1
|
Ndiaye N, Teixeira DD, Dia ND, Da Silva Leite CC, Fall G, Furtado UD, Dieye Y, Sanches M, Kébé O, Thiaw FD, Sall AA, Faye O, Diallo B, Sow A, Faye M. An outbreak of atypical hand, foot and mouth disease associated Coxsackievirus A6 in children from Cape Verde, 2023. Virol J 2025; 22:48. [PMID: 39994778 PMCID: PMC11853985 DOI: 10.1186/s12985-025-02621-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/01/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Rash is a common childhood infection, mainly caused by viruses. Hand, foot, and mouth disease (HFMD), a common viral rash infection, has become one of the most common infectious diseases in Asian countries and caused outbreaks in children and adults worldwide. Following the introduction of enterovirus A71 (EVA71) vaccines, Coxsackievirus A6 (CVA6) has recently emerged. However, the disease is not commonly reported in Africa, where studies are scarce. METHODS In the current study, we focused on the HFMD outbreak that occurred in Cape Verde in July 2023 during field investigations around a cluster of patients with rash and fever. Samples collected from patients were tested using Measles and Rubella-specific immunoglobulin M and quantitative reverse transcription PCR (qRT-PCR) of a panel of viruses causing rashes and subjected to genome sequencing followed by phylogenetic analysis. RESULTS Eighteen out of the 22 samples were tested positive for CVA6 RNA by real-time RT-PCR, of which two tested also positive for EVA71 and Coxsackievirus A16 (CVA16). Subsequent sequencing revealed that all CVA6 sequences belonged to the D genotype, particularly the D3 sub-genotype recently described in China. CONCLUSION Our study uncovers the first-ever reported outbreak of CVA6 associated with atypical HFMD in children from Cape Verde and highlights thus the need to implement an active hospital-based HFMD surveillance in Africa.
Collapse
Affiliation(s)
- Ndack Ndiaye
- Virology Department, Institut Pasteur de Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal.
| | - Domingos Dias Teixeira
- Ministry of Health and Social Security, Palácio do Governo, CP 47, Praia, Santiago Island, Cape Verde
| | - NDongo Dia
- Virology Department, Institut Pasteur de Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
| | | | - Gamou Fall
- Virology Department, Institut Pasteur de Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
| | - Ulardina Domingos Furtado
- Ministry of Health and Social Security, Palácio do Governo, CP 47, Praia, Santiago Island, Cape Verde
| | - Yakhya Dieye
- Microbiology Department, Institut Pasteur de Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
| | - Mitsa Sanches
- Paediatrics Service, Hospital Dr Agostinho Neto, 7401167 Rua Borjona de Freitas, Praia, Santiago Island, Cape Verde
| | - Ousmane Kébé
- Virology Department, Institut Pasteur de Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
| | - Fatou Diène Thiaw
- Virology Department, Institut Pasteur de Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
| | - Amadou Alpha Sall
- Virology Department, Institut Pasteur de Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
| | - Ousmane Faye
- Public Health Direction, Institut Pasteur de Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
| | - Boubacar Diallo
- Public Health Direction, Institut Pasteur de Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
| | - Abdourahmane Sow
- Public Health Direction, Institut Pasteur de Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
| | - Martin Faye
- Virology Department, Institut Pasteur de Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
| |
Collapse
|
2
|
Joyce AM, Hill JD, Tsoleridis T, Astbury S, Berry L, Howson-Wells HC, Allen N, Canning B, Jones CB, Clark G, Irving WL, Tarr AW, McClure CP. Coxsackievirus A6 U.K. Genetic and Clinical Epidemiology Pre- and Post-SARS-CoV-2 Emergence. Pathogens 2024; 13:1020. [PMID: 39599573 PMCID: PMC11597771 DOI: 10.3390/pathogens13111020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Coxsackievirus A6 (CVA6) has become increasingly clinically relevant as a cause of Hand, Foot and Mouth Disease (HFMD) globally since 2008. However, most laboratories do not routinely determine the enteroviral type of positive samples. The non-pharmaceutical measures introduced to curb transmission during the COVID-19 pandemic may also have perturbed CVA6 epidemiology. We thus aimed to determine the prevalence, clinical presentation and genetic relationship of CVA6 across three complete epidemic seasons: one pre-SARS-CoV-2 emergence and two post-SARS-CoV-2 emergence in our regional healthcare setting. Surplus diagnostic nucleic acid from diagnosed enteroviral positives diagnosed between September and December of 2018 and between May 2021 and April of 2023 was subject to VP1 gene sequencing to determine the CVA6 cases and interrogate their phylogenetic relationship. The confirmed CVA6 cases were also retrospectively clinically audited. CVA6 infections were identified in 33 and 69 individuals pre- and post-pandemic, respectively, with cases peaking in November of 2018 and 2022, but in October of 2021. HFMD was the primary diagnosis in 85.5% of the post-pandemic cases, but only 69.7% of the pre-pandemic cases, where respiratory and neurological symptoms (45.5% and 12.1%, respectively) were significantly elevated. A complete VP1 sequence was retrieved for 94% of the CVA6 cases, revealing that studied infections were genetically diverse and suggestive of multiple local and international transmission chains. CVA6 presented a significant clinical burden in our regional U.K. hospital setting both pre- and post-pandemic and was subject to dynamic clinical and genetic epidemiology.
Collapse
Affiliation(s)
- Alice M. Joyce
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jack D. Hill
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham NG7 2UH, UK
| | - Theocharis Tsoleridis
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham NG7 2UH, UK
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK
| | - Stuart Astbury
- Nottingham Digestive Diseases Centre, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
| | - Louise Berry
- Clinical Microbiology, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
| | - Hannah C. Howson-Wells
- Clinical Microbiology, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
| | - Nancy Allen
- Clinical Microbiology, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
| | - Ben Canning
- Clinical Microbiology, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
| | - Carl B. Jones
- Clinical Microbiology, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
| | - Gemma Clark
- Clinical Microbiology, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
| | - William L. Irving
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham NG7 2UH, UK
- Clinical Microbiology, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK
| | - Alexander W. Tarr
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham NG7 2UH, UK
| | - C. Patrick McClure
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
3
|
Puenpa J, Korkong S, Vichaiwattana P, Poovorawan Y. Genetic diversity and spread of recombinant coxsackievirus A4 in hand, foot, and mouth disease cases in Bangkok, Thailand: 2017-2023. Sci Rep 2024; 14:26902. [PMID: 39506010 PMCID: PMC11542068 DOI: 10.1038/s41598-024-77832-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
Coxsackievirus A4 (CVA4) has recently become one of the most common causative agents of hand, foot, and mouth disease. The current study investigated the genetic diversity and spread of recombinant CVA4 by analyzing circulating genotypes and recombinant strains in Bangkok, Thailand, from 2017 to 2023. Partial VP1, 3Dpol, and whole genome sequencing of CVA4 samples collected from collaborating hospitals were conducted. Phylogenetic analysis of CVA4 VP1 and 3Dpol genome regions revealed discordance, indicating recombination. The predominant CVA4 genotype was C3, primarily observed in 2019. The predominant genotype in 2017 was C1. D2, commonly found in China, was occasionally observed. In nucleotide similarity analysis, intertypic recombination between CVA4 and EV-A during the evolutionary history of the virus was evident, particularly in the nonstructural region. The estimated emergence of genotypes C1 and C3 in Thailand occurred around 2014, with an evolutionary rate of 5.8 × 10- 3 nucleotide substitutions per site per year. Genotype D2 exhibited notable variability across both the entire genome and the structural protein region compared to genotype C. Monitoring the genetic diversity and circulation of recombinant CVA4 is crucial for identifying newly emerging virus strains, enabling prompt public health responses and containment efforts, and enhancing surveillance in Thailand.
Collapse
Affiliation(s)
- Jiratchaya Puenpa
- Department of Pediatrics, Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand
| | - Sumeth Korkong
- Department of Pediatrics, Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand
| | - Preeyaporn Vichaiwattana
- Department of Pediatrics, Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Department of Pediatrics, Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, Thailand.
- FRS(T), The Royal Society of Thailand , Sanam Sueapa, Dusit, Bangkok, Thailand.
| |
Collapse
|
4
|
Chen Y, Chen S, Shen Y, Li Z, Li X, Zhang Y, Zhang X, Wang F, Jin Y. Molecular Evolutionary Dynamics of Coxsackievirus A6 Causing Hand, Foot, and Mouth Disease From 2021 to 2023 in China: Genomic Epidemiology Study. JMIR Public Health Surveill 2024; 10:e59604. [PMID: 39087568 DOI: 10.2196/59604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 08/02/2024] Open
Abstract
Background Hand, foot, and mouth disease (HFMD) is a global public health concern, notably within the Asia-Pacific region. Recently, the primary pathogen causing HFMD outbreaks across numerous countries, including China, is coxsackievirus (CV) A6, one of the most prevalent enteroviruses in the world. It is a new variant that has undergone genetic recombination and evolution, which might not only induce modifications in the clinical manifestations of HFMD but also heighten its pathogenicity because of nucleotide mutation accumulation. Objective The study assessed the epidemiological characteristics of HFMD in China and characterized the molecular epidemiology of the major pathogen (CV-A6) causing HFMD. We attempted to establish the association between disease progression and viral genetic evolution through a molecular epidemiological study. Methods Surveillance data from the Chinese Center for Disease Control and Prevention from 2021 to 2023 were used to analyze the epidemiological seasons and peaks of HFMD in Henan, China, and capture the results of HFMD pathogen typing. We analyzed the evolutionary characteristics of all full-length CV-A6 sequences in the NCBI database and the isolated sequences in Henan. To characterize the molecular evolution of CV-A6, time-scaled tree and historical population dynamics regarding CV-A6 sequences were estimated. Additionally, we analyzed the isolated strains for mutated or missing amino acid sites compared to the prototype CV-A6 strain. Results The 2021-2023 epidemic seasons for HFMD in Henan usually lasted from June to August, with peaks around June and July. The monthly case reporting rate during the peak period ranged from 20.7% (4854/23,440) to 35% (12,135/34,706) of the total annual number of cases. Analysis of the pathogen composition of 2850 laboratory-confirmed cases identified 8 enterovirus serotypes, among which CV-A6 accounted for the highest proportion (652/2850, 22.88%). CV-A6 emerged as the major pathogen for HFMD in 2022 (203/732, 27.73%) and 2023 (262/708, 37.01%). We analyzed all CV-A6 full-length sequences in the NCBI database and the evolutionary features of viruses isolated in Henan. In China, the D3 subtype gradually appeared from 2011, and by 2019, all CV-A6 virus strains belonged to the D3 subtype. The VP1 sequences analyzed in Henan showed that its subtypes were consistent with the national subtypes. Furthermore, we analyzed the molecular evolutionary features of CV-A6 using Bayesian phylogeny and found that the most recent common ancestor of CV-A6 D3 dates back to 2006 in China, earlier than the 2011 HFMD outbreak. Moreover, the strains isolated in 2023 had mutations at several amino acid sites compared to the original strain. Conclusions The CV-A6 virus may have been introduced and circulating covertly within China prior to the large-scale HFMD outbreak. Our laboratory testing data confirmed the fluctuation and periodic patterns of CV-A6 prevalence. Our study provides valuable insights into understanding the evolutionary dynamics of CV-A6.
Collapse
Affiliation(s)
- Yu Chen
- Department of Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shouhang Chen
- Department of Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yuanfang Shen
- Department of Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Zhi Li
- Department of Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiaolong Li
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yaodong Zhang
- Henan International Joint Laboratory of Children's Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiaolong Zhang
- NHC Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Fang Wang
- Department of Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Wang Z, Wen H. A review of the recombination events, mechanisms and consequences of Coxsackievirus A6. INFECTIOUS MEDICINE 2024; 3:100115. [PMID: 38974347 PMCID: PMC11225671 DOI: 10.1016/j.imj.2024.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/25/2024] [Accepted: 04/22/2024] [Indexed: 07/09/2024]
Abstract
Hand, foot, and mouth disease (HFMD) is one of the most common class C infectious diseases, posing a serious threat to public health worldwide. Enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16) have been regarded as the major pathogenic agents of HFMD; however, since an outbreak caused by coxsackievirus A6 (CV-A6) in France in 2008, CV-A6 has gradually become the predominant pathogen in many regions. CV-A6 infects not only children but also adults, and causes atypical clinical symptoms such as a more generalized rash, eczema herpeticum, high fever, and onychomadesis, which are different from the symptoms associated with EV-A71 and CV-A16. Importantly, the rate of genetic recombination of CV-A6 is high, which can lead to changes in virulence and the rapid evolution of other characteristics, thus posing a serious threat to public health. To date, no specific vaccines or therapeutics have been approved for CV-A6 prevention or treatment, hence it is essential to fully understand the relationship between recombination and evolution of this virus. Here, we systematically review the genetic recombination events of CV-A6 that have occurred worldwide and explore how these events have promoted virus evolution, thus providing important information regarding future HFMD surveillance and prevention.
Collapse
Affiliation(s)
- Zequn Wang
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Key Laboratory of Prevention and Control of Emerging Infectious Diseases, Biosafety in Universities of Shandong, Jinan 250012, China
| | - Hongling Wen
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Key Laboratory of Prevention and Control of Emerging Infectious Diseases, Biosafety in Universities of Shandong, Jinan 250012, China
| |
Collapse
|
6
|
Machado RS, Tavares FN, Sousa IP. Global landscape of coxsackieviruses in human health. Virus Res 2024; 344:199367. [PMID: 38561065 PMCID: PMC11002681 DOI: 10.1016/j.virusres.2024.199367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Coxsackieviruses-induced infections, particularly in infants and young children, are one of the most important public health issues in low- and middle-income countries, where the surveillance system varies substantially, and these manifestations have been disregarded. They are widespread throughout the world and are responsible for a broad spectrum of human diseases, from mildly symptomatic conditions to severe acute and chronic disorders. Coxsackieviruses (CV) have been found to have 27 identified genotypes, with overlaps in clinical phenotypes between genotypes. In this review, we present a concise overview of the most recent studies and findings of coxsackieviruses-associated disorders, along with epidemiological data that provides comprehensive details on the distribution, variability, and clinical manifestations of different CV types. We also highlight the significant roles that CV infections play in the emergence of neurodegenerative illnesses and their effects on neurocognition. The current role of CVs in oncolytic virotherapy is also mentioned. This review provides readers with a better understanding of coxsackieviruses-associated disorders and pointing the impact that CV infections can have on different organs with variable pathogenicity. A deeper knowledge of these infections could have implications in designing current surveillance and prevention strategies related to severe CVs-caused infections, as well as encourage studies to identify the emergence of more pathogenic types and the etiology of the most common and most severe disorders associated with coxsackievirus infection.
Collapse
Affiliation(s)
- Raiana S Machado
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Virologia e Parasitologia Molecular, Rio de Janeiro, 21040-900, Brasil; Programa de Pós-Graduação em Medicina Tropical, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brasil; Laboratório de Referência Regional em Enteroviroses, Seção de Virologia, Instituto Evandro Chagas, Rodovia BR 316‑ KM 07, S/N Bairro Levilândia, Ananindeua, PA 67030000, Brasil
| | - Fernando N Tavares
- Laboratório de Referência Regional em Enteroviroses, Seção de Virologia, Instituto Evandro Chagas, Rodovia BR 316‑ KM 07, S/N Bairro Levilândia, Ananindeua, PA 67030000, Brasil
| | - Ivanildo P Sousa
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Virologia e Parasitologia Molecular, Rio de Janeiro, 21040-900, Brasil.
| |
Collapse
|
7
|
Lee JE, Kim MJ, Lim MH, Han SJ, Kim JY, Kim SH, Ha YD, Gang GL, Chung YS, Seo JM. Epidemiological and Genetic Characterization of Coxsackievirus A6-Associated Hand, Foot, and Mouth Disease in Gwangju, South Korea, in 2022. Viruses 2024; 16:476. [PMID: 38543842 PMCID: PMC10975452 DOI: 10.3390/v16030476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 05/23/2024] Open
Abstract
Coxsackievirus A6 (CV-A6) has emerged as the predominant causative agent of hand, foot, and mouth disease (HFMD) in young children. Since the declaration of coronavirus disease 2019 (COVID-19) as a global pandemic, the incidence of infectious diseases, including HFMD, has decreased markedly. When social mitigation was relaxed during the COVID-19 pandemic in 2022, the re-emergence of HFMD was observed in Gwangju, South Korea, and seasonal characteristics of the disease appeared to have changed. To investigate the molecular characteristics of enterovirus (EV) associated with HFMD during 2022, 277 specimens were collected. Children aged younger than 5 years accounted for the majority of affected individuals. EV detection and genotyping were performed using real-time RT-PCR and nested RT-PCR followed by sequence analysis. The EV detection rate was found to be 82.3%, and the main genotype identified was CV-A6. Sixteen CV-A6 samples were selected for whole genome sequencing. According to phylogenetic analysis, all CV-A6 strains from this study belonged to the sub-genotype D3 clade based on VP1 sequences. Analysis of 3D polymerase phylogeny showed that only the recombinant RF-A group was identified. In conclusion, circulating EV types should be continuously monitored to understand pathogen emergence and evolution during the post-pandemic era.
Collapse
Affiliation(s)
- Ji-Eun Lee
- Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (M.-J.K.); (M.-H.L.); (S.-J.H.); (J.-Y.K.); (S.-H.K.); (Y.-D.H.); (G.-L.G.); (J.-M.S.)
| | - Min-Ji Kim
- Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (M.-J.K.); (M.-H.L.); (S.-J.H.); (J.-Y.K.); (S.-H.K.); (Y.-D.H.); (G.-L.G.); (J.-M.S.)
| | - Mi-Hyeon Lim
- Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (M.-J.K.); (M.-H.L.); (S.-J.H.); (J.-Y.K.); (S.-H.K.); (Y.-D.H.); (G.-L.G.); (J.-M.S.)
| | - Sue-Ji Han
- Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (M.-J.K.); (M.-H.L.); (S.-J.H.); (J.-Y.K.); (S.-H.K.); (Y.-D.H.); (G.-L.G.); (J.-M.S.)
| | - Jin-Yeong Kim
- Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (M.-J.K.); (M.-H.L.); (S.-J.H.); (J.-Y.K.); (S.-H.K.); (Y.-D.H.); (G.-L.G.); (J.-M.S.)
| | - Soo-Hoo Kim
- Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (M.-J.K.); (M.-H.L.); (S.-J.H.); (J.-Y.K.); (S.-H.K.); (Y.-D.H.); (G.-L.G.); (J.-M.S.)
| | - Yi-Duen Ha
- Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (M.-J.K.); (M.-H.L.); (S.-J.H.); (J.-Y.K.); (S.-H.K.); (Y.-D.H.); (G.-L.G.); (J.-M.S.)
| | - Gyung-Li Gang
- Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (M.-J.K.); (M.-H.L.); (S.-J.H.); (J.-Y.K.); (S.-H.K.); (Y.-D.H.); (G.-L.G.); (J.-M.S.)
| | - Yoon-Seok Chung
- Division of High-Risk Pathogen, Bureau of Infectious Diseases Diagnosis Control, Korea Disease Control and Prevention Agency (KDCA), Cheongju 28159, Republic of Korea
| | - Jung-Mi Seo
- Health and Environment Research Institute of Gwangju, Gwangju 61954, Republic of Korea; (M.-J.K.); (M.-H.L.); (S.-J.H.); (J.-Y.K.); (S.-H.K.); (Y.-D.H.); (G.-L.G.); (J.-M.S.)
| |
Collapse
|
8
|
Chen Y, Nguyet LA, Nhan LNT, Qui PT, Nhu LNT, Hong NTT, Ny NTH, Anh NT, Thanh LK, Phuong HT, Vy NHT, Thanh NTL, Khanh TH, Hung NT, Viet DC, Nam NT, Chau NVV, van Doorn HR, Tan LV, Clapham H. Age-time-specific transmission of hand-foot-and-mouth disease enterovirus serotypes in Vietnam: A catalytic model with maternal immunity. Epidemics 2024; 46:100754. [PMID: 38428358 PMCID: PMC10945305 DOI: 10.1016/j.epidem.2024.100754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/05/2024] [Accepted: 02/24/2024] [Indexed: 03/03/2024] Open
Abstract
Hand, foot and mouth disease (HFMD) is highly prevalent in the Asia Pacific region, particularly in Vietnam. To develop effective interventions and efficient vaccination programs, we inferred the age-time-specific transmission patterns of HFMD serotypes enterovirus A71 (EV-A71), coxsackievirus A6 (CV-A6), coxsackievirus A10 (CV-A10), coxsackievirus A16 (CV-A16) in Ho Chi Minh City, Vietnam from a case data collected during 2013-2018 and a serological survey data collected in 2015 and 2017. We proposed a catalytic model framework with good adaptability to incorporate maternal immunity using various mathematical functions. Our results indicate the high-level transmission of CV-A6 and CV-A10 which is not obvious in the case data, due to the variation of disease severity across serotypes. Our results provide statistical evidence supporting the strong association between severe illness and CV-A6 and EV-A71 infections. The HFMD dynamic pattern presents a cyclical pattern with large outbreaks followed by a decline in subsequent years. Additionally, we identify the age group with highest risk of infection as 1-2 years and emphasise the risk of future outbreaks as over 50% of children aged 6-7 years were estimated to be susceptible to CV-A16 and EV-A71. Our study highlights the importance of multivalent vaccines and active surveillance for different serotypes, supports early vaccination prior to 1 year old, and points out the potential utility for vaccinating children older than 5 years old in Vietnam.
Collapse
Affiliation(s)
- Yining Chen
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore.
| | - Lam Anh Nguyet
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | | | - Phan Tu Qui
- Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
| | | | | | - Nguyen Thi Han Ny
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | - Nguyen To Anh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | - Le Kim Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | - Huynh Thi Phuong
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | - Nguyen Ha Thao Vy
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | | | | | | | - Do Chau Viet
- Children's Hospital 2, Ho Chi Minh City, Viet Nam
| | | | - Nguyen Van Vinh Chau
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam; Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
| | - H Rogier van Doorn
- Oxford University Clinical Research Unit, Hanoi, Viet Nam; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Le Van Tan
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Hannah Clapham
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| |
Collapse
|
9
|
Starkey SY, Mar K, Khaslavsky S, Seeburruth D, Khalid B, Virmani D, Lam JM, Mukovozov I. Atypical cutaneous findings of hand-foot-mouth disease in children: A systematic review. Pediatr Dermatol 2024; 41:23-27. [PMID: 37877202 DOI: 10.1111/pde.15461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/08/2023] [Indexed: 10/26/2023]
Abstract
INTRODUCTION Hand-foot-mouth disease (HFMD) is a common childhood infectious disease. Atypical skin findings of HFMD, often associated with coxsackievirus A6 (CVA6), were first reported in 2008, with increasing reports worldwide since. Atypical lesions of HFMD often involve sites beyond the palms and soles and tend to have unusual, polymorphic morphology. METHODS A systematic review was conducted on clinical features and outcomes of pediatric HFMD with atypical cutaneous manifestations. RESULTS Eighty-five studies were included, representing 1359 cases with mean age 2.4 years and a male predominance of 61%. The most reported morphologies were vesicles (53%), papules (49%), and bullae (36%). Other morphologies included eczema herpeticum-like (19%), purpuric/petechial (7%), and Gianotti Crosti-like (4%). Common atypical sites included the arms and/or legs (47%), face (45%), and trunk (27%). CVA6 was identified in 63% of cases. Symptoms resolved in a mean of 10 days. Overall, 16% of cases received treatment, most commonly with acyclovir, intravenous antibiotics, or topical steroids. The most common complications were nail changes (21%) and desquamation (4%) which occurred a mean of 3 and 2 weeks after symptoms, respectively. CONCLUSION Due to unusual morphologies resembling other conditions, HFMD with atypical cutaneous findings may be misdiagnosed, leading to inappropriate and unnecessary investigations, hospitalization, and treatment. Greater awareness of atypical presentations of HFMD is warranted to improve patient care and counseling on infection control precautions.
Collapse
Affiliation(s)
- Samantha Y Starkey
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Nemours Children's Hospital Delaware, Wilmington, Delaware, USA
| | - Kristie Mar
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Bushra Khalid
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Divya Virmani
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Island Infectious Disease Consultants, Victoria, British Columbia, Canada
| | - Joseph M Lam
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Ilya Mukovozov
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Han Z, Wang F, Xiao J, Fu H, Song Y, Jiang M, Lu H, Li J, Xu Y, Zhu R, Zhang Y, Zhao L. Synergetic association between coxsackievirus A16 genotype evolution and recombinant form shifts. Virus Evol 2023; 10:vead080. [PMID: 38361814 PMCID: PMC10868544 DOI: 10.1093/ve/vead080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/05/2023] [Accepted: 12/17/2023] [Indexed: 02/17/2024] Open
Abstract
Coxsackievirus A16 (CVA16) is a major pathogen that causes hand, foot, and mouth disease (HFMD). The recombination form (RF) shifts and global transmission dynamics of CVA16 remain unknown. In this retrospective study, global sequences of CVA16 were retrieved from the GenBank database and analyzed using comprehensive phylogenetic inference, RF surveys, and population structure. A total of 1,663 sequences were collected, forming a 442-sequences dataset for VP1 coding region analysis and a 345-sequences dataset for RF identification. Based on the VP1 coding region used for serotyping, three genotypes (A, B, and D), two subgenotypes of genotype B (B1 and B2), and three clusters of subgenotype B1 (B1a, B1b, and B1c) were identified. Cluster B1b has dominated the global epidemics, B2 disappeared in 2000, and D is an emerging genotype dating back to August 2002. Globally, four oscillation phases of CVA16 evolution, with a peak in 2013, and three migration pathways were identified. Europe, China, and Japan have served as the seeds for the global transmission of CVA16. Based on the 3D coding region of the RFs, five clusters of RFs (RF-A to -E) were identified. The shift in RFs from RF-B and RF-C to RF-D was accompanied by a change in genotype from B2 to B1a and B1c and then to B1b. In conclusion, the evolution and population dynamics of CVA16, especially the coevolution of 3D and VP1 genes, revealed that genotype evolution and RF replacement were synergistic rather than stochastic.
Collapse
Affiliation(s)
| | - Fangming Wang
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Yabao Road, Chaoyang District, Beijing 100020, China
| | - Jinbo Xiao
- WHO WPRO Regional Polio Reference Laboratory, NHC Key Laboratory for Biosafety, NHC Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Changping District, Beijing 102206, People’s Republic of China
| | - Hanhaoyu Fu
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Yabao Road, Chaoyang District, Beijing 100020, China
| | - Yang Song
- WHO WPRO Regional Polio Reference Laboratory, NHC Key Laboratory for Biosafety, NHC Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Changping District, Beijing 102206, People’s Republic of China
| | - Mingli Jiang
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Yabao Road, Chaoyang District, Beijing 100020, China
| | - Huanhuan Lu
- WHO WPRO Regional Polio Reference Laboratory, NHC Key Laboratory for Biosafety, NHC Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Changping District, Beijing 102206, People’s Republic of China
| | - Jichen Li
- WHO WPRO Regional Polio Reference Laboratory, NHC Key Laboratory for Biosafety, NHC Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Changping District, Beijing 102206, People’s Republic of China
| | - Yanpeng Xu
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Yabao Road, Chaoyang District, Beijing 100020, China
| | - Runan Zhu
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Yabao Road, Chaoyang District, Beijing 100020, China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory, NHC Key Laboratory for Biosafety, NHC Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Changping District, Beijing 102206, People’s Republic of China
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Yabao Road, Chaoyang District, Beijing 100020, China
| | - Linqing Zhao
- Laboratory of Virology, Beijing Key Laboratory of Etiology of Viral Diseases in Children, Capital Institute of Pediatrics, Yabao Road, Chaoyang District, Beijing 100020, China
| |
Collapse
|
11
|
Foronda JLM, Jiao MMAD, Climacosa FMM, Oshitani H, Apostol LNG. Epidemiological and molecular characterization of Coxsackievirus A6 causing hand, foot, and mouth disease in the Philippines, 2012-2017. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 114:105498. [PMID: 37657679 DOI: 10.1016/j.meegid.2023.105498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023]
Abstract
Coxsackievirus A6 (CVA6) is emerging as the dominant serotype among enteroviruses (EVs) responsible for hand, foot, and mouth disease (HFMD) outbreaks in multiple countries. However, details regarding this serotype in the Philippines are limited. In this study, we investigated the epidemiological and molecular characteristics of laboratory-confirmed CVA6 HFMD cases in the Philippines between 2012 and 2017. Data collected from case report forms submitted to the National Reference Laboratory for Poliovirus and other Enteroviruses were used to determine the distribution and clinical findings of laboratory-confirmed CVA6 HFMD. Phylogenetic analyses of the complete viral protein 1 (VP1) and partial 3D polymerase (3Dpol) gene sequences were performed to determine the genotype and recombinant (RF) form of the selected samples. An increase in the detection rate of CVA6 among enterovirus-positive HFMD cases was observed from 61.9% (140/226) in 2012 to 88.1% (482/587) in 2017, with most cases coming from the Luzon island group. Among the detected cases, the majority were children, with a median age of 2 years old (interquartile range: 1.17-3.40). Respiratory-related morbidities were the commonly reported complications (7.9%; 72/907). Based on the VP1 and 3Dpol gene sequence analysis, the CVA6 strains in this study were classified as genotype D3b and RF-A group, respectively. This study elucidated that CVA6 was the most prevalent enterovirus serotype causing HFMD in the Philippines in 2012-2017, with genotype D3b/RF-A circulating within this period. This study highlights the importance of viral surveillance and molecular epidemiological analysis to broaden our understanding of HFMD in the Philippines.
Collapse
Affiliation(s)
- Janiza Lianne M Foronda
- Department of Virology, Research Institute for Tropical Medicine, Muntinlupa City, Philippines; Department of Medical Microbiology, College of Public Health, University of the Philippines, Manila City, Philippines
| | | | - Fresthel Monica M Climacosa
- Department of Medical Microbiology, College of Public Health, University of the Philippines, Manila City, Philippines
| | - Hitoshi Oshitani
- Department of Virology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Lea Necitas G Apostol
- Department of Virology, Research Institute for Tropical Medicine, Muntinlupa City, Philippines.
| |
Collapse
|
12
|
Imai R, Rongduo W, Kaixin L, Borjigin S, Matsumura H, Masuda T, Ozawa T, Oba M, Makino S, Nagai M, Mizutani T. Novel recombinant porcine enterovirus G viruses lacking structural proteins are maintained in pig farms in Japan. J Vet Med Sci 2023; 85:252-265. [PMID: 36543238 PMCID: PMC10017297 DOI: 10.1292/jvms.22-0505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Type 1 recombinant enterovirus G (EV-G), which carries the papain-like cysteine protease (PLCP) gene of torovirus between its 2C/3A regions, and type 2 recombinant EV-G, which carries the torovirus PLCP gene with its flanking regions having non-EV-G sequences in place of the viral structural genes, have been detected in pig farms in several countries. In a previous study, we collected 222 fecal samples from 77 pig farms from 2104 to 2016 and detected one type 2 recombinant EV-G genome by metagenomics sequencing. In this study, we reanalyzed the metagenomic data and detected 11 type 2 recombinant EV-G genomes. In addition, we discovered new type 2 recombinant EV-G genomes of the two strains from two pig farms samples in 2018 and 2019. Thus, we identified the genomes of 13 novel type 2 recombinant EV-Gs isolated from several pig farms in Japan. Type 2 recombinant EV-G has previously been detected only in neonatal piglets. The present findings suggest that type 2 recombinant EV-G replicates in weaning piglets and sows. The detection of type 1 recombinant EV-Gs and type 2 recombinant EV-Gs at 3-year and 2-year intervals, respectively, from the same pig farm suggests that the viruses were persistently infecting or circulating in these farms.
Collapse
Affiliation(s)
- Ryo Imai
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Graduate School of Agriculture Cooperative Division of Veterinary Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Wen Rongduo
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Graduate School of Agriculture Cooperative Division of Veterinary Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Li Kaixin
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Sumiya Borjigin
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hirofumi Matsumura
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | - Takuji Ozawa
- Japanese Animal Hospital Association, Tokyo, Japan
| | - Mami Oba
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Makoto Nagai
- Laboratory of Infectious Diseases, Department of Veterinary Medicine, Faculty of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Tetsuya Mizutani
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Graduate School of Agriculture Cooperative Division of Veterinary Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
13
|
Puenpa J, Saengdao N, Khanarat N, Korkong S, Chansaenroj J, Yorsaeng R, Wanlapakorn N, Poovorawan Y. Evolutionary and Genetic Recombination Analyses of Coxsackievirus A6 Variants Associated with Hand, Foot, and Mouth Disease Outbreaks in Thailand between 2019 and 2022. Viruses 2022; 15:73. [PMID: 36680113 PMCID: PMC9863931 DOI: 10.3390/v15010073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Coxsackievirus (CV)-A6 infections cause hand, foot, and mouth disease (HFMD) in children and adults. Despite the serious public health threat presented by CV-A6 infections, our understanding of the mechanisms by which new CV-A6 strains emerge remains limited. This study investigated the molecular epidemiological trends, evolutionary dynamics, and recombination characteristics of CV-A6-associated HFMD in Thailand between 2019 and 2022. In the HFMD patient samples collected during the 4-year study period, we identified enterovirus (EV) RNA in 368 samples (48.7%), of which CV-A6 (23.7%) was the predominant genotype, followed by CV-A4 (6%), EV-A71 (3.7%), and CV-A16 (3.4%). According to the partial viral protein (VP) 1 sequences, all these CV-A6 strains belonged to the D3 clade. Based on the viral-RNA-dependent RNA polymerase (RdRp) gene, four recombinant forms (RFs), RF-A (147, 84.5%), RF-N (11, 6.3%), RF-H (1, 0.6%), and newly RF-Y (15, 8.6%), were identified throughout the study period. Results from the similarity plot and bootscan analyses revealed that the 3D polymerase (3Dpol) region of the D3/RF-Y subclade consists of sequences highly similar to CV-A10. We envisage that the epidemiological and evolutionarily insights presented in this manuscript will contribute to the development of vaccines to prevent the spread of CV-A6 infection.
Collapse
Affiliation(s)
- Jiratchaya Puenpa
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nutsada Saengdao
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nongkanok Khanarat
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sumeth Korkong
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jira Chansaenroj
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ritthideach Yorsaeng
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- FRS(T), The Royal Society of Thailand, Sanam Sueapa, Dusit, Bangkok 10300, Thailand
| |
Collapse
|
14
|
Gulholm T, Yeang M, Nguyen I, Andrews PI, Balgahom R, Beresford R, Branley J, Briest R, Britton P, Burrell R, Gehrig N, Kesson A, Kok J, Maley M, Newcombe J, Samarasekara H, Van Hal S, Varadhan H, Thapa K, Jones S, Newton P, Naing Z, Stelzer-Braid S, Rawlinson W. Molecular typing of enteroviruses: comparing 5'UTR, VP1 and whole genome sequencing methods. Pathology 2022; 54:779-783. [PMID: 35738943 DOI: 10.1016/j.pathol.2022.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/03/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
Enteroviruses (EV) commonly cause hand, foot and mouth disease (HFMD), and can also cause potentially fatal neurological and systemic complications. In our laboratory, sequencing 5' untranslated region (UTR) of the viral genome has been the routine method of genotyping EVs. During a recent localised outbreak of aseptic meningitis, sequencing the 5'UTR identified the causative virus as EV-A71, which did not fit with the clinical syndrome or illness severity. When genotyped using a different target gene, VP1, the result was different. This led us to evaluate the accuracy of the two different target genome regions and compare them against whole genome sequencing (WGS). We aimed to optimise the algorithm for detection and characterisation of EVs in the diagnostic laboratory. We hypothesised that VP1 and WGS genotyping would provide different results than 5'UTR in a subset of samples. Clinical samples from around New South Wales which were positive for EV by commercial polymerase chain reaction (PCR) assays were genotyped by targeting three different viral genome regions: the 5'UTR, VP1 and WGS. Sequencing was performed by Sanger and next generation sequencing. The subtyping results were compared. Of the 74/118 (63%) samples that were successfully typed using both the 5'UTR and the VP1 method, the EV typing result was identical for 46/74 (62%) samples compared to WGS as the gold standard. The same EV group but different EV types were found in 22/74 (30%) samples, and 6/74 (8%) samples belonged to different EV groups depending on typing method used. Genotyping with WGS and VP1 is more accurate than 5'UTR. Genotyping by the 5'UTR method is very sensitive, but less specific.
Collapse
Affiliation(s)
- T Gulholm
- Serology and Virology Division (SAViD), NSW Health Pathology East, Department of Microbiology, Prince of Wales Hospital, Randwick, NSW, Australia; Department of Infectious Diseases, Prince of Wales Hospital, Randwick, NSW, Australia; UNSW Clinical School, Faculty of Medicine UNSW, Kensington, NSW, Australia.
| | - M Yeang
- Virology Research Laboratory, Serology and Virology Division (SAViD), New South Wales Health Pathology East, Prince of Wales Hospital, Randwick, NSW, Australia
| | - I Nguyen
- Serology and Virology Division (SAViD), NSW Health Pathology East, Department of Microbiology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - P I Andrews
- Department of Neurology, Sydney Children's Hospital, Randwick, NSW, Australia; School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - R Balgahom
- Department of Microbiology and Infectious Diseases, NSW Health Pathology, Nepean Blue Mountains Pathology Service, Penrith, NSW, Australia
| | - R Beresford
- Department of Microbiology and Infectious Diseases, NSW Health Pathology, Liverpool, NSW, Australia
| | - J Branley
- Department of Microbiology and Infectious Diseases, NSW Health Pathology, Nepean Blue Mountains Pathology Service, Penrith, NSW, Australia; Nepean Clinical School, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - R Briest
- Department of Neurology, Sydney Children's Hospital, Randwick, NSW, Australia
| | - P Britton
- Department of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, Sydney, NSW, Australia; University of Sydney Children's Hospital Westmead Clinical School, NSW, Australia
| | - R Burrell
- Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - N Gehrig
- NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| | - A Kesson
- Department of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Child and Adolescent Health, The University of Sydney, Sydney, NSW, Australia
| | - J Kok
- Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology - Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, NSW, Australia; Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, Westmead, NSW, Australia
| | - M Maley
- Department of Microbiology and Infectious Diseases, NSW Health Pathology, Liverpool, NSW, Australia
| | - J Newcombe
- Department of Microbiology, NSW Health Pathology, Royal North Shore Hospital, Sydney, NSW, Australia
| | - H Samarasekara
- Department of Microbiology and Infectious Diseases, NSW Health Pathology, Nepean Blue Mountains Pathology Service, Penrith, NSW, Australia
| | - S Van Hal
- Department of Infectious Diseases and Microbiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - H Varadhan
- NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| | - K Thapa
- Serology and Virology Division (SAViD), NSW Health Pathology East, Department of Microbiology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - S Jones
- Department of Microbiology, NSW Health Pathology, The Wollongong Hospital, Wollongong, NSW, Australia
| | - P Newton
- Department of Microbiology, NSW Health Pathology, The Wollongong Hospital, Wollongong, NSW, Australia
| | - Z Naing
- Serology and Virology Division (SAViD), NSW Health Pathology East, Department of Microbiology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - S Stelzer-Braid
- Virology Research Laboratory, Serology and Virology Division (SAViD), New South Wales Health Pathology East, Prince of Wales Hospital, Randwick, NSW, Australia; School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - W Rawlinson
- Serology and Virology Division (SAViD), NSW Health Pathology East, Department of Microbiology, Prince of Wales Hospital, Randwick, NSW, Australia; Department of Infectious Diseases, Prince of Wales Hospital, Randwick, NSW, Australia; Virology Research Laboratory, Serology and Virology Division (SAViD), New South Wales Health Pathology East, Prince of Wales Hospital, Randwick, NSW, Australia; School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
15
|
Tomba Ngangas S, Bisseux M, Jugie G, Lambert C, Cohen R, Werner A, Archimbaud C, Henquell C, Mirand A, Bailly JL. Coxsackievirus A6 Recombinant Subclades D3/A and D3/H Were Predominant in Hand-Foot-And-Mouth Disease Outbreaks in the Paediatric Population, France, 2010–2018. Viruses 2022; 14:v14051078. [PMID: 35632819 PMCID: PMC9144281 DOI: 10.3390/v14051078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 01/25/2023] Open
Abstract
Coxsackievirus A6 (CVA6) emerged as the most common enterovirus of seasonal outbreaks of hand-foot-and-mouth disease (HFMD). We investigated CVA6 genetic diversity among the clinical phenotypes reported in the paediatric population during sentinel surveillance in France between 2010 and 2018. CVA6 infection was confirmed in 981 children (mean age 1.52 years [IQR 1.17–2.72]) of whom 564 (58%) were males. Atypical HFMD was reported in 705 (72%) children, followed by typical HFMD in 214 (22%) and herpangina in 57 (6%) children. Throat specimens of 245 children were processed with a target-enrichment new-generation sequencing approach, which generated 213 complete CVA6 genomes. The genomes grouped within the D1 and D3 clades (phylogeny inferred with the P1 genomic region). In total, 201 genomes were classified among the recombinant forms (RFs) A, B, F, G, H, and N, and 12 genomes were assigned to 5 previously unreported RFs (R–V). The most frequent RFs were A (58%), H (19%), G (6.1%), and F (5.2%). The yearly number of RFs ranged between 1 (in 2012 and 2013) and 6 (2018). The worldwide CVA6 epidemic transmission began between 2005 and 2007, which coincided with the global spread of the recombinant subclade D3/RF-A.
Collapse
Affiliation(s)
- Stéphanie Tomba Ngangas
- Université Clermont Auvergne, LMGE CNRS 6023, UFR de Médecine et des Professions Paramédicales, 63001 Clermont-Ferrand, France; (S.T.N.); (M.B.); (G.J.); (C.A.); (C.H.); (A.M.)
| | - Maxime Bisseux
- Université Clermont Auvergne, LMGE CNRS 6023, UFR de Médecine et des Professions Paramédicales, 63001 Clermont-Ferrand, France; (S.T.N.); (M.B.); (G.J.); (C.A.); (C.H.); (A.M.)
- CHU Clermont-Ferrand, Centre National de Référence Des Entérovirus et Parechovirus, Laboratoire de Virologie, 63003 Clermont-Ferrand, France
| | - Gwendoline Jugie
- Université Clermont Auvergne, LMGE CNRS 6023, UFR de Médecine et des Professions Paramédicales, 63001 Clermont-Ferrand, France; (S.T.N.); (M.B.); (G.J.); (C.A.); (C.H.); (A.M.)
| | - Céline Lambert
- CHU Clermont-Ferrand, Service Biométrie et Médico-Economie—Direction de la Recherche Clinique et Innovation, 63003 Clermont-Ferrand, France;
| | - Robert Cohen
- Association Clinique et Thérapeutique Infantile du Val de Marne (ACTIV), 94000 Créteil, France;
| | - Andreas Werner
- Association Française de Pédiatrie Ambulatoire (AFPA), 45000 Orléans, France;
| | - Christine Archimbaud
- Université Clermont Auvergne, LMGE CNRS 6023, UFR de Médecine et des Professions Paramédicales, 63001 Clermont-Ferrand, France; (S.T.N.); (M.B.); (G.J.); (C.A.); (C.H.); (A.M.)
- CHU Clermont-Ferrand, Centre National de Référence Des Entérovirus et Parechovirus, Laboratoire de Virologie, 63003 Clermont-Ferrand, France
| | - Cécile Henquell
- Université Clermont Auvergne, LMGE CNRS 6023, UFR de Médecine et des Professions Paramédicales, 63001 Clermont-Ferrand, France; (S.T.N.); (M.B.); (G.J.); (C.A.); (C.H.); (A.M.)
- CHU Clermont-Ferrand, Centre National de Référence Des Entérovirus et Parechovirus, Laboratoire de Virologie, 63003 Clermont-Ferrand, France
| | - Audrey Mirand
- Université Clermont Auvergne, LMGE CNRS 6023, UFR de Médecine et des Professions Paramédicales, 63001 Clermont-Ferrand, France; (S.T.N.); (M.B.); (G.J.); (C.A.); (C.H.); (A.M.)
- CHU Clermont-Ferrand, Centre National de Référence Des Entérovirus et Parechovirus, Laboratoire de Virologie, 63003 Clermont-Ferrand, France
| | - Jean-Luc Bailly
- Université Clermont Auvergne, LMGE CNRS 6023, UFR de Médecine et des Professions Paramédicales, 63001 Clermont-Ferrand, France; (S.T.N.); (M.B.); (G.J.); (C.A.); (C.H.); (A.M.)
- Correspondence:
| |
Collapse
|
16
|
Ivanova OE, Shakaryan AK, Morozova NS, Vakulenko YA, Eremeeva TP, Kozlovskaya LI, Baykova OY, Shustova EY, Mikhailova YM, Romanenkova NI, Rozaeva NR, Dzhaparidze NI, Novikova NA, Zverev VV, Golitsyna LN, Lukashev AN. Cases of Acute Flaccid Paralysis Associated with Coxsackievirus A2: Findings of a 20-Year Surveillance in the Russian Federation. Microorganisms 2022; 10:microorganisms10010112. [PMID: 35056561 PMCID: PMC8780984 DOI: 10.3390/microorganisms10010112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Surveillance for acute flaccid paralysis syndrome (AFP) in children under 15 is the backbone of the Global Polio Eradication Initiative. Laboratory examination of stool samples from AFP cases allows the detection of, along with polioviruses, a variety of non-polio enteroviruses (NPEV). The etiological significance of these viruses in the occurrence of AFP cases has been definitively established only for enteroviruses A71 and D68. Enterovirus Coxsackie A2 (CVA2) is most often associated with vesicular pharyngitis and hand, foot and mouth disease. Among 7280 AFP cases registered in Russia over 20 years (2001–2020), CVA2 was isolated only from five cases. However, these included three children aged 3 to 4 years, without overt immune deficiency, immunized with 4–5 doses of poliovirus vaccine in accordance with the National Vaccination Schedule. The disease resulted in persistent residual paralysis. Clinical and laboratory data corresponded to poliomyelitis developing during poliovirus infection. These findings are compatible with CVA2 being the cause of AFP. Molecular analysis of CVA2 from these patients and a number of AFP cases in other countries did not reveal association with a specific phylogenetic group, suggesting that virus genetics is unlikely to explain the pathogenic profile. The overall results highlight the value of AFP surveillance not just for polio control but for studies of uncommon AFP agents.
Collapse
Affiliation(s)
- Olga E. Ivanova
- Federal State Autonomous Scientific Institution “Chumakov Federal Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (Institute of Poliomyelitis) (FSASI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia; (A.K.S.); (T.P.E.); (L.I.K.); (O.Y.B.); (E.Y.S.)
- Department of Organization and Technology of Production of Immunobiological Preparations, Institute for Translational Medicine and Biotechnology, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Correspondence: (O.E.I.); (A.N.L.); Tel.: +7-916-677-2403 (O.E.I.); +7-915-160-7489 (A.N.L.)
| | - Armen K. Shakaryan
- Federal State Autonomous Scientific Institution “Chumakov Federal Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (Institute of Poliomyelitis) (FSASI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia; (A.K.S.); (T.P.E.); (L.I.K.); (O.Y.B.); (E.Y.S.)
- Pirogov Russian National Research Medical University, 119121 Moscow, Russia
| | - Nadezhda S. Morozova
- Federal Budget Institution of Healthcare of Rospotrebnadzor “Center for Hygiene and Epidemiology in Moscow”, 129626 Moscow, Russia; (N.S.M.); (Y.M.M.)
| | - Yulia A. Vakulenko
- Martsinovsky Institute of Meidcal Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Tatyana P. Eremeeva
- Federal State Autonomous Scientific Institution “Chumakov Federal Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (Institute of Poliomyelitis) (FSASI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia; (A.K.S.); (T.P.E.); (L.I.K.); (O.Y.B.); (E.Y.S.)
| | - Liubov I. Kozlovskaya
- Federal State Autonomous Scientific Institution “Chumakov Federal Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (Institute of Poliomyelitis) (FSASI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia; (A.K.S.); (T.P.E.); (L.I.K.); (O.Y.B.); (E.Y.S.)
- Department of Organization and Technology of Production of Immunobiological Preparations, Institute for Translational Medicine and Biotechnology, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Olga Y. Baykova
- Federal State Autonomous Scientific Institution “Chumakov Federal Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (Institute of Poliomyelitis) (FSASI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia; (A.K.S.); (T.P.E.); (L.I.K.); (O.Y.B.); (E.Y.S.)
| | - Elena Y. Shustova
- Federal State Autonomous Scientific Institution “Chumakov Federal Center for Research and Development of Immune-and-Biological Products of the Russian Academy of Sciences” (Institute of Poliomyelitis) (FSASI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia; (A.K.S.); (T.P.E.); (L.I.K.); (O.Y.B.); (E.Y.S.)
| | - Yulia M. Mikhailova
- Federal Budget Institution of Healthcare of Rospotrebnadzor “Center for Hygiene and Epidemiology in Moscow”, 129626 Moscow, Russia; (N.S.M.); (Y.M.M.)
| | | | - Nadezhda R. Rozaeva
- Saint-Petersburg Pasteur Institute, 197101 Saint-Petersburg, Russia; (N.I.R.); (N.R.R.)
| | - Natela I. Dzhaparidze
- Federal Budgetary Institution of Healthcare of Rospotrebnadzor “Center for Hygiene and Epidemiology in the Vladimir Region”, 600005 Vladimir, Russia;
| | - Nadezhda A. Novikova
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology, 603950 Nizhny Novgorod, Russia; (N.A.N.); (V.V.Z.); (L.N.G.)
| | - Vladimir V. Zverev
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology, 603950 Nizhny Novgorod, Russia; (N.A.N.); (V.V.Z.); (L.N.G.)
| | - Lyudmila N. Golitsyna
- Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology, 603950 Nizhny Novgorod, Russia; (N.A.N.); (V.V.Z.); (L.N.G.)
| | - Alexander N. Lukashev
- Martsinovsky Institute of Meidcal Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
- Correspondence: (O.E.I.); (A.N.L.); Tel.: +7-916-677-2403 (O.E.I.); +7-915-160-7489 (A.N.L.)
| |
Collapse
|
17
|
Kamau E, Nguyen D, Celma C, Blomqvist S, Horby P, Simmonds P, Harvala H. Seroprevalence and Virologic Surveillance of Enterovirus 71 and Coxsackievirus A6, United Kingdom, 2006-2017. Emerg Infect Dis 2021; 27:2261-2268. [PMID: 34423767 PMCID: PMC8386771 DOI: 10.3201/eid2709.204915] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Enterovirus A71 (EV-A71) and coxsackievirus A6 (CVA6) cause hand, foot and mouth disease (HFMD) and are occasionally linked to severe neurologic complications and large outbreaks worldwide. We estimated EV-A71 and CVA6 seroprevalence using cross-sectional age-stratified samples collected in 2006, 2011, and 2017. Seroprevalences of EV-A71 and CVA6 increased from 32% and 54% at 6-11 months to >75% by 10 years of age. Antibody titers declined after 20 years, which could indicate infrequent re-exposure in older populations. Age profiles for acquiring infections and mean titers were comparable in the 3 testing years, despite the marked increase in incidence of CVA6-related HFMD from 2010. The uncoupling of changes in disease severity from the infection kinetics of CVA6 as we inferred from the seroprevalence data, rather than incidence of infection over the 11-year study period, provides further evidence for a change in its pathogenicity.
Collapse
|
18
|
Denison AM, Bhatnagar J, Jahan-Tigh RR, Fair P, Hale GL. Detection of coxsackievirus A6 in formalin-fixed, paraffin-embedded skin biopsy specimens using immunohistochemistry and real-time reverse-transcriptase PCR. JOURNAL OF CLINICAL VIROLOGY PLUS 2021; 1:10.1016/j.jcvp.2021.100018. [PMID: 38481773 PMCID: PMC10936323 DOI: 10.1016/j.jcvp.2021.100018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Hand, foot, and mouth disease (HFMD), classically a childhood viral infection, has an atypical and severe clinical presentation in adults. Coxsackievirus A6 is a leading cause of atypical HFMD, but current diagnostic methods utilizing formalin-fixed, paraffin-embedded skin biopsy specimens often lack sensitivity and specificity. Methods Formalin-fixed, paraffin-embedded skin biopsies from seven case patients with clinical and histopathological suspicion of atypical HFMD were evaluated by coxsackievirus A6 (CVA6) immunohistochemistry, enterovirus-specific conventional reverse transcriptase-PCR with subsequent Sanger sequencing targeting the 5'UTR, and CVA6-specific real-time PCR targeting the VP1 gene. Results The CVA6-specific antibody demonstrated appropriate antigen distribution and staining intensity in keratinocytes in all cases. Conventional RT-PCR and sequencing also detected the presence of enterovirus, and CVA6-specific real-time RT-PCR analysis identified CVA6. Conclusion Applying these immunohistochemistry and molecular techniques to formalin-fixed, paraffin-embedded tissues, CVA6 was determined to be the causative infectious agent in seven cases of atypical hand, foot, and mouth disease.
Collapse
Affiliation(s)
- Amy M. Denison
- Infectious Diseases Pathology Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Julu Bhatnagar
- Infectious Diseases Pathology Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Richard R. Jahan-Tigh
- University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Pamela Fair
- Infectious Diseases Pathology Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Gillian L. Hale
- Infectious Diseases Pathology Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
19
|
Martínez-López N, Muñoz-Almagro C, Launes C, Navascués A, Imaz-Pérez M, Reina J, Romero MP, Calvo C, Ruiz-García M, Megias G, Valencia-Ramos J, Otero A, Cabrerizo M. Surveillance for Enteroviruses Associated with Hand, Foot, and Mouth Disease, and Other Mucocutaneous Symptoms in Spain, 2006-2020. Viruses 2021; 13:v13050781. [PMID: 33924875 PMCID: PMC8146579 DOI: 10.3390/v13050781] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a mild illness caused by enteroviruses (EV), although in some Asian countries, large outbreaks have been reported in the last 25 years, with a considerable incidence of neurological complications. This study describes epidemiological and clinical characteristics of EV infections involved in HFMD and other mucocutaneous symptoms from 2006 to 2020 in Spain. EV-positive samples from 368 patients were included. EV species A were identified in 85.1% of those typed EV. Coxsackievirus (CV) A6 was the prevalent serotype (60.9%), followed by EV-A71 (9.9%) and CVA16 (7.7%). Infections affected children (1-6 years old) mainly, and show seasonality with peaks in spring-summer and autumn. Clinical data indicated few cases of atypical HFMD as well as those with neurological complications (associated with the 2016 EV-A71 outbreak). Phylogenetic analysis of CVA6 VP1 sequences showed different sub-clusters circulating from 2010 to present. In conclusion, HFMD or exanthemas case reporting has increased in Spain in recent years, probably associated with an increase in circulation of CVA6, although they did not seem to show greater severity. However, EV surveillance in mucocutaneous manifestations should be improved to identify the emergence of new types or variants causing outbreaks and more severe pathologies.
Collapse
Affiliation(s)
- Nieves Martínez-López
- Enterovirus Unit, National Centre for Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain; (N.M.-L.); (A.O.)
| | - Carmen Muñoz-Almagro
- Microbiological and Paediatric Departments, Hospital San Joan de Déu, 08950 Barcelona, Spain; (C.M.-A.); (C.L.)
| | - Cristian Launes
- Microbiological and Paediatric Departments, Hospital San Joan de Déu, 08950 Barcelona, Spain; (C.M.-A.); (C.L.)
| | - Ana Navascués
- Microbiological Department, Complejo Hospitalario de Navarra, 31008 Navarra, Spain;
| | - Manuel Imaz-Pérez
- Microbiological Department, Hospital de Basurto, 48013 Bilbao, Spain;
| | - Jordi Reina
- Microbiological Department, Hospital Son Espases, 07020 Palma de Mallorca, Spain;
| | - María Pilar Romero
- Microbiological and Paediatric Departments, Hospital La Paz, 28220 Madrid, Spain; (M.P.R.); (C.C.)
| | - Cristina Calvo
- Microbiological and Paediatric Departments, Hospital La Paz, 28220 Madrid, Spain; (M.P.R.); (C.C.)
| | | | - Gregoria Megias
- Microbiological and Paediatrics Department, Complejo Hospitalario de Burgos, 09006 Burgos, Spain; (G.M.); (J.V.-R.)
| | - Juan Valencia-Ramos
- Microbiological and Paediatrics Department, Complejo Hospitalario de Burgos, 09006 Burgos, Spain; (G.M.); (J.V.-R.)
| | - Almudena Otero
- Enterovirus Unit, National Centre for Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain; (N.M.-L.); (A.O.)
| | - María Cabrerizo
- Enterovirus Unit, National Centre for Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain; (N.M.-L.); (A.O.)
- Correspondence: ; Tel.: +34-918-223-663
| |
Collapse
|
20
|
Qian SS, Wei ZN, Jin WP, Wu J, Zhou YP, Meng SL, Guo J, Wang ZJ, Shen S. Efficacy of a coxsackievirus A6 vaccine candidate in an actively immunized mouse model. Emerg Microbes Infect 2021; 10:763-773. [PMID: 33739899 PMCID: PMC8079124 DOI: 10.1080/22221751.2021.1906755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Coxsackievirus A6 (CV-A6) has been emerging as a major pathogen of hand, foot and mouth disease (HFMD). Study on the pathogenesis of CV-A6 infection and development of vaccines is hindered by a lack of appropriate animal models. Here, we report an actively immunized-challenged mouse model to evaluate the efficacy of a Vero-cell-based, inactivated CV-A6 vaccine candidate. The neonatal Kunming mice were inoculated with a purified, formaldehyde-inactivated CV-A6 vaccine on days 3 and 9, followed by challenging on day 14 with a naturally selected virulent strain at a lethal dose. Within 14 days postchallenge, all mice in the immunized groups survived, while 100% of the Alum-only inoculated mice died. Neutralizing antibodies (NtAbs) were detected in the serum of immunized suckling mice, and the NtAb levels correlated with the survival rate of the challenged mice. The virus loads in organs were reduced, and pathological changes and viral protein expression were weak in the immunized mice compared with those in Alum-only inoculated control mice. Elevated levels of interleukin-4, 6, interferon γ and tumour necrosis factor α were also observed in Alum-only control mice compared with immunized mice. Importantly, the virulent CV-A6 challenge strain was selected quickly and conveniently from a RD cell virus stock characterized with the natural multi-genotypes. The virulent determinants were mapped to V124M and I242 V at VP1. Together, our results indicated that this actively immunized mouse model is invaluable for future studies to develop multivalent vaccines containing the major component of CV-A6 against HFMD.
Collapse
Affiliation(s)
- Sha-Sha Qian
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Zhen-Ni Wei
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Wei-Ping Jin
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Jie Wu
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Yan-Ping Zhou
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Sheng-Li Meng
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Jing Guo
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Ze-Jun Wang
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| | - Shuo Shen
- Wuhan Institute of Biological Products Co. Ltd., Wuhan, People's Republic of China
| |
Collapse
|
21
|
Zeng H, Yi L, Chen X, Zhou H, Zheng H, Lu J, Yang F, Li C, Fang L, Zhang X, Jing X, Wu J, Li H. Emergence of a non vaccine-cognate enterovirus A71 genotype C1 in mainland China. J Infect 2020; 82:407-413. [PMID: 33373653 DOI: 10.1016/j.jinf.2020.12.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND EV-A71 is a common causative agent of hand foot and mouth disease. In mainland China, EV-A71 subgenotype C4 has been the sole circulating genotype since 2008, and was used in the production of multiple licensed vaccines. Here, we report the first detection EV-A71 C1 strains in China. METHODS Full genomic sequence were obtained. The origin of the EV-A71 C1 strains were tracked down by Bayesian inferences. Recombination was analyzed using Simplot program. And the antigenicity were tested using the microneutralization test. RESULTS The C1-GD2019 shared high identity with the C1-like lineage recently identified in Europe and was introduced into Guangdong in 2018-2019. Close genetic relatedness between the C1-GD2019 and Europe C1-like strains were observed except for the 3D-3'UTR region. The late showed high similarity with CVA genomes. Antigenic variance was found. The C1-GD2019 could not be effectively neutralized by EV-A71 C4a neutralizing antibody positive samples. CONCLUSION This is the first report of EV-A71 subgenotype C1 isolated in China. It is a recombinant strain originating from C1-like strains recently identified in Europe and CVA strains. The different antigenicity between the C1 strains and C4a vaccine strains highlighted the importance on closely monitoring the EV-A71 C1 strains in China.
Collapse
Affiliation(s)
- Hanri Zeng
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong, China
| | - Lina Yi
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Centre for Disease Control and Prevention, China
| | - Xiaoli Chen
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, China
| | - Huiqiong Zhou
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong, China
| | - Huanying Zheng
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong, China
| | - Jing Lu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Centre for Disease Control and Prevention, China
| | - Fen Yang
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong, China
| | - Caixia Li
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong, China
| | - Ling Fang
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong, China
| | - Xin Zhang
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong, China
| | - Xu Jing
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong, China
| | - Jie Wu
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong, China
| | - Hui Li
- Center for Disease Control and Prevention of Guangdong Province, Guangzhou, Guangdong, China.
| |
Collapse
|
22
|
Han Z, Song Y, Xiao J, Jiang L, Huang W, Wei H, Li J, Zeng H, Yu Q, Li J, Yu D, Zhang Y, Li C, Zhan Z, Shi Y, Xiong Y, Wang X, Ji T, Yang Q, Zhu S, Yan D, Xu W, Zhang Y. Genomic epidemiology of coxsackievirus A16 in mainland of China, 2000-18. Virus Evol 2020; 6:veaa084. [PMID: 33343924 PMCID: PMC7733612 DOI: 10.1093/ve/veaa084] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hand, foot, and mouth disease (HFMD), which is a frequently reported and concerning disease worldwide, is a severe burden on societies globally, especially in the countries of East and Southeast Asia. Coxsackievirus A16 (CV-A16) is one of the most important causes of HFMD and a severe threat to human health, especially in children under 5 years of age. To investigate the epidemiological characteristics, spread dynamics, recombinant forms (RFs), and other features of CV-A16, we leveraged the continuous surveillance data of CV-A16-related HFMD cases collected over an 18-year period. With the advent of the EV-A71 vaccine since 2016, which targeted the EV-A71-related HFMD cases, EV-A71-related HFMD cases decreased dramatically, whereas the CV-A16-related HFMD cases showed an upward trend from 2017 to October 2019. The CV-A16 strains observed in this study were genetically related and widely distributed in the mainland of China. Our results show that three clusters (B1a-B1c) existed in the mainland of China and that the cluster of B1b dominates the diffusion of CV-A16 in China. We found that eastern China played a decisive role in seeding the diffusion of CV-A16 in China, with a more complex and variant transmission trend. Although EV-A71 vaccine was launched in China in 2016, it did not affect the genetic diversity of CV-A16, and its genetic diversity did not decline, which confirmed the epidemiological surveillance trend of CV-A16. Two discontinuous clusters (2000-13 and 2014-18) were observed in the full-length genome and arranged along the time gradient, which revealed the reason why the relative genetic diversity of CV-A16 increased and experienced more complex fluctuation model after 2014. In addition, the switch from RFs B (RF-B) and RF-C co-circulation to RF-D contributes to the prevalence of B1b cluster in China after 2008. The correlation between genotype and RFs partially explained the current prevalence of B1b. This study provides unprecedented full-length genomic sequences of CV-A16 in China, with a wider geographic distribution and a long-term time scale. The study presents valuable information about CV-A16, aimed at developing effective control strategies, as well as a call for a more robust surveillance system, especially in the Asia-Pacific region.
Collapse
Affiliation(s)
- Zhenzhi Han
- WHO WPRO Regional Polio Reference Laboratory and National Laboratory for Poliomyelitis, NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Yang Song
- WHO WPRO Regional Polio Reference Laboratory and National Laboratory for Poliomyelitis, NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Jinbo Xiao
- WHO WPRO Regional Polio Reference Laboratory and National Laboratory for Poliomyelitis, NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Lili Jiang
- Yunnan Center for Disease Control and Prevention, Kunming, Yunnan Province, People's Republic of China
| | - Wei Huang
- Chongqing Center for Disease Control and Prevention, Chongqing City, People's Republic of China
| | - Haiyan Wei
- Henan Center for Disease Control and Prevention, Zhengzhou, Henan Province, People's Republic of China
| | - Jie Li
- Beijing Center for Disease Control and Prevention, Beijing City, People's Republic of China
| | - Hanri Zeng
- Guangdong Center for Disease Control and Prevention, Guangzhou, Guangdong Province, People's Republic of China
| | - Qiuli Yu
- Hebei Center for Disease Control and Prevention, Shijiazhuang, Hebei Province, People's Republic of China
| | - Jiameng Li
- Tianjin Center for Disease Control and Prevention, Tianjin City, People's Republic of China
| | - Deshan Yu
- Gansu Center for Disease Control and Prevention, Lanzhou, Gansu Province, People's Republic of China
| | - Yanjun Zhang
- Zhejiang Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, People's Republic of China
| | - Chonghai Li
- Qinghai Center for Disease Control and Prevention, Xining, Qinghai Province, People's Republic of China
| | - Zhifei Zhan
- Hunan Center for Disease Control and Prevention, Changsha, Hunan Province, People's Republic of China
| | - Yonglin Shi
- Anhui Center for Disease Control and Prevention, Hefei, Anhui Province, People's Republic of China
| | - Ying Xiong
- Jiangxi Center for Disease Control and Prevention, Nanchang, Jiangxi Province, People's Republic of China
| | - Xianjun Wang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, People's Republic of China
| | - Tianjiao Ji
- WHO WPRO Regional Polio Reference Laboratory and National Laboratory for Poliomyelitis, NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Qian Yang
- WHO WPRO Regional Polio Reference Laboratory and National Laboratory for Poliomyelitis, NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory and National Laboratory for Poliomyelitis, NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory and National Laboratory for Poliomyelitis, NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory and National Laboratory for Poliomyelitis, NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, People's Republic of China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei Province, People's Republic of China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory and National Laboratory for Poliomyelitis, NHC Key Laboratory of Biosafety, NHC Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, People's Republic of China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
23
|
Song Y, Wang D, Zhang Y, Han Z, Xiao J, Lu H, Yan D, Ji T, Yang Q, Zhu S, Xu W. Genetic Diversity Analysis of Coxsackievirus A8 Circulating in China and Worldwide Reveals a Highly Divergent Genotype. Viruses 2020; 12:E1061. [PMID: 32977444 PMCID: PMC7598191 DOI: 10.3390/v12101061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Coxsackievirus A8 (CV-A8) is one of the pathogens associated with hand, foot and mouth disease (HFMD) and herpangina (HA), occasionally leading to severe neurological disorders such as acute flaccid paralysis (AFP). Only one study aimed at CV-A8 has been published to date, and only 12 whole-genome sequences are publicly available. In this study, complete genome sequences from 11 CV-A8 strains isolated from HFMD patients in extensive regions from China between 2013 and 2018 were determined, and all sequences from GenBank were retrieved. A phylogenetic analysis based on a total of 34 complete VP1 sequences of CV-A8 revealed five genotypes: A, B, C, D and E. The newly emerging genotype E presented a highly phylogenetic divergence compared with the other genotypes and was composed of the majority of the strains sequenced in this study. Markov chain Monte Carlo (MCMC) analysis revealed that genotype E has been evolving for nearly a century and somehow arose in approximately 2010. The Bayesian skyline plot showed that the population size of CV-A8 has experienced three dynamic fluctuations since 2001. Amino acid residues of VP1100N, 103Y, 240T and 241V, which were embedded in the potential capsid loops of genotype E, might enhance genotype E adaption to the human hosts. The CV-A8 whole genomes displayed significant intra-genotypic genetic diversity in the non-capsid region, and a total of six recombinant lineages were detected. The Chinese viruses from genotype E might have emerged recently from recombining with European CV-A6 strains. CV-A8 is a less important HFMD pathogen, and the capsid gene diversity and non-capsid recombination variety observed in CV-A8 strains indicated that the constant generation of deleterious genomes and a constant selection pressure against these deleterious mutations is still ongoing within CV-A8 quasispecies. It is possible that CV-A8 could become an important pathogen in the HFMD spectrum in the future. Further surveillance of CV-A8 is greatly needed.
Collapse
Affiliation(s)
- Yang Song
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing 102206, China; (Y.S.); (D.W.); (Z.H.); (J.X.); (H.L.); (D.Y.); (T.J.); (Q.Y.); (S.Z.)
| | - Dongyan Wang
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing 102206, China; (Y.S.); (D.W.); (Z.H.); (J.X.); (H.L.); (D.Y.); (T.J.); (Q.Y.); (S.Z.)
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing 102206, China; (Y.S.); (D.W.); (Z.H.); (J.X.); (H.L.); (D.Y.); (T.J.); (Q.Y.); (S.Z.)
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhenzhi Han
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing 102206, China; (Y.S.); (D.W.); (Z.H.); (J.X.); (H.L.); (D.Y.); (T.J.); (Q.Y.); (S.Z.)
| | - Jinbo Xiao
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing 102206, China; (Y.S.); (D.W.); (Z.H.); (J.X.); (H.L.); (D.Y.); (T.J.); (Q.Y.); (S.Z.)
| | - Huanhuan Lu
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing 102206, China; (Y.S.); (D.W.); (Z.H.); (J.X.); (H.L.); (D.Y.); (T.J.); (Q.Y.); (S.Z.)
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing 102206, China; (Y.S.); (D.W.); (Z.H.); (J.X.); (H.L.); (D.Y.); (T.J.); (Q.Y.); (S.Z.)
| | - Tianjiao Ji
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing 102206, China; (Y.S.); (D.W.); (Z.H.); (J.X.); (H.L.); (D.Y.); (T.J.); (Q.Y.); (S.Z.)
| | - Qian Yang
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing 102206, China; (Y.S.); (D.W.); (Z.H.); (J.X.); (H.L.); (D.Y.); (T.J.); (Q.Y.); (S.Z.)
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing 102206, China; (Y.S.); (D.W.); (Z.H.); (J.X.); (H.L.); (D.Y.); (T.J.); (Q.Y.); (S.Z.)
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing 102206, China; (Y.S.); (D.W.); (Z.H.); (J.X.); (H.L.); (D.Y.); (T.J.); (Q.Y.); (S.Z.)
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
24
|
Zhou Y, Van Tan L, Luo K, Liao Q, Wang L, Qiu Q, Zou G, Liu P, Anh NT, Hong NTT, He M, Wei X, Yu S, Lam TTY, Cui J, van Doorn HR, Yu H. Genetic Variation of Multiple Serotypes of Enteroviruses Associated with Hand, Foot and Mouth Disease in Southern China. Virol Sin 2020; 36:61-74. [PMID: 32725479 PMCID: PMC7385209 DOI: 10.1007/s12250-020-00266-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 07/06/2020] [Indexed: 12/04/2022] Open
Abstract
Enteroviruses (EVs) species A are a major public health issue in the Asia–Pacific region and cause frequent epidemics of hand, foot and mouth disease (HFMD) in China. Mild infections are common in children; however, HFMD can also cause severe illness that affects the central nervous system. To molecularly characterize EVs, a prospective HFMD virological surveillance program was performed in China between 2013 and 2016. Throat swabs, rectal swabs and stool samples were collected from suspected HFMD patients at participating hospitals. EVs were detected using generic real-time and nested reverse transcription-polymerase chain reactions (RT-PCRs). Then, the complete VP1 regions of enterovirus A71 (EV-A71), coxsackievirus A16 (CVA16) and CVA6 were sequenced to analyze amino acid changes and construct a viral molecular phylogeny. Of the 2836 enrolled HFMD patients, 2,517 (89%) were EV positive. The most frequently detected EVs were CVA16 (32.5%, 819), CVA6 (31.2%, 785), and EV-A71 (20.4%, 514). The subgenogroups CVA16_B1b, CVA6_D3a and EV-A71_C4a were predominant in China and recombination was not observed in the VP1 region. Sequence analysis revealed amino acid variations at the 30, 29 and 44 positions in the VP1 region of EV-A71, CVA16 and CVA6 (compared to the respective prototype strains BrCr, G10 and Gdula), respectively. Furthermore, in 21 of 24 (87.5%) identified EV-A71 samples, a known amino acid substitution (D31N) that may enhance neurovirulence was detected. Our study provides insights about the genetic characteristics of common HFMD-associated EVs. However, the emergence and virulence of the described mutations require further investigation.
Collapse
Affiliation(s)
- Yonghong Zhou
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Le Van Tan
- Oxford University Clinical Research Unit, Ho Chi Minh City, 700000, Vietnam
| | - Kaiwei Luo
- Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, China
| | - Qiaohong Liao
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China.,Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing, 102206, China
| | - Lili Wang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Qi Qiu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Gang Zou
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ping Liu
- Anhua County Center for Disease Control and Prevention, Anhua, 413000, China
| | - Nguyen To Anh
- Oxford University Clinical Research Unit, Ho Chi Minh City, 700000, Vietnam
| | | | - Min He
- Anhua County Center for Disease Control and Prevention, Anhua, 413000, China
| | - Xiaoman Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Shuanbao Yu
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing, 102206, China
| | - Tommy Tsan-Yuk Lam
- Centre of Influenza Research & State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Jie Cui
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200032, China
| | - H Rogier van Doorn
- Oxford University Clinical Research Unit, Ho Chi Minh City, 700000, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Hongjie Yu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China.
| |
Collapse
|
25
|
Song Y, Zhang Y, Han Z, Xu W, Xiao J, Wang X, Wang J, Yang J, Yu Q, Yu D, Chen J, Huang W, Li J, Xie T, Lu H, Ji T, Yang Q, Yan D, Zhu S, Xu W. Genetic recombination in fast-spreading coxsackievirus A6 variants: a potential role in evolution and pathogenicity. Virus Evol 2020; 6:veaa048. [PMID: 34804589 PMCID: PMC8597624 DOI: 10.1093/ve/veaa048] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a common global epidemic. From 2008
onwards, many HFMD outbreaks caused by coxsackievirus A6 (CV-A6) have been
reported worldwide. Since 2013, with a dramatically increasing number of
CV-A6-related HFMD cases, CV-A6 has become the predominant HFMD pathogen in
mainland China. Phylogenetic analysis based on the VP1 capsid
gene revealed that subtype D3 dominated the CV-A6 outbreaks. Here, we performed
a large-scale (near) full-length genetic analysis of global and Chinese CV-A6
variants, including 158 newly sequenced samples collected extensively in
mainland China between 2010 and 2018. During the global transmission of subtype
D3 of CV-A6, the noncapsid gene continued recombining, giving rise to a series
of viable recombinant hybrids designated evolutionary lineages, and each lineage
displayed internal consistency in both genetic and epidemiological features. The
emergence of lineage –A since 2005 has triggered CV-A6 outbreaks
worldwide, with a rate of evolution estimated at
4.17 × 10−3 substitutions
site-1 year−1 based on a
large number of monophyletic open reading frame sequences, and created a series
of lineages chronologically through varied noncapsid recombination events. In
mainland China, lineage –A has generated another two novel widespread
lineages (–J and –L) through recombination within the
enterovirus A gene pool, with robust estimates of occurrence time. Lineage
–A, –J, and –L infections presented dissimilar clinical
manifestations, indicating that the conservation of the CV-A6 capsid gene
resulted in high transmissibility, but the lineage-specific noncapsid gene might
influence pathogenicity. Potentially important amino acid substitutions were
further predicted among CV-A6 variants. The evolutionary phenomenon of noncapsid
polymorphism within the same subtype observed in CV-A6 was uncommon in other
leading HFMD pathogens; such frequent recombination happened in fast-spreading
CV-A6, indicating that the recovery of deleterious genomes may still be ongoing
within CV-A6 quasispecies. CV-A6-related HFMD outbreaks have caused a
significant public health burden and pose a great threat to children’s
health; therefore, further surveillance is greatly needed to understand the full
genetic diversity of CV-A6 in mainland China.
Collapse
Affiliation(s)
- Yang Song
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei Province, China
| | - Zhenzhi Han
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Wen Xu
- Yunnan Center for Disease Control and Prevention, Kunming, Yunnan Province, China
| | - Jinbo Xiao
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Xianjun Wang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, China
| | - Jianxing Wang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, China
| | - Jianfang Yang
- Shanxi Center for Disease Control and Prevention, Taiyuan, Shanxi Province, China
| | - Qiuli Yu
- Hebei Center for Disease Control and Prevention, Shijiazhuang, Hebei Province, China
| | - Deshan Yu
- Gansu Center for Disease Control and Prevention, Lanzhou, Gansu Province, China
| | - Jianhua Chen
- Gansu Center for Disease Control and Prevention, Lanzhou, Gansu Province, China
| | - Wei Huang
- Chongqing Center for Disease Control and Prevention, Chongqing City, China
| | - Jie Li
- Beijing Center for Disease Control and Prevention, Beijing City, China
| | - Tong Xie
- Tianjin Center for Disease Control and Prevention, Tianjin City, China
| | - Huanhuan Lu
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Tianjiao Ji
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Qian Yang
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Changbai Road, Changping District, Beijing, 102206, China.,Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei Province, China.,Anhui University of Science and Technology, Anhui Province, China
| |
Collapse
|
26
|
Genetic characterization of VP1 of coxsackieviruses A2, A4, and A10 associated with hand, foot, and mouth disease in Vietnam in 2012-2017: endemic circulation and emergence of new HFMD-causing lineages. Arch Virol 2020; 165:823-834. [PMID: 32008121 DOI: 10.1007/s00705-020-04536-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/23/2019] [Indexed: 12/15/2022]
Abstract
While conducting sentinel surveillance of hand, foot, and mouth disease (HFMD) in Vietnam, we found a sudden increase in the prevalence of coxsackievirus A10 (CV-A10) in 2016 and CV-A2 and CV-A4 in 2017, the emergence of which has been reported recently to be associated with various clinical manifestations in other countries. However, there have been only a limited number of molecular studies on those serotypes, with none being conducted in Vietnam. Therefore, we sequenced the entire VP1 genes of CV-A10, CV-A4, and CV-A2 strains associated with HFMD in Vietnam between 2012 and 2017. Phylogenetic analysis revealed a trend of endemic circulation of Vietnamese CV-A10, CV-A4, and CV-A2 strains and the emergence of thus-far undescribed HFMD-causing lineages of CV-A4 and CV-A2. The Vietnamese CV-A10 strains belonged to a genotype comprising isolates from patients with HFMD from several other countries; however, most of the Vietnamese strains were grouped into a local lineage. Recently, emerging CV-A4 strains in Vietnam were grouped into a unique lineage within a genotype comprising strains isolated from patients with acute flaccid paralysis from various countries. New substitutions were detected in the putative BC and HI loops in the Vietnamese CV-A4 strains. Except for one strain, Vietnamese CV-A2 isolates were grouped into a unique lineage of a genotype that includes strains from various countries that are associated with other clinical manifestations. Enhanced surveillance is required to monitor their spread and to specify their roles as etiological agents of HFMD or "HFMD-like" diseases, especially for CV-A4 and CV-A2. Further studies including whole-genome sequencing should be conducted to fully understand the evolutionary changes occurring in these newly emerging strains.
Collapse
|
27
|
Zhao TS, Du J, Sun DP, Zhu QR, Chen LY, Ye C, Wang S, Liu YQ, Cui F, Lu QB. A review and meta-analysis of the epidemiology and clinical presentation of coxsackievirus A6 causing hand-foot-mouth disease in China and global implications. Rev Med Virol 2019; 30:e2087. [PMID: 31811676 DOI: 10.1002/rmv.2087] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/09/2019] [Accepted: 09/14/2019] [Indexed: 12/22/2022]
Abstract
Coxsackievirus A6 (CV-A6) has been associated with increasingly occurred sporadic hand-foot-mouth disease (HFMD) cases and outbreak events in many countries. In order to understand epidemiological characteristics of CV-A6, we collected the information describing HFMD caused by CV-A6 to describe the detection rate, severe rate and onychomadesis rate, which is defined as one or more nails defluvium, caused by CV-A6 from 2007 to 2017. The results showed that there was an outbreak of CV-A6 every other year, and overall trend of the epidemic of CA6-associated HFMD was increasing in China. The detection rate of CV-A6 in other countries was 32.0% (95% CI: 25.0%~40.0%) before 2013 and 28.0% (95% CI: 20.0%~36.0%) after 2013, respectively. Although the severe rate of HFMD caused by CV-A6 was low (0.10%, 95% CI: 0.01%~0.20%), CV-A6 can cause a high incidence of onychomadesis (28.0%, 95%CI: 21.9%-34.3%). Thus, it would be worthwhile to research and develop an effective multivalent vaccine for CV-A6 to achieve a more powerful prevention of HMFD.
Collapse
Affiliation(s)
- Tian-Shuo Zhao
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Juan Du
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Da-Peng Sun
- Institute for Viral Disease Control and Prevention, Shandong Provincial Key Laboratory of Communicable Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
| | - Quan-Rong Zhu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Lin-Yi Chen
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Chen Ye
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Shuai Wang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Ya-Qiong Liu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Fuqiang Cui
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Qing-Bin Lu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China.,Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| |
Collapse
|
28
|
Immunohistochemical Study of 2 Cases of Coxsackie A6–Induced Atypical Hand-Foot-and-Mouth Disease. Am J Dermatopathol 2019; 41:741-743. [DOI: 10.1097/dad.0000000000001409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Detection of Enteroviruses in Children with Acute Diarrhea. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2019. [DOI: 10.5812/archcid.83916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Andrés C, Guasch E, Piñana M, Fernandes P, Gimferrer L, Esso DV, Codina MG, Esperalba J, Vila J, Rodrigo C, Martín MC, Fuentes F, Rubio S, Pumarola T, Antón A. Recombinant CV-A6 strains related to hand-foot-mouth disease and herpangina at primary care centers (Barcelona, Spain). Future Microbiol 2019; 14:499-507. [PMID: 31033351 DOI: 10.2217/fmb-2018-0336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Aim: To describe the genetic diversity of enteroviruses (EV) causing hand, foot and mouth disease (HFMD) and herpangina, especially of coxsackievirus (CV)-A6, from patients attended at pediatric primary care centers during the 2017-2018 season. Methods: Phylogenetic analysis of partial VP1 region was performed for genetic characterization. The complete VP1 and 3Dpol proteins were sequenced for lineage determination and detection of recombination events. Results: An 80% of samples were EV laboratory-confirmed. CV-A6 was the most detected (70%) and associated with atypical HFMD (78%). The comparison of VP1 and 3Dpol phylogenies showed evidence of recombination in three strains, in which two shifted to CV-A16 3Dpol. Conclusion: The study provides recent information regarding the nonrecombinant and recombinant EVs related to HFMD at primary care centers.
Collapse
Affiliation(s)
- Cristina Andrés
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eulàlia Guasch
- Primary Care Service Muntanya, Institut Català de la Salut, Department of Health, Barcelona, Spain
| | - Maria Piñana
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Paula Fernandes
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Gimferrer
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Diego Van Esso
- Primary Care Service Muntanya, Institut Català de la Salut, Department of Health, Barcelona, Spain
| | - Maria Gema Codina
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juliana Esperalba
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jorgina Vila
- Paediatric Hospitalisation Unit, Department of Paediatrics, Hospital Universitari Maternoinfantil Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carlos Rodrigo
- Paediatric Hospitalisation Unit, Department of Paediatrics, Hospital Universitari Maternoinfantil Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Carmen Martín
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francisco Fuentes
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Susana Rubio
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Tomàs Pumarola
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | -
- Primary Care Service Muntanya, Institut Català de la Salut, Department of Health, Barcelona, Spain
| | - Andrés Antón
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
31
|
High Permissiveness for Genetic Exchanges between Enteroviruses of Species A, including Enterovirus 71, Favors Evolution through Intertypic Recombination in Madagascar. J Virol 2019; 93:JVI.01667-18. [PMID: 30602612 DOI: 10.1128/jvi.01667-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/18/2018] [Indexed: 12/30/2022] Open
Abstract
Human enteroviruses of species A (EV-A) are the leading cause of hand-foot-and-mouth disease (HFMD). EV-A71 is frequently implicated in HFMD outbreaks and can also cause severe neurological manifestations. We investigated the molecular epidemiological processes at work and the contribution of genetic recombination to the evolutionary history of EV-A in Madagascar, focusing on the recently described EV-A71 genogroup F in particular. Twenty-three EV-A isolates, collected mostly in 2011 from healthy children living in various districts of Madagascar, were characterized by whole-genome sequencing. Eight different types were identified, highlighting the local circulation and diversity of EV-A. Comparative genome analysis revealed evidence of frequent recent intra- and intertypic genetic exchanges between the noncapsid sequences of Madagascan EV-A isolates. The three EV-A71 isolates had different evolutionary histories in terms of recombination, with one isolate displaying a mosaic genome resulting from recent genetic exchanges with Madagascan coxsackieviruses A7 and possibly A5 and A10 or common ancestors. The engineering and characterization of recombinants generated from progenitors belonging to different EV-A types or EV-A71 genogroups with distantly related nonstructural sequences indicated a high level of permissiveness for intertypic genetic exchange in EV-A. This permissiveness suggests that the primary viral functions associated with the nonstructural sequences have been highly conserved through the diversification and evolution of the EV-A species. No outbreak of disease due to EV-A has yet been reported in Madagascar, but the diversity, circulation, and evolution of these viruses justify surveillance of EV-A circulation and HFMD cases to prevent possible outbreaks due to emerging strains.IMPORTANCE Human enteroviruses of species A (EV-A), including EV-A71, are the leading cause of hand-foot-and-mouth disease (HFMD) and may also cause severe neurological manifestations. We investigated the circulation and molecular evolution of EV-A in Madagascar, focusing particularly on the recently described EV-A71 genogroup F. Eight different types, collected mostly in 2011, were identified, highlighting the local circulation and diversity of EV-A. Comparative genome analysis revealed evidence of frequent genetic exchanges between the different types of isolates. The three EV-A71 isolates had different evolutionary histories in terms of recombination. The engineering and characterization of recombinants involving progenitors belonging to different EV-A types indicated a high degree of permissiveness for genetic exchange in EV-A. No outbreak of disease due to EV-A has yet been reported in Madagascar, but the diversity, circulation, and evolution of these viruses justify the surveillance of EV-A circulation to prevent possible HFMD outbreaks due to emerging strains.
Collapse
|
32
|
Mizuta K, Tanaka S, Komabayashi K, Aoki Y, Itagaki T, Katsushima F, Katsushima Y, Yoshida H, Ito S, Matsuzaki Y, Ikeda T. Phylogenetic and antigenic analyses of coxsackievirus A6 isolates in Yamagata, Japan between 2001 and 2017. Vaccine 2019; 37:1109-1117. [PMID: 30683510 DOI: 10.1016/j.vaccine.2018.12.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 11/27/2022]
Abstract
Although coxsackievirus A6 (CV-A6) is generally recognized as a causative agent of herpangina in children, CV-A6 infections globally emerged as a new and major cause of epidemic hand-foot-and-mouth-diseases (HFMDs) around 2008. To clarify the longitudinal epidemiology of CV-A6, we carried out sequence and phylogenetic analyses for the VP1 and partially for the VP4-3D regions as well as antigenic analysis using 115 CV-A6 isolates and 105 human sera in Yamagata, Japan between 2001 and 2017. Phylogenetic analysis revealed that CV-A6 isolates were clearly divided into two clusters; strains in circulation between 2001 and 2008 and those between 2010 and 2017. Neutralizing antibody titers of two rabbit antisera, which were immunized with Yamagata isolates in 2001 and 2015, respectively, against 28 Yamagata representative strains as well as the prototype Gdula strain were 1:2560-1:5120 and 1:160-1:640, respectively. The neutralizing antibody titers among residents in Yamagata against the above two strains were similar. Our analyses revealed that there were cross-antigenicities among all analyzed CV-A6 strains, although the newly emerged strains were introduced into Yamagata around 2010 and replaced the previous ones. With regard to control measures, these findings suggest that we can prevent CV-A6 infections through the development of a vaccine that effectively induces neutralizing antibodies against CV-A6, irrespective of genetic cluster.
Collapse
Affiliation(s)
- Katsumi Mizuta
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata 1-6-6, Yamagata 990-0031, Japan.
| | - Shizuka Tanaka
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata 1-6-6, Yamagata 990-0031, Japan
| | - Kenichi Komabayashi
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata 1-6-6, Yamagata 990-0031, Japan
| | - Yoko Aoki
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata 1-6-6, Yamagata 990-0031, Japan
| | | | | | | | - Hiroshi Yoshida
- Department of Pediatrics, Tsuruoka Municipal Shonai Hospital, Yamagata 990-9585, Japan
| | - Sueshi Ito
- Department of Pediatrics, Tsuruoka Municipal Shonai Hospital, Yamagata 990-9585, Japan; Ito Clinic, Department of Pediatrics, Hinode 1-17-8, Tsuruoka, Yamagata 997-0025, Japan
| | - Yoko Matsuzaki
- Department of Infectious Diseases, Yamagata University, Faculty of Medicine, Yamagata 990-9585, Japan
| | - Tatsuya Ikeda
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Yamagata 1-6-6, Yamagata 990-0031, Japan
| |
Collapse
|
33
|
Knöpfel N, Noguera-Morel L, Latour I, Torrelo A. Viral exanthems in children: A great imitator. Clin Dermatol 2019; 37:213-226. [PMID: 31178104 DOI: 10.1016/j.clindermatol.2019.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Viral exanthems are frequent in children and are mostly self-limited. Early recognition and differentiation from other childhood illnesses are important to direct further investigations and treatment initiation. The clinical presentation of viral exanthems in children includes a polymorphic spectrum of skin eruptions ranging from classic viral exanthems to "atypical" presentations that can mimic nonviral diseases; thus, viral exanthems of childhood can be readily diagnosed on clinical grounds, but not rarely do they represent a diagnostic challenge. In this review, we focus on viral diseases in children that may be difficult to diagnose due to their clinical similarities with nonviral diseases, and we offer clues for the differential diagnosis and proper diagnostic testing in such cases.
Collapse
Affiliation(s)
- Nicole Knöpfel
- Department of Pediatric Dermatology, University Children's Hospital Zurich, Zurich, Switzerland; Department of Dermatology, University Children's Hospital Niño Jesús, Madrid, Spain
| | - Lucero Noguera-Morel
- Department of Dermatology, University Children's Hospital Niño Jesús, Madrid, Spain
| | - Irene Latour
- Department of Dermatology, University Children's Hospital Niño Jesús, Madrid, Spain
| | - Antonio Torrelo
- Department of Dermatology, University Children's Hospital Niño Jesús, Madrid, Spain.
| |
Collapse
|
34
|
Molecular epidemiology of coxsackievirus A6 circulating in Hong Kong reveals common neurological manifestations and emergence of novel recombinant groups. J Clin Virol 2018; 108:43-49. [PMID: 30237097 DOI: 10.1016/j.jcv.2018.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/21/2018] [Accepted: 09/07/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND Coxsackievirus A6 (CV-A6) represents the predominant enterovirus serotype in Hong Kong, but its epidemiology in our population was unknown. OBJECTIVES To examine the clinical and molecular epidemiology of CV-A6 and detect emerging recombinant strains in Hong Kong. STUDY DESIGN Nasopharyngeal aspirates (NPAs) from patients with febrile or respiratory illness were subject to RT-PCR for CV-A6 and sequencing of 5'-NCR and VP1. CV-A6-positive samples were further subject to 2C and 3D gene sequencing. Complete genome sequencing was performed on potential recombinant strains. RESULTS Thirty-six (0.35%) NPAs were positive for CV-A6 by 5'-NCR RT-PCR and sequencing, 28 of which confirmed by partial VP1 gene sequencing. Among the 28 patients (mainly young children) with CV-A6 infection, hand-foot-and-mouth disease (HFMD) (43%), herpangina (18%) and tonsillitis (11%) were the most common diagnoses. Seven (25%) patients had neurological manifestations, including febrile seizures, encephalitis and meningitis. VP1 gene analysis showed that 24 CV-A6 strains circulating in Hong Kong belonged to genotype D5, while 4 strains belonged to D4. Further 2C and 3D gene analysis revealed eight potential recombinant strains. Genome sequencing of five selected strains confirmed four recombinant strains: HK459455/2013 belonging to recombination group RJ arisen from CV-A6/CV-A4, HK458288/2015 and HK446377/2015 representing novel group RL arisen from CV-A6/CV-A4, and HK462069/2015 representing novel group RM arisen from CV-A6/EV-A71. Recombination breakpoints located at 3D were identified in the latter three recombinant strains, with HK462069/2015 (from a child with encephalitis) having acquired 3D region from EV-A71. CONCLUSIONS We identified novel recombinant CV-A6 strains in Hong Kong, with 3D being a common recombination site.
Collapse
|
35
|
Fang CY, Liu CC. Recent development of enterovirus A vaccine candidates for the prevention of hand, foot, and mouth disease. Expert Rev Vaccines 2018; 17:819-831. [PMID: 30095317 DOI: 10.1080/14760584.2018.1510326] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Hand, foot, and mouth disease (HFMD) is a childhood illness commonly caused by enterovirus A. Enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16) are the most commonly identified viruses associated with HFMD. Recently, outbreaks caused by different enterovirus A including CV-A6 and CV-A10 are increasing. Being available now to protect against EV-A71 infection, inactivated EV-A71 vaccines cannot prevent coxsackievirus infections, thus limiting their general application in controlling HFMD. Multivalent HFMD vaccines are suggested to have broad cross-neutralizing responses against these emerging enteroviruses. AREAS COVERED We discuss the recent development of enterovirus A vaccines including the inactivated whole-virion vaccine and virus-like particle vaccine candidates and review the information of neutralization epitopes of these viruses. EXPERT COMMENTARY Evaluation of the efficacy and safety of the coxsackievirus vaccine and the multivalent HFMD vaccine candidates in clinical trials is urgently required. Epitopic analysis showed that common immunodominant sites exist across these enteroviruses. However, variations of amino acid residues in these regions limit the induction of cross-neutralization antibodies, and therefore, a multivalent HFMD vaccine is required for broad protection against HFMD. With the inclusion of major circulating viruses in the development of multivalent HFMD vaccines, an increase in the success in HFMD control is anticipated.
Collapse
Affiliation(s)
- Chih-Yeu Fang
- a Department of Pathology, Wan Fang Hospital , Taipei Medical University , Taipei , Taiwan
| | - Chia-Chyi Liu
- b National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes , Zhunan Town , Taiwan
| |
Collapse
|
36
|
Lukashev AN, Vakulenko YA, Turbabina NA, Deviatkin AA, Drexler JF. Molecular epidemiology and phylogenetics of human enteroviruses: Is there a forest behind the trees? Rev Med Virol 2018; 28:e2002. [PMID: 30069956 DOI: 10.1002/rmv.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/28/2018] [Accepted: 07/01/2018] [Indexed: 11/05/2022]
Abstract
Enteroviruses are among the best studied small non-enveloped enteric RNA viruses. Most enteroviruses are easy to isolate in cell culture, and many non-polio enterovirus strains were archived worldwide as a byproduct of the WHO poliovirus surveillance system. Common outbreaks and epidemics, most prominently the epidemic of hand-foot-and-mouth disease with severe neurological complications in East and South-East Asia, justify practical interest of non-polio enteroviruses. As a result, there are over 50 000 enterovirus nucleotide sequences available in GenBank. Technical possibilities have been also improving, as Bayesian phylogenetic methods with an integrated molecular clock were introduced a decade ago and provided unprecedented opportunities for phylogenetic analysis. As a result, hundreds of papers were published on the molecular epidemiology of enteroviruses. This review covers the modern methodology, structure, and biases of the sequence dataset available in GenBank. The relevance of the subtype classification, findings of co-circulation of multiple genetic variants, previously unappreciated complexity of viral populations, and global evolutionary patterns are addressed. The most relevant conclusions and prospects for further studies on outbreak emergence mechanisms are discussed.
Collapse
Affiliation(s)
- Alexander N Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia.,Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Preparations, Moscow, Russia
| | - Yulia A Vakulenko
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia.,Virology Department, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia A Turbabina
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | | | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
| |
Collapse
|
37
|
Qiao M, Yong W, Wang X, Li W, Zhang Z, He M, Shi L, Wang Y, Xie G, Ding J. Identification of recombinant coxsackievirus A6 variants in hand, foot and mouth disease in Nanjing, China, 2013. J Med Microbiol 2018; 67:1120-1129. [PMID: 29947601 DOI: 10.1099/jmm.0.000780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Enteroviruses (EV) 71 and coxsackievirus A (CVA) 16 are the most prevalent EV serotypes responsible for hand, foot and mouth disease (HFMD). Nevertheless, CVA6 was found to be the leading cause of HFMD in the Nanjing area, of China in 2013. This study aims to provide insights into the occurrence of the emergent recombinant CVA6 through examination of the evolutionary history and the involved recombination events. METHODOLOGY The viral protein1 (VP1) and non-structural (NS) 2C and 3D of 28 Nanjing CVA6 strains were aligned, among which the full-length sequences of eight strains were further characterized. RESULTS We revealed the co-existence of two recombinant forms (RFs), RF-A and RF-J, in the local area. RF-J is a novel RF group, comprising a proportion of local and Shanghai CVA6 strains from 2013. The appearance of RF-J CVA6 strains was most likely the result of two recombination events, with the co-circulating CVA4 and CVA8 providing the regions beyond positions 4001~4045 and 4866~4873, respectively. Evolutionary history analysis showed that the VP1 sequences of RF-J derived from RF-A, which was also probably the ancestor of several other RF groups. The 3D region of RF-J was closely related to CVA8. The point in time of emergence of the most recent common ancestor (tMRCA) of RF-J in China was estimated to be around 2011 in both terms of VP1 and 3D region. CONCLUSION The emerging recombinant CVA6 variants belong to a novel RF-J group which was most likely formed by at least two recombination events. Continued monitoring on the geographical distribution of various CVA6 RFs is essential.
Collapse
Affiliation(s)
- Mengkai Qiao
- Nanjing Municipal Center for Disease Control and Prevention, Jiangsu, PR China
| | - Wei Yong
- Nanjing Municipal Center for Disease Control and Prevention, Jiangsu, PR China
| | - Xuan Wang
- Nanjing Municipal Center for Disease Control and Prevention, Jiangsu, PR China
| | - Wei Li
- Nanjing Municipal Center for Disease Control and Prevention, Jiangsu, PR China
| | - Zhong Zhang
- Nanjing Municipal Center for Disease Control and Prevention, Jiangsu, PR China
| | - Min He
- Nanjing Municipal Center for Disease Control and Prevention, Jiangsu, PR China
| | - Limin Shi
- Nanjing Municipal Center for Disease Control and Prevention, Jiangsu, PR China
| | - Yaqian Wang
- Nanjing Municipal Center for Disease Control and Prevention, Jiangsu, PR China
| | - Guoxiang Xie
- Nanjing Municipal Center for Disease Control and Prevention, Jiangsu, PR China
| | - Jie Ding
- Nanjing Municipal Center for Disease Control and Prevention, Jiangsu, PR China
| |
Collapse
|
38
|
Divergent Pathogenic Properties of Circulating Coxsackievirus A6 Associated with Emerging Hand, Foot, and Mouth Disease. J Virol 2018; 92:JVI.00303-18. [PMID: 29563294 DOI: 10.1128/jvi.00303-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 03/16/2018] [Indexed: 12/18/2022] Open
Abstract
Coxsackievirus A6 (CV-A6) is an emerging pathogen associated with hand, foot, and mouth disease (HFMD). Its genetic characterization and pathogenic properties are largely unknown. Here, we report 39 circulating CV-A6 strains isolated in 2013 from HFMD patients in northeast China. Three major clusters of CV-A6 were identified and related to CV-A6, mostly from Shanghai, indicating that domestic CV-A6 strains were responsible for HFMD emerging in northeast China. Four full-length CV-A6 genomes representing each cluster were sequenced and analyzed further. Bootscanning tests indicated that all four CV-A6-Changchun strains were most likely recombinants between the CV-A6 prototype Gdula and prototype CV-A4 or CV-A4-related viruses, while the recombination pattern was related to, yet distinct from, the strains isolated from other regions of China. Furthermore, different CV-A6 strains showed different capabilities of viral replication, release, and pathogenesis in a mouse model. Further analyses indicated that viral protein 2C contributed to the diverse pathogenic abilities of CV-A6 by causing autophagy and inducing cell death. To our knowledge, this study is the first to report lethal and nonlethal strains of CV-A6 associated with HFMD. The 2C protein region may play a key role in the pathogenicity of CV-A6 strains.IMPORTANCE Hand, foot, and mouth disease (HFMD) is a major and persistent threat to infants and children. Besides the most common pathogens, such as enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16), other enteroviruses are increasingly contributing to HFMD. The present study focused on the recently emerged CV-A6 strain. We found that CV-A6 strains isolated in Changchun City in northeast China were associated with domestic origins. These Changchun viruses were novel recombinants of the CV-A6 prototype Gdula and CV-A4. Our results imply that measures to control CV-A6 transmission are urgently needed. Further analyses revealed differing pathogenicities in strains isolated in a neonatal mouse model. One of the possible causes has been narrowed down to the viral protein 2C, using phylogenetic studies, viral sequences, and direct tests on cultured human cells. Thus, the viral 2C protein is a promising target for antiviral drugs to prevent CV-A6-induced tissue damage.
Collapse
|
39
|
Harvala H, Broberg E, Benschop K, Berginc N, Ladhani S, Susi P, Christiansen C, McKenna J, Allen D, Makiello P, McAllister G, Carmen M, Zakikhany K, Dyrdak R, Nielsen X, Madsen T, Paul J, Moore C, von Eije K, Piralla A, Carlier M, Vanoverschelde L, Poelman R, Anton A, López-Labrador FX, Pellegrinelli L, Keeren K, Maier M, Cassidy H, Derdas S, Savolainen-Kopra C, Diedrich S, Nordbø S, Buesa J, Bailly JL, Baldanti F, MacAdam A, Mirand A, Dudman S, Schuffenecker I, Kadambari S, Neyts J, Griffiths MJ, Richter J, Margaretto C, Govind S, Morley U, Adams O, Krokstad S, Dean J, Pons-Salort M, Prochazka B, Cabrerizo M, Majumdar M, Nebbia G, Wiewel M, Cottrell S, Coyle P, Martin J, Moore C, Midgley S, Horby P, Wolthers K, Simmonds P, Niesters H, Fischer TK. Recommendations for enterovirus diagnostics and characterisation within and beyond Europe. J Clin Virol 2018; 101:11-17. [DOI: 10.1016/j.jcv.2018.01.008] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/10/2018] [Accepted: 01/14/2018] [Indexed: 12/18/2022]
|
40
|
An emerging and expanding clade accounts for the persistent outbreak of Coxsackievirus A6-associated hand, foot, and mouth disease in China since 2013. Virology 2018; 518:328-334. [PMID: 29587191 DOI: 10.1016/j.virol.2018.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 11/23/2022]
Abstract
Enterovirus (EV)-A71 and Coxsackievirus (CV)-A16 have historically been the major pathogens of hand, foot, and mouth disease (HMFD) in China; however, CV-A6, which had previously received little attention, became the predominant pathogen in 2013, and has remained one of the common pathogens since then. In this work, we conducted a molecular epidemiology study of CV-A6-associated HFMD in Xiamen from 2009 to 2015. The data showed CV-A6 pandemics had a certain periodicity rather than occurring randomly. Evolution analysis based on near-complete VP1 nucleotide sequences showed subgenotype D5 lineage 4 strains account for the persistent outbreak of CV-A6-associated HFMD in China since 2013. Alignment analysis revealed eight candidate amino acid substitutions in VP1, which may provide useful information for the research of CV-A6 virulence enhancement. This study contributed to elucidating the circulation patterns and genetic characteristics of CV-A6 in China; however, further surveillance and intervention in CV-A6 epidemics is recommended.
Collapse
|
41
|
Esposito S, Principi N. Hand, foot and mouth disease: current knowledge on clinical manifestations, epidemiology, aetiology and prevention. Eur J Clin Microbiol Infect Dis 2018; 37:391-398. [PMID: 29411190 DOI: 10.1007/s10096-018-3206-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 01/29/2018] [Indexed: 12/14/2022]
Abstract
For a long time, hand, foot and mouth disease (HFMD) was seen as a mild viral infection characterized by typical clinical manifestations that spontaneously resolved in a few days without complications. In the past two decades, HFMD has received new attention because of evidence that this disease could have clinical, epidemiological and aetiological characteristics quite different from those initially thought. In contrast to previous beliefs, it has been clarified that HFMD can be associated with complications, leading to severe neurological sequelae and, rarely, to death. This finding has led to an enormous number of studies that have indicated that several viruses in addition to those known to be causes of HFMD could be associated with the development of disease. Moreover, it was found that if some viruses were more common in some geographic areas, frequent modification of the molecular epidemiology of the infecting strains could lead to outbreaks caused by infectious agents significantly different from those previously circulating. Vaccines able to confer protection against the most common aetiologic agents in a given country have been developed. However, simultaneous circulation of more than one causative virus and modification of the molecular epidemiology of infectious agents make preparations based on a single agent relatively inadequate. Vaccines with multiple components are a possible solution. However, several problems concerning their development must be solved before adequate prevention of severe cases of HFMD can be achieved.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Piazza Menghini 1, 06129, Perugia, Italy.
| | | |
Collapse
|
42
|
Wang J, Teng Z, Cui X, Li C, Pan H, Zheng Y, Mao S, Yang Y, Wu L, Guo X, Zhang X, Zhu Y. Epidemiological and serological surveillance of hand-foot-and-mouth disease in Shanghai, China, 2012-2016. Emerg Microbes Infect 2018; 7:8. [PMID: 29362406 PMCID: PMC5837173 DOI: 10.1038/s41426-017-0011-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/13/2017] [Accepted: 11/18/2017] [Indexed: 02/02/2023]
Abstract
Aside from enterovirus 71 (EV71) and coxsackie virus A16 (CV-A16), viruses that are known to cause hand-foot-and-mouth disease (HFMD), epidemiological profiles of other enteroviruses that induce HFMD are limited. We collected 9949 laboratory surveillance HFMD cases and 1230 serum samples from infants and children in Shanghai from 2012–2016. Since 2013, CV-A6 has displaced EV71 and CV-A16 to become the predominant serotype. Interestingly, novel epidemiological patterns in EV71 and CV-A16 infections were observed, with one large peak in both 2012 and 2014, followed by two smaller peaks in the respective following years (2013 and 2015). Through sequencing, we found that C4a, B1b, D-Cluster-1 and B constituted the major subgenotypes of EV71, CV-A16, CV-A6 and CV-A10, respectively. Among healthy individuals, 50.49% and 54.23% had positive neutralising antibodies (NtAbs) against EV71 and CV-A16, respectively, indicating that EV71 and CV-A16 silent infections were common. These populations may be an important potential source of infection. The overall seropositive rate of EV71 NtAbs showed a fluctuating, markedly downward trend, indicating the potential risk of a future EV71 epidemic. High CV-A16 NtAb seroprevalence corroborated a documented CV-A16 ‘silent’ epidemic. Children aged 1–5 years had the lowest EV71 NtAb seropositive rate, whereas those aged 1–2 years exhibited the lowest CV-A16 NtAb seropositive rate. This is the first comprehensive investigation of the epidemiology and aetiology, as well as the seroprevalence, of HFMD in Shanghai between 2012 and 2016. This study provides the latest insights into developing a more efficient HMFD vaccination programme.
Collapse
Affiliation(s)
- Jiayu Wang
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Microbiology Laboratory, Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China
| | - Zheng Teng
- Microbiology Laboratory, Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China
| | - Xiaoqing Cui
- Microbiology Laboratory, Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China
| | - Chongshan Li
- Expanded Program on Immunization Laboratory, Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China
| | - Hao Pan
- Microbiology Laboratory, Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China
| | - Yaxu Zheng
- Microbiology Laboratory, Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China
| | - Shenghua Mao
- Microbiology Laboratory, Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China
| | - Yuying Yang
- Expanded Program on Immunization Laboratory, Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China
| | - Limeng Wu
- Microbiology Laboratory, Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China
| | - Xiaokui Guo
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xi Zhang
- Microbiology Laboratory, Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China.
| | - Yongzhang Zhu
- Department of Microbiology and Immunology, Institutes of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Department of Clinical Microbiology, Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
43
|
Abstract
Picornaviruses are small, nonenveloped, icosahedral RNA viruses with positive-strand polarity. Although the vast majority of picornavirus infections remain asymptomatic, many picornaviruses are important human and animal pathogens and cause diseases that affect the central nervous system, the respiratory and gastrointestinal tracts, heart, liver, pancreas, skin and eye. A stunning increase in the number of newly identified picornaviruses in the past decade has shown that picornaviruses are globally distributed and infect vertebrates of all classes. Moreover, picornaviruses exhibit a surprising diversity of both genome sequences and genome layouts, sometimes challenging the definition of taxonomic relevant criteria. At present, 35 genera comprising 80 species and more than 500 types are acknowledged. Fifteen species within five new and three existing genera have been proposed in 2017, but more than 50 picornaviruses still remain unassigned.
Collapse
Affiliation(s)
- Roland Zell
- Division of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Str. 2, 07745, Jena, Germany.
| |
Collapse
|
44
|
Persistent circulation of Coxsackievirus A6 of genotype D3 in mainland of China between 2008 and 2015. Sci Rep 2017; 7:5491. [PMID: 28710474 PMCID: PMC5511160 DOI: 10.1038/s41598-017-05618-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/19/2017] [Indexed: 12/22/2022] Open
Abstract
A total of 807 entire VP1 sequences of Coxsackievirus A6 (CV-A6) from mainland of China from 1992 to 2015, including 520 in this study and 287 from the GenBank database, were analysed to provide a basic framework of molecular epidemiological characteristics of CV-A6 in China. Sixty-five VP1 sequences including 46 representative CV-A6 isolates from 807 Chinese strains and 19 international strains from GenBank were used for describing the genotypes and sub-genotypes. The results revealed that CV-A6 strains can be categorised into 4 genotypes designated as A, B, C, and D according to previous data and can be further subdivided into B1–B2, C1–C2, and D1–D3 sub-genotypes. D3 is the predominant sub-genotype that circulated in recent years in mainland of China and represents 734 of 807 Chinese isolates. Sixty-six strains belong to D2, whereas B1 and C1 comprise a single strain each, and five AFP strains formed B2. Sub-genotype D3 first circulated in 2008 and has become the predominant sub-genotype since 2009 and then reached a peak in 2013, while D2 was mostly undetectable in the past years. These data revealed different transmission stages of CV-A6 in mainland of China and that sub-genotype D3 may have stronger transmission ability.
Collapse
|
45
|
Su W, Li X, Chen M, Dai W, Sun S, Wang S, Sheng X, Sun S, Gao C, Hou A, Zhou Y, Sun B, Gao F, Xiao J, Zhang Z, Jiang C. Synonymous codon usage analysis of hand, foot and mouth disease viruses: A comparative study on coxsackievirus A6, A10, A16, and enterovirus 71 from 2008 to 2015. INFECTION GENETICS AND EVOLUTION 2017; 53:212-217. [PMID: 28602802 DOI: 10.1016/j.meegid.2017.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/02/2017] [Accepted: 06/04/2017] [Indexed: 11/15/2022]
Abstract
Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) have been considered major pathogens of hand, foot and mouth disease (HFMD) throughout the world for decades. In recent years, coxsackievirus A6 (CVA6) and coxsackievirus A10 (CVA10) have raised attention as two other serious pathogens of HFMD. The present study focused on the synonymous codon usage of four viruses isolated from 2008 to 2015, with particular attention on P1 (encoding capsid proteins) and P2-P3 regions (both encoding non-structural proteins) in the genomic RNA. Relative synonymous codon usage, effective number of codons, neutrality and correspondence were analyzed. The results indicated that these viruses prefer A/T at the third position in codons rather than G/C. The most frequent codons of 4 essential and 2 semi-essential amino acids, as well as a key amino acid of metabolic junctions (Glu) used in the four viruses are also the most frequently used in humans. Effective number of codons (ENC) values indicated weak codon usage bias in all the viruses. Relatively, the force of mutation pressure in the P1 region was found to be stronger than that in the P2-P3 region, and this force in the P1 region of CVA6 and EV71 was stronger than that of CVA10 and A16. The neutrality analysis results implied that mutation pressure plays a minor role in shaping codon bias of these viruses. Correspondence analysis indicated that the codon usage of EV71 strains varied much more than that of other viruses. In conclusion, the present study provides novel and comparative insight into the evolution of HFMD pathogens at the codon level.
Collapse
Affiliation(s)
- Weiheng Su
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xue Li
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meili Chen
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenwen Dai
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Shiyang Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Shuai Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xin Sheng
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shixiang Sun
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Gao
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ali Hou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yan Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Bo Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Feng Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jingfa Xiao
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhewen Zhang
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
46
|
Tian H, Zhang Y, Shi Y, Li X, Sun Q, Liu L, Zhao D, Xu B. Epidemiological and aetiological characteristics of hand, foot, and mouth disease in Shijiazhuang City, Hebei province, China, 2009-2012. PLoS One 2017; 12:e0176604. [PMID: 28486500 PMCID: PMC5423607 DOI: 10.1371/journal.pone.0176604] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/13/2017] [Indexed: 12/18/2022] Open
Abstract
Large outbreaks of hand, foot, and mouth disease (HFMD) have repeatedly occurred in mainland of China since 2007. In this study, we investigated the epidemiological and aetiological characteristics of HFMD in Shijiazhuang City, one of the biggest northern cities of China. A total of 57,173 clinical HFMD cases, including 911 severe and 32 fatal cases, were reported in Shijiazhuang City during 2009–2012. The disease incidence peaked during March–July, with a small increase in the number of cases observed in November of each year. Seventeen potential HFMD-causing enterovirus serotypes were detected, with the most frequent serotypes being EV-A71 and CV-A16. CV-A10 was also a frequently detected causative serotype, and was associated with the second largest number of severe HFMD cases, following EV-A71. Phylogenetic analysis revealed that all EV-A71, CV-A16 and CV-A10 strains from Shijiazhuang City had co-evolved and co-circulated with those from other Chinese provinces. Our findings underscore the need for enhanced surveillance and molecular detection for HFMD, and suggest that EV-A71 vaccination may be an effective intervention strategy for HFMD prevention and vaccines against CV-A10 and CV-A16 are also urgently needed.
Collapse
Affiliation(s)
- Huifang Tian
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang City, Hebei Province, People’s Republic of China
- * E-mail:
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory and Key Laboratory for Medical Virology, National Health and Family Planning Commission of China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yan Shi
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang City, Hebei Province, People’s Republic of China
| | - Xiujuan Li
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang City, Hebei Province, People’s Republic of China
| | - Qiang Sun
- WHO WPRO Regional Polio Reference Laboratory and Key Laboratory for Medical Virology, National Health and Family Planning Commission of China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Li Liu
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang City, Hebei Province, People’s Republic of China
| | - Dong Zhao
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang City, Hebei Province, People’s Republic of China
| | - Baohong Xu
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang City, Hebei Province, People’s Republic of China
| |
Collapse
|
47
|
Ogi M, Yano Y, Chikahira M, Takai D, Oshibe T, Arashiro T, Hanaoka N, Fujimoto T, Hayashi Y. Characterization of genome sequences and clinical features of coxsackievirus A6 strains collected in Hyogo, Japan in 1999-2013. J Med Virol 2017; 89:1395-1403. [PMID: 28229467 DOI: 10.1002/jmv.24798] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 01/19/2017] [Indexed: 12/18/2022]
Abstract
Coxsackievirus A6 (CV-A6) is an enterovirus, which is known to cause herpangina. However, since 2009 it has frequently been isolated from children with hand, foot, and mouth disease (HFMD). In Japan, CV-A6 has been linked to HFMD outbreaks in 2011 and 2013. In this study, the full-length genome sequencing of CV-A6 strains were analyzed to identify the association with clinical manifestations. Five thousand six hundred and twelve children with suspected enterovirus infection (0-17 years old) between 1999 and 2013 in Hyogo Prefecture, Japan, were enrolled. Enterovirus infection was confirmed with reverse transcriptase-PCR in 753 children (791 samples), 127 of whom (133 samples) were positive for CV-A6 based on the direct sequencing of the VP4 region. The complete genomes of CV-A6 from 22 positive patients with different clinical manifestations were investigated. A phylogenetic analysis divided these 22 strains into two clusters based on the VP1 region; cluster I contained strains collected in 1999-2009 and mostly related to herpangina, and cluster II contained strains collected in 2011-2013 and related to HFMD outbreak. Based on the full-length polyprotein analysis, the amino acid differences between the strains in cluster I and II were 97.7 ± 0.28%. Amino acid differences were detected in 17 positions within the polyprotein. Strains collected in 1999-2009 and those in 2011-2013 were separately clustered by phylogenetic analysis based on 5'UTR and 3Dpol region, as well as VP1 region. In conclusion, HFMD outbreaks by CV-A6 were recently frequent in Japan and the accumulation of genomic change might be associated with the clinical course.
Collapse
Affiliation(s)
- Miki Ogi
- Hyogo Prefectural Institute of Public Health and Consumer Sciences, Public Health Science Research Center, Hyogo, Japan.,Center for Infectious Diseases, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Yoshihiko Yano
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Masatsugu Chikahira
- Hyogo Prefectural Institute of Public Health and Consumer Sciences, Public Health Science Research Center, Hyogo, Japan
| | - Denshi Takai
- Hyogo Prefectural Institute of Public Health and Consumer Sciences, Public Health Science Research Center, Hyogo, Japan
| | - Tomohiro Oshibe
- Hyogo Prefectural Institute of Public Health and Consumer Sciences, Public Health Science Research Center, Hyogo, Japan
| | - Takeshi Arashiro
- National Institute of Infectious Diseases, Infectious Disease Surveillance Center, Tokyo, Japan
| | - Nozomu Hanaoka
- National Institute of Infectious Diseases, Infectious Disease Surveillance Center, Tokyo, Japan
| | - Tsuguto Fujimoto
- National Institute of Infectious Diseases, Infectious Disease Surveillance Center, Tokyo, Japan
| | - Yoshitake Hayashi
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Hyogo, Japan
| |
Collapse
|
48
|
Chansaenroj J, Auphimai C, Puenpa J, Mauleekoonphairoj J, Wanlapakorn N, Vuthitanachot V, Vongpunsawad S, Poovorawan Y. High prevalence of coxsackievirus A2 in children with herpangina in Thailand in 2015. Virusdisease 2017; 28:111-114. [PMID: 28466062 PMCID: PMC5377860 DOI: 10.1007/s13337-017-0366-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/02/2017] [Indexed: 10/20/2022] Open
Abstract
Coxsackievirus (CV) is a member of the genus Enterovirus and the family Picornaviridae. CV infection can cause herpangina, a disease characterized by multiple ulcers on the tonsils and soft palate affecting mostly young children. CV strains are categorized by serotypes. Unfortunately, serotypes responsible for infections in patients are often undetermined. This knowledge gap partly contributes to the ineffective prevention and control of CV-associated herpangina in Southeast Asia. To characterize the viral etiology of children presented with herpangina, 295 throat swabs were tested for human enterovirus infection. Using RT-PCR specific for the viral 5'UTR/VP2 and the VP1 regions, two most frequent CV types found in these samples were CV-A2 (33.33%, 40/120) and CV-A4 (15.8%, 19/120). Phylogenetic analysis of the VP1 gene demonstrated that the CV-A2 strains in this study not only were closely related to those previously identified in Asia and Europe, but the majority clustered into a distinct group. Thus, infection predominantly by CV-A2 and CV-A4 caused herpangina in 2015 in Thailand.
Collapse
Affiliation(s)
- Jira Chansaenroj
- Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Chompoonut Auphimai
- Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Jiratchaya Puenpa
- Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, 10330 Thailand
| | - John Mauleekoonphairoj
- Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Nasamon Wanlapakorn
- Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, 10330 Thailand
| | | | - Sompong Vongpunsawad
- Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Yong Poovorawan
- Faculty of Medicine, Center of Excellence in Clinical Virology, Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
49
|
Yang Q, Zhang Y, Yan D, Zhu S, Wang D, Ji T, Li X, Song Y, Gu X, Xu W. Two Genotypes of Coxsackievirus A2 Associated with Hand, Foot, and Mouth Disease Circulating in China since 2008. PLoS One 2016; 11:e0169021. [PMID: 28030650 PMCID: PMC5193457 DOI: 10.1371/journal.pone.0169021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 12/10/2016] [Indexed: 11/19/2022] Open
Abstract
Coxsackievirus A2 (CV-A2) has been frequently detected and commonly associated with hand, foot, and mouth disease (HFMD) in China since 2008. However, limited sequences of CV-A2 are currently available. As a result, we have been focusing on the genetic characteristics of CV-A2 in the mainland of China during 2008-2015 based on national HFMD surveillance. In this study, 20 CV-A2 strains were isolated and phylogenetic analyses of the VP1 sequences were performed. Full-length genome sequences of two representative CV-A2 isolates were acquired and similarity plot and bootscanning analyses were performed. The phylogenetic dendrogram indicated that all CV-A2 strains could be divided into four genotypes (Genotypes A-D). The CV-A2 prototype strain (Fleetwood) was the sole member of genotype A. From 2008 to 2015, the CV-A2 strains isolated in China dispersed into two different genotypes (B and D). And the genotype D became the dominant circulating strains in China. Strains isolated in Russia and India from 2005 to 2011 converged into genotype C. Intertypic recombination occurred between the Chinese CV-A2 strains and other enterovirus-A donor sequences. This result reconfirmed that recombination is a common phenomenon among enteroviruses. This study helps expand the numbers of whole virus genome sequence and entire VP1 sequence of CV-A2 in the GenBank database for further researcher.
Collapse
Affiliation(s)
- Qian Yang
- WHO WPRO Regional Polio Reference Laboratory and Key Laboratory of Medical Virology, National Health and Family Planning Commission of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People′s Republic of China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory and Key Laboratory of Medical Virology, National Health and Family Planning Commission of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People′s Republic of China
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory and Key Laboratory of Medical Virology, National Health and Family Planning Commission of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People′s Republic of China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory and Key Laboratory of Medical Virology, National Health and Family Planning Commission of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People′s Republic of China
| | - Dongyan Wang
- WHO WPRO Regional Polio Reference Laboratory and Key Laboratory of Medical Virology, National Health and Family Planning Commission of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People′s Republic of China
| | - Tianjiao Ji
- WHO WPRO Regional Polio Reference Laboratory and Key Laboratory of Medical Virology, National Health and Family Planning Commission of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People′s Republic of China
| | - Xiaolei Li
- WHO WPRO Regional Polio Reference Laboratory and Key Laboratory of Medical Virology, National Health and Family Planning Commission of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People′s Republic of China
| | - Yang Song
- WHO WPRO Regional Polio Reference Laboratory and Key Laboratory of Medical Virology, National Health and Family Planning Commission of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People′s Republic of China
| | - Xinrui Gu
- WHO WPRO Regional Polio Reference Laboratory and Key Laboratory of Medical Virology, National Health and Family Planning Commission of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People′s Republic of China
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory and Key Laboratory of Medical Virology, National Health and Family Planning Commission of China, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People′s Republic of China
- * E-mail:
| |
Collapse
|
50
|
Puenpa J, Vongpunsawad S, Österback R, Waris M, Eriksson E, Albert J, Midgley S, Fischer TK, Eis-Hübinger AM, Cabrerizo M, Gaunt E, Simmonds P, Poovorawan Y. Molecular epidemiology and the evolution of human coxsackievirus A6. J Gen Virol 2016; 97:3225-3231. [PMID: 27692044 DOI: 10.1099/jgv.0.000619] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Coxsackievirus A6 (CV-A6) is a major aetiologic agent for hand, foot and mouth disease (HFMD) in recent years. HFMD outbreaks associated with CV-A6 resulted from the evolutionary dynamics of CV-A6 and the appearance of novel recombinant forms (RFs). To examine this, 151 variants collected in 2013 and 2014 from Germany, Spain, Sweden, Denmark and Thailand were genotyped for the VP1 capsid and 3Dpol genes. Analysis of the VP1 gene showed an increasing correspondence between CV-A6 genome recombination and sequence divergence (estimated substitution rate of 8.1×10-3 substitutions site-1 year-1 and RF half-life of 3.1 years). Bayesian phylogenetic analysis showed that recent recombination groups (RF-E, -F, -H, -J and -K) shared a common ancestor (RF-A). Thirty-nine full-length genomes of different RFs revealed recombination breakpoints between the 2A-2C and the 5' UTRs. The emergence of new CV-A6 recombination groups has become widespread in Europe and Asia within the last 8 years.
Collapse
Affiliation(s)
- Jiratchaya Puenpa
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sompong Vongpunsawad
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Riikka Österback
- Department of Virology, University of Turku, 20520 Turku, Finland
- Department of Clinical Virology, Turku University Hospital, 20520 Turku, Finland
| | - Matti Waris
- Department of Virology, University of Turku, 20520 Turku, Finland
- Department of Clinical Virology, Turku University Hospital, 20520 Turku, Finland
| | - Eva Eriksson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 17177 Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 17177 Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Sofie Midgley
- Department of Microbiological Diagnostics & Virology, Artillerivej 5, DK-2300 Copenhagen, Denmark
| | - Thea K Fischer
- Department of Microbiological Diagnostics & Virology, Artillerivej 5, DK-2300 Copenhagen, Denmark
| | - Anna M Eis-Hübinger
- Institute for Virology, University of Bonn Medical Center, Sigmund-Freud-Str. 25, D-53105 Bonn, Germany
| | - María Cabrerizo
- Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Eleanor Gaunt
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
| | - Peter Simmonds
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|