1
|
Vansia R, Smadi M, Phelan J, Wang A, Bilodeau GJ, Pernal SF, Guarna MM, Rott M, Griffiths JS. Viral Diversity in Mixed Tree Fruit Production Systems Determined through Bee-Mediated Pollen Collection. Viruses 2024; 16:1614. [PMID: 39459947 PMCID: PMC11512397 DOI: 10.3390/v16101614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Commercially cultivated Prunus species are commonly grown in adjacent or mixed orchards and can be infected with unique or commonly shared viruses. Apple (Malus domestica), another member of the Rosacea and distantly related to Prunus, can share the same growing regions and common pathogens. Pollen can be a major route for virus transmission, and analysis of the pollen virome in tree fruit orchards can provide insights into these virus pathogen complexes from mixed production sites. Commercial honey bee (Apis mellifera) pollination is essential for improved fruit sets and yields in tree fruit production systems. To better understand the pollen-associated virome in tree fruits, metagenomics-based detection of plant viruses was employed on bee and pollen samples collected at four time points during the peak bloom period of apricot, cherry, peach, and apple trees at one orchard site. Twenty-one unique viruses were detected in samples collected during tree fruit blooms, including prune dwarf virus (PDV) and prunus necrotic ringspot virus (PNRSV) (Genus Ilarvirus, family Bromoviridae), Secoviridae family members tomato ringspot virus (genus Nepovirus), tobacco ringspot virus (genus Nepovirus), prunus virus F (genus Fabavirus), and Betaflexiviridae family member cherry virus A (CVA; genus Capillovirus). Viruses were also identified in composite leaf and flower samples to compare the pollen virome with the virome associated with vegetative tissues. At all four time points, a greater diversity of viruses was detected in the bee and pollen samples. Finally, the nucleotide sequence diversity of the coat protein regions of CVA, PDV, and PNRSV was profiled from this site, demonstrating a wide range of sequence diversity in pollen samples from this site. These results demonstrate the benefits of area-wide monitoring through bee pollination activities and provide new insights into the diversity of viruses in tree fruit pollination ecosystems.
Collapse
Affiliation(s)
- Raj Vansia
- Agriculture and Agri-Food Canada, London Research and Development Centre, Vineland Research Station, 4902 Victoria Ave N, Vineland Station, ON L0R 2E0, Canada
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Malek Smadi
- Agriculture and Agri-Food Canada, London Research and Development Centre, Vineland Research Station, 4902 Victoria Ave N, Vineland Station, ON L0R 2E0, Canada
- Department of Biology, Waterloo University, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - James Phelan
- Canadian Food Inspection Agency, Centre for Plant Health, Sidney Laboratory, 8801 East Saanich Rd, North Saanich, BC V8L 1H3, Canada
| | - Aiming Wang
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford St, London, ON N5V 4T3, Canada
| | - Guillaume J. Bilodeau
- Canadian Food Inspection Agency, Ottawa Plant Laboratory, 3851 Fallowfield Rd, Ottawa, ON K2J 4S1, Canada
| | - Stephen F. Pernal
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, P.O. Box 29, Beaverlodge, AB T0H 0C0, Canada
| | - M. Marta Guarna
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, P.O. Box 29, Beaverlodge, AB T0H 0C0, Canada
| | - Michael Rott
- Canadian Food Inspection Agency, Centre for Plant Health, Sidney Laboratory, 8801 East Saanich Rd, North Saanich, BC V8L 1H3, Canada
| | - Jonathan S. Griffiths
- Agriculture and Agri-Food Canada, London Research and Development Centre, Vineland Research Station, 4902 Victoria Ave N, Vineland Station, ON L0R 2E0, Canada
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
2
|
Sandra N, Mandal B. Emerging evidence of seed transmission of begomoviruses: implications in global circulation and disease outbreak. FRONTIERS IN PLANT SCIENCE 2024; 15:1376284. [PMID: 38807782 PMCID: PMC11130427 DOI: 10.3389/fpls.2024.1376284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/09/2024] [Indexed: 05/30/2024]
Abstract
Begomoviruses (family Geminiviridae) are known for causing devastating diseases in fruit, fibre, pulse, and vegetable crops throughout the world. Begomoviruses are transmitted in the field exclusively through insect vector whitefly (Bemisia tabaci), and the frequent outbreaks of begomoviruses are attributed largely due to the abundance of whitefly in the agri-ecosystem. Begomoviruses being phloem-borne were known not be transmitted through seeds of the infected plants. The recent findings of seed transmission of begomoviruses brought out a new dimension of begomovirus perpetuation and dissemination. The first convincing evidence of seed transmission of begomoviruses was known in 2015 for sweet potato leaf curl virus followed by several begomoviruses, like bhendi yellow vein mosaic virus, bitter gourd yellow mosaic virus, dolichos yellow mosaic virus, mungbean yellow mosaic virus, mungbean yellow mosaic India virus, pepper yellow leaf curl Indonesia virus, tomato leaf curl New Delhi virus, tomato yellow leaf curl virus, tomato yellow leaf curl Sardinia virus, and okra yellow mosaic Mexico virus. These studies brought out two perspectives of seed-borne nature of begomoviruses: (i) the presence of begomovirus in the seed tissues derived from the infected plants but no expression of disease symptoms in the progeny seedlings and (ii) the seed infection successfully transmitted the virus to cause disease to the progeny seedlings. It seems that the seed transmission of begomovirus is a feature of a specific combination of host-genotype and virus strain, rather than a universal phenomenon. This review comprehensively describes the seed transmitted begomoviruses reported in the last 9 years and the possible mechanism of seed transmission. An emphasis is placed on the experimental results that proved the seed transmission of various begomoviruses, factors affecting seed transmission and impact of begomovirus seed transmission on virus circulation, outbreak of the disease, and management strategies.
Collapse
Affiliation(s)
- Nagamani Sandra
- Seed Pathology Laboratory, Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, India
| | - Bikash Mandal
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
3
|
Smadi M, Lee E, Phelan J, Wang A, Bilodeau GJ, Pernal SF, Guarna MM, Rott M, Griffiths JS. Plant virus diversity in bee and pollen samples from apple ( Malus domestica) and sweet cherry ( Prunus avium) agroecosystems. FRONTIERS IN PLANT SCIENCE 2024; 15:1335281. [PMID: 38444533 PMCID: PMC10913894 DOI: 10.3389/fpls.2024.1335281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/05/2024] [Indexed: 03/07/2024]
Abstract
Introduction Honey bee (Apis mellifera) pollination is widely used in tree fruit production systems to improve fruit set and yield. Many plant viruses can be associated with pollen or transmitted through pollination, and can be detected through bee pollination activities. Honey bees visit multiple plants and flowers in one foraging trip, essentially sampling small amounts of pollen from a wide area. Here we report metagenomics-based area-wide monitoring of plant viruses in cherry (Prunus avium) and apple (Malus domestica) orchards in Creston Valley, British Columbia, Canada, through bee-mediated pollen sampling. Methods Plant viruses were identified in total RNA extracted from bee and pollen samples, and compared with profiles from double stranded RNA extracted from leaf and flower tissues. CVA, PDV, PNRSV, and PVF coat protein nucleotide sequences were aligned and compared for phylogenetic analysis. Results A wide array of plant viruses were identified in both systems, with cherry virus A (CVA), prune dwarf virus (PDV), prunus necrotic ringspot virus (PNRSV), and prunus virus F (PVF) most commonly detected. Citrus concave gum associated virus and apple stem grooving virus were only identified in samples collected during apple bloom, demonstrating changing viral profiles from the same site over time. Different profiles of viruses were identified in bee and pollen samples compared to leaf and flower samples reflective of pollen transmission affinity of individual viruses. Phylogenetic and pairwise analysis of the coat protein regions of the four most commonly detected viruses showed unique patterns of nucleotide sequence diversity, which could have implications in their evolution and management approaches. Coat protein sequences of CVA and PVF were broadly diverse with multiple distinct phylogroups identified, while PNRSV and PDV were more conserved. Conclusion The pollen virome in fruit production systems is incredibly diverse, with CVA, PDV, PNRSV, and PVF widely prevalent in this region. Bee-mediated monitoring in agricultural systems is a powerful approach to study viral diversity and can be used to guide more targeted management approaches.
Collapse
Affiliation(s)
- Malek Smadi
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Eunseo Lee
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - James Phelan
- Canadian Food Inspection Agency, Centre for Plant Health, Sidney Laboratory, North Saanich, BC, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | | | - Stephen F. Pernal
- Beaverlodge Research Farm, Agriculture and Agri-Food Canada, Beaverlodge, AB, Canada
| | - M. Marta Guarna
- Beaverlodge Research Farm, Agriculture and Agri-Food Canada, Beaverlodge, AB, Canada
- Department of Computer Science, University of Victoria, Victoria, BC, Canada
| | - Mike Rott
- Canadian Food Inspection Agency, Centre for Plant Health, Sidney Laboratory, North Saanich, BC, Canada
| | - Jonathan S. Griffiths
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| |
Collapse
|
4
|
Tayal M, Wilson C, Cieniewicz E. Bees and thrips carry virus-positive pollen in peach orchards in South Carolina, United States. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1091-1101. [PMID: 37402628 DOI: 10.1093/jee/toad125] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 07/06/2023]
Abstract
Prunus necrotic ringspot virus (PNRSV) and prune dwarf virus (PDV) are pollen-borne viruses of important stone fruit crops, including peaches, which can cause substantial yield loss. Although both horizontal and vertical (i.e., seed) transmission of both viruses occurs through pollen, the role of flower-visiting insects in their transmission is not well understood. Bees and thrips reportedly spread PNRSV and PDV in orchards and greenhouse studies; however, the field spread of PNRSV and PDV in peach orchards in the southeastern United States is not explored. We hypothesized that bees and thrips may facilitate virus spread by carrying virus-positive pollen. Our 2-yr survey results show that 75% of captured bees are carrying virus-positive pollen and moving across the orchard while a subsample of thrips were also found virus positive. Based on morphology, Bombus, Apis, Andrena, Eucera, and Habropoda are the predominant bee genera that were captured in peach orchards. Understanding the role of bees and thrips in the spread of PNRSV and PDV will enhance our understanding of pollen-borne virus ecology.
Collapse
Affiliation(s)
- Mandeep Tayal
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA
| | - Christopher Wilson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Elizabeth Cieniewicz
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
5
|
He C, Xing F, Zhao X, Li S, Zhan B, Liu Z, Xu T, Gao D, Dong Z, Wang H, Zhang Z. The coat protein of the ilarvirus prunus necrotic ringspot virus mediates long-distance movement. J Gen Virol 2023; 104. [PMID: 36802334 DOI: 10.1099/jgv.0.001829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
The coat protein (CP) of plant viruses generally has multiple functions involving infection, replication, movement and pathogenicity. Functions of the CP of prunus necrotic ringspot virus (PNRSV), the causal agent of several threatening diseases of Prunus fruit trees, are poorly studied. Previously, we identified a novel virus in apple, apple necrotic mosaic virus (ApNMV), which is phylogenetically related to PNRSV and probably associated with apple mosaic disease in China. Full-length cDNA clones of PNRSV and ApNMV were constructed, and both are infectious in cucumber (Cucumis sativus L.), an experimental host. PNRSV exhibited higher systemic infection efficiency with more severe symptoms than ApNMV. Reassortment analysis of genomic RNA segments 1-3 found that RNA3 of PNRSV could enhance the long-distance movement of an ApNMV chimaera in cucumber, indicating the association of RNA3 of PNRSV with viral long-distance movement. Deletion mutagenesis of the PNRSV CP showed that the basic motif from amino acids 38 to 47 was crucial for the CP to maintain the systemic movement of PNRSV. Moreover, we found that arginine residues 41, 43 and 47 codetermine viral long-distance movement. The findings demonstrate that the CP of PNRSV is required for long-distance movement in cucumber, which expands the functions of ilarvirus CPs in systemic infection. For the first time, we identified involvement of Ilarvirus CP protein during long-distance movement.
Collapse
Affiliation(s)
- Chengyong He
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing 100193, PR China
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Fei Xing
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiaoli Zhao
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Shifang Li
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Binhui Zhan
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Zhen Liu
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Tengfei Xu
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Dehang Gao
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Zhenfei Dong
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Hongqing Wang
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing 100193, PR China
| | - Zhixiang Zhang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| |
Collapse
|
6
|
Plant Virus Adaptation to New Hosts: A Multi-scale Approach. Curr Top Microbiol Immunol 2023; 439:167-196. [PMID: 36592246 DOI: 10.1007/978-3-031-15640-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Viruses are studied at each level of biological complexity: from within-cells to ecosystems. The same basic evolutionary forces and principles operate at each level: mutation and recombination, selection, genetic drift, migration, and adaptive trade-offs. Great efforts have been put into understanding each level in great detail, hoping to predict the dynamics of viral population, prevent virus emergence, and manage their spread and virulence. Unfortunately, we are still far from this. To achieve these ambitious goals, we advocate for an integrative perspective of virus evolution. Focusing in plant viruses, we illustrate the pervasiveness of the above-mentioned principles. Beginning at the within-cell level, we describe replication modes, infection bottlenecks, and cellular contagion rates. Next, we move up to the colonization of distal tissues, discussing the fundamental role of random events. Then, we jump beyond the individual host and discuss the link between transmission mode and virulence. Finally, at the community level, we discuss properties of virus-plant infection networks. To close this review we propose the multilayer network theory, in which elements at different layers are connected and submit to their own dynamics that feed across layers, resulting in new emerging properties, as a way to integrate information from the different levels.
Collapse
|
7
|
Çelik A, Santosa AI, Gibbs AJ, Ertunç F. Prunus necrotic ringspot virus in Turkey: an immigrant population. Arch Virol 2022; 167:553-562. [DOI: 10.1007/s00705-022-05374-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022]
|
8
|
Bradamante G, Mittelsten Scheid O, Incarbone M. Under siege: virus control in plant meristems and progeny. THE PLANT CELL 2021; 33:2523-2537. [PMID: 34015140 PMCID: PMC8408453 DOI: 10.1093/plcell/koab140] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/14/2021] [Indexed: 05/29/2023]
Abstract
In the arms race between plants and viruses, two frontiers have been utilized for decades to combat viral infections in agriculture. First, many pathogenic viruses are excluded from plant meristems, which allows the regeneration of virus-free plant material by tissue culture. Second, vertical transmission of viruses to the host progeny is often inefficient, thereby reducing the danger of viral transmission through seeds. Numerous reports point to the existence of tightly linked meristematic and transgenerational antiviral barriers that remain poorly understood. In this review, we summarize the current understanding of the molecular mechanisms that exclude viruses from plant stem cells and progeny. We also discuss the evidence connecting viral invasion of meristematic cells and the ability of plants to recover from acute infections. Research spanning decades performed on a variety of virus/host combinations has made clear that, beside morphological barriers, RNA interference (RNAi) plays a crucial role in preventing-or allowing-meristem invasion and vertical transmission. How a virus interacts with plant RNAi pathways in the meristem has profound effects on its symptomatology, persistence, replication rates, and, ultimately, entry into the host progeny.
Collapse
Affiliation(s)
- Gabriele Bradamante
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Marco Incarbone
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
9
|
Sánchez Pina MA, Gómez-Aix C, Méndez-López E, Gosalvez Bernal B, Aranda MA. Imaging Techniques to Study Plant Virus Replication and Vertical Transmission. Viruses 2021; 13:358. [PMID: 33668729 PMCID: PMC7996213 DOI: 10.3390/v13030358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
Plant viruses are obligate parasites that need to usurp plant cell metabolism in order to infect their hosts. Imaging techniques have been used for quite a long time to study plant virus-host interactions, making it possible to have major advances in the knowledge of plant virus infection cycles. The imaging techniques used to study plant-virus interactions have included light microscopy, confocal laser scanning microscopy, and scanning and transmission electron microscopies. Here, we review the use of these techniques in plant virology, illustrating recent advances in the area with examples from plant virus replication and virus plant-to-plant vertical transmission processes.
Collapse
Affiliation(s)
- María Amelia Sánchez Pina
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Grupo de Patología Vegetal, 30100 Murcia, Spain; (E.M.-L.); (B.G.B.)
| | - Cristina Gómez-Aix
- Abiopep S.L., R&D Department, Parque Científico de Murcia, Ctra. de Madrid, Km 388, Complejo de Espinardo, Edf. R, 2º, 30100 Murcia, Spain;
| | - Eduardo Méndez-López
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Grupo de Patología Vegetal, 30100 Murcia, Spain; (E.M.-L.); (B.G.B.)
| | - Blanca Gosalvez Bernal
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Grupo de Patología Vegetal, 30100 Murcia, Spain; (E.M.-L.); (B.G.B.)
| | - Miguel A. Aranda
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Grupo de Patología Vegetal, 30100 Murcia, Spain; (E.M.-L.); (B.G.B.)
| |
Collapse
|
10
|
Within-Host Multiplication and Speed of Colonization as Infection Traits Associated with Plant Virus Vertical Transmission. J Virol 2019; 93:JVI.01078-19. [PMID: 31511374 PMCID: PMC6854480 DOI: 10.1128/jvi.01078-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/30/2019] [Indexed: 11/20/2022] Open
Abstract
Although vertical transmission from parents to offspring through seeds is an important fitness component of many plant viruses, very little is known about the factors affecting this process. Viruses reach the seed by direct invasion of the embryo and/or by infection of the ovules or the pollen. Thus, it can be expected that the efficiency of seed transmission would be determined by (i) virus within-host multiplication and movement, (ii) the ability of the virus to invade gametic tissues, (iii) plant seed production upon infection, and (iv) seed survival in the presence of the virus. However, these predictions have seldom been experimentally tested. To address this question, we challenged 18 Arabidopsis thaliana accessions with Turnip mosaic virus and Cucumber mosaic virus Using these plant-virus interactions, we analyzed the relationship between the effect of virus infection on rosette and inflorescence weights; short-, medium-, and long-term seed survival; virulence; the number of seeds produced per plant; virus within-host speed of movement; virus accumulation in the rosette and inflorescence; and efficiency of seed transmission measured as a percentage and as the total number of infected seeds. Our results indicate that the best estimators of percent seed transmission are the within-host speed of movement and multiplication in the inflorescence. Together with these two infection traits, virulence and the number of seeds produced per infected plant were also associated with the number of infected seeds. Our results provide support for theoretical predictions and contribute to an understanding of the determinants of a process central to plant-virus interactions.IMPORTANCE One of the major factors contributing to plant virus long-distance dispersal is the global trade of seeds. This is because more than 25% of plant viruses can infect seeds, which are the main mode of germplasm exchange/storage, and start new epidemics in areas where they were not previously present. Despite the relevance of this process for virus epidemiology and disease emergence, the infection traits associated with the efficiency of virus seed transmission are largely unknown. Using turnip mosaic and cucumber mosaic viruses and their natural host Arabidopsis thaliana as model systems, we have identified the within-host speed of virus colonization and multiplication in the reproductive structures as the main determinants of the efficiency of seed transmission. These results contribute to shedding light on the mechanisms by which plant viruses disperse and optimize their fitness and may help in the design of more-efficient strategies to prevent seed infection.
Collapse
|
11
|
Navarro JA, Sanchez-Navarro JA, Pallas V. Key checkpoints in the movement of plant viruses through the host. Adv Virus Res 2019; 104:1-64. [PMID: 31439146 DOI: 10.1016/bs.aivir.2019.05.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plant viruses cannot exploit any of the membrane fusion-based routes of entry described for animal viruses. In addition, one of the distinctive structures of plant cells, the cell wall, acts as the first barrier against the invasion of pathogens. To overcome the rigidity of the cell wall, plant viruses normally take advantage of the way of life of different biological vectors. Alternatively, the physical damage caused by environmental stresses can facilitate virus entry. Once inside the cell and taking advantage of the characteristic symplastic continuity of plant cells, viruses need to remodel and/or modify the restricted pore size of the plasmodesmata (channels that connect plant cells). In a successful interaction for the virus, it can reach the vascular tissue to systematically invade the plant. The connections between the different cell types in this path are not designed to allow the passage of molecules with the complexity of viruses. During this process, viruses face different cell barriers that must be overcome to reach the distal parts of the plant. In this review, we highlight the current knowledge about how plant RNA viruses enter plant cells, move between them to reach vascular cells and overcome the different physical and cellular barriers that the phloem imposes. Finally, we update the current research on cellular organelles as key regulator checkpoints in the long-distance movement of plant viruses.
Collapse
Affiliation(s)
- Jose A Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Jesus A Sanchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain.
| |
Collapse
|
12
|
Gómez-Aix C, Alcaide C, Gómez P, Aranda MA, Sánchez-Pina MA. In situ hybridization for the localization of two pepino mosaic virus isolates in mixed infections. J Virol Methods 2019; 267:42-47. [PMID: 30771385 DOI: 10.1016/j.jviromet.2019.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/05/2018] [Accepted: 02/12/2019] [Indexed: 10/27/2022]
Abstract
In situ hybridization (ISH) is an informative and relatively accessible technique for the localization of viral genomes in plant tissue and cells. However, simultaneous visualization of related plant viruses in mixed infections may be limited by the nucleotide similarity in the genomes and the single chromogenic detection over the same sample preparation. To address this issue, we used two Pepino mosaic virus isolates and performed ISH over consecutive serial cross-sections of paraffin-embedded leaf samples of single and mixed infected Nicotiana benthamiana plants. Moreover, the probe design was optimized to reduce cross-hybridisation, and co-localization was based on the overlapping of consecutive cross-sections from mixed infected leaves; thus, our results showed that both Pepino mosaic virus isolates co-localized in the same leaf tissue. In turn, both isolates were localized in the cytoplasm of the same cells. These results provide valuable information for studying mixed infections in plants by using a simple ISH procedure that is accessible to any pathology laboratory.
Collapse
Affiliation(s)
- C Gómez-Aix
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Murcia, Spain
| | - C Alcaide
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Murcia, Spain
| | - P Gómez
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Murcia, Spain
| | - M A Aranda
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Murcia, Spain
| | - M A Sánchez-Pina
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Biología del Estrés y Patología Vegetal, Murcia, Spain.
| |
Collapse
|
13
|
Isogai M, Matsudaira T, Ito M, Yoshikawa N. The 1b gene of raspberry bushy dwarf virus is a virulence component that facilitates systemic virus infection in plants. Virology 2019; 526:222-230. [PMID: 30447555 DOI: 10.1016/j.virol.2018.10.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 11/30/2022]
Abstract
A product translated from the 1b gene of raspberry bushy dwarf virus (RBDV) was specifically detected in RBDV-infected Nicotiana benthamiana plants by immunoblot analysis. To analyze the effects of the 1b gene on virus infection in host plants, an RBDV deletion mutant virus (RB∆1bstop), which is unable to express the 1b gene, was constructed and inoculated to N. benthamiana plants. The results showed that accumulation of the virus genomic (g) RNAs 1 and 2 decreased in inoculated leaves, and that systemic virus spread was delayed compared with wild-type RBDV. In contrast, accumulation of the viral gRNAs 1 and 2 was elevated in RB∆1bstop-infected leaf tissues during ectopic expression of the 1b gene. Furthermore, we found that the 1b has weak RNA silencing suppressor activity.
Collapse
Affiliation(s)
- Masamichi Isogai
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Ueda 3-chome 18-8, Morioka 020-8550, Iwate, Japan.
| | - Takanori Matsudaira
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Ueda 3-chome 18-8, Morioka 020-8550, Iwate, Japan
| | - Makoto Ito
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Ueda 3-chome 18-8, Morioka 020-8550, Iwate, Japan
| | - Nobuyuki Yoshikawa
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Ueda 3-chome 18-8, Morioka 020-8550, Iwate, Japan
| |
Collapse
|
14
|
Kamada K, Omata S, Yamagishi N, Kasajima I, Yoshikawa N. Gentian (Gentiana triflora) prevents transmission of apple latent spherical virus (ALSV) vector to progeny seeds. PLANTA 2018; 248:1431-1441. [PMID: 30128602 DOI: 10.1007/s00425-018-2992-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/17/2018] [Indexed: 05/02/2023]
Abstract
MAIN CONCLUSION Gentian plants ( Gentiana triflora ) severely restrict apple latent spherical virus (ALSV) invasion to the gametes (pollens and ovules) and block seed transmission to progeny plants. Early flowering of horticultural plants can be induced by infection of ALSV vector expressing Flowering Locus T (FT) gene. In the present study, flowering of gentian plants was induced by infection with an ALSV vector expressing a gentian FT gene and the patterns of seed transmission of ALSV in gentian were compared with those in apple and Nicotiana benthamiana. Infection of gentian progeny plants with ALSV was examined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), reverse transcription-loop-mediated isothermal amplification (RT-LAMP), and enzyme-linked immunosorbent assay (ELISA). ALSV was not transmitted to the progeny gentian plants, whereas small proportions of apple and N. benthamiana progeny plants are infected with ALSV. The in situ hybridization analyses indicated that ALSVs are not present in gentian pollen and ovules, but detected in most of gametes in apple and N. benthamiana. Collectively, these results suggest that seed transmission of ALSV is blocked in gentian plants through the unknown barriers present in their gametes. On the other hand, apple and N. benthamiana seem to minimize ALSV seed transmission by inhibiting viral propagation in embryos.
Collapse
Affiliation(s)
- Kazuki Kamada
- Laboratory of Plant Pathology, Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, 020-8550, Japan
| | - Shino Omata
- Laboratory of Plant Pathology, Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, 020-8550, Japan
| | - Noriko Yamagishi
- Laboratory of Plant Pathology, Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, 020-8550, Japan
- Agri-Innovation Research Center, Iwate University, Ueda 3-18-8, Morioka, 020-8550, Japan
| | - Ichiro Kasajima
- Laboratory of Plant Pathology, Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, 020-8550, Japan
- Agri-Innovation Research Center, Iwate University, Ueda 3-18-8, Morioka, 020-8550, Japan
| | - Nobuyuki Yoshikawa
- Laboratory of Plant Pathology, Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka, 020-8550, Japan.
- Agri-Innovation Research Center, Iwate University, Ueda 3-18-8, Morioka, 020-8550, Japan.
| |
Collapse
|
15
|
Huo YY, Li GF, Qiu YH, Li WM, Zhang YJ. Rapid Detection of Prunus Necrotic Ringspot Virus by Reverse Transcription-cross-priming Amplification Coupled with Nucleic Acid Test Strip Cassette. Sci Rep 2017; 7:16175. [PMID: 29170535 PMCID: PMC5700948 DOI: 10.1038/s41598-017-16536-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/13/2017] [Indexed: 11/09/2022] Open
Abstract
Prunus necrotic ringspot virus (PNRSV) is one of the most devastating viruses to Prunus spp. In this study, we developed a diagnostic system RT-CPA-NATSC, wherein reverse transcription-cross-priming amplification (RT-CPA) is coupled with nucleic acid test strip cassette (NATSC), a vertical flow (VF) visualization, for PNRSV detection. The RT-CPA-NATSC assay targets the encoding gene of the PNRSV coat protein with a limit of detection of 72 copies per reaction and no cross-reaction with the known Prunus pathogenic viruses and viroids, demonstrating high sensitivity and specificity. The reaction is performed on 60 °C and can be completed less than 90 min with the prepared template RNA. Field sample test confirmed the reliability of RT-CPA-NATSC, indicating the potential application of this simple and rapid detection method in routine test of PNRSV.
Collapse
Affiliation(s)
- Ya-Yun Huo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Gui-Fen Li
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Yan-Hong Qiu
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Wei-Min Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Yong-Jiang Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| |
Collapse
|
16
|
Wells-Hansen LD, Polashock JJ, Vorsa N, Lockhart BEL, McManus PS. Identification of Tobacco streak virus in Cranberry and the Association of TSV with Berry Scarring. PLANT DISEASE 2016; 100:696-703. [PMID: 30688604 DOI: 10.1094/pdis-06-15-0710-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cranberry plants bearing disfigured, scarred fruit were reported by growers in the major cranberry-growing region of central Wisconsin in July 2012. Plants bearing scarred fruit have since been observed in Massachusetts and New Jersey. Three complementary methods provided evidence of Tobacco streak virus (TSV) in symptomatic plants: (i) leaves and scarred berries tested positive for TSV by double-antibody sandwich enzyme-linked immunosorbent assay; (ii) quasi-isometric particles approximately 33 nm in diameter were extracted from leaves of symptomatic plants and visualized using transmission electron microscopy; and (iii) coat protein gene sequence analysis revealed 94 to 99% nucleotide similarity with reference TSV sequences. In newer cultivars, 99% of uprights with scarred berries tested positive for TSV. In older cultivars, 31% of uprights with scarred berries tested positive for TSV and the remaining 69% of uprights with scarred berries tested positive for Blueberry shock virus. TSV overwintered in cranberry plants, and leaves, pollen, and fruit tested positive for TSV the year following symptom occurrence. Attempts to inoculate cranberry using infected pollen or sap as inoculum failed, but several herbaceous hosts tested TSV positive following mechanical inoculation. Phylogenetic analysis of the coat protein gene of 26 TSV isolates from various cultivars of cranberry in Wisconsin, New Jersey, and Massachusetts revealed diversity. This work provides information that will be useful in understanding the epidemiology of TSV in cranberry and in the development of management strategies.
Collapse
Affiliation(s)
- L D Wells-Hansen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison 53706
| | - J J Polashock
- United States Department of Agriculture-Agricultural Research Service, GIFVL, Chatsworth, NJ 08019
| | - N Vorsa
- Philip E. Marucci Center for Blueberry and Cranberry Research, Rutgers The State University of New Jersey, Chatsworth 08019
| | - B E L Lockhart
- Department of Plant Pathology, University of Minnesota, St. Paul 55108
| | - P S McManus
- Department of Plant Pathology, University of Wisconsin-Madison
| |
Collapse
|
17
|
Isogai M, Yoshida T, Shimura T, Yoshikawa N. Pollen tubes introduce Raspberry bushy dwarf virus into embryo sacs during fertilization processes. Virology 2015; 484:341-345. [PMID: 26176979 DOI: 10.1016/j.virol.2015.06.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/23/2015] [Accepted: 06/26/2015] [Indexed: 11/18/2022]
Abstract
We developed a fertilization method in which pollen tubes entered into embryo sacs without any need to contact surrounding female sporophytic cells by using Torenia fournieri (Torenia) plants under the condition of hindering movement of the virus from a stigma, which is the first infection site leading to systemic infection. When RBDV-infected Torenia pollen grains were used for the developed fertilization method, the virus was transmitted to the seeds by pollen tubes germinating from them. On the other hand, no seeds were infected with the virus when Torenia plants were pollinated with healthy Torenia pollen grains in combination with RBDV-infected raspberry pollen grains, which caused the virus infection in the stigma by penetration of their pollen tubes arrested in its style. Our results indicate that vertical transmission of RBDV by pollen occurs in the transport of the virus into embryo sacs by pollen tubes reaching the embryo sacs.
Collapse
Affiliation(s)
- Masamichi Isogai
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Ueda 3-chome 18-8, Morioka 020-8550, Japan.
| | - Tetu Yoshida
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Ueda 3-chome 18-8, Morioka 020-8550, Japan
| | - Takuya Shimura
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Ueda 3-chome 18-8, Morioka 020-8550, Japan
| | - Nobuyuki Yoshikawa
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Ueda 3-chome 18-8, Morioka 020-8550, Japan
| |
Collapse
|
18
|
Kawamura R, Shimura H, Mochizuki T, Ohki ST, Masuta C. Pollen transmission of asparagus virus 2 (AV-2) may facilitate mixed infection by two AV-2 isolates in asparagus plants. PHYTOPATHOLOGY 2014; 104:1001-6. [PMID: 25116643 DOI: 10.1094/phyto-12-13-0348-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Asparagus virus 2 (AV-2) is a member of the genus Ilarvirus and thought to induce the asparagus decline syndrome. AV-2 is known to be transmitted by seed, and the possibility of pollen transmission was proposed 25 years ago but not verified. In AV-2 sequence analyses, we have unexpectedly found mixed infection by two distinct AV-2 isolates in two asparagus plants. Because mixed infections by two related viruses are normally prevented by cross protection, we suspected that pollen transmission of AV-2 is involved in mixed infection. Immunohistochemical analyses and in situ hybridization using AV-2-infected tobacco plants revealed that AV-2 was localized in the meristem and associated with pollen grains. To experimentally produce a mixed infection via pollen transmission, two Nicotiana benthamiana plants that were infected with each of two AV-2 isolates were crossed. Derived cleaved-amplified polymorphic sequence analysis identified each AV-2 isolate in the progeny seedlings, suggesting that pollen transmission could indeed result in a mixed infection, at least in N. benthamiana.
Collapse
|
19
|
Poudel B, Ho T, Laney A, Khadgi A, Tzanetakis IE. Epidemiology of Blackberry chlorotic ringspot virus. PLANT DISEASE 2014; 98:547-550. [PMID: 30708728 DOI: 10.1094/pdis-08-13-0866-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The pollen- and seed-borne ilarviruses pose a substantial threat to many specialty crops, including berries, rose, and tree fruit, because there are no efficient control measures other than avoidance. The case of Blackberry chlorotic ringspot virus (BCRV) is of particular interest because the virus has been found to be an integral part of blackberry yellow vein disease and is widespread in rose plants affected by rose rosette disease. This study provides insight into the epidemiology of BCRV, including incidence in blackberry and rose; host range, with the addition of apple as a host of the virus; and seed transmission that exceeded 50% in rose. Sensitive detection protocols that can be used to avoid dissemination of infected material through nurseries and breeding programs were also developed.
Collapse
Affiliation(s)
- Bindu Poudel
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville 72701
| | - Thien Ho
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville 72701
| | - Alma Laney
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville 72701
| | - Archana Khadgi
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville 72701
| | - Ioannis E Tzanetakis
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville 72701
| |
Collapse
|
20
|
Penetration of pollen tubes with accumulated Raspberry bushy dwarf virus into stigmas is involved in initial infection of maternal tissue and horizontal transmission. Virology 2014; 452-453:247-53. [DOI: 10.1016/j.virol.2014.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/11/2014] [Accepted: 02/01/2014] [Indexed: 11/20/2022]
|
21
|
Shimura H, Masuta C, Yoshida N, Sueda K, Suzuki M. The 2b protein of Asparagus virus 2 functions as an RNA silencing suppressor against systemic silencing to prove functional synteny with related cucumoviruses. Virology 2013; 442:180-8. [DOI: 10.1016/j.virol.2013.04.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 04/05/2013] [Accepted: 04/18/2013] [Indexed: 11/30/2022]
|
22
|
Jarocka U, Radecka H, Malinowski T, Michalczuk L, Radecki J. Detection of Prunus Necrotic Ringspot Virus in Plant Extracts with Impedimetric Immunosensor based on Glassy Carbon Electrode. ELECTROANAL 2013. [DOI: 10.1002/elan.201200470] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Abstract
Ilarviruses were among the first 16 groups of plant viruses approved by ICTV. Like Alfalfa mosaic virus (AMV), bromoviruses, and cucumoviruses they are isometric viruses and possess a single-stranded, tripartite RNA genome. However, unlike these other three groups, ilarviruses were recognized as being recalcitrant subjects for research (their ready lability is reflected in the sigla used to create the group name) and were renowned as unpromising subjects for the production of antisera. However, it was recognized that they shared properties with AMV when the phenomenon of genome activation, in which the coat protein (CP) of the virus is required to be present to initiate infection, was demonstrated to cross group boundaries. The CP of AMV could activate the genome of an ilarvirus and vice versa. Development of the molecular information for ilarviruses lagged behind the knowledge available for the more extensively studied AMV, bromoviruses, and cucumoviruses. In the past 20 years, genomic data for most known ilarviruses have been developed facilitating their detection and allowing the factors involved in the molecular biology of the genus to be investigated. Much information has been obtained using Prunus necrotic ringspot virus and the more extensively studied AMV. A relationship between some ilarviruses and the cucumoviruses has been defined with the recognition that members of both genera encode a 2b protein involved in RNA silencing and long distance viral movement. Here, we present a review of the current knowledge of both the taxonomy and the molecular biology of this genus of agronomically and horticulturally important viruses.
Collapse
|
24
|
Pallas V, Aparicio F, Herranz MC, Amari K, Sanchez-Pina MA, Myrta A, Sanchez-Navarro JA. Ilarviruses of Prunus spp.: a continued concern for fruit trees. PHYTOPATHOLOGY 2012; 102:1108-1120. [PMID: 23148725 DOI: 10.1094/phyto-02-12-0023-rvw] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Prunus spp. are affected by a large number of viruses, causing significant economic losses through either direct or indirect damage, which results in reduced yield and fruit quality. Among these viruses, members of the genus Ilarvirus (isometric labile ringspot viruses) occupy a significant position due to their distribution worldwide. Although symptoms caused by these types of viruses were reported early in the last century, their molecular characterization was not achieved until the 1990s, much later than for other agronomically relevant viruses. This was mainly due to the characteristic liability of virus particles in tissue extracts. In addition, ilarviruses, together with Alfalfa mosaic virus, are unique among plant viruses in that they require a few molecules of the coat protein in the inoculum in order to be infectious, a phenomenon known as genome activation. Another factor that has made the study of this group of viruses difficult is that infectious clones have been obtained only for the type member of the genus, Tobacco streak virus. Four ilarviruses, Prunus necrotic ringspot virus, Prune dwarf virus, Apple mosaic virus, and American plum line pattern virus, are pathogens of the main cultivated fruit trees. As stated in the 9th Report of the International Committee on Taxonomy of Viruses, virions of this genus are "unpromising subjects for the raising of good antisera." With the advent of molecular approaches for their detection and characterization, it has been possible to get a more precise view of their prevalence and genome organization. This review updates our knowledge on the incidence, genome organization and expression, genetic diversity, modes of transmission, and diagnosis, as well as control of this peculiar group of viruses affecting fruit trees.
Collapse
Affiliation(s)
- V Pallas
- Instituto de Biologia Celular y Molecular de Plantas, Universidad Politécnica de Valencia-Consejo, Spain.
| | | | | | | | | | | | | |
Collapse
|