1
|
Levanova AA, Poranen MM. Utilization of Bacteriophage phi6 for the Production of High-Quality Double-Stranded RNA Molecules. Viruses 2024; 16:166. [PMID: 38275976 PMCID: PMC10818839 DOI: 10.3390/v16010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Double-stranded RNA (dsRNA) molecules are mediators of RNA interference (RNAi) in eukaryotic cells. RNAi is a conserved mechanism of post-transcriptional silencing of genes cognate to the sequences of the applied dsRNA. RNAi-based therapeutics for the treatment of rare hereditary diseases have recently emerged, and the first sprayable dsRNA biopesticide has been proposed for registration. The range of applications of dsRNA molecules will likely expand in the future. Therefore, cost-effective methods for the efficient large-scale production of high-quality dsRNA are in demand. Conventional approaches to dsRNA production rely on the chemical or enzymatic synthesis of single-stranded (ss)RNA molecules with a subsequent hybridization of complementary strands. However, the yield of properly annealed biologically active dsRNA molecules is low. As an alternative approach, we have developed methods based on components derived from bacteriophage phi6, a dsRNA virus encoding RNA-dependent RNA polymerase (RdRp). Phi6 RdRp can be harnessed for the enzymatic production of high-quality dsRNA molecules. The isolated RdRp efficiently synthesizes dsRNA in vitro on a heterologous ssRNA template of any length and sequence. To scale up dsRNA production, we have developed an in vivo system where phi6 polymerase complexes produce target dsRNA molecules inside Pseudomonas cells.
Collapse
Affiliation(s)
- Alesia A. Levanova
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland;
| | | |
Collapse
|
2
|
Palomäki J, Kalke K, Orpana J, Lund L, Frejborg F, Paavilainen H, Järveläinen H, Hukkanen V. Attenuated Replication-Competent Herpes Simplex Virus Expressing an ECM-Modifying Transgene Hyaluronan Synthase 2 of Naked Mole Rat in Oncolytic Gene Therapy. Microorganisms 2023; 11:2657. [PMID: 38004669 PMCID: PMC10673056 DOI: 10.3390/microorganisms11112657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Herpes simplex virus (HSV) has proven successful in treating human cancer. Since the approval of talimogene laherparepvec (T-VEC) in 2015, HSV has been thoroughly researched to discover novel mechanisms to combat cancer and treat other diseases. Another HSV-based drug, beremagene geperpavec (B-VEC), received approval in 2023 to treat the rare genetic disease dystrophic epidermolysis bullosa, and was also the first clinically approved HSV vector carrying an extracellular matrix (ECM)-modifying transgene. The ECM is a network of macromolecules surrounding cells, which provides support and regulates cell growth and differentiation, the disruption of which is common in cancer. The naked mole rat (NMR) has a thick ECM and a unique mutation in the hyaluronan synthase 2 (HAS2) gene, which has been linked to the high cancer resistance of the species. To study the effect of this mutation in human cancer, we have developed an attenuated, replication-competent HSV vector expressing the NMR-HAS2 gene. The viral replication, transgene expression and cytotoxic effect of the novel vector was studied in glioma cells. Our results show that an attenuated, replication-competent HSV vector expressing a foreign ECM-modifying transgene, namely HAS2, provides an effective tool to study and combat cancer in humans.
Collapse
Affiliation(s)
- Jussi Palomäki
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland; (J.P.)
| | - Kiira Kalke
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland; (J.P.)
| | - Julius Orpana
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland; (J.P.)
| | - Liisa Lund
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland; (J.P.)
| | - Fanny Frejborg
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland; (J.P.)
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Henrik Paavilainen
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland; (J.P.)
| | - Hannu Järveläinen
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland; (J.P.)
- Department of Internal Medicine, Satakunta Hospital District, Satasairaala Central Hospital, Sairaalantie 3, 28500 Pori, Finland
| | - Veijo Hukkanen
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland; (J.P.)
| |
Collapse
|
3
|
Lasanen T, Frejborg F, Lund LM, Nyman MC, Orpana J, Habib H, Alaollitervo S, Levanova AA, Poranen MM, Hukkanen V, Kalke K. Single therapeutic dose of an antiviral UL29 siRNA swarm diminishes symptoms and viral load of mice infected intranasally with HSV-1. SMART MEDICINE 2023; 2:e20230009. [PMID: 39188276 PMCID: PMC11235724 DOI: 10.1002/smmd.20230009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/10/2023] [Indexed: 08/28/2024]
Abstract
Herpes simplex virus type 1 (HSV-1) is a human pathogen that causes recurrent infections. Acyclovir-resistant strains exist and can cause severe complications, which are potentially untreatable with current therapies. We have developed siRNA swarms that target a 653 base pair long region of the essential HSV gene UL29. As per our previous results, the anti-UL29 siRNA swarm effectively inhibits the replication of circulating HSV strains and acyclovir-resistant HSV strains in vitro, while displaying a good safety profile. We investigated a single intranasal therapeutic dose of a siRNA swarm in mice, which were first inoculated intranasally with HSV-1 and given treatment 4 h later. We utilized a luciferase-expressing HSV-1 strain, which enabled daily follow-up of infection with in vivo imaging. Our results show that a single dose of a UL29-targeted siRNA swarm can inhibit the replication of HSV-1 in orofacial tissue, which was reflected in ex vivo HSV titers and HSV DNA copy numbers as well as by a decrease in a luciferase-derived signal. Furthermore, the treatment had a tendency to protect mice from severe clinical symptoms and delay the onset of the symptoms. These results support the development of antiviral siRNA swarms as a novel treatment for HSV-1 infections.
Collapse
Affiliation(s)
- Tuomas Lasanen
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
| | - Fanny Frejborg
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
- Faculty of Science and EngineeringPharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| | - Liisa M. Lund
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
| | - Marie C. Nyman
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
| | - Julius Orpana
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
| | - Huda Habib
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
| | - Salla Alaollitervo
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
| | - Alesia A. Levanova
- Molecular and Integrative Biosciences Research ProgrammeBiological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research ProgrammeBiological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Veijo Hukkanen
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
| | - Kiira Kalke
- Faculty of MedicineInstitute of BiomedicineUniversity of TurkuTurkuFinland
| |
Collapse
|
4
|
Petrov N, Stoyanova M, Stoyanova A, Nikolova I, Grozdanov P, Galabov A. Gene silencing of VP1 gene of coxsackievirus B3 neurotropic strain Nancy by dsRNAs and siRNAs. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2082320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Nikolay Petrov
- Laboratory of Virology, Department of Natural Sciences, New Bulgarian University, Sofia, Bulgaria
| | - Mariya Stoyanova
- Department of Plant Protection, Institute of Soil Science, Agrotechnologies and Plant Protection “N. Pushkarov”, Agricultural Academy, Sofia, Bulgaria
| | - Adelina Stoyanova
- Department of Virology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Ivanka Nikolova
- Department of Virology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Petar Grozdanov
- Department of Virology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Angel Galabov
- Department of Virology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
5
|
Levanova AA, Lampi M, Kalke K, Hukkanen V, Poranen MM, Eskelin K. Native RNA Purification Method for Small RNA Molecules Based on Asymmetrical Flow Field-Flow Fractionation. Pharmaceuticals (Basel) 2022; 15:261. [PMID: 35215370 PMCID: PMC8876226 DOI: 10.3390/ph15020261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
RNA molecules provide promising new possibilities for the prevention and treatment of viral infections and diseases. The rapid development of RNA biology and medicine requires advanced methods for the purification of RNA molecules, which allow fast and efficient RNA processing, preferably under non-denaturing conditions. Asymmetrical flow field-flow fractionation (AF4) enables gentle separation and purification of macromolecules based on their diffusion coefficients. The aim of the study was to develop an AF4 method for efficient purification of enzymatically produced antiviral small interfering (si)RNA molecules and to evaluate the overall potential of AF4 in the separation of short single-stranded (ss) and double-stranded (ds) RNA molecules. We show that AF4 separates monomeric ssRNA from dsRNA molecules of the same size and monomeric ssRNA from multimeric forms of the same ssRNA. The developed AF4 method enabled the separation of enzymatically produced 27-nt siRNAs from partially digested substrate dsRNA, which is potentially toxic for mammalian cells. The recovery of AF4-purified enzymatically produced siRNA molecules was about 70%, which is about 20% higher than obtained using anion-exchange chromatography. The AF4-purified siRNAs were not toxic for mammalian cells and fully retained their biological activity as confirmed by efficient inhibition of herpes simplex virus 1 replication in cell culture. Our work is the first to develop AF4 methods for the separation of short RNA molecules.
Collapse
Affiliation(s)
- Alesia A. Levanova
- Molecular and Integrative Biosciences Research Programme, Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (A.A.L.); (M.L.)
| | - Mirka Lampi
- Molecular and Integrative Biosciences Research Programme, Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (A.A.L.); (M.L.)
| | - Kiira Kalke
- Institute of Biomedicine, University of Turku, FI-20014 Turku, Finland; (K.K.); (V.H.)
| | - Veijo Hukkanen
- Institute of Biomedicine, University of Turku, FI-20014 Turku, Finland; (K.K.); (V.H.)
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research Programme, Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (A.A.L.); (M.L.)
| | - Katri Eskelin
- Molecular and Integrative Biosciences Research Programme, Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (A.A.L.); (M.L.)
| |
Collapse
|
6
|
Levanova AA, Vainio EJ, Hantula J, Poranen MM. RNA-Dependent RNA Polymerase from Heterobasidion RNA Virus 6 Is an Active Replicase In Vitro. Viruses 2021; 13:v13091738. [PMID: 34578320 PMCID: PMC8473416 DOI: 10.3390/v13091738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Heterobasidion RNA virus 6 (HetRV6) is a double-stranded (ds)RNA mycovirus and a member of the recently established genus Orthocurvulavirus within the family Orthocurvulaviridae. The purpose of the study was to determine the biochemical requirements for RNA synthesis catalyzed by HetRV6 RNA-dependent RNA polymerase (RdRp). HetRV6 RdRp was expressed in Escherichia coli and isolated to near homogeneity using liquid chromatography. The enzyme activities were studied in vitro using radiolabeled UTP. The HetRV6 RdRp was able to initiate RNA synthesis in a primer-independent manner using both virus-related and heterologous single-stranded (ss)RNA templates, with a polymerization rate of about 46 nt/min under optimal NTP concentration and temperature. NTPs with 2'-fluoro modifications were also accepted as substrates in the HetRV6 RdRp-catalyzed RNA polymerization reaction. HetRV6 RdRp transcribed viral RNA genome via semi-conservative mechanism. Furthermore, the enzyme demonstrated terminal nucleotidyl transferase (TNTase) activity. Presence of Mn2+ was required for the HetRV6 RdRp catalyzed enzymatic activities. In summary, our study shows that HetRV6 RdRp is an active replicase in vitro that can be potentially used in biotechnological applications, molecular biology, and biomedicine.
Collapse
Affiliation(s)
- Alesia A. Levanova
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
- Correspondence: (A.A.L.); (M.M.P.)
| | - Eeva J. Vainio
- Natural Resources Institute Finland, 00790 Helsinki, Finland; (E.J.V.); (J.H.)
| | - Jarkko Hantula
- Natural Resources Institute Finland, 00790 Helsinki, Finland; (E.J.V.); (J.H.)
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
- Correspondence: (A.A.L.); (M.M.P.)
| |
Collapse
|
7
|
Herpes Simplex Virus Type 1 Clinical Isolates Respond to UL29-Targeted siRNA Swarm Treatment Independent of Their Acyclovir Sensitivity. Viruses 2020; 12:v12121434. [PMID: 33322225 PMCID: PMC7764767 DOI: 10.3390/v12121434] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022] Open
Abstract
Acyclovir is the drug of choice for the treatment of herpes simplex virus (HSV) infections. Acyclovir-resistant HSV strains may emerge, especially during long-term drug use, and subsequently cause difficult-to-treat exacerbations. Previously, we set up a novel treatment approach, based on enzymatically synthesized pools of siRNAs, or siRNA swarms. These swarms can cover kilobases-long target sequences, reducing the likelihood of resistance to treatment. Swarms targeting the UL29 essential gene of HSV-1 have demonstrated high efficacy against HSV-1 in vitro and in vivo. Here, we assessed the antiviral potential of a UL29 siRNA swarm against circulating strains of HSV-1, in comparison with acyclovir. All circulating strains were sensitive to both antivirals, with the half-maximal inhibitory concentrations (IC50) in the range of 350–1911 nM for acyclovir and 0.5–3 nM for the UL29 siRNA swarm. Additionally, we showed that an acyclovir-resistant HSV-1, devoid of thymidine kinase, is highly sensitive to UL29 siRNA treatment (IC50 1.0 nM; Imax 97%). Moreover, the detected minor variations in the RNAi target of the HSV strains had no effect on the potency or efficacy of UL29 siRNA swarm treatment. Our findings support the development of siRNA swarms for the treatment of HSV-1 infections, in order to circumvent any potential acyclovir resistance.
Collapse
|
8
|
In vitro production of synthetic viral RNAs and their delivery into mammalian cells and the application of viral RNAs in the study of innate interferon responses. Methods 2020; 183:21-29. [PMID: 31682923 DOI: 10.1016/j.ymeth.2019.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 12/24/2022] Open
Abstract
Mammalian cells express different types of RNA molecules that can be classified as protein coding RNAs (mRNA) and non-coding RNAs (ncRNAs) the latter of which have housekeeping and regulatory functions in cells. Cellular RNAs are not recognized by cellular pattern recognition receptors (PRRs) and innate immunity is not activated. RNA viruses encode and express RNA molecules that usually differ from cell-specific RNAs and they include for instance 5'capped and 5'mono- and triphosphorylated RNAs, small viral RNAs and viral RNA-protein complexes called vRNPs. These molecules are recognized by certain members of Toll-like receptor (TLR) and RIG-I-like receptor (RLR) families leading to activation of innate immune responses and the production of antiviral cytokines, such as type I and type III interferons (IFNs). Virus-specific ssRNA and dsRNA molecules that mimic the viral genomic RNAs or their replication intermediates can efficiently be produced by bacteriophage T7 DNA-dependent RNA polymerase and bacteriophage phi6 RNA-dependent RNA polymerase, respectively. These molecules can then be delivered into mammalian cells and the mechanisms of activation of innate immune responses can be studied. In addition, synthetic viral dsRNAs can be processed to small interfering RNAs (siRNAs) by a Dicer enzyme to produce a swarm of antiviral siRNAs. Here we describe the biology of RNAs, their in vitro production and delivery into mammalian cells as well as how these molecules can be used to inhibit virus replication and to study the mechanisms of activation of the innate immune system.
Collapse
|
9
|
Levanova AA, Kalke KM, Lund LM, Sipari N, Sadeghi M, Nyman MC, Paavilainen H, Hukkanen V, Poranen MM. Enzymatically synthesized 2'-fluoro-modified Dicer-substrate siRNA swarms against herpes simplex virus demonstrate enhanced antiviral efficacy and low cytotoxicity. Antiviral Res 2020; 182:104916. [PMID: 32798603 PMCID: PMC7424292 DOI: 10.1016/j.antiviral.2020.104916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 12/23/2022]
Abstract
Chemical modifications of small interfering (si)RNAs are used to enhance their stability and potency, and to reduce possible off-target effects, including immunogenicity. We have earlier introduced highly effective antiviral siRNA swarms against herpes simplex virus (HSV), targeting 653 bp of the essential UL29 viral gene. Here, we report a method for enzymatic production and antiviral use of 2′-fluoro-modified siRNA swarms. Utilizing the RNA-dependent RNA polymerase from bacteriophage phi6, we produced 2′-F-siRNA swarms containing either all or a fraction of modified adenosine, cytidine or uridine residues in the antisense strand of the UL29 target. The siRNA containing modified pyrimidines demonstrated high resistance to RNase A and the antiviral potency of all the UL29-specific 2′-F-siRNA swarms was 100-fold in comparison with the unmodified counterpart, without additional cytotoxicity. Modest stimulation of innate immunity signaling, including induced expression of both type I and type III interferons, as well as interferon-stimulated gene 54, by 2′-F-cytidine and 2′-F-uridine modified siRNA swarms occurred at early time points after transfection while the 2′-F-adenosine-containing siRNA was similar to the unmodified antiviral siRNA swarm in this respect. The antiviral efficacy of the 2′-F-siRNA swarms and the elicited cellular innate responses did not correlate suggesting that innate immunity pathways do not significantly contribute to the observed enhanced antiviral activity of the modified siRNAs. The results support further applications of enzymatically produced siRNA molecules with incorporated adenosine nucleotides, carrying fluoro-modification on ribose C2′ position, for further antiviral studies in vitro and in vivo. Phage phi6 polymerase can use 2′-F-dNTP substrates to produce 2′-F-modified dsRNA. SiRNAs containing 2′-F-modified pyrimidine nucleotides demonstrate resistance to RNase A. Enzymatically produced 2′-F-siRNA swarms display low cytotoxicity. Antiviral activity of 2′-F-siRNAs against HSV exceeds that of the unmodified siRNAs. Innate immunity induction by 2′-F-siRNAs is similar to that of unmodified siRNAs.
Collapse
Affiliation(s)
- Alesia A Levanova
- Molecular and Integrative Biosciences Research Programme, Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, FI-00014, Helsinki, Finland
| | - Kiira M Kalke
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Liisa M Lund
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Nina Sipari
- Viikki Metabolomics Unit, Organismal and Evolutionary Biology Research Programme, Biological and Environmental Sciences, University of Helsinki, Viikinkaari 5, FI-00014, Helsinki, Finland
| | | | - Marie C Nyman
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Veijo Hukkanen
- Institute of Biomedicine, University of Turku, Turku, Finland.
| | - Minna M Poranen
- Molecular and Integrative Biosciences Research Programme, Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, FI-00014, Helsinki, Finland.
| |
Collapse
|
10
|
Levanova A, Poranen MM. RNA Interference as a Prospective Tool for the Control of Human Viral Infections. Front Microbiol 2018; 9:2151. [PMID: 30254624 PMCID: PMC6141738 DOI: 10.3389/fmicb.2018.02151] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/22/2018] [Indexed: 12/28/2022] Open
Abstract
RNA interference (RNAi), which is mediated by small interfering RNAs (siRNAs) derived from viral genome or its replicative intermediates, is a natural antiviral defense in plants, fungi, and invertebrates. Whether RNAi naturally protects humans from viral invasion is still a matter of debate. Nevertheless, exogenous siRNAs are able to halt viral infection in mammals. The current review critically evaluates the production of antiviral siRNAs, delivery techniques to the infection sites, as well as provides an overview of antiviral siRNAs in clinical trials.
Collapse
Affiliation(s)
- Alesia Levanova
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Minna M Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
12
|
Paavilainen H, Lehtinen J, Romanovskaya A, Nygårdas M, Bamford DH, Poranen MM, Hukkanen V. Inhibition of clinical pathogenic herpes simplex virus 1 strains with enzymatically created siRNA pools. J Med Virol 2016; 88:2196-2205. [PMID: 27191509 DOI: 10.1002/jmv.24578] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2016] [Indexed: 12/11/2022]
Abstract
Herpes simplex virus (HSV) is a common human pathogen causing severe diseases such as encephalitis, keratitis, and neonatal herpes. There is no vaccine against HSV and the current antiviral chemotherapy fails to treat certain forms of the disease. Here, we evaluated the antiviral activity of enzymatically created small interfering (si)RNA pools against various pathogenic HSV strains as potential candidates for antiviral therapies. Pools of siRNA targeting 0.5-0.8 kbp of essential HSV genes UL54, UL29, or UL27 were enzymatically synthesized. Efficacy of inhibition of each siRNA pool was evaluated against multiple clinical isolates and laboratory wild type HSV-1 strains using three cell lines representing host tissues that support HSV-1 replication: epithelial, ocular, and cells that originated from the nervous system. The siRNA pools targeting UL54, UL29, and UL27, as well as their equimolar mixture, inhibited HSV replication, with the pool targeting UL29 having the most prominent antiviral effect. In contrast, the non-specific control siRNA pool did not have such an effect. Moreover, the UL29 pool elicited only a minimal innate immune response in the HSV-infected cells, thus evidencing the safety of its potential clinical use. These results are promising for the development of a topical RNA interference approach for clinical treatment of HSV infection. J. Med. Virol. 88:2196-2205, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Henrik Paavilainen
- Department of Virology, University of Turku, Turku, Finland.
- Drug Research Doctoral Program, University of Turku, Turku, Finland.
| | - Jenni Lehtinen
- Department of Virology, University of Turku, Turku, Finland
- Drug Research Doctoral Program, University of Turku, Turku, Finland
| | | | | | - Dennis H Bamford
- Department of Biosciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Minna M Poranen
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Veijo Hukkanen
- Department of Virology, University of Turku, Turku, Finland
| |
Collapse
|
13
|
Paavilainen H, Romanovskaya A, Nygårdas M, Bamford DH, Poranen MM, Hukkanen V. Innate responses to small interfering RNA pools inhibiting herpes simplex virus infection in astrocytoid and epithelial cells. Innate Immun 2015; 21:349-57. [PMID: 24996409 DOI: 10.1177/1753425914537921] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/29/2014] [Indexed: 11/16/2022] Open
Abstract
Herpes simplex virus (HSV) is a human pathogen that can cause severe diseases such as encephalitis, keratitis and neonatal herpes. Control of HSV infection may be achieved by using small interfering (si)RNAs. We have designed and enzymatically produced pools of siRNAs targeting HSV. In addition to the target-specific effects, such siRNAs may induce innate immunity responses that may contribute to antiviral effects. HSV has versatile ways of modulating innate immunity, and it remains unclear whether HSV-specific antiviral treatment would benefit from the potential immunostimulatory effects of siRNAs. To address this, cell lines derived from epithelium and nervous system were studied for innate immunity reactions to HSV infection, to siRNA treatment, and to a combination of treatment and infection. In addition, the outcome of HSV infection was quantitated. We show that innate immunity reactions vary drastically between the cell lines. Moreover, our findings indicate only a minimal relation between the antiviral effect and the treatment-induced innate immunity responses. Thus, the antiviral effect is mainly sequence specific and the inhibition of HSV infection is not ascribed to the slight innate immunity induction.
Collapse
Affiliation(s)
| | | | | | - Dennis H Bamford
- Department of Biosciences, University of Helsinki, Helsinki, Finland Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Minna M Poranen
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Veijo Hukkanen
- Department of Virology, University of Turku, Turku, Finland
| |
Collapse
|
14
|
Romanovskaya A, Paavilainen H, Nygårdas M, Bamford DH, Hukkanen V, Poranen MM. Enzymatically produced pools of canonical and Dicer-substrate siRNA molecules display comparable gene silencing and antiviral activities against herpes simplex virus. PLoS One 2012; 7:e51019. [PMID: 23226452 PMCID: PMC3511422 DOI: 10.1371/journal.pone.0051019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/29/2012] [Indexed: 11/19/2022] Open
Abstract
RNA interference (RNAi)-based sequence-specific gene silencing is applied to identify gene function and also possesses great potential for inhibiting virus replication both in animals and plants. Small interfering RNA (siRNA) molecules are the inducers of gene silencing in the RNAi pathway but may also display immunostimulatory activities and promote apoptosis. Canonical siRNAs are 21 nucleotides (nt) in length and are loaded to the RNA Induced Silencing Complex when introduced into the cells, while longer siRNA molecules are first processed by endogenous Dicer and thus termed Dicer-substrate siRNA (DsiRNA). We have applied RNA polymerases from bacteriophages T7 and phi6 to make high-quality double-stranded RNA molecules that are specific for the UL29 gene of herpes simplex virus (HSV). The 653 nt long double-stranded RNA molecules were converted to siRNA and DsiRNA pools using Dicer enzymes originating from human or Giardia intestinalis, producing siRNAs of approximately 21 and 27 nt in length, respectively. Chemically synthesised 21 and 27 nt single-site siRNA targeting the UL29 were used as references. The impact of these siRNAs on cell viability, inflammatory responses, gene silencing, and anti-HSV activity were assayed in cells derived from human nervous system and skin. Both pools and the canonical single-site siRNAs displayed substantial antiviral activity resulting in four orders of magnitude reduction in virus titer. Notably, the pool of DsiRNAs caused lower immunostimulation than the pool of canonical siRNAs, whereas the immunostimulation effect was in relation to the length with the single-site siRNAs. Our results also propose differences in the processivity of the two Dicers.
Collapse
Affiliation(s)
| | | | | | - Dennis H. Bamford
- Department of Biosciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Veijo Hukkanen
- Department of Virology, University of Turku, Turku, Finland
| | - Minna M. Poranen
- Department of Biosciences, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
15
|
Fechner H, Pinkert S, Geisler A, Poller W, Kurreck J. Pharmacological and biological antiviral therapeutics for cardiac coxsackievirus infections. Molecules 2011; 16:8475-503. [PMID: 21989310 PMCID: PMC6264230 DOI: 10.3390/molecules16108475] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 09/29/2011] [Accepted: 09/30/2011] [Indexed: 01/16/2023] Open
Abstract
Subtype B coxsackieviruses (CVB) represent the most commonly identified infectious agents associated with acute and chronic myocarditis, with CVB3 being the most common variant. Damage to the heart is induced both directly by virally mediated cell destruction and indirectly due to the immune and autoimmune processes reacting to virus infection. This review addresses antiviral therapeutics for cardiac coxsackievirus infections discovered over the last 25 years. One group represents pharmacologically active low molecular weight substances that inhibit virus uptake by binding to the virus capsid (e.g., pleconaril) or inactivate viral proteins (e.g., NO-metoprolol and ribavirin) or inhibit cellular proteins which are essential for viral replication (e.g., ubiquitination inhibitors). A second important group of substances are interferons. They have antiviral but also immunomodulating activities. The third and most recently discovered group includes biological and cellular therapeutics. Soluble receptor analogues (e.g., sCAR-Fc) bind to the virus capsid and block virus uptake. Small interfering RNAs, short hairpin RNAs and antisense oligonucleotides bind to and led to degradation of the viral RNA genome or cellular RNAs, thereby preventing their translation and viral replication. Most recently mesenchymal stem cell transplantation has been shown to possess antiviral activity in CVB3 infections. Taken together, a number of antiviral therapeutics has been developed for the treatment of myocardial CVB infection in recent years. In addition to low molecular weight inhibitors, biological therapeutics have become promising anti-viral agents.
Collapse
Affiliation(s)
- Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; (S.P.); (J.K.)
- Author to whom correspondence should be addressed; ; Tel.: +49-30-31472181; Fax: +49-30-31427502
| | - Sandra Pinkert
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; (S.P.); (J.K.)
| | - Anja Geisler
- Department of Cardiology & Pneumology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany; (A.G.); wolfgang.poller@charite (W.P.)
| | - Wolfgang Poller
- Department of Cardiology & Pneumology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany; (A.G.); wolfgang.poller@charite (W.P.)
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; (S.P.); (J.K.)
| |
Collapse
|