1
|
Pérez-Umphrey AA, Settlecowski AE, Elbers JP, Williams ST, Jonsson CB, Bonisoli-Alquati A, Snider AM, Taylor SS. Genetic variants associated with hantavirus infection in a reservoir host are related to regulation of inflammation and immune surveillance. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 116:105525. [PMID: 37956745 DOI: 10.1016/j.meegid.2023.105525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/14/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023]
Abstract
The immunogenetics of wildlife populations influence the epidemiology and evolutionary dynamic of the host-pathogen system. Profiling immune gene diversity present in wildlife may be especially important for those species that, while not at risk of disease or extinction themselves, are host to diseases that are a threat to humans, other wildlife, or livestock. Hantaviruses (genus: Orthohantavirus) are globally distributed zoonotic RNA viruses with pathogenic strains carried by a diverse group of rodent hosts. The marsh rice rat (Oryzomys palustris) is the reservoir host of Orthohantavirus bayoui, a hantavirus that causes fatal cases of hantavirus cardiopulmonary syndrome in humans. We performed a genome wide association study (GWAS) using the rice rat "immunome" (i.e., all exons related to the immune response) to identify genetic variants associated with infection status in wild-caught rice rats naturally infected with their endemic strain of hantavirus. First, we created an annotated reference genome using 10× Chromium Linked Reads sequencing technology. This reference genome was used to create custom baits which were then used to target enrich prepared rice rat libraries (n = 128) and isolate their immunomes prior to sequencing. Top SNPs in the association test were present in four genes (Socs5, Eprs, Mrc1, and Il1f8) which have not been previously implicated in hantavirus infections. However, these genes correspond with other loci or pathways with established importance in hantavirus susceptibility or infection tolerance in reservoir hosts: the JAK/STAT, MHC, and NFκB. These results serve as informative markers for future exploration and highlight the importance of immune pathways that repeatedly emerge across hantavirus systems. Our work aids in creating cross-species comparisons for better understanding mechanisms of genetic susceptibility and host-pathogen coevolution in hantavirus systems.
Collapse
Affiliation(s)
- Anna A Pérez-Umphrey
- School of Renewable Natural Resources, Louisiana State University and AgCenter, 227 RNR Building, Baton Rouge, LA 70803, USA.
| | - Amie E Settlecowski
- School of Renewable Natural Resources, Louisiana State University and AgCenter, 227 RNR Building, Baton Rouge, LA 70803, USA
| | - Jean P Elbers
- School of Renewable Natural Resources, Louisiana State University and AgCenter, 227 RNR Building, Baton Rouge, LA 70803, USA; Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090 Vienna, Austria
| | - S Tyler Williams
- School of Renewable Natural Resources, Louisiana State University and AgCenter, 227 RNR Building, Baton Rouge, LA 70803, USA
| | - Colleen B Jonsson
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, University of Tennessee Health Science Center, University of Tennessee, 858 Madison Ave., Memphis, TN 38163, USA
| | - Andrea Bonisoli-Alquati
- School of Renewable Natural Resources, Louisiana State University and AgCenter, 227 RNR Building, Baton Rouge, LA 70803, USA; Department of Biological Sciences, California State Polytechnic University-Pomona, Pomona, CA 91768, USA
| | - Allison M Snider
- School of Renewable Natural Resources, Louisiana State University and AgCenter, 227 RNR Building, Baton Rouge, LA 70803, USA
| | - Sabrina S Taylor
- School of Renewable Natural Resources, Louisiana State University and AgCenter, 227 RNR Building, Baton Rouge, LA 70803, USA
| |
Collapse
|
2
|
Migalska M, Węglarczyk K, Mężyk-Kopeć R, Baliga-Klimczyk K, Homa J. Cross-reactivity of T cell-specific antibodies in the bank vole (Myodes glareolus). J Immunol Methods 2023; 520:113524. [PMID: 37463649 DOI: 10.1016/j.jim.2023.113524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023]
Abstract
The bank vole is a common Cricetidae rodent that is a reservoir of several zoonotic pathogens and an emerging model in eco-immunology. Here, we add to a developing immunological toolkit for this species by testing the cross-reactivity of commercially available monoclonal antibodies (mAbs) to the bank vole lymphocyte differentiation molecules and a transcription factor. We show that a combination of mAbs against CD4, CD3, and Foxp3 allows flow cytometric distinction of the main subsets of T cells: putative helper CD4+, cytotoxic CD8+ (as CD3+CD4-) and regulatory CD4+Foxp3+. We also provide a comparative analysis of amino acid sequences of CD4, CD8αβ, CD3εγδ and Foxp3 molecules for a number of commonly studied Cricetidae rodents and discuss mAb cross-reactivity patterns reported so far in this rodent family. We found that in case of mAbs targeting the extracellular portions of commonly used T cell markers, sequence similarity is a poor prognostic of cross-reactivity. Use of more conserved, intracellular molecules or molecule fragments is a more reliable approach in non-model species, but the necessity of cell fixation limit its application in, e.g. functional studies.
Collapse
Affiliation(s)
- Magdalena Migalska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland.
| | - Kazimierz Węglarczyk
- Department of Clinical Immunology, Medical College, Jagiellonian University Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Wielicka 265, Krakow 30-663, Poland
| | - Renata Mężyk-Kopeć
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Katarzyna Baliga-Klimczyk
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| | - Joanna Homa
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, Krakow 30-387, Poland
| |
Collapse
|
3
|
Saxenhofer M, Labutin A, White TA, Heckel G. Host genetic factors associated with the range limit of a European hantavirus. Mol Ecol 2021; 31:252-265. [PMID: 34614264 PMCID: PMC9298007 DOI: 10.1111/mec.16211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/30/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022]
Abstract
The natural host ranges of many viruses are restricted to very specific taxa. Little is known about the molecular barriers between species that lead to the establishment of this restriction or generally prevent virus emergence in new hosts. Here, we identify genomic polymorphisms in a natural rodent host associated with a strong genetic barrier to the transmission of European Tula orthohantavirus (TULV). We analysed the very abrupt spatial transition between two major phylogenetic clades in TULV across the comparatively much wider natural hybrid zone between evolutionary lineages of their reservoir host, the common vole (Microtus arvalis). Genomic scans of 79,225 single nucleotide polymorphisms (SNPs) in 323 TULV‐infected host individuals detected 30 SNPs that were consistently associated with the TULV clades CEN.S or EST.S in two replicate sampling transects. Focusing the analysis on 199 voles with evidence of genomic admixture at the individual level (0.1–0.9) supported statistical significance for all 30 loci. Host genomic variation at these SNPs explained up to 37.6% of clade‐specific TULV infections. Genes in the vicinity of associated SNPs include SAHH, ITCH and two members of the Syngr gene family, which are involved in functions related to immune response or membrane transport. This study demonstrates the relevance of natural hybrid zones as systems not only for studying processes of evolutionary divergence and speciation, but also for the detection of evolving genetic barriers for specialized parasites.
Collapse
Affiliation(s)
- Moritz Saxenhofer
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge - Bâtiment Génopode, Lausanne, Switzerland
| | - Anton Labutin
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Thomas A White
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Gerald Heckel
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge - Bâtiment Génopode, Lausanne, Switzerland
| |
Collapse
|
4
|
Castel G, Monchatre-Leroy E, López-Roig M, Murri S, Couteaudier M, Boué F, Augot D, Sauvage F, Pontier D, Hénaux V, Marianneau P, Serra-Cobo J, Tordo N. Puumala Virus Variants Circulating in Forests of Ardennes, France: Ten Years of Genetic Evolution. Pathogens 2021; 10:pathogens10091164. [PMID: 34578197 PMCID: PMC8472060 DOI: 10.3390/pathogens10091164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/29/2022] Open
Abstract
In Europe, Puumala virus (PUUV) transmitted by the bank vole (Myodes glareolus) is the causative agent of nephropathia epidemica (NE), a mild form of haemorrhagic fever with renal syndrome. In France, very little is known about the spatial and temporal variability of the virus circulating within bank vole populations. The present study involved monitoring of bank vole population dynamics and PUUV microdiversity over a ten-year period (2000–2009) in two forests of the Ardennes region: Elan and Croix-Scaille. Ardennes region is characterised by different environmental conditions associated with different NE epidemiology. Bank vole density and population parameters were estimated using the capture/marking/recapture method, and blood samples were collected to monitor the overall seroprevalence of PUUV in rodent populations. Phylogenetic analyses of fifty-five sequences were performed to illustrate the genetic diversity of PUUV variants between forests. The pattern of the two forests differed clearly. In the Elan forest, the rodent survival was higher, and this limited turn-over resulted in a lower seroprevalence and diversity of PUUV sequences than in the Croix-Scaille forest. Uncovering the links between host dynamics and virus microevolution is improving our understanding of PUUV distribution in rodents and the NE risk.
Collapse
Affiliation(s)
- Guillaume Castel
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Université Montpellier, 34000 Montpellier, France
- Correspondence: (G.C.); (E.M.-L.)
| | - Elodie Monchatre-Leroy
- Nancy Laboratory for Rabies and Wildlife, ANSES, 54220 Malzeville, France;
- Correspondence: (G.C.); (E.M.-L.)
| | - Marc López-Roig
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (M.L.-R.); (J.S.-C.)
- Institut de Recerca de la Biodiversitat (IRBio), Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Séverine Murri
- Lyon Laboratory, ANSES, Virology Unit, University of Lyon, 69007 Lyon, France; (S.M.); (P.M.)
| | - Mathilde Couteaudier
- INSERM U1259 MAVIVH, Université de Tours and CHRU de Tours, 37032 Tours, France;
| | - Franck Boué
- Nancy Laboratory for Rabies and Wildlife, ANSES, SEEpiAS Unit, 54220 Malzéville, France;
| | - Denis Augot
- Nancy Laboratory for Rabies and Wildlife, ANSES, 54220 Malzeville, France;
- USC Vecpar, ANSES-LSA, EA 7510, Université de Reims Champagne-Ardenne, SFR Cap Santé, Faculté de Pharmacie, 51096 Reims, France
| | - Frank Sauvage
- SEENOVATE, 69002 Lyon, France;
- UMR–CNRS 5558 Biométrie et Biologie Evolutive, Université C. Bernard Lyon-1, 69622 Villeurbanne, France;
| | - Dominique Pontier
- UMR–CNRS 5558 Biométrie et Biologie Evolutive, Université C. Bernard Lyon-1, 69622 Villeurbanne, France;
- LabEx Ecofect, Eco-Evolutionary Dynamics of Infectious Diseases, University of Lyon, 69622 Lyon, France
| | - Viviane Hénaux
- Lyon Laboratory, ANSES, Epidemiology and support to Surveillance Unit, University of Lyon, 69007 Lyon, France;
| | - Philippe Marianneau
- Lyon Laboratory, ANSES, Virology Unit, University of Lyon, 69007 Lyon, France; (S.M.); (P.M.)
| | - Jordi Serra-Cobo
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (M.L.-R.); (J.S.-C.)
- Institut de Recerca de la Biodiversitat (IRBio), Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Noël Tordo
- Institut Pasteur, Antiviral Strategies Unit, Department of Virology, 75015 Paris, France;
- Institut Pasteur de Guinée, Conakry BP 4416, Guinea
| |
Collapse
|
5
|
Kell AM. Innate Immunity to Orthohantaviruses: Could Divergent Immune Interactions Explain Host-specific Disease Outcomes? J Mol Biol 2021; 434:167230. [PMID: 34487792 PMCID: PMC8894506 DOI: 10.1016/j.jmb.2021.167230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
The genus Orthohantavirus (family Hantaviridae, order Bunyavirales) consists of numerous genetic and pathologically distinct viral species found within rodent and mammalian insectivore populations world-wide. Although reservoir hosts experience persistent asymptomatic infection, numerous rodent-borne orthohantaviruses cause severe disease when transmitted to humans, with case-fatality rates up to 40%. The first isolation of an orthohantavirus occurred in 1976 and, since then, the field has made significant progress in understanding the immune correlates of disease, viral interactions with the human innate immune response, and the immune kinetics of reservoir hosts. Much still remains elusive regarding the molecular mechanisms of orthohantavirus recognition by the innate immune response and viral antagonism within the reservoir host, however. This review provides a summary of the last 45 years of research into orthohantavirus interaction with the host innate immune response. This summary includes discussion of current knowledge involving human, non-reservoir rodent, and reservoir innate immune responses to viruses which cause hemorrhagic fever with renal syndrome and hantavirus cardio-pulmonary syndrome. Review of the literature concludes with a brief proposition for the development of novel tools needed to drive forward investigations into the molecular mechanisms of innate immune activation and consequences for disease outcomes in the various hosts for orthohantaviruses.
Collapse
Affiliation(s)
- Alison M Kell
- Department of Molecular Genetics and Microbiology, University of New Mexico, 915 Camino de Salud, Albuquerque, NM 87131, United States.
| |
Collapse
|
6
|
Vaheri A, Henttonen H, Mustonen J. Hantavirus Research in Finland: Highlights and Perspectives. Viruses 2021; 13:v13081452. [PMID: 34452318 PMCID: PMC8402838 DOI: 10.3390/v13081452] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 01/24/2023] Open
Abstract
Finland has the highest incidence of hantavirus infections globally, with a significant impact on public health. The large coverage of boreal forests and the cyclic dynamics of the dominant forest rodent species, the bank vole Myodes glareolus, explain most of this. We review the relationships between Puumala hantavirus (PUUV), its host rodent, and the hantavirus disease, nephropathia epidemica (NE), in Finland. We describe the history of NE and its diagnostic research in Finland, the seasonal and multiannual cyclic dynamics of PUUV in bank voles impacting human epidemiology, and we compare our northern epidemiological patterns with those in temperate Europe. The long survival of PUUV outside the host and the life-long shedding of PUUV by the bank voles are highlighted. In humans, the infection has unique features in pathobiology but rarely long-term consequences. NE is affected by specific host genetics and risk behavior (smoking), and certain biomarkers can predict the outcome. Unlike many other hantaviruses, PUUV causes a relatively mild disease and is rarely fatal. Reinfections do not exist. Antiviral therapy is complicated by the fact that when symptoms appear, the patient already has a generalized infection. Blocking vascular leakage measures counteracting pathobiology, offer a real therapeutic approach.
Collapse
Affiliation(s)
- Antti Vaheri
- Department of Virology, Medicum, University of Helsinki, 00290 Helsinki, Finland
- Correspondence: ; Tel.: +358-505552884
| | - Heikki Henttonen
- Wildlife Ecology, Natural Resources Institute Finland, 00790 Helsinki, Finland;
| | - Jukka Mustonen
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland;
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| |
Collapse
|
7
|
Madrières S, Tatard C, Murri S, Vulin J, Galan M, Piry S, Pulido C, Loiseau A, Artige E, Benoit L, Leménager N, Lakhdar L, Charbonnel N, Marianneau P, Castel G. How Bank Vole-PUUV Interactions Influence the Eco-Evolutionary Processes Driving Nephropathia Epidemica Epidemiology-An Experimental and Genomic Approach. Pathogens 2020; 9:E789. [PMID: 32993044 PMCID: PMC7599775 DOI: 10.3390/pathogens9100789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 11/16/2022] Open
Abstract
In Europe, Puumala virus (PUUV) is responsible for nephropathia epidemica (NE), a mild form of hemorrhagic fever with renal syndrome (HFRS). Despite the presence of its reservoir, the bank vole, on most of French territory, the geographic distribution of NE cases is heterogeneous and NE endemic and non-endemic areas have been reported. In this study we analyzed whether bank vole-PUUV interactions could partly shape these epidemiological differences. We performed crossed-experimental infections using wild bank voles from French endemic (Ardennes) and non-endemic (Loiret) areas and two French PUUV strains isolated from these areas. The serological response and dynamics of PUUV infection were compared between the four cross-infection combinations. Due to logistical constraints, this study was based on a small number of animals. Based on this experimental design, we saw a stronger serological response and presence of PUUV in excretory organs (bladder) in bank voles infected with the PUUV endemic strain. Moreover, the within-host viral diversity in excretory organs seemed to be higher than in other non-excretory organs for the NE endemic cross-infection but not for the NE non-endemic cross-infection. Despite the small number of rodents included, our results showed that genetically different PUUV strains and in a lesser extent their interaction with sympatric bank voles, could affect virus replication and diversity. This could impact PUUV excretion/transmission between rodents and to humans and in turn at least partly shape NE epidemiology in France.
Collapse
Affiliation(s)
- Sarah Madrières
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (S.M.); (C.T.); (M.G.); (S.P.); (A.L.); (E.A.); (L.B.); (N.L.); (N.C.)
- ANSES—Laboratoire de Lyon, Unité Virologie, 69007 Lyon, France; (S.M.); (J.V.); (P.M.)
| | - Caroline Tatard
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (S.M.); (C.T.); (M.G.); (S.P.); (A.L.); (E.A.); (L.B.); (N.L.); (N.C.)
| | - Séverine Murri
- ANSES—Laboratoire de Lyon, Unité Virologie, 69007 Lyon, France; (S.M.); (J.V.); (P.M.)
| | - Johann Vulin
- ANSES—Laboratoire de Lyon, Unité Virologie, 69007 Lyon, France; (S.M.); (J.V.); (P.M.)
| | - Maxime Galan
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (S.M.); (C.T.); (M.G.); (S.P.); (A.L.); (E.A.); (L.B.); (N.L.); (N.C.)
| | - Sylvain Piry
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (S.M.); (C.T.); (M.G.); (S.P.); (A.L.); (E.A.); (L.B.); (N.L.); (N.C.)
| | - Coralie Pulido
- ANSES—Laboratoire de Lyon, Plateforme d’Expérimentation Animale, 69007 Lyon, France; (C.P.); (L.L.)
| | - Anne Loiseau
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (S.M.); (C.T.); (M.G.); (S.P.); (A.L.); (E.A.); (L.B.); (N.L.); (N.C.)
| | - Emmanuelle Artige
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (S.M.); (C.T.); (M.G.); (S.P.); (A.L.); (E.A.); (L.B.); (N.L.); (N.C.)
| | - Laure Benoit
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (S.M.); (C.T.); (M.G.); (S.P.); (A.L.); (E.A.); (L.B.); (N.L.); (N.C.)
| | - Nicolas Leménager
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (S.M.); (C.T.); (M.G.); (S.P.); (A.L.); (E.A.); (L.B.); (N.L.); (N.C.)
| | - Latifa Lakhdar
- ANSES—Laboratoire de Lyon, Plateforme d’Expérimentation Animale, 69007 Lyon, France; (C.P.); (L.L.)
| | - Nathalie Charbonnel
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (S.M.); (C.T.); (M.G.); (S.P.); (A.L.); (E.A.); (L.B.); (N.L.); (N.C.)
| | - Philippe Marianneau
- ANSES—Laboratoire de Lyon, Unité Virologie, 69007 Lyon, France; (S.M.); (J.V.); (P.M.)
| | - Guillaume Castel
- CBGP, INRAE, CIRAD, IRD, Institut Agro, Université Montpellier, 34000 Montpellier, France; (S.M.); (C.T.); (M.G.); (S.P.); (A.L.); (E.A.); (L.B.); (N.L.); (N.C.)
| |
Collapse
|
8
|
The Needs for Developing Experiments on Reservoirs in Hantavirus Research: Accomplishments, Challenges and Promises for the Future. Viruses 2019; 11:v11070664. [PMID: 31331096 PMCID: PMC6669540 DOI: 10.3390/v11070664] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/09/2019] [Accepted: 07/18/2019] [Indexed: 12/29/2022] Open
Abstract
Due to their large geographic distribution and potential high mortality rates in human infections, hantaviruses constitute a worldwide threat to public health. As such, they have been the subject of a large array of clinical, virological and eco-evolutionary studies. Many experiments have been conducted in vitro or on animal models to identify the mechanisms leading to pathogenesis in humans and to develop treatments of hantavirus diseases. Experimental research has also been dedicated to the understanding of the relationship between hantaviruses and their reservoirs. However, these studies remain too scarce considering the diversity of hantavirus/reservoir pairs identified, and the wide range of issues that need to be addressed. In this review, we present a synthesis of the experimental studies that have been conducted on hantaviruses and their reservoirs. We aim at summarizing the knowledge gathered from this research, and to emphasize the gaps that need to be filled. Despite the many difficulties encountered to carry hantavirus experiments, we advocate for the need of such studies in the future, at the interface of evolutionary ecology and virology. They are critical to address emerging areas of research, including hantavirus evolution and the epidemiological consequences of individual variation in infection outcomes.
Collapse
|
9
|
Voutilainen L, Sironen T, Tonteri E, Bäck AT, Razzauti M, Karlsson M, Wahlström M, Niemimaa J, Henttonen H, Lundkvist Å. Life-long shedding of Puumala hantavirus in wild bank voles (Myodes glareolus). J Gen Virol 2015; 96:1238-1247. [PMID: 25701819 DOI: 10.1099/vir.0.000076] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/30/2015] [Indexed: 12/11/2022] Open
Abstract
The knowledge of viral shedding patterns and viraemia in the reservoir host species is a key factor in assessing the human risk of zoonotic viruses. The shedding of hantaviruses (family Bunyaviridae) by their host rodents has widely been studied experimentally, but rarely in natural settings. Here we present the dynamics of Puumala hantavirus (PUUV) shedding and viraemia in naturally infected wild bank voles (Myodes glareolus). In a monthly capture-mark-recapture study, we analysed 18 bank voles for the presence and relative quantity of PUUV RNA in the excreta and blood from 2 months before up to 8 months after seroconversion. The proportion of animals shedding PUUV RNA in saliva, urine and faeces peaked during the first month after seroconversion, but continued throughout the study period with only a slight decline. The quantity of shed PUUV in reverse transcription quantitative PCR (RT-qPCR) positive excreta was constant over time. In blood, PUUV RNA was present for up to 7 months but both the probability of viraemia and the virus load declined with time. Our findings contradict the current view of a decline in virus shedding after the acute phase and a short viraemic period in hantavirus infection - an assumption widely adopted in current epidemiological models. We suggest the life-long shedding as a means of hantaviruses to survive over host population bottlenecks, and to disperse in fragmented habitats where local host and/or virus populations face temporary extinctions. Our results indicate that the kinetics of pathogens in wild hosts may differ considerably from those observed in laboratory settings.
Collapse
Affiliation(s)
- Liina Voutilainen
- University of Helsinki, Department of Virology, Helsinki, Finland
- Natural Resources Institute Finland, Vantaa, Finland
| | - Tarja Sironen
- University of Helsinki, Department of Virology, Helsinki, Finland
- Natural Resources Institute Finland, Vantaa, Finland
| | - Elina Tonteri
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- University of Helsinki, Department of Virology, Helsinki, Finland
| | - Anne Tuiskunen Bäck
- The Public Health Agency of Sweden, Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Razzauti
- University of Helsinki, Department of Virology, Helsinki, Finland
- Natural Resources Institute Finland, Vantaa, Finland
| | | | | | | | | | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- The Public Health Agency of Sweden, Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Immunogenetic factors affecting susceptibility of humans and rodents to hantaviruses and the clinical course of hantaviral disease in humans. Viruses 2014; 6:2214-41. [PMID: 24859344 PMCID: PMC4036553 DOI: 10.3390/v6052214] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/17/2014] [Accepted: 05/16/2014] [Indexed: 12/11/2022] Open
Abstract
We reviewed the associations of immunity-related genes with susceptibility of humans and rodents to hantaviruses, and with severity of hantaviral diseases in humans. Several class I and class II HLA haplotypes were linked with severe or benign hantavirus infections, and these haplotypes varied among localities and hantaviruses. The polymorphism of other immunity-related genes including the C4A gene and a high-producing genotype of TNF gene associated with severe PUUV infection. Additional genes that may contribute to disease or to PUUV infection severity include non-carriage of the interleukin-1 receptor antagonist (IL-1RA) allele 2 and IL-1β (-511) allele 2, polymorphisms of plasminogen activator inhibitor (PAI-1) and platelet GP1a. In addition, immunogenetic studies have been conducted to identify mechanisms that could be linked with the persistence/clearance of hantaviruses in reservoirs. Persistence was associated during experimental infections with an upregulation of anti-inflammatory responses. Using natural rodent population samples, polymorphisms and/or expression levels of several genes have been analyzed. These genes were selected based on the literature of rodent or human/hantavirus interactions (some Mhc class II genes, Tnf promoter, and genes encoding the proteins TLR4, TLR7, Mx2 and β3 integrin). The comparison of genetic differentiation estimated between bank vole populations sampled over Europe, at neutral and candidate genes, has allowed to evidence signatures of selection for Tnf, Mx2 and the Drb Mhc class II genes. Altogether, these results corroborated the hypothesis of an evolution of tolerance strategies in rodents. We finally discuss the importance of these results from the medical and epidemiological perspectives.
Collapse
|
11
|
Hantavirus reservoirs: current status with an emphasis on data from Brazil. Viruses 2014; 6:1929-73. [PMID: 24784571 PMCID: PMC4036540 DOI: 10.3390/v6051929] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/03/2014] [Accepted: 02/07/2014] [Indexed: 12/31/2022] Open
Abstract
Since the recognition of hantavirus as the agent responsible for haemorrhagic fever in Eurasia in the 1970s and, 20 years later, the descovery of hantavirus pulmonary syndrome in the Americas, the genus Hantavirus has been continually described throughout the World in a variety of wild animals. The diversity of wild animals infected with hantaviruses has only recently come into focus as a result of expanded wildlife studies. The known reservoirs are more than 80, belonging to 51 species of rodents, 7 bats (order Chiroptera) and 20 shrews and moles (order Soricomorpha). More than 80genetically related viruses have been classified within Hantavirus genus; 25 recognized as human pathogens responsible for a large spectrum of diseases in the Old and New World. In Brazil, where the diversity of mammals and especially rodents is considered one of the largest in the world, 9 hantavirus genotypes have been identified in 12 rodent species belonging to the genus Akodon, Calomys, Holochilus, Oligoryzomys, Oxymycterus, Necromys and Rattus. Considering the increasing number of animals that have been implicated as reservoirs of different hantaviruses, the understanding of this diversity is important for evaluating the risk of distinct hantavirus species as human pathogens.
Collapse
|
12
|
Scherman K, Råberg L, Westerdahl H. Positive selection on MHC class II DRB and DQB genes in the bank vole (Myodes glareolus). J Mol Evol 2014; 78:293-305. [PMID: 24748547 DOI: 10.1007/s00239-014-9618-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/30/2014] [Indexed: 10/25/2022]
Abstract
The major histocompatibility complex (MHC) class IIB genes show considerable sequence similarity between loci. The MHC class II DQB and DRB genes are known to exhibit a high level of polymorphism, most likely maintained by parasite-mediated selection. Studies of the MHC in wild rodents have focused on DRB, whilst DQB has been given much less attention. Here, we characterised DQB genes in Swedish bank voles Myodes glareolus, using full-length transcripts. We then designed primers that specifically amplify exon 2 from DRB (202 bp) and DQB (205 bp) and investigated molecular signatures of natural selection on DRB and DQB alleles. The presence of two separate gene clusters was confirmed using BLASTN and phylogenetic analysis, where our seven transcripts clustered according to either DQB or DRB homologues. These gene clusters were again confirmed on exon 2 data from 454-amplicon sequencing. Our DRB primers amplify a similar number of alleles per individual as previously published DRB primers, though our reads are longer. Traditional d N/d S analyses of DRB sequences in the bank vole have not found a conclusive signal of positive selection. Using a more advanced substitution model (the Kumar method) we found positive selection in the peptide binding region (PBR) of both DRB and DQB genes. Maximum likelihood models of codon substitutions detected positively selected sites located in the PBR of both DQB and DRB. Interestingly, these analyses detected at least twice as many positively selected sites in DQB than DRB, suggesting that DQB has been under stronger positive selection than DRB over evolutionary time.
Collapse
Affiliation(s)
- Kristin Scherman
- Department of Biology, MEMEG, Lund University, Sölvegatan 37, 223 62, Lund, Sweden,
| | | | | |
Collapse
|
13
|
Guivier E, Galan M, Henttonen H, Cosson JF, Charbonnel N. Landscape features and helminth co-infection shape bank vole immunoheterogeneity, with consequences for Puumala virus epidemiology. Heredity (Edinb) 2013; 112:274-81. [PMID: 24149655 DOI: 10.1038/hdy.2013.103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 09/09/2013] [Accepted: 09/16/2013] [Indexed: 12/21/2022] Open
Abstract
Heterogeneity in environmental conditions helps to maintain genetic and phenotypic diversity in ecosystems. As such, it may explain why the capacity of animals to mount immune responses is highly variable. The quality of habitat patches, in terms of resources, parasitism, predation and habitat fragmentation may, for example, trigger trade-offs ultimately affecting the investment of individuals in various immunological pathways. We described spatial immunoheterogeneity in bank vole populations with respect to landscape features and co-infection. We focused on the consequences of this heterogeneity for the risk of Puumala hantavirus (PUUV) infection. We assessed the expression of the Tnf-α and Mx2 genes and demonstrated a negative correlation between PUUV load and the expression of these immune genes in bank voles. Habitat heterogeneity was partly associated with differences in the expression of these genes. Levels of Mx2 were lower in large forests than in fragmented forests, possibly due to differences in parasite communities. We previously highlighted the positive association between infection with Heligmosomum mixtum and infection with PUUV. We found that Tnf-α was more strongly expressed in voles infected with PUUV than in uninfected voles or in voles co-infected with the nematode H. mixtum and PUUV. H. mixtum may limit the capacity of the vole to develop proinflammatory responses. This effect may increase the risk of PUUV infection and replication in host cells. Overall, our results suggest that close interactions between landscape features, co-infection and immune gene expression may shape PUUV epidemiology.
Collapse
Affiliation(s)
- E Guivier
- INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus international de Baillarguet, Montferrier-sur-Lez cedex, France
| | - M Galan
- INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus international de Baillarguet, Montferrier-sur-Lez cedex, France
| | - H Henttonen
- Finnish Forest Research Institute, Vantaa, Finland
| | - J-F Cosson
- INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus international de Baillarguet, Montferrier-sur-Lez cedex, France
| | - N Charbonnel
- INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus international de Baillarguet, Montferrier-sur-Lez cedex, France
| |
Collapse
|
14
|
Westerdahl H, Stjernman M, Råberg L, Lannefors M, Nilsson JÅ. MHC-I affects infection intensity but not infection status with a frequent avian malaria parasite in blue tits. PLoS One 2013; 8:e72647. [PMID: 24023631 PMCID: PMC3758318 DOI: 10.1371/journal.pone.0072647] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/12/2013] [Indexed: 12/23/2022] Open
Abstract
Host resistance against parasites depends on three aspects: the ability to prevent, control and clear infections. In vertebrates the immune system consists of innate and adaptive immunity. Innate immunity is particularly important for preventing infection and eradicating established infections at an early stage while adaptive immunity is slow, but powerful, and essential for controlling infection intensities and eventually clearing infections. Major Histocompatibility Complex (MHC) molecules are central in adaptive immunity, and studies on parasite resistance and MHC in wild animals have found effects on both infection intensity (parasite load) and infection status (infected or not). It seems MHC can affect both the ability to control infection intensities and the ability to clear infections. However, these two aspects have rarely been considered simultaneously, and their relative importance in natural populations is therefore unclear. Here we investigate if MHC class I genotype affects infection intensity and infection status with a frequent avian malaria infection Haemoproteus majoris in a natural population of blue tits Cyanistes caeruleus. We found a significant negative association between a single MHC allele and infection intensity but no association with infection status. Blue tits that carry a specific MHC allele seem able to suppress H. majoris infection intensity, while we have no evidence that this allele also has an effect on clearance of the H. majoris infection, a result that is in contrast with some previous studies of MHC and avian malaria. A likely explanation could be that the clearance rate of avian malaria parasites differs between avian malaria lineages and/or between avian hosts.
Collapse
Affiliation(s)
| | | | - Lars Råberg
- Department of Biology, Lund University, Lund, Sweden
| | | | | |
Collapse
|
15
|
Reusken C, Heyman P. Factors driving hantavirus emergence in Europe. Curr Opin Virol 2013; 3:92-9. [DOI: 10.1016/j.coviro.2013.01.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/03/2013] [Accepted: 01/18/2013] [Indexed: 11/30/2022]
|
16
|
Vaheri A, Henttonen H, Voutilainen L, Mustonen J, Sironen T, Vapalahti O. Hantavirus infections in Europe and their impact on public health. Rev Med Virol 2012; 23:35-49. [PMID: 22761056 DOI: 10.1002/rmv.1722] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 05/04/2012] [Accepted: 05/08/2012] [Indexed: 11/09/2022]
Abstract
Hantaviruses (genus Hantavirus, family Bunyaviridae) are enveloped tri-segmented negative-stranded RNA viruses each carried by a specific rodent or insectivore host species. Several different hantaviruses known to infect humans circulate in Europe. The most common is Puumala (PUUV) carried by the bank vole; another two important, genetically closely related ones are Dobrava-Belgrade (DOBV) and Saaremaa viruses (SAAV) carried by Apodemus mice (species names follow the International Committee on Taxonomy of Viruses nomenclature). Of the two hantaviral diseases, hemorrhagic fever with renal syndrome (HFRS) and hantaviral cardiopulmonary syndrome, the European viruses cause only HFRS: DOBV with often severe symptoms and a high case fatality rate, and PUUV and SAAV more often mild disease. More than 10,000 HFRS cases are diagnosed annually in Europe and in increasing numbers. Whether this is because of increasing recognition by the medical community or due to environmental factors such as climate change, or both, is not known. Nevertheless, in large areas of Europe, the population has a considerable seroprevalence but only relatively few HFRS cases are reported. Moreover, no epidemiological data are available from many countries. We know now that cardiac, pulmonary, ocular and hormonal disorders are, besides renal changes, common during the acute stage of PUUV and DOBV infection. About 5% of hospitalized PUUV and 16%-48% of DOBV patients require dialysis and some prolonged intensive-care treatment. Although PUUV-HFRS has a low case fatality rate, complications and long-term hormonal, renal, and cardiovascular consequences commonly occur. No vaccine or specific therapy is in general use in Europe. We conclude that hantaviruses have a significant impact on public health in Europe.
Collapse
Affiliation(s)
- Antti Vaheri
- Department of Virology, Haartman Institute, and Research Programs Unit, Infection Biology, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
17
|
MALÉ PIERREJEANG, MARTIN JEANFRANÇOIS, GALAN MAXIME, DEFFONTAINE VALÉRIE, BRYJA JOSEF, COSSON JEANFRANÇOIS, MICHAUX JOHAN, CHARBONNEL NATHALIE. Discongruence of Mhc and cytochrome b phylogeographical patterns in Myodes glareolus (Rodentia: Cricetidae). Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2011.01799.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Qutob N, Balloux F, Raj T, Liu H, Marion de Procé S, Trowsdale J, Manica A. Signatures of historical demography and pathogen richness on MHC class I genes. Immunogenetics 2011; 64:165-75. [PMID: 21947542 DOI: 10.1007/s00251-011-0576-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/09/2011] [Indexed: 12/20/2022]
Abstract
The extreme polymorphism of MHC class I has been argued to be driven by balancing selection from pathogens, with the prediction that populations exposed to a wider variety of diseases should have higher diversity. We assembled a global database of allotype frequencies for MHC class I genes and investigated possible drivers of genetic diversity, measured in different ways. We first looked for a decline in diversity with distance from Africa (a consequence of drift during human expansions) and then investigated the link with pathogen richness once the effect of drift had been corrected for. Using heterozygosity, we recovered a clear decline in diversity from Africa and confirmed the positive relationship between genetic diversity and pathogen richness for all three classical MHC class I genes. However, when we considered a sequence-based measure of genetic diversity, the correlation with geographic distance from Africa vanished for HLA-C, and the correlations with pathogen richness for the three MHC class I genes were much weaker. HLA-C is known to consist of two functional classes of allotypes (classified with respect to the 80th residue), which interact with different KIR receptors. While this separation provided some improvement in the fit between genetic diversity and distance from Africa for one class, much clearer and consistent patterns were recovered when we used the 90th residue to separate HLA-C allotypes into two new classes. This suggests that this residue, which is also involved in the binding of KIR, might have had an important evolutionary role that has been overlooked.
Collapse
Affiliation(s)
- Nouar Qutob
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
| | | | | | | | | | | | | |
Collapse
|
19
|
Guivier E, Galan M, Chaval Y, Xuéreb A, Ribas Salvador A, Poulle ML, Voutilainen L, Henttonen H, Charbonnel N, Cosson JF. Landscape genetics highlights the role of bank vole metapopulation dynamics in the epidemiology of Puumala hantavirus. Mol Ecol 2011; 20:3569-83. [PMID: 21819469 DOI: 10.1111/j.1365-294x.2011.05199.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Rodent host dynamics and dispersal are thought to be critical for hantavirus epidemiology as they determine pathogen persistence and transmission within and between host populations. We used landscape genetics to investigate how the population dynamics of the bank vole Myodes glareolus, the host of Puumala hantavirus (PUUV), vary with forest fragmentation and influence PUUV epidemiology. We sampled vole populations within the Ardennes, a French PUUV endemic area. We inferred demographic features such as population size, isolation and migration with regard to landscape configuration. We next analysed the influence of M. glareolus population dynamics on PUUV spatial distribution. Our results revealed that the global metapopulation dynamics of bank voles were strongly shaped by landscape features, including suitable patch size and connectivity. Large effective size in forest might therefore contribute to the higher observed levels of PUUV prevalence. By contrast, populations from hedge networks highly suffered from genetic drift and appeared strongly isolated from all other populations. This might result in high probabilities of local extinction for both M. glareolus and PUUV. Besides, we detected signatures of asymmetric bank vole migration from forests to hedges. These movements were likely to sustain PUUV in fragmented landscapes. In conclusion, our study provided arguments in favour of source-sink dynamics shaping PUUV persistence and spread in heterogeneous, Western European temperate landscapes. It illustrated the potential contribution of landscape genetics to the understanding of the epidemiological processes occurring at this local scale.
Collapse
Affiliation(s)
- E Guivier
- INRA, UMR CBGP, Campus international de Baillarguet, CS 30016, F-34988 Montferrier-sur-Lez Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Salvador AR, Guivier E, Xuéreb A, Chaval Y, Cadet P, Poulle ML, Sironen T, Voutilainen L, Henttonen H, Cosson JF, Charbonnel N. Concomitant influence of helminth infection and landscape on the distribution of Puumala hantavirus in its reservoir, Myodes glareolus. BMC Microbiol 2011; 11:30. [PMID: 21303497 PMCID: PMC3040693 DOI: 10.1186/1471-2180-11-30] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 02/08/2011] [Indexed: 12/22/2022] Open
Abstract
Background Puumala virus, the agent of nephropathia epidemica (NE), is the most prevalent hantavirus in Europe. The risk for human infection seems to be strongly correlated with the prevalence of Puumala virus (PUUV) in populations of its reservoir host species, the bank vole Myodes glareolus. In humans, the infection risks of major viral diseases are affected by the presence of helminth infections. We therefore proposed to analyse the influence of both helminth community and landscape on the prevalence of PUUV among bank vole populations in the Ardennes, a PUUV endemic area in France. Results Among the 313 voles analysed, 37 had anti-PUUV antibodies. Twelve gastro-intestinal helminth species were recorded among all voles sampled. We showed that PUUV seroprevalence strongly increased with age or sexual maturity, especially in the northern forests (massif des Ardennes). The helminth community structure significantly differed between this part and the woods or hedgerows of the southern cretes pre-ardennaises. Using PUUV RNA quantification, we identified significant coinfections between PUUV and gastro-intestinal helminths in the northern forests only. More specifically, PUUV infection was positively associated with the presence of Heligmosomum mixtum, and in a lesser extent, Aonchotheca muris-sylvatici. The viral load of PUUV infected individuals tended to be higher in voles coinfected with H. mixtum. It was significantly lower in voles coinfected with A. muris-sylvatici, reflecting the influence of age on these latter infections. Conclusions This is the first study to emphasize hantavirus - helminth coinfections in natural populations. It also highlights the importance to consider landscape when searching for such associations. We have shown that landscape characteristics strongly influence helminth community structure as well as PUUV distribution. False associations might therefore be evidenced if geographic patterns of helminths or PUUV repartition are not previously identified. Moreover, our work revealed that interactions between helminths and landscape enhance/deplete the occurrence of coinfections between PUUV and H. mixtum or A. muris-sylvatici. Further experimental analyses and long-term individual surveys are now required to confirm these correlative results, and to ascertain the causal links between helminth and PUUV infection risks.
Collapse
Affiliation(s)
- Alexis Ribas Salvador
- Laboratori de Parasitologia, Departament de Microbiologia i Parasitologia Sanitaries, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Guivier E, Galan M, Salvador AR, Xuéreb A, Chaval Y, Olsson GE, Essbauer S, Henttonen H, Voutilainen L, Cosson JF, Charbonnel N. Tnf-α expression and promoter sequences reflect the balance of tolerance/resistance to Puumala hantavirus infection in European bank vole populations. INFECTION GENETICS AND EVOLUTION 2010; 10:1208-17. [PMID: 20691810 DOI: 10.1016/j.meegid.2010.07.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 07/12/2010] [Accepted: 07/29/2010] [Indexed: 01/17/2023]
Abstract
The tumor necrosis factor-alpha (TNF-α) influences the ability to limit parasite infection but its over-production might result in inflammatory disorders. The level of Tnf-α gene expression could thus mediate a balance of tolerance/resistance to infections. This study focused on Puumala hantavirus (PUUV) infection in its rodent host, the bank vole (Myodes glareolus). In humans, PUUV is responsible of a mild form of hemorrhagic fever with renal syndrome, nephropathia epidemica (NE). The severity of NE is associated with an over-production of TNF-α. By contrast, PUUV infection in bank vole is chronic and asymptomatic. It is likely that different coevolutionary histories between PUUV and its hosts could lead to different balances of resistance/tolerance to PUUV infection, at least partly mediated by variable production levels of TNF-α. We investigated the hypothesis that bank voles from PUUV endemic areas should exhibit higher levels of tolerance, i.e. lower levels of TNF-α production, than bank voles from areas where PUUV prevalence is low. For this purpose, we analysed variations of Tnf-α gene expression and promoter sequences among European populations of bank voles. Our results revealed an absence of up-regulation of Tnf-α gene expression in PUUV infected bank voles and significant differences in Tnf-α gene expression level with regard to PUUV endemicity. These results corroborated the hypothesis of different balances of tolerance/resistance to PUUV. Two single-nucleotide polymorphism genotypes within the Tnf-α promoter (-302 GG/GG and -296 A/A) were associated with higher Tnf-α gene expression and were more frequent in non-endemic areas. This study emphasized the potential influence of selection acting on TNF-α production and mediating a tolerance/resistance balance to PUUV in bank voles. Further investigations, including the role of phenotypic plasticity and parasite communities on Tnf-α expression levels, should provide important keys to understand the prevalence of PUUV over Europe.
Collapse
Affiliation(s)
- Emmanuel Guivier
- INRA, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus International de Baillarguet, CS 30016, Montferrier-sur-Lez Cedex, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|