1
|
Veletanlic V, Sartalamacchia K, Diller JR, Ogden KM. Multiple rotavirus species encode fusion-associated small transmembrane (FAST) proteins with cell type-specific activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536061. [PMID: 37066280 PMCID: PMC10104117 DOI: 10.1101/2023.04.07.536061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Fusion-associated small transmembrane (FAST) proteins are viral nonstructural proteins that mediate cell-cell fusion to form multinucleated syncytia. We previously reported that human species B rotavirus NSP1-1 is a FAST protein that induces syncytia in primate epithelial cells but not rodent fibroblasts. We hypothesized that the NSP1-1 proteins of other rotavirus species could also mediate cell-cell fusion and that fusion activity might be limited to cell types derived from homologous hosts. To test this hypothesis, we predicted the structure and domain organization of NSP1-1 proteins of species B rotavirus from a human, goat, and pig, species G rotavirus from a pigeon and turkey, and species I rotavirus from a dog and cat. We cloned these sequences into plasmids and transiently expressed the NSP1-1 proteins in avian, canine, hamster, human, porcine, and simian cells. Regardless of host origin of the virus, each NSP1-1 protein induced syncytia in primate cells, while few induced syncytia in other cell types. To identify the domains that determined cell-specific fusion activity for human species B rotavirus NSP1-1, we engineered chimeric proteins containing domain exchanges with the p10 FAST protein from Nelson Bay orthoreovirus. Using the chimeric proteins, we found that the N-terminal and transmembrane domains determined the cell type specificity of fusion activity. Although the species and cell type criteria for fusion activity remain unclear, these findings suggest that rotavirus species B, G, and I NSP1-1 are functional FAST proteins whose N termini play a role in specifying the cells in which they mediate syncytia formation.
Collapse
Affiliation(s)
- Vanesa Veletanlic
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kylie Sartalamacchia
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Julia R. Diller
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kristen M. Ogden
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Rotavirus Species B Encodes a Functional Fusion-Associated Small Transmembrane Protein. J Virol 2019; 93:JVI.00813-19. [PMID: 31375572 DOI: 10.1128/jvi.00813-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023] Open
Abstract
Rotavirus is an important cause of diarrheal disease in young mammals. Rotavirus species A (RVA) causes most human rotavirus diarrheal disease and primarily affects infants and young children. Rotavirus species B (RVB) has been associated with sporadic outbreaks of human adult diarrheal disease. RVA and RVB are predicted to encode mostly homologous proteins but differ significantly in the proteins encoded by the NSP1 gene. In the case of RVB, the NSP1 gene encodes two putative protein products of unknown function, NSP1-1 and NSP1-2. We demonstrate that human RVB NSP1-1 mediates syncytium formation in cultured human cells. Based on sequence alignment, NSP1-1 proteins from species B, G, and I contain features consistent with fusion-associated small transmembrane (FAST) proteins, which have previously been identified in other genera of the Reoviridae family. Like some other FAST proteins, RVB NSP1-1 is predicted to have an N-terminal myristoyl modification. Addition of an N-terminal FLAG peptide disrupts NSP1-1-mediated fusion. NSP1-1 from a human RVB mediates fusion of human cells but not hamster cells and, thus, may serve as a species tropism determinant. NSP1-1 also can enhance RVA replication in human cells, both in single-cycle infection studies and during a multicycle time course in the presence of fetal bovine serum, which inhibits rotavirus spread. These findings suggest potential yet untested roles for NSP1-1 in RVB species tropism, immune evasion, and pathogenesis.IMPORTANCE While species A rotavirus is commonly associated with diarrheal disease in young children, species B rotavirus has caused sporadic outbreaks of adult diarrheal disease. A major genetic difference between species A and B rotaviruses is the NSP1 gene, which encodes two proteins for species B rotavirus. We demonstrate that the smaller of these proteins, NSP1-1, can mediate fusion of cultured human cells. Comparison with viral proteins of similar function provides insight into NSP1-1 domain organization and fusion mechanism. These comparisons suggest that there is a fatty acid modification at the amino terminus of the protein, and our results show that an intact amino terminus is required for NSP1-1-mediated fusion. NSP1-1 from a human virus mediates fusion of human cells, but not hamster cells, and enhances species A rotavirus replication in culture. These findings suggest potential, but currently untested, roles for NSP1-1 in RVB host species tropism, immune evasion, and pathogenesis.
Collapse
|
3
|
Vlasova AN, Amimo JO, Saif LJ. Porcine Rotaviruses: Epidemiology, Immune Responses and Control Strategies. Viruses 2017; 9:v9030048. [PMID: 28335454 PMCID: PMC5371803 DOI: 10.3390/v9030048] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 12/13/2022] Open
Abstract
Rotaviruses (RVs) are a major cause of acute viral gastroenteritis in young animals and children worldwide. Immunocompetent adults of different species become resistant to clinical disease due to post-infection immunity, immune system maturation and gut physiological changes. Of the 9 RV genogroups (A–I), RV A, B, and C (RVA, RVB, and RVC, respectively) are associated with diarrhea in piglets. Although discovered decades ago, porcine genogroup E RVs (RVE) are uncommon and their pathogenesis is not studied well. The presence of porcine RV H (RVH), a newly defined distinct genogroup, was recently confirmed in diarrheic pigs in Japan, Brazil, and the US. The complex epidemiology, pathogenicity and high genetic diversity of porcine RVAs are widely recognized and well-studied. More recent data show a significant genetic diversity based on the VP7 gene analysis of RVB and C strains in pigs. In this review, we will summarize previous and recent research to provide insights on historic and current prevalence and genetic diversity of porcine RVs in different geographic regions and production systems. We will also provide a brief overview of immune responses to porcine RVs, available control strategies and zoonotic potential of different RV genotypes. An improved understanding of the above parameters may lead to the development of more optimal strategies to manage RV diarrheal disease in swine and humans.
Collapse
Affiliation(s)
- Anastasia N Vlasova
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA.
| | - Joshua O Amimo
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi 30197, Kenya.
- Bioscience of Eastern and Central Africa, International Livestock Research Institute (BecA-ILRI) Hub, Nairobi 30709, Kenya.
| | - Linda J Saif
- Food Animal Health Research Program, CFAES, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA.
| |
Collapse
|
4
|
Hayashi-Miyamoto M, Murakami T, Minami-Fukuda F, Tsuchiaka S, Kishimoto M, Sano K, Naoi Y, Asano K, Ichimaru T, Haga K, Omatsu T, Katayama Y, Oba M, Aoki H, Shirai J, Ishida M, Katayama K, Mizutani T, Nagai M. Diversity in VP3, NSP3, and NSP4 of rotavirus B detected from Japanese cattle. INFECTION GENETICS AND EVOLUTION 2017; 49:97-103. [PMID: 28063924 DOI: 10.1016/j.meegid.2017.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/12/2016] [Accepted: 01/02/2017] [Indexed: 01/24/2023]
Abstract
Bovine rotavirus B (RVB) is an etiological agent of diarrhea mostly in adult cattle. Currently, a few sequences of viral protein (VP)1, 2, 4, 6, and 7 and nonstructural protein (NSP)1, 2, and 5 of bovine RVB are available in the DDBJ/EMBL/GenBank databases, and none have been reported for VP3, NSP3, and NSP4. In order to fill this gap in the genetic characterization of bovine RVB strains, we used a metagenomics approach and sequenced and analyzed the complete coding sequences (CDS) of VP3, NSP3, and NSP4 genes, as well as the partial or complete CDS of other genes of RVBs detected from Japanese cattle. VP3, NSP3, and NSP4 of bovine RVBs shared low nucleotide sequence identities (63.3-64.9% for VP3, 65.9-68.2% for NSP3, and 52.6-56.2% for NSP4) with those of murine, human, and porcine RVBs, suggesting that bovine RVBs belong to a novel genotype. Furthermore, significantly low amino acid sequence identities were observed for NSP4 (36.1-39.3%) between bovine RVBs and the RVBs of other species. In contrast, hydrophobic plot analysis of NSP4 revealed profiles similar to those of RVBs of other species and rotavirus A (RVA) strains. Phylogenetic analyses of all gene segments revealed that bovine RVB strains formed a cluster that branched distantly from other RVBs. These results suggest that bovine RVBs have evolved independently from other RVBs but in a similar manner to other rotaviruses. These findings provide insights into the evolution and diversity of RVB strains.
Collapse
Affiliation(s)
| | - Toshiaki Murakami
- Ishikawa Hokubu Livestock Hygiene Service Center, Nanao, Ishikawa 929-2126, Japan
| | - Fujiko Minami-Fukuda
- Ishikawa Hokubu Livestock Hygiene Service Center, Nanao, Ishikawa 929-2126, Japan
| | - Shinobu Tsuchiaka
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Mai Kishimoto
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Kaori Sano
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Yuki Naoi
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Keigo Asano
- Department of Bioproduction Science, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | - Toru Ichimaru
- Department of Health and Medical Sciences, Ishikawa Prefectural Nursing University, Kahoku, Ishikawa 929-1210, Japan
| | - Kei Haga
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan; Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Graduate School of Infection Control Sciences, Minato, Tokyo 108-8641, Japan
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Mami Oba
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Hiroshi Aoki
- Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Junsuke Shirai
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan; Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Motohiko Ishida
- Department of Bioproduction Science, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | - Kazuhiko Katayama
- Department of Virology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo 208-0011, Japan; Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Graduate School of Infection Control Sciences, Minato, Tokyo 108-8641, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Makoto Nagai
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan; Department of Bioproduction Science, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan.
| |
Collapse
|
5
|
Aung MS, Nahar S, Aida S, Paul SK, Hossain MA, Ahmed S, Haque N, Ghosh S, Malik YS, Urushibara N, Kawaguchiya M, Sumi A, Kobayashi N. Distribution of two distinct rotavirus B (RVB) strains in the north-central Bangladesh and evidence for reassortment event among human RVB revealed by whole genomic analysis. INFECTION GENETICS AND EVOLUTION 2016; 47:77-86. [PMID: 27825911 DOI: 10.1016/j.meegid.2016.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 01/05/2023]
Abstract
Human rotavirus B (RVB), a rare cause of diarrhea in several Asian countries, has been reported to be genetically highly conserved. However, 14 RVB strains with two distinct RNA electropherotypes E1 and E2 (11 and 3 strains, respectively) were detected in adult patients with diarrhea, in Mymensingh in the north-central Bangladesh in 2014. In this study, VP7 gene sequences of all the 14 strains and nearly full-length sequences of all the 11 RNA segments of four RVB (two strains each representing E1 and E2 types) were determined and analyzed phylogenetically. For all the gene segments, sequence identities among strains with the same RNA pattern were higher (99%-100%) than those between strains with different RNA patterns (94-98%). Although all the gene segments of RVB strains were grouped into Indian-Bangladeshi lineage, VP1-3, VP6, VP7, NSP1, NSP2 and NSP5 genes of strains with E1 and E2 types were assigned to distinct sublineages S1 and S2, respectively. E1-strains clustered with Bangladeshi RVB strains reported previously (e.g., Bang117), while E2-strains with those from India (e.g., NIV-1048101), Myanmar, and Nepal. In contrast, VP4, NSP3 and NSP4 genes of both E1 and E2 RVB strains were classified into sublineage S2. These findings indicated that two genetically distinct RVB strains were simultaneously circulating in Mymensingh, Bangladesh. RVB strains with E1 electropherotype were suggested to be reassortants acquiring three gene segments (VP4, NSP3 and NSP4 genes) from the foreign RVB in the genetic background of indigenous Bangladeshi RVB represented by the strain Bang117.
Collapse
Affiliation(s)
- Meiji Soe Aung
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Samsoon Nahar
- Department of Microbiology, Mymensingh Medical College, Mymensingh, Bangladesh
| | - Satoru Aida
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shyamal Kumar Paul
- Department of Microbiology, Mymensingh Medical College, Mymensingh, Bangladesh
| | | | - Salma Ahmed
- Department of Microbiology, Mymensingh Medical College, Mymensingh, Bangladesh
| | - Nazia Haque
- Department of Microbiology, Mymensingh Medical College, Mymensingh, Bangladesh
| | - Souvik Ghosh
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan; Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Saint Kitts and Nevis
| | - Yashpal Singh Malik
- Division of Biological Standardisation, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Noriko Urushibara
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mitsuyo Kawaguchiya
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ayako Sumi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan.
| |
Collapse
|
6
|
Phylogenetic analysis of human group C rotavirus circulating in Brazil reveals a potential unique NSP4 genetic variant and high similarity with Asian strains. Mol Genet Genomics 2014; 290:969-86. [PMID: 25501310 DOI: 10.1007/s00438-014-0971-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/25/2014] [Indexed: 01/23/2023]
Abstract
Group C rotaviruses (RVC) cause gastroenteritis in humans and animals worldwide, and the evidence for a possible zoonotic role has been recently provided. To gain information on the genetic diversity and relationships between human and animal RVC, we sequenced the VP4, VP7, and NSP4 genes of 12, 19, and 15 human strains, respectively, detected in São Paulo state during historical (1988 and 1993) and recent (2007 and 2008) Brazilian rotavirus surveillance. All RVC strains analyzed in the present study grouped into human genotype (G4-P[2]-E2), and did not show any evidence of animal ancestry. Phylogenetic analysis showed that RVC samples detected in 1988 and 1993 clustered together with strains from distinct continents, indicating that historical RVC strains circulating in São Paulo were closely related to those strains circulating worldwide. All three genes (VP7, VP4 and NSP4) of São Paulo RVC strains isolated in 2007-2008 exhibited close phylogenetic relationship with human RVC strains isolated in China and Japan, suggesting that they are genetically linked, and that a gene flow could be occurring between this Asian countries and Brazil. We identified two distinct clusters in the NSP4 phylogenetic tree. One cluster formed exclusively by human Brazilian strains detected in 1997 and 2003-2004 in Rio de Janeiro, Bahia, and Rio Grande do Sul states (Subgroup II) previously described in a different study, that displayed low sequence identities to other human strains formerly published, and to the Brazilian RVC strains (Subgroup I) characterized in the present study. These data suggests the circulation of two genetic profiles of the NSP4 gene in Brazil. High sequence diversity in NSP4 gene was previously reported in Asia, and additional diversity in NSP4 RVC strains spreading in the world should be expected. More in-depth molecular and epidemiological analysis of human RVC throughout the world will be needed to understand their diversity and clarify their evolution, as well as to develop classifications schemes.
Collapse
|
7
|
Ghosh S, Kobayashi N. Exotic rotaviruses in animals and rotaviruses in exotic animals. Virusdisease 2014; 25:158-72. [PMID: 25674582 DOI: 10.1007/s13337-014-0194-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/16/2014] [Indexed: 11/26/2022] Open
Abstract
Group A rotaviruses (RVA) are a major cause of viral diarrhea in the young of mammals and birds. RVA strains with certain genotype constellations or VP7-VP4 (G-P) genotype combinations are commonly found in a particular host species, whilst unusual or exotic RVAs have also been reported. In most cases, these exotic rotaviruses are derived from RVA strains common to other host species, possibly through interspecies transmission coupled with reassortment events, whilst a few other strains exhibit novel genotypes/genetic constellations rarely found in other RVAs. The epidemiology and evolutionary patterns of exotic rotaviruses in humans have been thoroughly reviewed previously. On the other hand, there is no comprehensive review article devoted to exotic rotaviruses in domestic animals and birds so far. The present review focuses on the exotic/unusual rotaviruses detected in livestock (cattle and pigs), horses and companion animals (cats and dogs). Avian rotaviruses (group D, group F and group G strains), including RVAs, which are genetically divergent from mammalian RVAs, are also discussed. Although scattered and limited studies have reported rotaviruses in several exotic animals and birds, including wildlife, these data remain to be reviewed. Therefore, a section entitled "rotaviruses in exotic animals" was included in the present review.
Collapse
Affiliation(s)
- Souvik Ghosh
- Department of Hygiene, Sapporo Medical University School of Medicine, S 1, W 17, Chuo-Ku, Sapporo, Hokkaido 060-8556 Japan
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, S 1, W 17, Chuo-Ku, Sapporo, Hokkaido 060-8556 Japan
| |
Collapse
|
8
|
Suzuki T, Soma J, Miyazaki A, Tsunemitsu H. Phylogenetic analysis of nonstructural protein 5 (NSP5) gene sequences in porcine rotavirus B strains. INFECTION GENETICS AND EVOLUTION 2012; 12:1661-8. [DOI: 10.1016/j.meegid.2012.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/22/2012] [Accepted: 06/28/2012] [Indexed: 01/05/2023]
|
9
|
Marthaler D, Rossow K, Gramer M, Collins J, Goyal S, Tsunemitsu H, Kuga K, Suzuki T, Ciarlet M, Matthijnssens J. Detection of substantial porcine group B rotavirus genetic diversity in the United States, resulting in a modified classification proposal for G genotypes. Virology 2012; 433:85-96. [PMID: 22877843 PMCID: PMC7111968 DOI: 10.1016/j.virol.2012.07.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 06/27/2012] [Accepted: 07/04/2012] [Indexed: 02/05/2023]
Abstract
Rotavirus (RV) is an important cause of gastrointestinal disease in animals and humans. In this study, we developed an RT-PCR to detect RV group B (RVB) and characterized the VP7 (G) gene segment detected in porcine samples. One hundred seventy three samples were tested for RV group A (RVA), RVB, and C (RVC) by RT-PCR and examined for RV-like lesion using histopathology. A majority (86.4%) of the samples had mixed RV infections and co-infections of RVA/RVB/RVC were detected at a higher rate (24.3%) than previously reported. RVB was identified in 46.8% of the 173 samples. An adapted VP7 classification was developed using previously published (n=57) and newly sequenced (n=68) RVB strains, resulting in 20 G genotypes based on an 80% nucleotide identity cutoff value. Our results revealed a broad genetic diversity of porcine RVB strains, suggesting RVB has been the cause of common/pre-existing, yet undiagnosed, disease in pigs.
Collapse
Affiliation(s)
- Douglas Marthaler
- University of Minnesota Veterinary Diagnostic Laboratory College of Veterinary Medicine 1333 Gortner Ave Saint Paul, MN 55108, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lahon A, Walimbe AM, Chitambar SD. Full genome analysis of group B rotaviruses from western India: genetic relatedness and evolution. J Gen Virol 2012; 93:2252-2266. [PMID: 22815276 DOI: 10.1099/vir.0.043497-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To date, full-genome sequences of only seven human group B rotavirus (RVBs) strains have been described. Such data on more RVBs are necessary to establish the evolutionary relationship and ecological features of RVBs from different geographical regions. The present study was aimed at determining the full-length sequences of all 11 genes of 13 human RVB strains detected during 1995-2010 in sporadic and outbreak cases of acute gastroenteritis from four different cities of western India. This study also included estimation of evolutionary rates and site-specific selection pressure analysis for all gene segments. Nucleotide/deduced amino acid sequence analyses of structural and non-structural genes showed 95.1-99.8/94.1-100 % identity with the counterparts of RVB strains isolated in India, Bangladesh and Myanmar. Phylogenetic analyses of all gene segments revealed formation of a monophyletic clade of the western Indian RVB strains, reflecting their highly conserved nature. All gene segments were also found to be under negative/purifying selection pressure. These data suggest that RVB is circulating in the natural host as a series of stable viral clones. Estimates of rates of nucleotide substitution in all RVBs ranged from 1.36-4.78×10(-3) substitutions per site per year. The rate for human RVB VP7 and NSP2 genes were comparable, respectively, with the evolution kinetics of genotype G9/G12 and N1 group A rotavirus strains. The time of the most recent common ancestor of the extant human RVBs was estimated to be during 1915-1974. Evolutionary and genetic analyses carried out in this study provide data that is useful for the elucidation of evolutionary relationship/timescale, stasis or dynamics existing in the RVB population.
Collapse
Affiliation(s)
- Anismrita Lahon
- Enteric Viruses Group, National Institute of Virology, 20-A, Dr. Ambedkar Road, PO Box 11, Pune 411001, India
| | - Atul M Walimbe
- Bionformatics Group, National Institute of Virology, 20-A, Dr. Ambedkar Road, PO Box 11, Pune 411001, India
| | - Shobha D Chitambar
- Enteric Viruses Group, National Institute of Virology, 20-A, Dr. Ambedkar Road, PO Box 11, Pune 411001, India
| |
Collapse
|
11
|
Suzuki T, Soma J, Kuga K, Miyazaki A, Tsunemitsu H. Sequence and phylogenetic analyses of nonstructural protein 2 genes of species B porcine rotaviruses detected in Japan during 2001–2009. Virus Res 2012; 165:46-51. [DOI: 10.1016/j.virusres.2012.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 12/20/2011] [Accepted: 01/01/2012] [Indexed: 01/10/2023]
|
12
|
Lahon A, Chitambar SD. Molecular characterization of VP4, VP6, VP7 and NSP4 genes of group B rotavirus strains from outbreaks of gastroenteritis. ASIAN PAC J TROP MED 2012; 4:846-9. [PMID: 22078944 DOI: 10.1016/s1995-7645(11)60206-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/15/2011] [Accepted: 09/15/2011] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To characterize VP4, VP6, VP7 and NSP4 genes of representative GBR strains (NIV-005625, NIV-04622 and NIV-094456) detected as the major etiologic agent in the outbreaks of gastroenteritis in western India. METHODS Fecal specimens collected during the outbreaks of gastroenteritis were processed for RNA isolation, RT-PCR using GBR VP4, VP6, VP7 and NSP4 gene specific primers, nucleotide sequencing of the amplicons and phylogenetic analysis of the sequences. RESULTS Phylogenetic analysis of all of the VP4, VP6, VP7 and NSP4 gene sequences revealed clustering of GBR strains in Indian-Bangladeshi lineage of genotype G2 with 95.8%-99.4% nucleotide and 97.3%-100.0% amino acid identities. However, all three strains showed the presence of unique amino acid substitutions in the VP4 protein suggesting alteration in the antigenicity of outbreak strains of GBR. The VP8* and VP5* regions of VP4 proteins showed respectively 0.5%-6.3% and 0.2%-1.1% amino acid divergence from human GBR strains of Indian-Bangladeshi lineage. CONCLUSIONS These data confirm the reported variability of VP8* region and suggest the possible role of this region in the perpetuation of GBR infections in the environment. This is the first study to document the phylogenetic relationship of VP4, VP6, VP7 and NSP4 genes of GBR strains detected in the outbreaks of gastroenteritis from India with the GBR strains from other parts of world.
Collapse
Affiliation(s)
- Anismrita Lahon
- Enteric Viruses Group, National Institute of Virology, Pune-411001, India
| | | |
Collapse
|
13
|
Suzuki T, Kuga K, Miyazaki A, Tsunemitsu H. Genetic divergence and classification of non-structural protein 1 among porcine rotaviruses of species B. J Gen Virol 2011; 92:2922-2929. [DOI: 10.1099/vir.0.036426-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Porcine rotavirus B (RVB) has frequently been detected in diarrhoea of suckling and weaned pigs. Moreover, epidemiological studies using ELISA have demonstrated high antibody prevalence in sera from sows, indicating that RVB infections are widespread. Because it is difficult to propagate RVBs serially in cell culture, genetic analysis of RNA segments of porcine RVBs other than those encoding VP7 and NSP2 has been scarcely performed. We conducted sequence and phylogenetic analyses focusing on non-structural protein 1 (NSP1), using 15 porcine RVB strains isolated from diarrhoeic faeces collected around Japan. Sequence analysis showed that the porcine NSP1 gene contains two overlapping ORFs. Especially, peptide 2 of NSP1 retains highly conserved cysteine and histidine residues among RVBs. Comparison of NSP1 nucleotide and deduced amino acid sequences from porcine RVB strains demonstrated low identities to those from other RVB strains. Phylogenetic analysis of RVB NSP1 revealed the presence of murine, human, ovine, bovine and porcine clusters. Furthermore, the NSP1 genes of porcine RVBs were divided into three genotypes, suggesting the possibility that porcine species might be an original host of RVB infection. Of nine strains common to those used in our previous study, only one strain was classified into a different genotype from the others in the analysis of VP7, in contrast to the analysis of NSP1, where all belonged to the same cluster. This fact suggests the occurrence of gene reassortment among porcine RVBs. These findings should provide more beneficent information to understand the evolution and functions of RVBs.
Collapse
Affiliation(s)
- Tohru Suzuki
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Kazufumi Kuga
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Ayako Miyazaki
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | - Hiroshi Tsunemitsu
- Viral Disease and Epidemiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| |
Collapse
|
14
|
Ghosh S, Kobayashi N. Whole-genomic analysis of rotavirus strains: current status and future prospects. Future Microbiol 2011; 6:1049-65. [DOI: 10.2217/fmb.11.90] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Studies on genetic diversity of rotaviruses have been primarily based on the genes encoding the antigenically significant VP7 and VP4 proteins. Since the rotavirus genome has 11 segments of RNA that are vulnerable to reassortment events, analyses of the VP7 and VP4 genes may not be sufficient to obtain conclusive data on the overall genetic diversity, or true origin of strains. In the last few years following the advent of the whole-genome-based genotype classification system, the whole genomes of at least 167 human group A rotavirus strains have been analyzed, providing a plethora of new and important information on the complex origin of strains, inter- and intra-genogroup reassortment events, animal–human reassortment events, zoonosis, and genetic linkages involving different group A rotavirus gene segments. In addition, the whole genomes of a limited number of human group B, C and novel group rotavirus strains have been analyzed. This article briefly reviews the available data on whole-genomic analysis of human rotavirus strains. The significance and future prospects of whole-genome-based studies are also discussed.
Collapse
Affiliation(s)
- Souvik Ghosh
- Department of Hygiene, Sapporo Medical University School of Medicine, S 1, W 17, Chuo-Ku, Sapporo, Hokkaido 060-8556, Japan
| | | |
Collapse
|
15
|
Matthijnssens J, Ciarlet M, McDonald SM, Attoui H, Bányai K, Brister JR, Buesa J, Esona MD, Estes MK, Gentsch JR, Iturriza-Gómara M, Johne R, Kirkwood CD, Martella V, Mertens PPC, Nakagomi O, Parreño V, Rahman M, Ruggeri FM, Saif LJ, Santos N, Steyer A, Taniguchi K, Patton JT, Desselberger U, Van Ranst M. Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Arch Virol 2011; 156:1397-413. [PMID: 21597953 DOI: 10.1007/s00705-011-1006-z] [Citation(s) in RCA: 769] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/19/2011] [Indexed: 12/31/2022]
Abstract
In April 2008, a nucleotide-sequence-based, complete genome classification system was developed for group A rotaviruses (RVs). This system assigns a specific genotype to each of the 11 genome segments of a particular RV strain according to established nucleotide percent cutoff values. Using this approach, the genome of individual RV strains are given the complete descriptor of Gx-P[x]-Ix-Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx. The Rotavirus Classification Working Group (RCWG) was formed by scientists in the field to maintain, evaluate and develop the RV genotype classification system, in particular to aid in the designation of new genotypes. Since its conception, the group has ratified 51 new genotypes: as of April 2011, new genotypes for VP7 (G20-G27), VP4 (P[28]-P[35]), VP6 (I12-I16), VP1 (R5-R9), VP2 (C6-C9), VP3 (M7-M8), NSP1 (A15-A16), NSP2 (N6-N9), NSP3 (T8-T12), NSP4 (E12-E14) and NSP5/6 (H7-H11) have been defined for RV strains recovered from humans, cows, pigs, horses, mice, South American camelids (guanaco), chickens, turkeys, pheasants, bats and a sugar glider. With increasing numbers of complete RV genome sequences becoming available, a standardized RV strain nomenclature system is needed, and the RCWG proposes that individual RV strains are named as follows: RV group/species of origin/country of identification/common name/year of identification/G- and P-type. In collaboration with the National Center for Biotechnology Information (NCBI), the RCWG is also working on developing a RV-specific resource for the deposition of nucleotide sequences. This resource will provide useful information regarding RV strains, including, but not limited to, the individual gene genotypes and epidemiological and clinical information. Together, the proposed nomenclature system and the NCBI RV resource will offer highly useful tools for investigators to search for, retrieve, and analyze the ever-growing volume of RV genomic data.
Collapse
Affiliation(s)
- Jelle Matthijnssens
- Laboratory of Clinical & Epidemiological Virology, Department of Microbiology & Immunology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, 3000, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yamamoto D, Ghosh S, Kuzuya M, Wang YH, Zhou X, Chawla-Sarkar M, Paul SK, Ishino M, Kobayashi N. Whole-genome characterization of human group C rotaviruses: identification of two lineages in the VP3 gene. J Gen Virol 2010; 92:361-9. [PMID: 21048036 DOI: 10.1099/vir.0.027375-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Group C rotavirus (GCRV) is distributed worldwide as an enteric pathogen in humans and animals. However, to date, whole-genome sequences are available only for a human strain (Bristol) and a porcine strain (Cowden). To investigate the genetic diversity of human GCRVs, nearly full-length sequences of all 11 RNA segments were determined for human GCRVs detected recently in India (v508), Bangladesh (BS347), China (Wu82 and YNR001) and Japan (OH567 and BK0830) and analysed phylogenetically with sequence data for GCRVs published previously. All the RNA segments of human GCRV strains except for the VP3 gene showed high levels of conservation (>93 % nucleotide sequence identity, >92 % amino acid sequence identity), belonging to a single genetic cluster distinct from those of animal GCRVs. In contrast, the VP3 genes of human GCRVs could be discriminated into two clusters, designated M2 and M3, that were distinguished phylogenetically from those of porcine and bovine GCRVs (clusters M1 and M4, respectively). Between M2 and M3, amino acid sequence identity of the VP3 gene was 84.1-84.7 %, whereas high identities were observed within each cluster (92.3-97.6 % for M2, 98.2-99.3 % for M3). Sequence divergence among the four VP3 clusters was observed throughout the amino acid sequence except for conserved motifs, including those possibly related to enzyme functions of VP3. The presence of obvious genetic diversity only in the VP3 gene among human GCRVs suggested that either the M2 or M3 VP3 gene of human GCRVs might have been derived through reassortment from an animal GCRV or from an unidentified human GCRV strain belonging to a novel genogroup.
Collapse
Affiliation(s)
- Dai Yamamoto
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Matthijnssens J, Martella V, Van Ranst M. Genomic evolution, host-species barrier, reassortment and classification of rotaviruses. Future Virol 2010. [DOI: 10.2217/fvl.10.37] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Evaluation of: Yamamoto D, Ghosh S, Ganesh B et al.: Analysis on genetic diversity and molecular evolution of human group B rotaviruses based on whole genome segments. J. Gen. Virol. 91(Pt 7), 1772–1781 (2010). Rotaviruses are members of the Reoviridae family, causing severe diarrheal illness and death in humans and animals. They have been subdivided into at least seven serological groups (A–G), and, recently, a new rotavirus known as ‘new adult diarrhea virus’ or ADRV-N was discovered. Only in group A rotaviruses have a substantial number of strains been analyzed completely on the molecular level. For groups B, C and ADRV-N rotaviruses a very limited number of complete genomes are available, and for group D, E and F no sequence data are available at all. Here, Yamamoto and colleagues describe the full genomic characterization of four human group B rotaviruses isolated in India, Bangladesh and Myanmar. These four strains were analyzed phylogenetically and individual gene segments were compared with their group A and C counterparts, indicating that functionally important motifs and structural characteristics were conserved. This study, together with others, highlights the need for complete genome analysis of rotaviruses, in order to study their genetic evolution, the occurrence of reassortments, crossing of the host-species barrier and their classification. Upcoming new mass sequencing technologies are expected to speed up the process of filling in the gaps in our data.
Collapse
Affiliation(s)
| | - Vito Martella
- Department of Veterinary Public Health, University of Bari, Italy
| | - Marc Van Ranst
- Laboratory of Clinical & Epidemiological Virology, Department of Microbiology & Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| |
Collapse
|