye-Rowley
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa Iowa City, IA, USA
| |
Collapse
|
18
|
Multidrug-resistant transporter mdr1p-mediated uptake of a novel antifungal compound. Antimicrob Agents Chemother 2013; 57:5931-9. [PMID: 24041896 DOI: 10.1128/aac.01504-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The activity of many anti-infectious drugs has been compromised by the evolution of multidrug-resistant (MDR) pathogens. For life-threatening fungal infections, such as those caused by Candida albicans, overexpression of MDR1, which encodes an MDR efflux pump of the major facilitator superfamily (MFS), often confers resistance to chemically unrelated substances, including the most commonly used azole antifungals. As the development of new and efficacious antifungals has lagged far behind the growing emergence of resistant strains, it is imperative to develop strategies to overcome multidrug resistance. Previous advances have been mainly to deploy combinational therapy to restore azole susceptibility, which, however, requires coordination of two or more compounds. We observed a unique phenotype in which Mdr1p facilitates the uptake of a specific class of compounds. Among them, we describe a novel antifungal small molecule, bis[1,6-a:5',6'-g]quinolizinium 8-methyl-salt (BQM) (U.S. patent application no. 61/793,090,2013), that has potent and broad antifungal activity. Notably, BQM exploits the MDR phenotype in C. albicans to promote the inhibitory effect. Rather than causing an antagonism of MDR strains, it exhibits a highly potentiated activity against a collection of clinical isolates and lab strains that overexpress MDR1. The activity of BQM against MDR1-overexpressing isolates is due to its facilitated intracellular accumulation. Microarray comparisons showed an extensive upregulation of MDR1 as well as polyamine transporter genes in a fluconazole-resistant strain. We then demonstrated that the polyamine transporters augment the accumulation of BQM. Importantly, BQM had greater activity than fluconazole and itraconazole against various fungal pathogens, including MDR Aspergillus fumigatus. Thus, our findings offer a paradigm shift to overcome MDR and the promise of improving antifungal treatment, especially in MDR pathogens.
Collapse
|
19
|
Rossignol T, Kocsis B, Bouquet O, Kustos I, Kilár F, Nyul A, Jakus PB, Rajbhandari K, Prókai L, d’Enfert C, Lóránd T. Antifungal activity of fused Mannich ketones triggers an oxidative stress response and is Cap1-dependent in Candida albicans. PLoS One 2013; 8:e62142. [PMID: 23646117 PMCID: PMC3639977 DOI: 10.1371/journal.pone.0062142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 03/18/2013] [Indexed: 01/02/2023] Open
Abstract
We investigated the antifungal activity of fused Mannich ketone (FMK) congeners and two of their aminoalcohol derivatives. In particular, FMKs with five-membered saturated rings were shown to have minimum inhibitory concentration (MIC90s) ranging from 0.8 to 6 µg/mL toward C. albicans and the closely related C. parapsilosis and C. krusei while having reduced efficacy toward C. glabrata and almost no efficacy against Aspergillus sp. Transcript profiling of C. albicans cells exposed for 30 or 60 min to 2-(morpholinomethyl)-1-indanone, a representative FMK with a five-membered saturated ring, revealed a transcriptional response typical of oxidative stress and similar to that of a C. albicans Cap1 transcriptional activator. Consistently, C. albicans lacking the CAP1 gene was hypersensitive to this FMK, while C. albicans strains overexpressing CAP1 had decreased sensitivity to 2-(morpholinomethyl)-1-indanone. Quantitative structure-activity relationship studies revealed a correlation of antifungal potency and the energy of the lowest unoccupied molecular orbital of FMKs and unsaturated Mannich ketones thereby implicating redox cycling-mediated oxidative stress as a mechanism of action. This conclusion was further supported by the loss of antifungal activity upon conversion of representative FMKs to aminoalcohols that were unable to participate in redox cycles.
Collapse
Affiliation(s)
- Tristan Rossignol
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC 2019, Paris, France
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - Orsolya Bouquet
- Institute of Bioanalysis, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - Ildikó Kustos
- Department of Microbiology, Alder Hey Children`s NHS Foundation Trust, Liverpool, United Kingdom
| | - Ferenc Kilár
- Institute of Bioanalysis, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - Adrien Nyul
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - Péter B. Jakus
- Department of Biochemistry and Medical Chemistry, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - Kshitij Rajbhandari
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - László Prókai
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Christophe d’Enfert
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France
- INRA, USC 2019, Paris, France
| | - Tamás Lóránd
- Department of Biochemistry and Medical Chemistry, Faculty of Medicine, University of Pécs, Pécs, Hungary
| |
Collapse
|
20
|
Inducible and constitutive activation of two polymorphic promoter alleles of the Candida albicans multidrug efflux pump MDR1. Antimicrob Agents Chemother 2012; 56:4490-4. [PMID: 22615278 DOI: 10.1128/aac.00264-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Overexpression of the multidrug efflux pump MDR1 confers resistance to the antifungal drug fluconazole on Candida albicans. It has been reported that two types of MDR1 promoters exist in C. albicans and that homozygosity for the allele with higher activity may promote fluconazole resistance. We found that the two MDR1 promoter alleles in strain SC5314 were equally well activated by inducing chemicals or hyperactive forms of the transcription factors Mrr1 and Cap1, which control MDR1 expression. In addition, no loss of heterozygosity at the MDR1 locus was observed in MDR1-overexpressing clinical C. albicans strains that developed fluconazole resistance during therapy.
Collapse
|
21
|
Antifungal resistance and new strategies to control fungal infections. Int J Microbiol 2011; 2012:713687. [PMID: 22187560 PMCID: PMC3236459 DOI: 10.1155/2012/713687] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 09/06/2011] [Indexed: 11/28/2022] Open
Abstract
Despite improvement of antifungal therapies over the last 30 years, the phenomenon of antifungal resistance is still of major concern in clinical practice. In the last 10 years the molecular mechanisms underlying this phenomenon were extensively unraveled. In this paper, after a brief overview of currently available antifungals, molecular mechanisms of antifungal resistance will be detailed. It appears that major mechanisms of resistance are essential due to the deregulation of antifungal resistance effector genes. This deregulation is a consequence of point mutations occurring in transcriptional regulators of these effector genes. Resistance can also follow the emergence of point mutations directly in the genes coding antifungal targets. In addition we further describe new strategies currently undertaken to discover alternative therapy targets and antifungals. Identification of new antifungals is essentially achieved by the screening of natural or synthetic chemical compound collections. Discovery of new putative antifungal targets is performed through genome-wide approaches for a better understanding of the human pathogenic fungi biology.
Collapse
|
22
|
Bruzual I, Kumamoto CA. An MDR1 promoter allele with higher promoter activity is common in clinically isolated strains of Candida albicans. Mol Genet Genomics 2011; 286:347-57. [PMID: 21972105 DOI: 10.1007/s00438-011-0650-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 09/18/2011] [Indexed: 12/26/2022]
Abstract
In the opportunistic fungal pathogen Candida albicans, up-regulation of MDR1, encoding an efflux transporter, leads to increased resistance to the antifungal drug fluconazole. Antifungal resistance has been linked to several types of genetic change in C. albicans, including changes in genome structure, genetic alteration of the drug target, and overexpression of transporters. High-level over-expression of MDR1 is commonly mediated by mutation in a trans-acting factor, Mrr1p. This report describes a second mechanism that contributes to up-regulation of MDR1 expression. By analyzing the sequence of the MDR1 promoter region in fluconazole-resistant and fluconazole-susceptible strains, we identified sequence polymorphisms that defined two linkage groups, corresponding to the two alleles in the diploid genome. One of the alleles conferred higher MDR1 expression compared with the other allele. Strains in which both alleles were of the higher activity type were common in collections of clinically isolated strains while strains carrying only the less active allele were rare. As increased expression of MDR1 confers higher resistance to drugs, strains with the more active MDR1 promoter allele may grow or survive longer when exposed to drugs or other selective pressures, providing greater opportunity for mutations that confer high-level drug resistance to arise. Through this mechanism, higher activity alleles of the MDR1 promoter could promote the development of drug resistance.
Collapse
Affiliation(s)
- Igor Bruzual
- Department of Molecular Biology and Microbiology, Tufts University, 136 Harrison Ave, Boston, MA, 02111, USA
| | | |
Collapse
|
23
|
Sasse C, Schillig R, Dierolf F, Weyler M, Schneider S, Mogavero S, Rogers PD, Morschhäuser J. The transcription factor Ndt80 does not contribute to Mrr1-, Tac1-, and Upc2-mediated fluconazole resistance in Candida albicans. PLoS One 2011; 6:e25623. [PMID: 21980509 PMCID: PMC3181345 DOI: 10.1371/journal.pone.0025623] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 09/07/2011] [Indexed: 11/19/2022] Open
Abstract
The pathogenic yeast Candida albicans can develop resistance to the widely used antifungal agent fluconazole, which inhibits ergosterol biosynthesis, by the overexpression of genes encoding multidrug efflux pumps or ergosterol biosynthesis enzymes. Zinc cluster transcription factors play a central role in the transcriptional regulation of drug resistance. Mrr1 regulates the expression of the major facilitator MDR1, Tac1 controls the expression of the ABC transporters CDR1 and CDR2, and Upc2 regulates ergosterol biosynthesis (ERG) genes. Gain-of-function mutations in these transcription factors result in constitutive overexpression of their target genes and are responsible for fluconazole resistance in many clinical C. albicans isolates. The transcription factor Ndt80 contributes to the drug-induced upregulation of CDR1 and ERG genes and also binds to the MDR1 and CDR2 promoters, suggesting that it is an important component of all major transcriptional mechanisms of fluconazole resistance. However, we found that Ndt80 is not required for the induction of MDR1 and CDR2 expression by inducing chemicals. CDR2 was even partially derepressed in ndt80Δ mutants, indicating that Ndt80 is a repressor of CDR2 expression. Hyperactive forms of Mrr1, Tac1, and Upc2 promoted overexpression of MDR1, CDR1/CDR2, and ERG11, respectively, with the same efficiency in the presence and absence of Ndt80. Mrr1- and Tac1-mediated fluconazole resistance was even slightly enhanced in ndt80Δ mutants compared to wild-type cells. These results demonstrate that Ndt80 is dispensable for the constitutive overexpression of Mrr1, Tac1, and Upc2 target genes and the increased fluconazole resistance of strains that have acquired activating mutations in these transcription factors.
Collapse
Affiliation(s)
- Christoph Sasse
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Würzburg, Germany
| | - Rebecca Schillig
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Würzburg, Germany
| | - Franziska Dierolf
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Würzburg, Germany
| | - Michael Weyler
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Würzburg, Germany
| | - Sabrina Schneider
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Würzburg, Germany
| | - Selene Mogavero
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Würzburg, Germany
- Department of Biology, University of Pisa, Pisa, Italy
| | - P. David Rogers
- Children's Foundation Research Center, Le Bonheur Children's Hospital, Memphis, Tennessee, United States of America
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Joachim Morschhäuser
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
24
|
Watamoto T, Samaranayake LP, Egusa H, Yatani H, Seneviratne CJ. Transcriptional regulation of drug-resistance genes in Candida albicans biofilms in response to antifungals. J Med Microbiol 2011; 60:1241-1247. [DOI: 10.1099/jmm.0.030692-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- T. Watamoto
- Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, Osaka, Japan
- Oral Biosciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR
| | - L. P. Samaranayake
- Oral Biosciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR
| | - H. Egusa
- Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - H. Yatani
- Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - C. J. Seneviratne
- Oral Biosciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
25
|
Functional dissection of a Candida albicans zinc cluster transcription factor, the multidrug resistance regulator Mrr1. EUKARYOTIC CELL 2011; 10:1110-21. [PMID: 21685320 DOI: 10.1128/ec.05100-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The overexpression of the MDR1 gene, which encodes a multidrug efflux pump of the major facilitator superfamily, is a frequent cause of resistance to the widely used antimycotic agent fluconazole and other toxic compounds in the pathogenic yeast Candida albicans. The zinc cluster transcription factor Mrr1 controls MDR1 expression in response to inducing chemicals, and gain-of-function mutations in MRR1 are responsible for the constitutive MDR1 upregulation in fluconazole-resistant C. albicans strains. To understand how Mrr1 activity is regulated, we identified functional domains of this transcription factor. A hybrid protein consisting of the N-terminal 106 amino acids of Mrr1 and the transcriptional activation domain of Gal4 from Saccharomyces cerevisiae constitutively induced MDR1 expression, demonstrating that the DNA binding domain is sufficient to target Mrr1 to the MDR1 promoter. Using a series of C-terminal truncations and systematic internal deletions, we could show that Mrr1 contains multiple activation and inhibitory domains. One activation domain (AD1) is located in the C terminus of Mrr1. When fused to the tetracycline repressor TetR, this distal activation domain induced gene expression from a TetR-dependent promoter. The deletion of an inhibitory region (ID1) located near the distal activation domain resulted in constitutive activity of Mrr1. The additional removal of AD1 abolished the constitutive activity, but the truncated Mrr1 still could activate the MDR1 promoter in response to the inducer benomyl. These results demonstrate that the activity of Mrr1 is regulated in multiple ways and provide insights into the function of an important mediator of drug resistance in C. albicans.
Collapse
|
26
|
Goudot C, Etchebest C, Devaux F, Lelandais G. The reconstruction of condition-specific transcriptional modules provides new insights in the evolution of yeast AP-1 proteins. PLoS One 2011; 6:e20924. [PMID: 21695268 PMCID: PMC3111461 DOI: 10.1371/journal.pone.0020924] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 05/15/2011] [Indexed: 11/19/2022] Open
Abstract
AP-1 proteins are transcription factors (TFs) that belong to the basic leucine zipper family, one of the largest families of TFs in eukaryotic cells. Despite high homology between their DNA binding domains, these proteins are able to recognize diverse DNA motifs. In yeasts, these motifs are referred as YRE (Yap Response Element) and are either seven (YRE-Overlap) or eight (YRE-Adjacent) base pair long. It has been proposed that the AP-1 DNA binding motif preference relies on a single change in the amino acid sequence of the yeast AP-1 TFs (an arginine in the YRE-O binding factors being replaced by a lysine in the YRE-A binding Yaps). We developed a computational approach to infer condition-specific transcriptional modules associated to the orthologous AP-1 protein Yap1p, Cgap1p and Cap1p, in three yeast species: the model yeast Saccharomyces cerevisiae and two pathogenic species Candida glabrata and Candida albicans. Exploitation of these modules in terms of predictions of the protein/DNA regulatory interactions changed our vision of AP-1 protein evolution. Cis-regulatory motif analyses revealed the presence of a conserved adenine in 5' position of the canonical YRE sites. While Yap1p, Cgap1p and Cap1p shared a remarkably low number of target genes, an impressive conservation was observed in the YRE sequences identified by Yap1p and Cap1p. In Candida glabrata, we found that Cgap1p, unlike Yap1p and Cap1p, recognizes YRE-O and YRE-A motifs. These findings were supported by structural data available for the transcription factor Pap1p (Schizosaccharomyces pombe). Thus, whereas arginine and lysine substitutions in Cgap1p and Yap1p proteins were reported as responsible for a specific YRE-O or YRE-A preference, our analyses rather suggest that the ancestral yeast AP-1 protein could recognize both YRE-O and YRE-A motifs and that the arginine/lysine exchange is not the only determinant of the specialization of modern Yaps for one motif or another.
Collapse
Affiliation(s)
- Christel Goudot
- Dynamique des Structures et Interactions des Macromolécules Biologiques (DSIMB), INSERM, U665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S665, Paris, France
- INTS, Paris, France
| | - Catherine Etchebest
- Dynamique des Structures et Interactions des Macromolécules Biologiques (DSIMB), INSERM, U665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S665, Paris, France
- INTS, Paris, France
| | - Frédéric Devaux
- Laboratoire de Génomique des Microorganismes, UMR7238 CNRS, Université Pierre et Marie Curie, Paris, France
| | - Gaëlle Lelandais
- Dynamique des Structures et Interactions des Macromolécules Biologiques (DSIMB), INSERM, U665, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, UMR-S665, Paris, France
- INTS, Paris, France
| |
Collapse
|
27
|
Diagnosis of Antifungal Drug Resistance Mechanisms in Fungal Pathogens: Transcriptional Gene Regulation. CURRENT FUNGAL INFECTION REPORTS 2011. [DOI: 10.1007/s12281-011-0055-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Regulation of efflux pump expression and drug resistance by the transcription factors Mrr1, Upc2, and Cap1 in Candida albicans. Antimicrob Agents Chemother 2011; 55:2212-23. [PMID: 21402859 DOI: 10.1128/aac.01343-10] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Constitutive overexpression of the Mdr1 efflux pump is an important mechanism of acquired drug resistance in the yeast Candida albicans. The zinc cluster transcription factor Mrr1 is a central regulator of MDR1 expression, but other transcription factors have also been implicated in MDR1 regulation. To better understand how MDR1-mediated drug resistance is achieved in this fungal pathogen, we studied the interdependence of Mrr1 and two other MDR1 regulators, Upc2 and Cap1, in the control of MDR1 expression. A mutated, constitutively active Mrr1 could upregulate MDR1 and confer drug resistance in the absence of Upc2 or Cap1. On the other hand, Upc2 containing a gain-of-function mutation only slightly activated the MDR1 promoter, and this activation depended on the presence of a functional MRR1 gene. In contrast, a C-terminally truncated, activated form of Cap1 could upregulate MDR1 in a partially Mrr1-independent fashion. The induction of MDR1 expression by toxic chemicals occurred independently of Upc2 but required the presence of Mrr1 and also partially depended on Cap1. Transcriptional profiling and in vivo DNA binding studies showed that a constitutively active Mrr1 binds to and upregulates most of its direct target genes in the presence or absence of Cap1. Therefore, Mrr1 and Cap1 cooperate in the environmental induction of MDR1 expression in wild-type C. albicans, but gain-of-function mutations in either of the two transcription factors can independently mediate efflux pump overexpression and drug resistance.
Collapse
|
29
|
Differential requirement of the transcription factor Mcm1 for activation of the Candida albicans multidrug efflux pump MDR1 by its regulators Mrr1 and Cap1. Antimicrob Agents Chemother 2011; 55:2061-6. [PMID: 21343453 DOI: 10.1128/aac.01467-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Overexpression of the multidrug efflux pump Mdr1 causes increased fluconazole resistance in the pathogenic yeast Candida albicans. The transcription factors Mrr1 and Cap1 mediate MDR1 upregulation in response to inducing stimuli, and gain-of-function mutations in Mrr1 or Cap1, which render the transcription factors hyperactive, result in constitutive MDR1 overexpression. The essential MADS box transcription factor Mcm1 also binds to the MDR1 promoter, but its role in inducible or constitutive MDR1 upregulation is unknown. Using a conditional mutant in which Mcm1 can be depleted from the cells, we investigated the importance of Mcm1 for MDR1 expression. We found that Mcm1 was dispensable for MDR1 upregulation by H2O2 but was required for full MDR1 induction by benomyl. A C-terminally truncated, hyperactive Cap1 could upregulate MDR1 expression both in the presence and in the absence of Mcm1. In contrast, a hyperactive Mrr1 containing a gain-of-function mutation depended on Mcm1 to cause MDR1 overexpression. These results demonstrate a differential requirement for the coregulator Mcm1 for Cap1- and Mrr1-mediated MDR1 upregulation. When activated by oxidative stress or a gain-of-function mutation, Cap1 can induce MDR1 expression independently of Mcm1, whereas Mrr1 requires either Mcm1 or an active Cap1 to cause overexpression of the MDR1 efflux pump. Our findings provide more detailed insight into the molecular mechanisms of drug resistance in this important human fungal pathogen.
Collapse
|
30
|
Kofla G, Turner V, Schulz B, Storch U, Froelich D, Rognon B, Coste AT, Sanglard D, Ruhnke M. Doxorubicin induces drug efflux pumps inCandida albicans. Med Mycol 2011; 49:132-42. [DOI: 10.3109/13693786.2010.512022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
31
|
Siikala E, Rautemaa R, Richardson M, Saxen H, Bowyer P, Sanglard D. Persistent Candida albicans colonization and molecular mechanisms of azole resistance in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) patients. J Antimicrob Chemother 2010; 65:2505-13. [PMID: 20876623 DOI: 10.1093/jac/dkq354] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES Patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED, APS-I) suffer from chronic candidosis caused mainly by Candida albicans, and repeated courses of azole antifungals have led to the development of resistance in the APECED patient population in Finland. The aim of our study was to address whether the patients are persistently colonized with the same or genetically closely related strains, whether epidemic strains are present and which molecular mechanisms account for azole resistance. METHODS Sets of C. albicans (n = 19) isolates from nine APECED patients reported with decreased susceptibility to fluconazole isolated up to 9 years apart were included. The strains were typed by multilocus sequence typing. CDR1/2, MDR1 and ERG11 mRNA expression was analysed by northern blotting and Cdr1, Cdr2 and Mdr1 protein expression by western blotting, and TAC1 and ERG11 genes were sequenced. RESULTS All seven patients with multiple C. albicans isolates analysed were persistently colonized with the same or a genetically closely related strain for a mean of 5 years. All patients were colonized with different strains and no epidemic strains were found. The major molecular mechanisms behind the azole resistance were mutations in TAC1 contributing to overexpression of CDR1 and CDR2. Six new TAC1 mutations were found, one of which (N740S) is likely to be a gain-of-function mutation. Most isolates were found to have gained multiple TAC1 and ERG11 point mutations. CONCLUSIONS Despite clinically successful treatment leading to relief of symptoms, colonization by C. albicans strains is persistent within APECED patients. Microevolution and point mutations occur within strains, leading to the development of azole-resistant isolates.
Collapse
Affiliation(s)
- Emilia Siikala
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
32
|
Marui J, Yoshimi A, Hagiwara D, Fujii-Watanabe Y, Oda K, Koike H, Tamano K, Ishii T, Sano M, Machida M, Abe K. Use of the Aspergillus oryzae actin gene promoter in a novel reporter system for exploring antifungal compounds and their target genes. Appl Microbiol Biotechnol 2010; 87:1829-40. [DOI: 10.1007/s00253-010-2627-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/13/2010] [Accepted: 04/14/2010] [Indexed: 12/11/2022]
|
33
|
Arana DM, Nombela C, Pla J. Fluconazole at subinhibitory concentrations induces the oxidative- and nitrosative-responsive genes TRR1, GRE2 and YHB1, and enhances the resistance of Candida albicans to phagocytes. J Antimicrob Chemother 2010; 65:54-62. [PMID: 19897505 DOI: 10.1093/jac/dkp407] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES To analyse the oxidative and nitrosative stress response in Candida albicans generated by fluconazole at subinhibitory concentrations, and the functional consequences of such a response for the interaction with phagocytic cells. METHODS The C. albicans CAI-4 strain carrying transcriptional fusions of the TRR1p, YHB1p and GRE2p genes to the Renilla reniformis luciferase LUC gene was pre-treated with subinhibitory concentrations of fluconazole and incubated with oxidants (diamide and hydrogen peroxide) or with the myelomonocytic cell line HL-60. RESULTS Fluconazole induced oxidative and nitrosative stress in a time- and dose-dependent manner as determined using oxidative- and nitrosative-specific gene reporters. At subinhibitory concentrations, fluconazole was able to induce protection in vitro to subsequent challenges with oxidants in both liquid and solid media, and also induced partial protection against the oxidative-mediated killing mechanisms of the myelocytic HL-60 cells. CONCLUSIONS Subinhibitory concentrations of fluconazole protect against oxidants and killing mediated by phagocytes.
Collapse
Affiliation(s)
- David M Arana
- Departamento de Microbiología II, Universidad Complutense de Madrid, Spain
| | | | | |
Collapse
|
34
|
Morschhäuser J. Regulation of multidrug resistance in pathogenic fungi. Fungal Genet Biol 2010; 47:94-106. [DOI: 10.1016/j.fgb.2009.08.002] [Citation(s) in RCA: 215] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/21/2009] [Accepted: 08/02/2009] [Indexed: 12/21/2022]
|
35
|
Manoharlal R, Gorantala J, Sharma M, Sanglard D, Prasad R. PAP1 [poly(A) polymerase 1] homozygosity and hyperadenylation are major determinants of increased mRNA stability of CDR1 in azole-resistant clinical isolates of Candida albicans. MICROBIOLOGY-SGM 2009; 156:313-326. [PMID: 19910410 DOI: 10.1099/mic.0.035154-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Using genetically matched azole-susceptible (AS) and azole-resistant (AR) clinical isolates of Candida albicans, we recently demonstrated that CDR1 overexpression in AR isolates is due to its enhanced transcriptional activation and mRNA stability. This study examines the molecular mechanisms underlying enhanced CDR1 mRNA stability in AR isolates. Mapping of the 3' untranslated region (3' UTR) of CDR1 revealed that it was rich in adenylate/uridylate (AU) elements, possessed heterogeneous polyadenylation sites, and had putative consensus sequences for RNA-binding proteins. Swapping of heterologous and chimeric lacZ-CDR1 3' UTR transcriptional reporter fusion constructs did not alter the reporter activity in AS and AR isolates, indicating that cis-acting sequences within the CDR1 3' UTR itself are not sufficient to confer the observed differential mRNA decay. Interestingly, the poly(A) tail of the CDR1 mRNA of AR isolates was approximately 35-50 % hyperadenylated as compared with AS isolates. C. albicans poly(A) polymerase (PAP1), responsible for mRNA adenylation, resides on chromosome 5 in close proximity to the mating type-like (MTL) locus. Two different PAP1 alleles, PAP1-a/PAP1-alpha, were recovered from AS (MTL-a/MTL-alpha), while a single type of PAP1 allele (PAP1-alpha) was recovered from AR isolates (MTL-alpha/MTL-alpha). Among the heterozygous deletions of PAP1-a (Deltapap1-a/PAP1-alpha) and PAP1-alpha (PAP1-a/Deltapap1-alpha), only the former led to relatively enhanced drug resistance, to polyadenylation and to transcript stability of CDR1 in the AS isolate. This suggests a dominant negative role of PAP1-a in CDR1 transcript polyadenylation and stability. Taken together, our study provides the first evidence, to our knowledge, that loss of heterozygosity at the PAP1 locus is linked to hyperadenylation and subsequent increased stability of CDR1 transcripts, thus contributing to enhanced drug resistance.
Collapse
Affiliation(s)
- Raman Manoharlal
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Jyotsna Gorantala
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Monika Sharma
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Dominique Sanglard
- Institute of Microbiology, University Hospital Lausanne, Lausanne CH-1011, Switzerland
| | - Rajendra Prasad
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
36
|
Sanglard D, Coste A, Ferrari S. Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. FEMS Yeast Res 2009; 9:1029-50. [PMID: 19799636 DOI: 10.1111/j.1567-1364.2009.00578.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Fungi are primitive eukaryotes and have adapted to a variety of niches during evolution. Some fungal species may interact with other life forms (plants, insects, mammals), but are considered as pathogens when they cause mild to severe diseases. Chemical control strategies have emerged with the development of several drugs with antifungal activity against pathogenic fungi. Antifungal agents have demonstrated their efficacy by improving patient health in medicine. However, fungi have counteracted antifungal agents in several cases by developing resistance mechanisms. These mechanisms rely on drug resistance genes including multidrug transporters and drug targets. Their regulation is crucial for the development of antifungal drug resistance and therefore transcriptional factors critical for their regulation are being characterized. Recent genome-wide studies have revealed complex regulatory circuits involving these genetic and transcriptional regulators. Here, we review the current understanding of the transcriptional regulation of drug resistance genes from several fungal pathogens including Candida and Aspergillus species.
Collapse
Affiliation(s)
- Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital Center, 1011 Lausanne, Switzerland.
| | | | | |
Collapse
|
37
|
Abstract
Antifungal resistance caused by mutations of the drug target, overexpression of the drug target, and drug efflux by the upregulation of transporters is increasingly common. Recently our understanding of fungal drug resistance has been advanced by the identification of three key transcriptional regulators of resistance: Tac1p, Upc2p, and Mrr1p. The discovery of hyperactive variants of these regulators in resistant clinical isolates confirms the importance of transcriptional regulation in the development of antifungal resistance. Alternative mechanisms of drug resistance including aneuploidy and biofilm formation have recently been documented in fungi; as well as the phenomenon of drug tolerance. Characterization of the transcriptional regulation of fungal drug resistance and the identification of novel mechanisms of resistance has implications for current therapy and for the development of future antifungal drugs.
Collapse
|
38
|
Yan L, Li M, Cao Y, Gao P, Cao Y, Wang Y, Jiang Y. The alternative oxidase of Candida albicans causes reduced fluconazole susceptibility. J Antimicrob Chemother 2009; 64:764-73. [DOI: 10.1093/jac/dkp273] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Abstract
Pathogens must be able to overcome both host defenses and antimicrobial treatment in order to successfully infect and maintain colonization of the host. One way fungi accomplish this feat and overcome intercellular toxin accumulation is efflux pumps, in particular ATP-binding cassette transporters and transporters of the major facilitator superfamily. Members of these two superfamilies remove many toxic compounds by coupling transport with ATP hydrolysis or a proton gradient, respectively. Fungal genomes encode a plethora of members of these families of transporters compared to other organisms. In this review we discuss the role these two fungal superfamilies of transporters play in virulence and resistance to antifungal agents. These efflux transporters are responsible not only for export of compounds involved in pathogenesis such as secondary metabolites, but also export of host-derived antimicrobial compounds. In addition, we examine the current knowledge of these transporters in resistance of pathogens to clinically relevant antifungal agents.
Collapse
Affiliation(s)
- Jeffrey J. Coleman
- Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
40
|
Chen CG, Yang YL, Tseng KY, Shih HI, Liou CH, Lin CC, Lo HJ. Rep1p negatively regulating MDR1 efflux pump involved in drug resistance in Candida albicans. Fungal Genet Biol 2009; 46:714-20. [PMID: 19527793 DOI: 10.1016/j.fgb.2009.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 06/03/2009] [Accepted: 06/09/2009] [Indexed: 11/28/2022]
Abstract
Overexpression of MDR1 efflux pump is a major mechanism contributing to drug resistance in Candida albicans, the most common human fungal pathogen. To elucidate the regulatory pathway of drug resistance, we have identified a negative regulator of MDR1 and named it Regulator of Efflux Pump 1 (REP1). Overexpression of REP1 in Saccharomyces cerevisiae increased susceptibility to fluconazole. Furthermore, null mutations on REP1 decreased the susceptibility to antifungal drugs in C. albicans resulting from increased expression of MDR1 mRNA. Hence, Rep1p is involved in drug resistance by negatively regulating MDR1 in C. albicans.
Collapse
Affiliation(s)
- Chia-Geun Chen
- Institute of Preventive Medicine, National Defense Medical Center, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Cap1p, a transcription factor of the basic region leucine zipper family, regulates the oxidative stress response (OSR) in Candida albicans. Alteration of its C-terminal cysteine-rich domain (CRD) results in Cap1p nuclear retention and transcriptional activation. To better understand the function of Cap1p in C. albicans, we used genome-wide location profiling (chromatin immunoprecipitation-on-chip) to identify its transcriptional targets in vivo. A triple-hemagglutinin (HA(3)) epitope was introduced at the C terminus of wild-type Cap1p (Cap1p-HA(3)) or hyperactive Cap1p with an altered CRD (Cap1p-CSE-HA(3)). Location profiling using whole-genome oligonucleotide tiling microarrays identified 89 targets bound by Cap1p-HA(3) or Cap1p-CSE-HA(3) (the binding ratio was at least twofold; P < or = 0.01). Strikingly, Cap1p binding was detected not only at the promoter region of its target genes but also at their 3' ends and within their open reading frames, suggesting that Cap1p may associate with the transcriptional or chromatin remodeling machinery to exert its activity. Overrepresented functional groups of the Cap1p targets (P < or = 0.02) included 11 genes involved in the OSR (CAP1, GLR1, TRX1, SOD1, CAT1, and others), 13 genes involved in response to drugs (PDR16, MDR1, FLU1, YCF1, FCR1, and others), 4 genes involved in phospholipid transport (PDR16, GIT1, RTA2, and orf19.932), and 3 genes involved in the regulation of nitrogen utilization (GST3, orf19.2693, and orf19.3121), suggesting that Cap1p has other cellular functions in addition to the OSR. Bioinformatic analyses of the bound sequences suggest that Cap1p recognizes the DNA motif 5'-MTKASTMA. Finally, transcriptome analyses showed that increased expression generally accompanies Cap1p binding at its targets, indicating that Cap1p functions as a transcriptional activator.
Collapse
|
42
|
Cannon RD, Lamping E, Holmes AR, Niimi K, Baret PV, Keniya MV, Tanabe K, Niimi M, Goffeau A, Monk BC. Efflux-mediated antifungal drug resistance. Clin Microbiol Rev 2009; 22:291-321, Table of Contents. [PMID: 19366916 PMCID: PMC2668233 DOI: 10.1128/cmr.00051-08] [Citation(s) in RCA: 403] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fungi cause serious infections in the immunocompromised and debilitated, and the incidence of invasive mycoses has increased significantly over the last 3 decades. Slow diagnosis and the relatively few classes of antifungal drugs result in high attributable mortality for systemic fungal infections. Azole antifungals are commonly used for fungal infections, but azole resistance can be a problem for some patient groups. High-level, clinically significant azole resistance usually involves overexpression of plasma membrane efflux pumps belonging to the ATP-binding cassette (ABC) or the major facilitator superfamily class of transporters. The heterologous expression of efflux pumps in model systems, such Saccharomyces cerevisiae, has enabled the functional analysis of efflux pumps from a variety of fungi. Phylogenetic analysis of the ABC pleiotropic drug resistance family has provided a new view of the evolution of this important class of efflux pumps. There are several ways in which the clinical significance of efflux-mediated antifungal drug resistance can be mitigated. Alternative antifungal drugs, such as the echinocandins, that are not efflux pump substrates provide one option. Potential therapeutic approaches that could overcome azole resistance include targeting efflux pump transcriptional regulators and fungal stress response pathways, blockade of energy supply, and direct inhibition of efflux pumps.
Collapse
Affiliation(s)
- Richard D Cannon
- Department of Oral Sciences, School of Dentistry, University of Otago, P.O. Box 647, Dunedin 9054, New Zealand.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Eckert SE, Mühlschlegel FA. Promoter regulation inCandida albicansand related species. FEMS Yeast Res 2009; 9:2-15. [DOI: 10.1111/j.1567-1364.2008.00455.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
44
|
Lelandais G, Tanty V, Geneix C, Etchebest C, Jacq C, Devaux F. Genome adaptation to chemical stress: clues from comparative transcriptomics in Saccharomyces cerevisiae and Candida glabrata. Genome Biol 2008; 9:R164. [PMID: 19025642 PMCID: PMC2614496 DOI: 10.1186/gb-2008-9-11-r164] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 11/24/2008] [Indexed: 12/21/2022] Open
Abstract
Comparative transcriptomics of Saccharomyces cerevisiae and Candida glabrata revealed a remarkable conservation of response to drug-induced stress, despite underlying differences in the regulatory networks. Background Recent technical and methodological advances have placed microbial models at the forefront of evolutionary and environmental genomics. To better understand the logic of genetic network evolution, we combined comparative transcriptomics, a differential clustering algorithm and promoter analyses in a study of the evolution of transcriptional networks responding to an antifungal agent in two yeast species: the free-living model organism Saccharomyces cerevisiae and the human pathogen Candida glabrata. Results We found that although the gene expression patterns characterizing the response to drugs were remarkably conserved between the two species, part of the underlying regulatory networks differed. In particular, the roles of the oxidative stress response transcription factors ScYap1p (in S. cerevisiae) and Cgap1p (in C. glabrata) had diverged. The sets of genes whose benomyl response depends on these factors are significantly different. Also, the DNA motifs targeted by ScYap1p and Cgap1p are differently represented in the promoters of these genes, suggesting that the DNA binding properties of the two proteins are slightly different. Experimental assays of ScYap1p and Cgap1p activities in vivo were in accordance with this last observation. Conclusions Based on these results and recently published data, we suggest that the robustness of environmental stress responses among related species contrasts with the rapid evolution of regulatory sequences, and depends on both the coevolution of transcription factor binding properties and the versatility of regulatory associations within transcriptional networks.
Collapse
Affiliation(s)
- Gaëlle Lelandais
- Equipe de Bioinformatique Génomique et Moléculaire, INSERM UMR S726, Université Paris 7, INTS, 6 rue Alexandre Cabanel, 75015 Paris, France.
| | | | | | | | | | | |
Collapse
|
45
|
Gain-of-function mutations in the transcription factor MRR1 are responsible for overexpression of the MDR1 efflux pump in fluconazole-resistant Candida dubliniensis strains. Antimicrob Agents Chemother 2008; 52:4274-80. [PMID: 18809934 DOI: 10.1128/aac.00740-08] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida dubliniensis, a yeast that is closely related to Candida albicans, can rapidly develop resistance to the commonly used antifungal agent fluconazole in vitro and in vivo during antimycotic therapy. Fluconazole resistance in C. dubliniensis is usually caused by constitutive overexpression of the MDR1 gene, which encodes a multidrug efflux pump of the major facilitator superfamily. The zinc cluster transcription factor Mrr1p has recently been shown to control MDR1 expression in C. albicans in response to inducing stimuli, and gain-of-function mutations in the MRR1 gene result in constitutive upregulation of the MDR1 efflux pump. We identified a gene with a high degree of similarity to C. albicans MRR1 (CaMRR1) in the C. dubliniensis genome sequence. When C. dubliniensis MRR1 (CdMRR1) was expressed in C. albicans mrr1Delta mutants, it restored benomyl-inducible MDR1 expression, demonstrating that CdMRR1 is the ortholog of CaMRR1. To investigate whether MDR1 overexpression in C. dubliniensis is caused by mutations in MRR1, we sequenced the MRR1 alleles from a fluconazole-resistant, clinical C. dubliniensis isolate and a matched, fluconazole-susceptible isolate from the same patient as well as those from four in vitro-generated, fluconazole-resistant C. dubliniensis strains derived from two different C. dubliniensis isolates. We found that all five resistant strains contained single nucleotide substitutions or small in-frame deletions that resulted in amino acid changes in Mrr1p. Expression of these mutated alleles in C. albicans resulted in the constitutive activation of the MDR1 promoter and multidrug resistance. Therefore, mutations in MRR1 are the major cause of MDR1 upregulation in both C. albicans and C. dubliniensis, demonstrating that the transcription factor Mrr1p plays a central role in the development of drug resistance in these human fungal pathogens.
Collapse
|
46
|
Dunkel N, Blass J, Rogers PD, Morschhäuser J. Mutations in the multi-drug resistance regulator MRR1, followed by loss of heterozygosity, are the main cause of MDR1 overexpression in fluconazole-resistant Candida albicans strains. Mol Microbiol 2008; 69:827-40. [PMID: 18577180 DOI: 10.1111/j.1365-2958.2008.06309.x] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Overexpression of the MDR1 gene, encoding a multi-drug efflux pump of the major facilitator superfamily, is a major cause of resistance to the widely used antifungal agent fluconazole and other toxic substances in the fungal pathogen Candida albicans. We found that all tested clinical and in vitro generated C. albicans strains that had become fluconazole-resistant by constitutive MDR1 upregulation contained mutations in the MRR1 gene, which encodes a transcription factor that controls MDR1 expression. Introduction of the mutated alleles into a drug-susceptible C. albicans strain resulted in activation of the MDR1 promoter and multi-drug resistance, confirming that the amino acid substitutions in Mrr1p were gain-of-function mutations that rendered the transcription factor constitutively active. The majority of the MDR1 overexpressing strains had become homozygous for the mutated MRR1 alleles, demonstrating that the increased resistance level conferred by two gain-of-function alleles provides sufficient advantage to select for the loss of heterozygosity in the presence of fluconazole both in vitro and within the human host during therapy. Loss of heterozygosity usually occurred by mitotic recombination between the two chromosome 3 homologues on which MRR1 is located, but evidence for complete loss of one chromosome and duplication of the chromosome containing the mutated MRR1 allele was also obtained in two in vitro generated fluconazole-resistant strains. These results demonstrate that gain-of-function mutations in MRR1 are the major, if not the sole, mechanism of MDR1 overexpression in fluconazole-resistant strains and that this transcription factor plays a central role in the development of drug resistance in C. albicans.
Collapse
Affiliation(s)
- Nico Dunkel
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Würzburg, Germany
| | | | | | | |
Collapse
|
47
|
Divergent functions of three Candida albicans zinc-cluster transcription factors (CTA4, ASG1 and CTF1) complementing pleiotropic drug resistance in Saccharomyces cerevisiae. Microbiology (Reading) 2008; 154:1491-1501. [DOI: 10.1099/mic.0.2007/016063-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
48
|
Stress, drugs, and evolution: the role of cellular signaling in fungal drug resistance. EUKARYOTIC CELL 2008; 7:747-64. [PMID: 18375617 DOI: 10.1128/ec.00041-08] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
The evolution of fungal drug resistance: modulating the trajectory from genotype to phenotype. Nat Rev Microbiol 2008; 6:187-98. [PMID: 18246082 DOI: 10.1038/nrmicro1835] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The emergence of drug resistance in pathogenic microorganisms provides an excellent example of microbial evolution that has had profound consequences for human health. The widespread use of antimicrobial agents in medicine and agriculture exerts strong selection for the evolution of drug resistance. Selection acts on the phenotypic consequences of resistance mutations, which are influenced by the genetic variation in particular genomes. Recent studies have revealed a mechanism by which the molecular chaperone heat shock protein 90 (Hsp90) can alter the relationship between genotype and phenotype in an environmentally contingent manner, thereby 'sculpting' the course of evolution. Harnessing Hsp90 holds great promise for treating life-threatening infectious diseases.
Collapse
|
50
|
Vogel M, Hartmann T, Köberle M, Treiber M, Autenrieth IB, Schumacher UK. Rifampicin induces MDR1 expression in Candida albicans. J Antimicrob Chemother 2008; 61:541-7. [PMID: 18238892 DOI: 10.1093/jac/dkm513] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Overexpression of efflux pumps such as MDR1 has been identified as an important mechanism contributing to fluconazole resistance in Candida albicans. This phenomenon is frequently observed in fluconazole-resistant strains isolated from AIDS patients treated with various pharmaceuticals. Therefore, we hypothesized that some of these compounds might influence the expression of genes responsible for fluconazole resistance. METHODS We examined a variety of clinically relevant compounds for their in vitro effects on MDR1 expression with a C. albicans reporter strain containing a transcriptional fusion of the MDR1 promoter (MDR1P) with the gfp gene. Activation of the MDR1 promoter and subsequent green fluorescent protein production was determined by fluorescence microscopy and flow cytometry. Additionally, MDR1 transcription was confirmed and quantified by RT-PCR analysis, followed by Mdr1p detection by western blot. Finally, the effect of a selected agent on resistance to fluconazole was tested by chequerboard titration of both substances. RESULTS Of 15 compounds tested, only rifampicin induced a rapid and dose-dependent increase in MDR1 expression (up to 122-fold induction), whereas structurally related molecules such as rifabutin and rifamycin were not active. Induction of MDR1 expression upon rifampicin exposure was also observed in 10 blood culture isolates. In contrast, rifampicin exposure did not markedly affect the expression of the transporters CDR1 and CDR2. Increased MDR1 expression was accompanied by elevated MICs for fluconazole after exposure of C. albicans to rifampicin, whereas Mdr1p expression was only moderately induced. CONCLUSIONS Out of the compounds examined, only rifampicin specifically induced MDR1 expression in all C. albicans strains tested. Rifampicin may play a general role in signal transduction or another means of modulation of gene expression in C. albicans.
Collapse
Affiliation(s)
- Miriam Vogel
- Institut für Medizinische Mikrobiologie und Hygiene, Eberhard-Karls-Universität, 72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|