1
|
Guinet B, Leobold M, Herniou EA, Bloin P, Burlet N, Bredlau J, Navratil V, Ravallec M, Uzbekov R, Kester K, Gundersen Rindal D, Drezen JM, Varaldi J, Bézier A. A novel and diverse family of filamentous DNA viruses associated with parasitic wasps. Virus Evol 2024; 10:veae022. [PMID: 38617843 PMCID: PMC11013392 DOI: 10.1093/ve/veae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 02/23/2024] [Indexed: 04/16/2024] Open
Abstract
Large dsDNA viruses from the Naldaviricetes class are currently composed of four viral families infecting insects and/or crustaceans. Since the 1970s, particles described as filamentous viruses (FVs) have been observed by electronic microscopy in several species of Hymenoptera parasitoids but until recently, no genomic data was available. This study provides the first comparative morphological and genomic analysis of these FVs. We analyzed the genomes of seven FVs, six of which were newly obtained, to gain a better understanding of their evolutionary history. We show that these FVs share all genomic features of the Naldaviricetes while encoding five specific core genes that distinguish them from their closest relatives, the Hytrosaviruses. By mining public databases, we show that FVs preferentially infect Hymenoptera with parasitoid lifestyle and that these viruses have been repeatedly integrated into the genome of many insects, particularly Hymenoptera parasitoids, overall suggesting a long-standing specialization of these viruses to parasitic wasps. Finally, we propose a taxonomical revision of the class Naldaviricetes in which FVs related to the Leptopilina boulardi FV constitute a fifth family. We propose to name this new family, Filamentoviridae.
Collapse
Affiliation(s)
- Benjamin Guinet
- LBBE, UMR CNRS 5558, Universite Claude Bernard Lyon 1, 43 bd du 11 novembre 1918, Villeurbanne CEDEX F-69622, France
| | - Matthieu Leobold
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, 20 Avenue Monge, Parc de Grandmont, Tours 37200, France
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, 20 Avenue Monge, Parc de Grandmont, Tours 37200, France
| | - Pierrick Bloin
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, 20 Avenue Monge, Parc de Grandmont, Tours 37200, France
| | - Nelly Burlet
- LBBE, UMR CNRS 5558, Universite Claude Bernard Lyon 1, 43 bd du 11 novembre 1918, Villeurbanne CEDEX F-69622, France
| | - Justin Bredlau
- Department of Biology, Virginia Commonwealth University, 1000 W. Cary Street, Room 126, Richmond, VA 23284-9067, USA
| | - Vincent Navratil
- PRABI, Rhône-Alpes Bioinformatics Center, Université Lyon 1, 43 bd du 11 novembre 1918, Villeurbanne CEDEX 69622, France
- UMS 3601, Institut Français de Bioinformatique, IFB-Core, 2 rue Gaston Crémieu, Évry CEDEX 91057, France
- European Virus Bioinformatics Center, Leutragraben 1, Jena 07743, Germany
| | - Marc Ravallec
- Diversité, génomes et interactions microorganismes insectes (DGIMI), UMR 1333 INRA, Université de Montpellier 2, 2 Place Eugène Bataillon cc101, Montpellier CEDEX 5 34095, France
| | - Rustem Uzbekov
- Laboratory of Cell Biology and Electron Microscopy, Faculty of Medicine, Université de Tours, 10 bd Tonnelle, BP 3223, Tours CEDEX 37032, France
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Leninskye Gory 73, Moscow 119992, Russia
| | - Karen Kester
- Department of Biology, Virginia Commonwealth University, 1000 W. Cary Street, Room 126, Richmond, VA 23284-9067, USA
| | - Dawn Gundersen Rindal
- USDA-ARS Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD 20705, USA
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, 20 Avenue Monge, Parc de Grandmont, Tours 37200, France
| | - Julien Varaldi
- LBBE, UMR CNRS 5558, Universite Claude Bernard Lyon 1, 43 bd du 11 novembre 1918, Villeurbanne CEDEX F-69622, France
| | - Annie Bézier
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS-Université de Tours, 20 Avenue Monge, Parc de Grandmont, Tours 37200, France
| |
Collapse
|
2
|
Di Giovanni D, Lepetit D, Guinet B, Bennetot B, Boulesteix M, Couté Y, Bouchez O, Ravallec M, Varaldi J. A Behavior-Manipulating Virus Relative as a Source of Adaptive Genes for Drosophila Parasitoids. Mol Biol Evol 2021; 37:2791-2807. [PMID: 32080746 DOI: 10.1093/molbev/msaa030] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Some species of parasitic wasps have domesticated viral machineries to deliver immunosuppressive factors to their hosts. Up to now, all described cases fall into the Ichneumonoidea superfamily, which only represents around 10% of hymenoptera diversity, raising the question of whether such domestication occurred outside this clade. Furthermore, the biology of the ancestral donor viruses is completely unknown. Since the 1980s, we know that Drosophila parasitoids belonging to the Leptopilina genus, which diverged from the Ichneumonoidea superfamily 225 Ma, do produce immunosuppressive virus-like structure in their reproductive apparatus. However, the viral origin of these structures has been the subject of debate. In this article, we provide genomic and experimental evidence that those structures do derive from an ancestral virus endogenization event. Interestingly, its close relatives induce a behavior manipulation in present-day wasps. Thus, we conclude that virus domestication is more prevalent than previously thought and that behavior manipulation may have been instrumental in the birth of such associations.
Collapse
Affiliation(s)
- Deborah Di Giovanni
- Université de Lyon Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - David Lepetit
- Université de Lyon Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Benjamin Guinet
- Université de Lyon Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Bastien Bennetot
- Université de Lyon Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France.,Ecologie Systématique & Evolution (UMR 8079), Université Paris Sud, Orsay, France
| | - Matthieu Boulesteix
- Université de Lyon Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| | - Yohann Couté
- Université de Grenoble Alpes, CEA, Inserm, IRIG-BGE, Grenoble, France
| | - Olivier Bouchez
- Institut National de la Recherche Agronomique (INRA), US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Marc Ravallec
- UMR 1333 INRAE - Université Montpellier "Diversité, Génomes et Interactions Microorganismes-Insectes" (DGIMI), Montpellier, France
| | - Julien Varaldi
- Université de Lyon Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France
| |
Collapse
|
3
|
Vreysen MJB, Abd-Alla AMM, Bourtzis K, Bouyer J, Caceres C, de Beer C, Oliveira Carvalho D, Maiga H, Mamai W, Nikolouli K, Yamada H, Pereira R. The Insect Pest Control Laboratory of the Joint FAO/IAEA Programme: Ten Years (2010-2020) of Research and Development, Achievements and Challenges in Support of the Sterile Insect Technique. INSECTS 2021; 12:346. [PMID: 33924539 PMCID: PMC8070182 DOI: 10.3390/insects12040346] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023]
Abstract
The Joint FAO/IAEA Centre (formerly called Division) of Nuclear Techniques in Food and Agriculture was established in 1964 and its accompanying laboratories in 1961. One of its subprograms deals with insect pest control, and has the mandate to develop and implement the sterile insect technique (SIT) for selected key insect pests, with the goal of reducing the use of insecticides, reducing animal and crop losses, protecting the environment, facilitating international trade in agricultural commodities and improving human health. Since its inception, the Insect Pest Control Laboratory (IPCL) (formerly named Entomology Unit) has been implementing research in relation to the development of the SIT package for insect pests of crops, livestock and human health. This paper provides a review of research carried out between 2010 and 2020 at the IPCL. Research on plant pests has focused on the development of genetic sexing strains, characterizing and assessing the performance of these strains (e.g., Ceratitis capitata), elucidation of the taxonomic status of several members of the Bactrocera dorsalis and Anastrepha fraterculus complexes, the use of microbiota as probiotics, genomics, supplements to improve the performance of the reared insects, and the development of the SIT package for fruit fly species such as Bactrocera oleae and Drosophila suzukii. Research on livestock pests has focused on colony maintenance and establishment, tsetse symbionts and pathogens, sex separation, morphology, sterile male quality, radiation biology, mating behavior and transportation and release systems. Research with human disease vectors has focused on the development of genetic sexing strains (Anopheles arabiensis, Aedes aegypti and Aedes albopictus), the development of a more cost-effective larvae and adult rearing system, assessing various aspects of radiation biology, characterizing symbionts and pathogens, studying mating behavior and the development of quality control procedures, and handling and release methods. During the review period, 13 coordinated research projects (CRPs) were completed and six are still being implemented. At the end of each CRP, the results were published in a special issue of a peer-reviewed journal. The review concludes with an overview of future challenges, such as the need to adhere to a phased conditional approach for the implementation of operational SIT programs, the need to make the SIT more cost effective, to respond with demand driven research to solve the problems faced by the operational SIT programs and the use of the SIT to address a multitude of exotic species that are being introduced, due to globalization, and established in areas where they could not survive before, due to climate change.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hanano Yamada
- Insect Pest Control Subprogramme, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, A-1400 Vienna, Austria; (M.J.B.V.); (A.M.M.A.-A.); (K.B.); (J.B.); (C.C.); (C.d.B.); (D.O.C.); (H.M.); (W.M.); (K.N.); (R.P.)
| | | |
Collapse
|
4
|
Lepetit D, Gillet B, Hughes S, Kraaijeveld K, Varaldi J. Genome Sequencing of the Behavior Manipulating Virus LbFV Reveals a Possible New Virus Family. Genome Biol Evol 2018; 8:3718-3739. [PMID: 28173110 PMCID: PMC5381508 DOI: 10.1093/gbe/evw277] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 12/26/2022] Open
Abstract
Parasites are sometimes able to manipulate the behavior of their hosts. However, the molecular cues underlying this phenomenon are poorly documented. We previously reported that the parasitoid wasp Leptopilina boulardi which develops from Drosophila larvae is often infected by an inherited DNA virus. In addition to being maternally transmitted, the virus benefits from horizontal transmission in superparasitized larvae (Drosophila that have been parasitized several times). Interestingly, the virus forces infected females to lay eggs in already parasitized larvae, thus increasing the chance of being horizontally transmitted. In a first step towards the identification of virus genes responsible for the behavioral manipulation, we present here the genome sequence of the virus, called LbFV. The sequencing revealed that its genome contains an homologous repeat sequence (hrs) found in eight regions in the genome. The presence of this hrs may explain the genomic plasticity that we observed for this genome. The genome of LbFV encodes 108 ORFs, most of them having no homologs in public databases. The virus is however related to Hytrosaviridae, although distantly. LbFV may thus represent a member of a new virus family. Several genes of LbFV were captured from eukaryotes, including two anti-apoptotic genes. More surprisingly, we found that LbFV captured from an ancestral wasp a protein with a Jumonji domain. This gene was afterwards duplicated in the virus genome. We hypothesized that this gene may be involved in manipulating the expression of wasp genes, and possibly in manipulating its behavior.
Collapse
Affiliation(s)
- David Lepetit
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, France
| | - Benjamin Gillet
- Université de Lyon, CNRS, Ecole Normale Supérieure de Lyon, Université Lyon 1, Institut de Génomique Fonctionnelle de Lyon UMR 5242, France
| | - Sandrine Hughes
- Université de Lyon, CNRS, Ecole Normale Supérieure de Lyon, Université Lyon 1, Institut de Génomique Fonctionnelle de Lyon UMR 5242, France
| | - Ken Kraaijeveld
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Julien Varaldi
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, France
| |
Collapse
|
5
|
Orlov I, Drillien R, Spehner D, Bergoin M, Abd-Alla AMM, Klaholz BP. Structural features of the salivary gland hypertrophy virus of the tsetse fly revealed by cryo-electron microscopy and tomography. Virology 2017; 514:165-169. [PMID: 29190455 DOI: 10.1016/j.virol.2017.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/16/2017] [Accepted: 11/18/2017] [Indexed: 11/26/2022]
Abstract
Glossina palipides salivary gland hypertrophy virus (GpSGHV) infects tsetse flies, which are vectors for African trypanosomosis. This virus represents a major challenge in insect mass rearing and has hampered the implementation of the sterile insect technique programs in the Member States of the International Atomic Energy Agency. GpSGHV virions consist of long rod-shaped particles over 9000Å in length, but little is known about their detailed structural organization. We show by cryo electron microscopy and cryo electron tomography that the GpSGHV virion has a unique, non-icosahedral helical structure. Its envelope exhibits regularly spaced spikes that protrude from the lipid bilayer and are arranged on a four-start helix. This study provides a detailed insight into the 3D architecture of GpSGHV, which will help to understand the viral life cycle and possibly allow the design of antiviral strategies in the context of tsetse fly infections.
Collapse
Affiliation(s)
- Igor Orlov
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Robert Drillien
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France.
| | - Danièle Spehner
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France
| | - Max Bergoin
- Laboratoire de Pathologie Comparée, Faculté des Sciences, Université de Montpellier, 34095 Montpellier, France
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratories, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Bruno P Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
6
|
Kariithi HM, Meki IK, Boucias DG, Abd-Alla AM. Hytrosaviruses: current status and perspective. CURRENT OPINION IN INSECT SCIENCE 2017; 22:71-78. [PMID: 28805642 DOI: 10.1016/j.cois.2017.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Salivary gland hytrosaviruses (SGHVs) are entomopathogenic dsDNA, enveloped viruses that replicate in the salivary glands (SGs) of the adult dipterans, Glossina spp (GpSGHV) and Musca domestica (MdSGHV). Although belonging to the same virus family (Hytrosaviridae), SGHVs have distinct morphologies and pathobiologies. Two GpSGHV strains potentially account for the differential pathologies in lab-bred tsetse. New data suggest incorporation of host-derived cellular proteins and lipids into mature SGHVs. In addition to within the SGs, MdSGHV undergoes limited replication in the corpora allata, potentially disrupting hormone biosynthesis, and GpSGHV replicates in the milk glands providing a transmission conduit to progeny tsetse. Whereas MdSGHV is a potential biocontrol agent, the vertically transmitted GpSGHV is unsuitable for tsetse vector control but does jeopardize tsetse mass rearing.
Collapse
Affiliation(s)
- Henry M Kariithi
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, P.O. Box 100, Wagrammer Straße 5, A-1400 Vienna, Austria
| | - Irene K Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, P.O. Box 100, Wagrammer Straße 5, A-1400 Vienna, Austria
| | - Drion G Boucias
- Entomology and Nematology Department, University of Florida, 970 Steinmetz Hall, Gainesville, FL 32611, USA
| | - Adly Mm Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, P.O. Box 100, Wagrammer Straße 5, A-1400 Vienna, Austria.
| |
Collapse
|
7
|
Abstract
Several lineages of endoparasitoid wasps, which develop inside the body of other insects, have domesticated viruses, used as delivery tools of essential virulence factors for the successful development of their progeny. Virus domestications are major evolutionary transitions in highly diverse parasitoid wasps. Much progress has recently been made to characterize the nature of these ancestrally captured endogenous viruses that have evolved within the wasp genomes. Virus domestication from different viral families occurred at least three times in parasitoid wasps. This evolutionary convergence led to different strategies. Polydnaviruses (PDVs) are viral gene transfer agents and virus-like particles of the wasp Venturia canescens deliver proteins. Here, we take the standpoint of parasitoid wasps to review current knowledge on virus domestications by different parasitoid lineages. Then, based on genomic data from parasitoid wasps, PDVs and exogenous viruses, we discuss the different evolutionary steps required to transform viruses into vehicles for the delivery of the virulence molecules that we observe today. Finally, we discuss how endoparasitoid wasps manipulate host physiology and ensure parasitism success, to highlight the possible advantages of viral domestication as compared with other virulence strategies.
Collapse
|
8
|
Bézier A, Harichaux G, Musset K, Labas V, Herniou EA. Qualitative proteomic analysis of Tipula oleracea nudivirus occlusion bodies. J Gen Virol 2017; 98:284-295. [DOI: 10.1099/jgv.0.000661] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Annie Bézier
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR 7261 CNRS Université François-Rabelais, Tours 37200, France
| | - Grégoire Harichaux
- INRA, PRC UMR85-CNRS 7247-UFR-IFCE, Laboratoire de Spectrométrie de masse, Plateforme d’Analyse Intégrative des Biomolécules et de Phénomique des Animaux d’Intérêt Bio-agronomique (PAIB2), Nouzilly 37380, France
| | - Karine Musset
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR 7261 CNRS Université François-Rabelais, Tours 37200, France
| | - Valérie Labas
- INRA, PRC UMR85-CNRS 7247-UFR-IFCE, Laboratoire de Spectrométrie de masse, Plateforme d’Analyse Intégrative des Biomolécules et de Phénomique des Animaux d’Intérêt Bio-agronomique (PAIB2), Nouzilly 37380, France
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR 7261 CNRS Université François-Rabelais, Tours 37200, France
| |
Collapse
|
9
|
Kariithi HM, İnce İA, Boeren S, Murungi EK, Meki IK, Otieno EA, Nyanjom SRG, van Oers MM, Vlak JM, Abd-Alla AMM. Comparative Analysis of Salivary Gland Proteomes of Two Glossina Species that Exhibit Differential Hytrosavirus Pathologies. Front Microbiol 2016; 7:89. [PMID: 26903969 PMCID: PMC4746320 DOI: 10.3389/fmicb.2016.00089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/18/2016] [Indexed: 01/19/2023] Open
Abstract
Glossina pallidipes salivary gland hypertrophy virus (GpSGHV; family Hytrosaviridae) is a dsDNA virus exclusively pathogenic to tsetse flies (Diptera; Glossinidae). The 190 kb GpSGHV genome contains 160 open reading frames and encodes more than 60 confirmed proteins. The asymptomatic GpSGHV infection in flies can convert to symptomatic infection that is characterized by overt salivary gland hypertrophy (SGH). Flies with SGH show reduced general fitness and reproductive dysfunction. Although the occurrence of SGH is an exception rather than the rule, G. pallidipes is thought to be the most susceptible to expression of overt SGH symptoms compared to other Glossina species that are largely asymptomatic. Although Glossina salivary glands (SGs) play an essential role in GpSGHV transmission, the functions of the salivary components during the virus infection are poorly understood. In this study, we used mass spectrometry to study SG proteomes of G. pallidipes and G. m. morsitans, two Glossina model species that exhibit differential GpSGHV pathologies (high and low incidence of SGH, respectively). A total of 540 host proteins were identified, of which 23 and 9 proteins were significantly up- and down-regulated, respectively, in G. pallidipes compared to G. m. morsitans. Whereas 58 GpSGHV proteins were detected in G. pallidipes F1 progenies, only 5 viral proteins were detected in G. m. morsitans. Unlike in G. pallidipes, qPCR assay did not show any significant increase in virus titers in G. m. morsitans F1 progenies, confirming that G. m. morsitans is less susceptible to GpSGHV infection and replication compared to G. pallidipes. Based on our results, we speculate that in the case of G. pallidipes, GpSGHV employs a repertoire of host intracellular signaling pathways for successful infection. In the case of G. m. morsitans, antiviral responses appeared to be dominant. These results are useful for designing additional tools to investigate the Glossina-GpSGHV interactions.
Collapse
Affiliation(s)
- Henry M Kariithi
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research OrganizationNairobi, Kenya; Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy AgencyVienna, Austria; Laboratory of Virology, Wageningen UniversityWageningen, Netherlands
| | - İkbal Agah İnce
- Department of Medical Microbiology, Acıbadem University İstanbul, Turkey
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University Wageningen, Netherlands
| | - Edwin K Murungi
- South African National Bioinformatics Institute, University of the Western Cape Cape Town, South Africa
| | - Irene K Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy AgencyVienna, Austria; Laboratory of Virology, Wageningen UniversityWageningen, Netherlands
| | - Everlyne A Otieno
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology Nairobi, Kenya
| | - Steven R G Nyanjom
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology Nairobi, Kenya
| | | | - Just M Vlak
- Laboratory of Virology, Wageningen University Wageningen, Netherlands
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency Vienna, Austria
| |
Collapse
|
10
|
Abd-Alla AMM, Kariithi HM, Cousserans F, Parker NJ, İnce İA, Scully ED, Boeren S, Geib SM, Mekonnen S, Vlak JM, Parker AG, Vreysen MJB, Bergoin M. Comprehensive annotation of Glossina pallidipes salivary gland hypertrophy virus from Ethiopian tsetse flies: a proteogenomics approach. J Gen Virol 2016; 97:1010-1031. [PMID: 26801744 DOI: 10.1099/jgv.0.000409] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Glossina pallidipes salivary gland hypertrophy virus (GpSGHV; family Hytrosaviridae) can establish asymptomatic and symptomatic infection in its tsetse fly host. Here, we present a comprehensive annotation of the genome of an Ethiopian GpSGHV isolate (GpSGHV-Eth) compared with the reference Ugandan GpSGHV isolate (GpSGHV-Uga; GenBank accession number EF568108). GpSGHV-Eth has higher salivary gland hypertrophy syndrome prevalence than GpSGHV-Uga. We show that the GpSGHV-Eth genome has 190 291 nt, a low G+C content (27.9 %) and encodes 174 putative ORFs. Using proteogenomic and transcriptome mapping, 141 and 86 ORFs were mapped by transcripts and peptides, respectively. Furthermore, of the 174 ORFs, 132 had putative transcriptional signals [TATA-like box and poly(A) signals]. Sixty ORFs had both TATA-like box promoter and poly(A) signals, and mapped by both transcripts and peptides, implying that these ORFs encode functional proteins. Of the 60 ORFs, 10 ORFs are homologues to baculovirus and nudivirus core genes, including three per os infectivity factors and four RNA polymerase subunits (LEF4, 5, 8 and 9). Whereas GpSGHV-Eth and GpSGHV-Uga are 98.1 % similar at the nucleotide level, 37 ORFs in the GpSGHV-Eth genome had nucleotide insertions (n = 17) and deletions (n = 20) compared with their homologues in GpSGHV-Uga. Furthermore, compared with the GpSGHV-Uga genome, 11 and 24 GpSGHV ORFs were deleted and novel, respectively. Further, 13 GpSGHV-Eth ORFs were non-canonical; they had either CTG or TTG start codons instead of ATG. Taken together, these data suggest that GpSGHV-Eth and GpSGHV-Uga represent two different lineages of the same virus. Genetic differences combined with host and environmental factors possibly explain the differential GpSGHV pathogenesis observed in different G. pallidipes colonies.
Collapse
Affiliation(s)
- Adly M M Abd-Alla
- Insect Pest Control Laboratories, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Henry M Kariithi
- Insect Pest Control Laboratories, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria.,Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, PO Box 57811, Loresho, Nairobi, Kenya.,Laboratory of Virology, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - François Cousserans
- Laboratoire de Pathologie Comparée, Faculté des Sciences, Université de Montpellier, 34095 Montpellier, France
| | | | - İkbal Agah İnce
- Department of Medical Microbiology, School of Medicine, Acibadem University, 34752 Atas¸ehir, Istanbul, Turkey
| | - Erin D Scully
- Grain, Forage and Bioenergy Research Unit, USDA-ARS, University of Nebraska East Campus, Lincoln, NE 68583, USA
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | - Scott M Geib
- Tropical Crop and Commodity Protection Research Unit, USDA-ARS Daniel K. Inouye US Pacific Basin Agricultural Research Centre, Hilo, HI 96720, USA
| | - Solomon Mekonnen
- National Institute for Control and Eradication of Tsetse and Trypanosomosis (NICETT), Addis Ababa, Ethiopia
| | - Just M Vlak
- Laboratory of Virology, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Andrew G Parker
- Insect Pest Control Laboratories, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Marc J B Vreysen
- Insect Pest Control Laboratories, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Max Bergoin
- Laboratoire de Pathologie Comparée, Faculté des Sciences, Université de Montpellier, 34095 Montpellier, France
| |
Collapse
|
11
|
Abd-Alla AMM, Marin C, Parker AG, Vreysen MJB. Antiviral drug valacyclovir treatment combined with a clean feeding system enhances the suppression of salivary gland hypertrophy in laboratory colonies of Glossina pallidipes. Parasit Vectors 2014; 7:214. [PMID: 24886248 PMCID: PMC4026819 DOI: 10.1186/1756-3305-7-214] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/14/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hytrosaviridae cause salivary gland hypertrophy (SGH) syndrome in some infected tsetse flies (Diptera: Glossinidae). Infected male and female G. pallidipes with SGH have a reduced fecundity and fertility. Due to the deleterious impact of the virus on G. pallidipes colonies, adding the antiviral drug valacyclovir to the blood diet and changing the feeding regime to a clean feeding system (each fly receives for each feeding a fresh clean blood meal) have been investigated to develop virus management strategies. Although both approaches used alone successfully reduced the virus load and the SGH prevalence in small experimental groups, considerable time was needed to obtain the desired SGH reduction and both systems were only demonstrated with colonies that had a low initial virus prevalence (SGH ≤ 10%). As problems with SGH are often only recognized once the incidence is already high, it was necessary to demonstrate that this combination would also work for high prevalence colonies. FINDINGS Combining both methods at colony level successfully suppressed the SGH in G. pallidipes colonies that had a high initial virus prevalence (average SGH of 24%). Six months after starting the combined treatment SGH symptoms were eliminated from the treated colony, in contrast to 28 months required to obtain the same results using clean feeding alone and 21 months using antiviral drug alone. CONCLUSIONS Combining valacyclovir treatment with the clean feeding system provides faster control of SGH in tsetse than either method alone and is effective even when the initial SGH prevalence is high.
Collapse
Affiliation(s)
- Adly MM Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Wagramer Straße 5, A-1400 Vienna, Austria
| | - Carmen Marin
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Wagramer Straße 5, A-1400 Vienna, Austria
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Wagramer Straße 5, A-1400 Vienna, Austria
| | - Marc JB Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Wagramer Straße 5, A-1400 Vienna, Austria
| |
Collapse
|
12
|
Kariithi HM, van Oers MM, Vlak JM, Vreysen MJB, Parker AG, Abd-Alla AMM. Virology, Epidemiology and Pathology of Glossina Hytrosavirus, and Its Control Prospects in Laboratory Colonies of the Tsetse Fly, Glossina pallidipes (Diptera; Glossinidae). INSECTS 2013; 4:287-319. [PMID: 26462422 PMCID: PMC4553466 DOI: 10.3390/insects4030287] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/13/2013] [Accepted: 06/13/2013] [Indexed: 01/03/2023]
Abstract
The Glossina hytrosavirus (family Hytrosaviridae) is a double-stranded DNA virus with rod-shaped, enveloped virions. Its 190 kbp genome encodes 160 putative open reading frames. The virus replicates in the nucleus, and acquires a fragile envelope in the cell cytoplasm. Glossina hytrosavirus was first isolated from hypertrophied salivary glands of the tsetse fly, Glossina pallidipes Austen (Diptera; Glossinidae) collected in Kenya in 1986. A certain proportion of laboratory G. pallidipes flies infected by Glossina hytrosavirus develop hypertrophied salivary glands and midgut epithelial cells, gonadal anomalies and distorted sex-ratios associated with reduced insemination rates, fecundity and lifespan. These symptoms are rare in wild tsetse populations. In East Africa, G. pallidipes is one of the most important vectors of African trypanosomosis, a debilitating zoonotic disease that afflicts 37 sub-Saharan African countries. There is a large arsenal of control tactics available to manage tsetse flies and the disease they transmit. The sterile insect technique (SIT) is a robust control tactic that has shown to be effective in eradicating tsetse populations when integrated with other control tactics in an area-wide integrated approach. The SIT requires production of sterile male flies in large production facilities. To supply sufficient numbers of sterile males for the SIT component against G. pallidipes, strategies have to be developed that enable the management of the Glossina hytrosavirus in the colonies. This review provides a historic chronology of the emergence and biogeography of Glossina hytrosavirus, and includes researches on the infectomics (defined here as the functional and structural genomics and proteomics) and pathobiology of the virus. Standard operation procedures for viral management in tsetse mass-rearing facilities are proposed and a future outlook is sketched.
Collapse
Affiliation(s)
- Henry M Kariithi
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands.
- Insect Pest Control Laboratories, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Wagrammer Strasse 5, P.O. Box 100, 1400 Vienna, Austria.
- Biotechnology Centre, Kenya Agricultural Research Institute, Waiyaki Way, P.O. Box 14733-00100, Nairobi, Kenya.
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands.
| | - Just M Vlak
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands.
| | - Marc J B Vreysen
- Insect Pest Control Laboratories, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Wagrammer Strasse 5, P.O. Box 100, 1400 Vienna, Austria.
| | - Andrew G Parker
- Insect Pest Control Laboratories, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Wagrammer Strasse 5, P.O. Box 100, 1400 Vienna, Austria.
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratories, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Wagrammer Strasse 5, P.O. Box 100, 1400 Vienna, Austria.
| |
Collapse
|
13
|
Abd-Alla AMM, Kariithi HM, Mohamed AH, Lapiz E, Parker AG, Vreysen MJB. Managing hytrosavirus infections in Glossina pallidipes colonies: feeding regime affects the prevalence of salivary gland hypertrophy syndrome. PLoS One 2013; 8:e61875. [PMID: 23667448 PMCID: PMC3646844 DOI: 10.1371/journal.pone.0061875] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/17/2013] [Indexed: 12/03/2022] Open
Abstract
Many species of tsetse flies are infected by a virus that causes salivary gland hypertrophy (SGH) syndrome and the virus isolated from Glossina pallidipes (GpSGHV) has recently been sequenced. Flies with SGH have a reduced fecundity and fertility. Due to the deleterious impact of SGHV on G. pallidipes colonies, several approaches were investigated to develop a virus management strategy. Horizontal virus transmission is the major cause of the high prevalence of the GpSGHV in tsetse colonies. Implementation of a “clean feeding” regime (fresh blood offered to each set of flies so that there is only one feed per membrane), instead of the regular feeding regime (several successive feeds per membrane), was among the proposed approaches to reduce GpSGHV infections. However, due to the absence of disposable feeding equipment (feeding trays and silicone membranes), the implementation of a clean feeding approach remains economically difficult. We developed a new clean feeding approach applicable to large-scale tsetse production facilities using existing resources. The results indicate that implementing this approach is feasible and leads to a significant reduction in virus load from 109 virus copies in regular colonies to an average of 102.5 and eliminates the SGH syndrome from clean feeding colonies by28 months post implementation of this approach. The clean feeding approach also reduced the virus load from an average of 108 virus copy numbers to an average of 103 virus copies and SGH prevalence of 10% to 4% in flies fed after the clean fed colony. Taken together, these data indicate that the clean feeding approach is applicable in large-scale G. pallidipes production facilities and eliminates the deleterious effects of the virus and the SGH syndrome in these colonies.
Collapse
Affiliation(s)
- Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
14
|
Abd-Alla AMM, Bergoin M, Parker AG, Maniania NK, Vlak JM, Bourtzis K, Boucias DG, Aksoy S. Improving Sterile Insect Technique (SIT) for tsetse flies through research on their symbionts and pathogens. J Invertebr Pathol 2013; 112 Suppl:S2-10. [PMID: 22841636 PMCID: PMC4242710 DOI: 10.1016/j.jip.2012.07.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/10/2012] [Accepted: 05/12/2012] [Indexed: 11/23/2022]
Abstract
Tsetse flies (Diptera: Glossinidae) are the cyclical vectors of the trypanosomes, which cause human African trypanosomosis (HAT) or sleeping sickness in humans and African animal trypanosomosis (AAT) or nagana in animals. Due to the lack of effective vaccines and inexpensive drugs for HAT, and the development of resistance of the trypanosomes against the available trypanocidal drugs, vector control remains the most efficient strategy for sustainable management of these diseases. Among the control methods used for tsetse flies, Sterile Insect Technique (SIT), in the frame of area-wide integrated pest management (AW-IPM), represents an effective tactic to suppress and/or eradicate tsetse flies. One constraint in implementing SIT is the mass production of target species. Tsetse flies harbor obligate bacterial symbionts and salivary gland hypertrophy virus which modulate the fecundity of the infected flies. In support of the future expansion of the SIT for tsetse fly control, the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture implemented a six year Coordinated Research Project (CRP) entitled "Improving SIT for Tsetse Flies through Research on their Symbionts and Pathogens". The consortium focused on the prevalence and the interaction between the bacterial symbionts and the virus, the development of strategies to manage virus infections in tsetse colonies, the use of entomopathogenic fungi to control tsetse flies in combination with SIT, and the development of symbiont-based strategies to control tsetse flies and trypanosomosis. The results of the CRP and the solutions envisaged to alleviate the constraints of the mass rearing of tsetse flies for SIT are presented in this special issue.
Collapse
Affiliation(s)
- Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kariithi HM, van Lent JWM, Boeren S, Abd-Alla AMM, İnce İA, van Oers MM, Vlak JM. Correlation between structure, protein composition, morphogenesis and cytopathology of Glossina pallidipes salivary gland hypertrophy virus. J Gen Virol 2012; 94:193-208. [PMID: 23052395 DOI: 10.1099/vir.0.047423-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) is a dsDNA virus with rod-shaped, enveloped virions. Its 190 kb genome contains 160 putative protein-coding ORFs. Here, the structural components, protein composition and associated aspects of GpSGHV morphogenesis and cytopathology were investigated. Four morphologically distinct structures: the nucleocapsid, tegument, envelope and helical surface projections, were observed in purified GpSGHV virions by electron microscopy. Nucleocapsids were present in virogenic stroma within the nuclei of infected salivary gland cells, whereas enveloped virions were located in the cytoplasm. The cytoplasm of infected cells appeared disordered and the plasma membranes disintegrated. Treatment of virions with 1 % NP-40 efficiently partitioned the virions into envelope and nucleocapsid fractions. The fractions were separated by SDS-PAGE followed by in-gel trypsin digestion and analysis of the tryptic peptides by liquid chromatography coupled to electrospray and tandem mass spectrometry. Using the MaxQuant program with Andromeda as a database search engine, a total of 45 viral proteins were identified. Of these, ten and 15 were associated with the envelope and the nucleocapsid fractions, respectively, whilst 20 were detected in both fractions, most likely representing tegument proteins. In addition, 51 host-derived proteins were identified in the proteome of the virus particle, 13 of which were verified to be incorporated into the mature virion using a proteinase K protection assay. This study provides important information about GpSGHV biology and suggests options for the development of future anti-GpSGHV strategies by interfering with virus-host interactions.
Collapse
Affiliation(s)
- Henry M Kariithi
- Laboratory of Virology, Wageningen University, 6708 PB Wageningen, The Netherlands.,Insect Pest Control Laboratory, International Atomic Energy Agency, A-1400 Vienna, Austria
| | - Jan W M van Lent
- Laboratory of Virology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, International Atomic Energy Agency, A-1400 Vienna, Austria
| | - İkbal Agah İnce
- Department of Genetics and Bioengineering, Yeditepe University, 34755, Istanbul, Turkey.,Department of Biosystems Engineering, Faculty of Engineering, Giresun University, 28100, Giresun, Turkey
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Just M Vlak
- Laboratory of Virology, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
16
|
Proteomic footprints of a member of Glossinavirus (Hytrosaviridae): an expeditious approach to virus control strategies in tsetse factories. J Invertebr Pathol 2012; 112 Suppl:S26-31. [PMID: 22841943 DOI: 10.1016/j.jip.2012.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/14/2012] [Accepted: 05/17/2012] [Indexed: 11/21/2022]
Abstract
The Glossinavirus (Glossina pallidipes salivary gland hypertrophy virus (GpSGHV)) is a rod-shaped enveloped insect virus containing a 190,032 bp-long, circular dsDNA genome. The virus is pathogenic for the tsetse fly Glossina pallidipes and has been associated with the collapse of selected mass-reared colonies. Maintenance of productive fly colonies is critical to tsetse and trypanosomiasis eradication in sub-Saharan Africa using the Sterile Insect Technique. Proteomics, an approach to define the expressed protein complement of a genome, was used to further our understanding of the protein composition, morphology, morphogenesis and pathology of GpSGHV. Additionally, this approach provides potential targets for novel and sustainable molecular-based antiviral strategies to control viral infections in tsetse colonies. To achieve this goal, identification of key protein partners involved in virus transmission is required. In this review, we integrate the available data on GpSGHV proteomics to assess the impact of viral infections on host metabolism and to understand the contributions of such perturbations to viral pathogenesis. The relevance of the proteome findings to tsetse and trypanosomiasis management in sub-Sahara Africa is also considered.
Collapse
|
17
|
Phylogeny and evolution of Hytrosaviridae. J Invertebr Pathol 2012; 112 Suppl:S62-7. [PMID: 22841640 DOI: 10.1016/j.jip.2012.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/21/2012] [Accepted: 05/22/2012] [Indexed: 11/21/2022]
Abstract
The Hytrosaviridae comprises a family of dsDNA viruses with a circular genome of 120-190 kb p. They are exclusively associated with Diptera, such as the tsetse fly, the house fly and the Narcissus bulb fly. Hytrosaviruses cause a very unique pathology including hypertrophy of salivary glands as well as testicular and ovarian malformation. On the other hand these viruses share a significant number of gene homologues with other dsDNA viruses, esp. baculoviruses and nudiviruses. These gene homologues include twelve so-called baculovirus core genes involved in transcription, DNA replication and the infection process. Most strikingly, the Musca domestica salivary gland hypertrophy virus (MdSGHV) encodes a homologue of a polyhedrin/granulin gene of Alpha-, Beta-, Gammabaculoviruses. Hence, it is proposed that hytrosaviruses are phylogenetically related to baculoviruses but evolved in a very close association with their dipteran hosts.
Collapse
|
18
|
Peng K, van Lent JWM, Boeren S, Fang M, Theilmann DA, Erlandson MA, Vlak JM, van Oers MM. Characterization of novel components of the baculovirus per os infectivity factor complex. J Virol 2012; 86:4981-8. [PMID: 22379094 PMCID: PMC3347349 DOI: 10.1128/jvi.06801-11] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 02/22/2012] [Indexed: 01/22/2023] Open
Abstract
Baculovirus occlusion-derived virus (ODV) infects insect midgut cells under alkaline conditions, a process mediated by highly conserved per os infectivity factors (PIFs), P74 (PIF0), PIF1, PIF2, PIF3, PIF4, and PIF5 (ODV-E56). Previously, a multimolecular complex composed of PIF1, PIF2, PIF3, and P74 was identified which was proposed to play an essential role during ODV entry. Recently, more proteins have been identified that play important roles in ODV oral infectivity, including PIF4, PIF5, and SF58, which might work in concert with previously known PIFs to facilitate ODV infection. In order to understand the ODV entry mechanism, the identification of all components of the PIF complex is crucial. Hence, the aim of this study was to identify additional components of the PIF complex. Coimmunoprecipitation (CoIP) combined with proteomic analysis was used to identify the components of the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) PIF complex. PIF4 and P95 (AC83) were identified as components of the PIF complex while PIF5 was not, and this was confirmed with blue native PAGE and a second CoIP. Deletion of the pif4 gene impaired complex formation, but deletion of pif5 did not. Differentially denaturing SDS-PAGE further revealed that PIF4 forms a stable complex with PIF1, PIF2, and PIF3. P95 and P74 are more loosely associated with this complex. Three other proteins, AC5, AC68, and AC108 (homologue of SF58), were also found by the proteomic analysis to be associated with the PIF complex. Finally the functional significance of the PIF protein interactions is discussed.
Collapse
Affiliation(s)
- Ke Peng
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Jan W. M. van Lent
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | - Minggang Fang
- Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada
| | - David A. Theilmann
- Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada
| | - Martin A. Erlandson
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | - Just M. Vlak
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
19
|
Boucias DG, Deng F, Hu Z, Garcia-Maruniak A, Lietze VU. Analysis of the structural proteins from the Musca domestica hytrosavirus with an emphasis on the major envelope protein. J Invertebr Pathol 2012; 112 Suppl:S44-52. [PMID: 22465629 DOI: 10.1016/j.jip.2012.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/07/2012] [Accepted: 03/13/2012] [Indexed: 01/19/2023]
Abstract
The Musca domestica hytrosavirus (MdHV), a member of the family Hyrosaviridae, is a large, dsDNA, enveloped virus that infects adult house flies and causes a diagnostic hypertrophy of the salivary gland. Herein, studies were directed at identifying key structural components of the viral envelope and nucleocapsid. SDS-PAGE of detergent-treated virus fractions identified protein bands unique to the envelope and nucleocapsid components. Using prior LC-MSMS data we identified the viral ORF associated with the major envelope band, cloned and expressed recombinant viral antigens, and prepared a series of polyclonal sera. Western blots confirmed that antibodies recognized the target viral antigen and provided evidence that the viral protein MdHV96 underwent post-translational processing; antibodies bound to the target high molecular weight parent molecule as well as distinct sets of smaller bands. Immuno gold electron microscopy demonstrated that the anti-MdHV96 sera recognized target antigens associated with the envelope. The nucleocapsids migrated from the virogenic stroma in the nucleus through the nuclear membrane into the cytoplasm, where they acquired an initial envelope that contained MdHV96. This major envelope protein, appeared to incorporate into intracellular membranes of both the caniculi and rough endoplasmic reticulum membranes and mediate binding to the nucleocapsids. Oral infection bioassays demonstrated that the anti-HV96 polyclonal sera acted as neutralizing agents in suppressing the levels of orally acquired infections.
Collapse
Affiliation(s)
- D G Boucias
- Entomology and Nematology Department, University of Florida, 970 Natural Area Drive, Gainesville, FL 32611, USA.
| | | | | | | | | |
Collapse
|
20
|
Kariithi HM, Ince IA, Boeren S, Abd-Alla AMM, Parker AG, Aksoy S, Vlak JM, van Oers MM. The salivary secretome of the tsetse fly Glossina pallidipes (Diptera: Glossinidae) infected by salivary gland hypertrophy virus. PLoS Negl Trop Dis 2011; 5:e1371. [PMID: 22132244 PMCID: PMC3222630 DOI: 10.1371/journal.pntd.0001371] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/05/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The competence of the tsetse fly Glossina pallidipes (Diptera; Glossinidae) to acquire salivary gland hypertrophy virus (SGHV), to support virus replication and successfully transmit the virus depends on complex interactions between Glossina and SGHV macromolecules. Critical requisites to SGHV transmission are its replication and secretion of mature virions into the fly's salivary gland (SG) lumen. However, secretion of host proteins is of equal importance for successful transmission and requires cataloging of G. pallidipes secretome proteins from hypertrophied and non-hypertrophied SGs. METHODOLOGY/PRINCIPAL FINDINGS After electrophoretic profiling and in-gel trypsin digestion, saliva proteins were analyzed by nano-LC-MS/MS. MaxQuant/Andromeda search of the MS data against the non-redundant (nr) GenBank database and a G. morsitans morsitans SG EST database, yielded a total of 521 hits, 31 of which were SGHV-encoded. On a false discovery rate limit of 1% and detection threshold of least 2 unique peptides per protein, the analysis resulted in 292 Glossina and 25 SGHV MS-supported proteins. When annotated by the Blast2GO suite, at least one gene ontology (GO) term could be assigned to 89.9% (285/317) of the detected proteins. Five (∼1.8%) Glossina and three (∼12%) SGHV proteins remained without a predicted function after blast searches against the nr database. Sixty-five of the 292 detected Glossina proteins contained an N-terminal signal/secretion peptide sequence. Eight of the SGHV proteins were predicted to be non-structural (NS), and fourteen are known structural (VP) proteins. CONCLUSIONS/SIGNIFICANCE SGHV alters the protein expression pattern in Glossina. The G. pallidipes SG secretome encompasses a spectrum of proteins that may be required during the SGHV infection cycle. These detected proteins have putative interactions with at least 21 of the 25 SGHV-encoded proteins. Our findings opens venues for developing novel SGHV mitigation strategies to block SGHV infections in tsetse production facilities such as using SGHV-specific antibodies and phage display-selected gut epithelia-binding peptides.
Collapse
Affiliation(s)
- Henry M. Kariithi
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
- Insect Pest Control Laboratory, Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Ikbal A. Ince
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | - Adly M. M. Abd-Alla
- Insect Pest Control Laboratory, Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Andrew G. Parker
- Insect Pest Control Laboratory, Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Serap Aksoy
- Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Just M. Vlak
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
21
|
Abd-Alla AMM, Parker AG, Vreysen MJB, Bergoin M. Tsetse salivary gland hypertrophy virus: hope or hindrance for tsetse control? PLoS Negl Trop Dis 2011; 5:e1220. [PMID: 21912708 PMCID: PMC3166039 DOI: 10.1371/journal.pntd.0001220] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Many species of tsetse flies (Diptera: Glossinidae) are infected with a virus that causes salivary gland hypertrophy (SGH), and flies with SGH symptoms have a reduced fecundity and fertility. The prevalence of SGH in wild tsetse populations is usually very low (0.2%–5%), but higher prevalence rates (15.2%) have been observed occasionally. The successful eradication of a Glossina austeni population from Unguja Island (Zanzibar) using an area-wide integrated pest management approach with a sterile insect technique (SIT) component (1994–1997) encouraged several African countries, including Ethiopia, to incorporate the SIT in their national tsetse control programs. A large facility to produce tsetse flies for SIT application in Ethiopia was inaugurated in 2007. To support this project, a Glossina pallidipes colony originating from Ethiopia was successfully established in 1996, but later up to 85% of adult flies displayed symptoms of SGH. As a result, the colony declined and became extinct by 2002. The difficulties experienced with the rearing of G. pallidipes, epitomized by the collapse of the G. pallidipes colony originating from Ethiopia, prompted the urgent need to develop management strategies for the salivary gland hypertrophy virus (SGHV) for this species. As a first step to identify suitable management strategies, the virus isolated from G. pallidipes (GpSGHV) was recently sequenced and research was initiated on virus transmission and pathology. Different approaches to prevent virus replication and its horizontal transmission during blood feeding have been proposed. These include the use of antiviral drugs such as acyclovir and valacyclovir added to the blood for feeding or the use of antibodies against SGHV virion proteins. In addition, preliminary attempts to silence the expression of an essential viral protein using RNA interference will be discussed.
Collapse
Affiliation(s)
- Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria.
| | | | | | | |
Collapse
|
22
|
Lietze VU, Abd-Alla AMM, Boucias DG. Two hytrosaviruses, MdSGHV and GpSGHV, induce distinct cytopathologies in their respective host insects. J Invertebr Pathol 2011; 107:161-3. [PMID: 21439296 DOI: 10.1016/j.jip.2011.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/07/2011] [Accepted: 03/17/2011] [Indexed: 11/16/2022]
Abstract
Recently, a new virus family (Hytrosaviridae) was proposed for double-stranded DNA viruses that cause salivary gland hypertrophy in their dipteran hosts. The two type species, MdSGHV and GpSGHV, induce similar gross pathology and share several morphological, biological, and molecular characteristics. This histological study revealed profound differences in the cytopathology of these viruses supporting their previously proposed placement in different genera.
Collapse
Affiliation(s)
- Verena-Ulrike Lietze
- University of Florida, Entomology and Nematology Department, Gainesville, FL 32611, United States.
| | | | | |
Collapse
|
23
|
Wang Y, Bininda-Emonds ORP, van Oers MM, Vlak JM, Jehle JA. The genome of Oryctes rhinoceros nudivirus provides novel insight into the evolution of nuclear arthropod-specific large circular double-stranded DNA viruses. Virus Genes 2011; 42:444-56. [DOI: 10.1007/s11262-011-0589-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 02/21/2011] [Indexed: 11/29/2022]
|
24
|
Sparks WO, Rohlfing A, Bonning BC. A peptide with similarity to baculovirus ODV-E66 binds the gut epithelium of Heliothis virescens and impedes infection with Autographa californica multiple nucleopolyhedrovirus. J Gen Virol 2011; 92:1051-1060. [PMID: 21228132 DOI: 10.1099/vir.0.028118-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Baculoviruses infect their lepidopteran hosts via the midgut epithelium through binding of occlusion-derived virus (ODV) and fusion between the virus envelope and microvillar membranes. To identify genes and sequences that are involved in this process, a random phage display library was screened for peptides that bound to brush border membrane vesicles (BBMV) derived from the midgut epithelium of Heliothis virescens. Seventeen peptides that bound to BBMV were recovered. Two of these, HV1 and HV2, had sequence similarity to the ODV envelope protein ODV-E66 that is found in five species of alphabaculoviruses. Chemically synthesized versions of HV1 and HV2, and two peptides (AcE66A and AcE66B) derived from similar sequences of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ODV-E66, bound to unfixed cryosections of whole midgut tissues. AcE66A, but not HV1, bound to H. virescens gut BBMV proteins on a far-Western blot. Competition assays with HV1 and purified AcMNPV ODV resulted in decreased mortality of H. virescens larvae at a dose of 1 LD(50), and a significant increase in survival time at higher virus concentrations. These results suggest a role for ODV-E66 in baculovirus infection of lepidopteran larval midgut epithelium.
Collapse
Affiliation(s)
- Wendy O Sparks
- Department of Entomology and Program in Genetics, Iowa State University, Ames, IA 50011, USA
| | - Amy Rohlfing
- Department of Entomology and Program in Genetics, Iowa State University, Ames, IA 50011, USA
| | - Bryony C Bonning
- Department of Entomology and Program in Genetics, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
25
|
Abd-Alla AMM, Salem TZ, Parker AG, Wang Y, Jehle JA, Vreysen MJB, Boucias D. Universal primers for rapid detection of hytrosaviruses. J Virol Methods 2010; 171:280-3. [PMID: 20923688 DOI: 10.1016/j.jviromet.2010.09.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 09/23/2010] [Accepted: 09/27/2010] [Indexed: 11/28/2022]
Abstract
Hytrosaviridae is a proposed virus family encompassing viruses that cause salivary gland hypertrophy (SGH) syndrome in infected insects and reduce the fertility in their dipteran insect hosts. They contain a large, double stranded DNA genome of 120-190 kbp. To date, these viruses have been detected only in adult Diptera. These include hytrosaviruses detected in various tsetse fly species (Glossina spp.), the narcissus bulb fly Merodon equestris and the house fly Musca domestica. The limited number of hytrosaviruses reported to date may be a reflection of the frequent absence of external symptoms in infected adult flies and the fact that the virus does not cause rapid mortality. Based on the complete genome sequence of Glossinia pallidipes (GpSGHV) and Musca domestica (MdSGHV) salivary gland hypertrophy viruses, a PCR based methodology was developed to detect the viruses in these species. To be able to detect hytrosaviruses in other Diptera, five degenerate primer pairs were designed and tested on GpSGHV and MdSGHV DNA using gradient PCR with annealing temperatures from 37 to 61°C. Two pairs of primers were selected from p74, two pairs from PIF-1 and one pair from ODV-e66 homologous proteins. Four primer pairs generated a virus specific PCR product on both MdSGHV and GpSGHV at all tested annealing temperatures, while the ODV-e66 based primers did not generate a virus specific product with annealing temperatures higher that 47°C. No non-specific PCR product was found when using genomic DNA of infected flies as template DNA. These results offer new sets of primers that could be used to detect hytrosaviruses in other insects.
Collapse
Affiliation(s)
- Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|