1
|
Caffeic acid, a coffee-related organic acid, inhibits infection by severe fever with thrombocytopenia syndrome virus in vitro. J Infect Chemother 2018; 24:597-601. [DOI: 10.1016/j.jiac.2018.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/26/2018] [Accepted: 03/08/2018] [Indexed: 12/16/2022]
|
2
|
Shirasago Y, Fukazawa H, Aizaki H, Suzuki T, Suzuki T, Sugiyama K, Wakita T, Hanada K, Abe R, Fukasawa M. Thermostable hepatitis C virus JFH1-derived variant isolated by adaptation to Huh7.5.1 cells. J Gen Virol 2018; 99:1407-1417. [PMID: 30045785 DOI: 10.1099/jgv.0.001117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C virus (HCV) infection and propagation in cultured cells have mainly been investigated using the infectious clinical clone JFH1. However, its infectivity is not high enough for infection to be detected easily. In this study, we attempted to isolate HCV-JFH1 variants adapted to human hepatoma Huh7.5.1 cells. By performing serial passages of the wild-type HCV-JFH1 in Huh7.5.1 cells, we obtained a variant that was capable of inducing severe cytopathic effects and showed approximately 700-fold higher infectivity than the wild-type HCV-JFH1. Further, when highly permissive Huh7.5.1-8 cells were infected with this variant, viral particles were produced at >1011 copies ml-1, making this variant one of the most efficient HCV production systems. Two adaptive mutations were noted in the variant genome: a1994c (K74T) in the core protein region and t3014c (I414T) in the E2 protein region. Both mutations contributed to enhanced infectivity and their combination showed synergistic effects in this regard. An examination of recombinant viruses carrying K74T, I414T and K74T/I414T mutations revealed that none of the mutations had an effect on the steps after viral entry (genome replication, particle assembly and egress), but led to the viral infection becoming less dependent on scavenger receptor class B type I, changes of the infectious particles to a broader and lower range of densities, and enhanced thermal stability of the infectious viruses. Thus, this Huh7.5.1-adapted HCV-JFH1 variant with higher and stable infectivity should be a valuable tool for studying the molecular mechanisms behind the life cycle of HCV and for antiviral screening.
Collapse
Affiliation(s)
- Yoshitaka Shirasago
- 1Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Hidesuke Fukazawa
- 2Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Hideki Aizaki
- 3Department of Virology II, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Tetsuro Suzuki
- 4Department of Infectious Diseases, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takeru Suzuki
- 1Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,5Department of Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | | | - Takaji Wakita
- 3Department of Virology II, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Kentaro Hanada
- 1Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Ryo Abe
- 7Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Masayoshi Fukasawa
- 1Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
3
|
Extracellular Interactions between Hepatitis C Virus and Secreted Apolipoprotein E. J Virol 2017; 91:JVI.02227-16. [PMID: 28539442 DOI: 10.1128/jvi.02227-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/04/2017] [Indexed: 12/12/2022] Open
Abstract
Interactions between hepatitis C virus (HCV) and lipoproteins in humans play an important role in the efficient establishment of chronic infection. Apolipoprotein E (ApoE) on the HCV envelope mediates virus attachment to host cells as well as immune evasion. This interaction is thought to occur in hepatocytes, as ApoE plays dual functions in HCV assembly and maturation as well as cell attachment. In the present study, we found that secreted ApoE (sApoE) can also bind to viral particles via its C-terminal domain after HCV is released from the cell. Furthermore, the binding affinity of interactions between the sApoE N terminus and cell surface receptors affected HCV infectivity in a dose-dependent manner. The extracellular binding of sApoE to HCV is dependent on HCV envelope proteins, and recombinant HCV envelope proteins are also able to bind to sApoE. These results suggest that extracellular interactions between HCV and sApoE may potentially complicate vaccine development and studies of viral pathogenesis.IMPORTANCE End-stage liver disease caused by chronic HCV infection remains a clinical challenge, and there is an urgent need for a prophylactic method of controlling HCV infection. Because host immunity against HCV is poorly understood, additional investigations of host-virus interactions in the context of HCV are important. HCV is primarily transmitted through blood, which is rich in lipoproteins. Therefore, it is of interest to further determine how HCV interacts with lipoproteins in human blood. In this study, we found that secreted ApoE (sApoE), an exchangeable component found in lipoproteins, participates in extracellular interactions with HCV virions. More significantly, different variants of sApoE differentially affect HCV infection efficiency in a dose-dependent manner. These findings provide greater insight into HCV infection and host immunity and could help propel the development of new strategies for preventing HCV infection.
Collapse
|
4
|
Kim JH, Singh A, Del Poeta M, Brown DA, London E. The effect of sterol structure upon clathrin-mediated and clathrin-independent endocytosis. J Cell Sci 2017; 130:2682-2695. [PMID: 28655854 DOI: 10.1242/jcs.201731] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/22/2017] [Indexed: 12/25/2022] Open
Abstract
Ordered lipid domains (rafts) in plasma membranes have been hypothesized to participate in endocytosis based on inhibition of endocytosis by removal or sequestration of cholesterol. To more carefully investigate the role of the sterol in endocytosis, we used a substitution strategy to replace cholesterol with sterols that show various raft-forming abilities and chemical structures. Both clathrin-mediated endocytosis of transferrin and clathrin-independent endocytosis of clustered placental alkaline phosphatase were measured. A subset of sterols reversibly inhibited both clathrin-dependent and clathrin-independent endocytosis. The ability of a sterol to support lipid raft formation was necessary for endocytosis. However, it was not sufficient, because a sterol lacking a 3β-OH group did not support endocytosis even though it had the ability to support ordered domain formation. Double bonds in the sterol rings and an aliphatic tail structure identical to that of cholesterol were neither necessary nor sufficient to support endocytosis. This study shows that substitution using a large number of sterols can define the role of sterol structure in cellular functions. Hypotheses for how sterol structure can similarly alter clathrin-dependent and clathrin-independent endocytosis are discussed.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Dept. of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ashutosh Singh
- Dept. of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maurizio Del Poeta
- Dept. of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Deborah A Brown
- Dept. of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Erwin London
- Dept. of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
5
|
Lavie M, Dubuisson J. Interplay between hepatitis C virus and lipid metabolism during virus entry and assembly. Biochimie 2017. [PMID: 28630011 DOI: 10.1016/j.biochi.2017.06.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) infection is a major public health problem worldwide. In most cases, HCV infection becomes chronic, leading to the development of liver diseases that range from fibrosis to cirrhosis and hepatocellular carcinoma. Due to its medical importance, the HCV life cycle has been deeply characterized, and a unique feature of this virus is its interplay with lipids. Accordingly, all the steps of the virus life cycle are influenced by the host lipid metabolism. Indeed, due to their association with host lipoproteins, HCV particles have a unique lipid composition. Furthermore, the biogenesis pathway of very low density lipoproteins has been shown to be involved in HCV morphogenesis with apolipoprotein E being an essential element for the production of infectious HCV particles. Association of viral components with host cytoplasmic lipid droplets is also central to the HCV morphogenesis process. Finally, due to its close connection with host lipoproteins, HCV particle also uses several lipoprotein receptors to initiate its infectious cycle. In this review, we outline the way host lipoproteins participate to HCV particle composition, entry and assembly.
Collapse
Affiliation(s)
- Muriel Lavie
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection & Immunity of Lille, F-59000, Lille, France
| | - Jean Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection & Immunity of Lille, F-59000, Lille, France.
| |
Collapse
|
6
|
Schaefer EAK, Meixiong J, Mark C, Deik A, Motola DL, Fusco D, Yang A, Brisac C, Salloum S, Lin W, Clish CB, Peng LF, Chung RT. Apolipoprotein B100 is required for hepatitis C infectivity and Mipomersen inhibits hepatitis C. World J Gastroenterol 2016; 22:9954-9965. [PMID: 28018102 PMCID: PMC5143762 DOI: 10.3748/wjg.v22.i45.9954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/01/2016] [Accepted: 10/27/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To characterize the role of apolipoprotein B100 (apoB100) in hepatitis C viral (HCV) infection.
METHODS In this study, we utilize a gene editing tool, transcription activator-like effector nucleases (TALENs), to generate human hepatoma cells with a stable genetic deletion of APOB to assess of apoB in HCV. Using infectious cell culture-competent HCV, viral pseudoparticles, replicon models, and lipidomic analysis we determined the contribution of apoB to each step of the viral lifecycle. We further studied the effect of mipomersen, an FDA-approved antisense inhibitor of apoB100, on HCV using in vitro cell-culture competent HCV and determined its impact on viral infectivity with the TCID50 method.
RESULTS We found that apoB100 is indispensable for HCV infection. Using the JFH-1 fully infectious cell-culture competent virus in Huh 7 hepatoma cells with TALEN-mediated gene deletion of apoB (APOB KO), we found a significant reduction in HCV RNA and protein levels following infection. Pseudoparticle and replicon models demonstrated that apoB did not play a role in HCV entry or replication. However, the virus produced by APOB KO cells had significantly diminished infectivity as measured by the TCID-50 method compared to wild-type virus. Lipidomic analysis demonstrated that these virions have a fundamentally altered lipidome, with complete depletion of cholesterol esters. We further demonstrate that inhibition of apoB using mipomersen, an FDA-approved anti-sense oligonucleotide, results in a potent anti-HCV effect and significantly reduces the infectivity of the virus.
CONCLUSION ApoB is required for the generation of fully infectious HCV virions, and inhibition of apoB with mipomersen blocks HCV. Targeting lipid metabolic pathways to impair viral infectivity represents a novel host targeted strategy to inhibit HCV.
Collapse
|
7
|
Fukuhara T, Ono C, Puig-Basagoiti F, Matsuura Y. Roles of Lipoproteins and Apolipoproteins in Particle Formation of Hepatitis C Virus. Trends Microbiol 2016; 23:618-629. [PMID: 26433694 DOI: 10.1016/j.tim.2015.07.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/07/2015] [Accepted: 07/20/2015] [Indexed: 02/06/2023]
Abstract
More than 160 million people worldwide are infected with hepatitis C virus (HCV), and cirrhosis and hepatocellular carcinoma induced by HCV infection are life-threatening diseases. HCV takes advantage of many aspects of lipid metabolism for an efficient propagation in hepatocytes. Due to the morphological and physiological similarities of HCV particles to lipoproteins, lipid-associated HCV particles are named lipoviroparticles. Recent analyses have revealed that exchangeable apolipoproteins directly interact with the viral membrane to generate infectious HCV particles. In this review, we summarize the roles of lipid metabolism in the life cycle of HCV.
Collapse
Affiliation(s)
- Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Chikako Ono
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Francesc Puig-Basagoiti
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| |
Collapse
|
8
|
Kalyana Sundaram RV, Li H, Bailey L, Rashad AA, Aneja R, Weiss K, Huynh J, Bastian AR, Papazoglou E, Abrams C, Wrenn S, Chaiken I. Impact of HIV-1 Membrane Cholesterol on Cell-Independent Lytic Inactivation and Cellular Infectivity. Biochemistry 2016; 55:447-58. [PMID: 26713837 DOI: 10.1021/acs.biochem.5b00936] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peptide triazole thiols (PTTs) have been found previously to bind to HIV-1 Env spike gp120 and cause irreversible virus inactivation by shedding gp120 and lytically releasing luminal capsid protein p24. Since the virions remain visually intact, lysis appears to occur via limited membrane destabilization. To better understand the PTT-triggered membrane transformation involved, we investigated the role of envelope cholesterol on p24 release by measuring the effect of cholesterol depletion using methyl beta-cyclodextrin (MβCD). An unexpected bell-shaped response of PTT-induced lysis to [MβCD] was observed, involving lysis enhancement at low [MβCD] vs loss of function at high [MβCD]. The impact of cholesterol depletion on PTT-induced lysis was reversed by adding exogenous cholesterol and other sterols that support membrane rafts, while sterols that do not support rafts induced only limited reversal. Cholesterol depletion appears to cause a reduced energy barrier to lysis as judged by decreased temperature dependence with MβCD. Enhancement/replenishment responses to [MβCD] also were observed for HIV-1 infectivity, consistent with a similar energy barrier effect in the membrane transformation of virus cell fusion. Overall, the results argue that cholesterol in the HIV-1 envelope is important for balancing virus stability and membrane transformation, and that partial depletion, while increasing infectivity, also makes the virus more fragile. The results also reinforce the argument that the lytic inactivation and infectivity processes are mechanistically related and that membrane transformations occurring during lysis can provide an experimental window to investigate membrane and protein factors important for HIV-1 cell entry.
Collapse
Affiliation(s)
- Ramalingam Venkat Kalyana Sundaram
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States.,School of Biomedical Engineering, Science and Health Systems, Drexel University , Philadelphia, Pennsylvania 19104, United States
| | - Huiyuan Li
- Shared Research Facilities, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Lauren Bailey
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States
| | - Adel A Rashad
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States
| | - Rachna Aneja
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States
| | - Karl Weiss
- Department of Chemical and Biological Engineering, Drexel University , Philadelphia, Pennsylvania 19104, United States
| | - James Huynh
- Department of Biological Sciences, Drexel University , Philadelphia, Pennsylvania 19104, United States
| | - Arangaserry Rosemary Bastian
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States.,School of Biomedical Engineering, Science and Health Systems, Drexel University , Philadelphia, Pennsylvania 19104, United States
| | - Elisabeth Papazoglou
- School of Biomedical Engineering, Science and Health Systems, Drexel University , Philadelphia, Pennsylvania 19104, United States
| | - Cameron Abrams
- Department of Chemical and Biological Engineering, Drexel University , Philadelphia, Pennsylvania 19104, United States
| | - Steven Wrenn
- Department of Chemical and Biological Engineering, Drexel University , Philadelphia, Pennsylvania 19104, United States
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States
| |
Collapse
|
9
|
Using Sterol Substitution to Probe the Role of Membrane Domains in Membrane Functions. Lipids 2015; 50:721-34. [PMID: 25804641 DOI: 10.1007/s11745-015-4007-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/03/2015] [Indexed: 02/04/2023]
Abstract
Ordered membrane lipid domains rich in sphingolipids and sterols ("lipid rafts") are thought to be important in many biological processes. However, it is often difficult to distinguish domain-dependent biological functions from ones that have a specific dependence on sterol, e.g. are dependent upon a protein with a function that is dependent upon its binding to sterol. Removing cholesterol and replacing it with various sterols with varying abilities to form membrane domains or otherwise alter membrane properties has the potential to help distinguish these cases. This review describes this strategy, and how it has been applied by various investigators to understand cellular functions.
Collapse
|
10
|
Abstract
Although chronic infection of hepatitis C virus (HCV) induces disorders of lipid metabolism, HCV is known to utilize lipid metabolism for efficient propagation in the liver. Due to the morphological and physiological similarities of HCV particles to lipoproteins, lipid-associated HCV particles are named lipoviroparticles. Previous reports have shown that lipoprotein receptors or cholesterol transporter participate in the entry of lipoviroparticles. In addition, recent analyses revealed that exchangeable apolipoproteins directly interact with the viral membrane to generate infectious HCV particles. In this review, we would like to discuss about involvement of lipoprotein and apolipoprotein in HCV lifecycle.
Collapse
Affiliation(s)
- Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University
| | | |
Collapse
|
11
|
Vercauteren K, Mesalam AA, Leroux-Roels G, Meuleman P. Impact of lipids and lipoproteins on hepatitis C virus infection and virus neutralization. World J Gastroenterol 2014; 20:15975-91. [PMID: 25473151 PMCID: PMC4239485 DOI: 10.3748/wjg.v20.i43.15975] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/09/2014] [Accepted: 09/05/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infections represent a major global health problem. End-stage liver disease caused by chronic HCV infection is a major indication for liver transplantation. However, after transplantation the engrafted liver inevitably becomes infected by the circulating virus. Direct acting antivirals are not yet approved for use in liver transplant patients, and limited efficacy and severe side effects hamper the use of pegylated interferon combined with ribavirin in a post-transplant setting. Therefore, alternative therapeutic options need to be explored. Viral entry represents an attractive target for such therapeutic intervention. Understanding the mechanisms of viral entry is essential to define the viral and cellular factors involved. The HCV life cycle is dependent of and associated with lipoprotein physiology and the presence of lipoproteins has been correlated with altered antiviral efficacy of entry inhibitors. In this review, we summarise the current knowledge on how lipoprotein physiology influences the HCV life cycle. We focus especially on the influence of lipoproteins on antibodies that target HCV envelope proteins or antibodies that target the cellular receptors of the virus. This information can be particularly relevant for the prevention of HCV re-infection after liver transplantation.
Collapse
|
12
|
Apolipoprotein E likely contributes to a maturation step of infectious hepatitis C virus particles and interacts with viral envelope glycoproteins. J Virol 2014; 88:12422-37. [PMID: 25122793 DOI: 10.1128/jvi.01660-14] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The assembly of infectious hepatitis C virus (HCV) particles is tightly linked to components of the very-low-density lipoprotein (VLDL) pathway. We and others have shown that apolipoprotein E (ApoE) plays a major role in production of infectious HCV particles. However, the mechanism by which ApoE contributes to virion assembly/release and how it gets associated with the HCV particle is poorly understood. We found that knockdown of ApoE reduces titers of infectious intra- and extracellular HCV but not of the related dengue virus. ApoE depletion also reduced amounts of extracellular HCV core protein without affecting intracellular core amounts. Moreover, we found that ApoE depletion affected neither formation of nucleocapsids nor their envelopment, suggesting that ApoE acts at a late step of assembly, such as particle maturation and infectivity. Importantly, we demonstrate that ApoE interacts with the HCV envelope glycoproteins, most notably E2. This interaction did not require any other viral proteins and depended on the transmembrane domain of E2 that also was required for recruitment of HCV envelope glycoproteins to detergent-resistant membrane fractions. These results suggest that ApoE plays an important role in HCV particle maturation, presumably by direct interaction with viral envelope glycoproteins. IMPORTANCE The HCV replication cycle is tightly linked to host cell lipid pathways and components. This is best illustrated by the dependency of HCV assembly on lipid droplets and the VLDL component ApoE. Although the role of ApoE for production of infectious HCV particles is well established, it is still poorly understood how ApoE contributes to virion formation and how it gets associated with HCV particles. Here, we provide experimental evidence that ApoE likely is required for an intracellular maturation step of HCV particles. Moreover, we demonstrate that ApoE associates with the viral envelope glycoproteins. This interaction appears to be dispensable for envelopment of virus particles but likely contributes to the quality control of secreted infectious virions. These results shed new light on the exploitation of host cell lipid pathways by HCV and the link of viral particle assembly to the VLDL component ApoE.
Collapse
|
13
|
Mathiesen CK, Jensen TB, Prentoe J, Krarup H, Nicosia A, Law M, Bukh J, Gottwein JM. Production and characterization of high-titer serum-free cell culture grown hepatitis C virus particles of genotype 1-6. Virology 2014; 458-459:190-208. [PMID: 24928051 DOI: 10.1016/j.virol.2014.03.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/16/2014] [Accepted: 03/20/2014] [Indexed: 12/18/2022]
Abstract
Recently, cell culture systems producing hepatitis C virus particles (HCVcc) were developed. Establishment of serum-free culture conditions is expected to facilitate development of a whole-virus inactivated HCV vaccine. We describe generation of genotype 1-6 serum-free HCVcc (sf-HCVcc) from Huh7.5 hepatoma cells cultured in adenovirus expression medium. Compared to HCVcc, sf-HCVcc showed 0.6-2.1 log10 higher infectivity titers (4.7-6.2 log10 Focus Forming Units/mL), possibly due to increased release and specific infectivity of sf-HCVcc. In contrast to HCVcc, sf-HCVcc had a homogeneous single-peak density profile. Entry of sf-HCVcc depended on HCV co-receptors CD81, LDLr, and SR-BI, and clathrin-mediated endocytosis. HCVcc and sf-HCVcc were neutralized similarly by chronic-phase patient sera and by human monoclonal antibodies targeting conformational epitopes. Thus, we developed serum-free culture systems producing high-titer single-density sf-HCVcc, showing similar biological properties as HCVcc. This methodology has the potential to advance HCV vaccine development and to facilitate biophysical studies of HCV.
Collapse
Affiliation(s)
- Christian K Mathiesen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital, Kettegaard Allé 30, 2650 Hvidovre, Denmark; Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Tanja B Jensen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital, Kettegaard Allé 30, 2650 Hvidovre, Denmark; Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital, Kettegaard Allé 30, 2650 Hvidovre, Denmark; Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Henrik Krarup
- Department of Clinical Biochemistry, Section of Molecular Diagnostics, Aalborg University Hospital, Fredrik Bajers Vej 5, 9220 Aalborg, Denmark
| | - Alfredo Nicosia
- CEINGE, Via Gaetano Salvatore, 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via S. Pansini 5, 80131, Naples, Italy; Okairos, viale Citta' d' Europa 279, 00144, Rome, Italy
| | - Mansun Law
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital, Kettegaard Allé 30, 2650 Hvidovre, Denmark; Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Judith M Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital, Kettegaard Allé 30, 2650 Hvidovre, Denmark; Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
14
|
Abstract
Hepatitis C virus (HCV) is a hepatotropic virus and a major cause of chronic hepatitis and liver disease worldwide. Initial interactions between HCV virions and hepatocytes are required for productive viral infection and initiation of the viral life cycle. Furthermore, HCV entry contributes to the tissue tropism and species specificity of this virus. The elucidation of these interactions is critical, not only to understand the pathogenesis of HCV infection, but also to design efficient antiviral strategies and vaccines. This review summarizes our current knowledge of the host factors required for the HCV-host interactions during HCV binding and entry, our understanding of the molecular mechanisms underlying HCV entry into target cells, and the relevance of HCV entry for the pathogenesis of liver disease, antiviral therapy, and vaccine development.
Collapse
|
15
|
Hepatitis C virus, cholesterol and lipoproteins--impact for the viral life cycle and pathogenesis of liver disease. Viruses 2013; 5:1292-324. [PMID: 23698400 PMCID: PMC3712309 DOI: 10.3390/v5051292] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/10/2013] [Accepted: 04/27/2013] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) is a leading cause of chronic liver disease, including chronic hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Hepatitis C infection associates with lipid and lipoprotein metabolism disorders such as hepatic steatosis, hypobetalipoproteinemia, and hypocholesterolemia. Furthermore, virus production is dependent on hepatic very-low-density lipoprotein (VLDL) assembly, and circulating virions are physically associated with lipoproteins in complexes termed lipoviral particles. Evidence has indicated several functional roles for the formation of these complexes, including co-opting of lipoprotein receptors for attachment and entry, concealing epitopes to facilitate immune escape, and hijacking host factors for HCV maturation and secretion. Here, we review the evidence surrounding pathogenesis of the hepatitis C infection regarding lipoprotein engagement, cholesterol and triglyceride regulation, and the molecular mechanisms underlying these effects.
Collapse
|
16
|
Kohjima M, Enjoji M, Yoshimoto T, Yada R, Fujino T, Aoyagi Y, Fukushima N, Fukuizumi K, Harada N, Yada M, Kato M, Kotoh K, Nakashima M, Sakamoto N, Tanaka Y, Nakamuta M. Add-on therapy of pitavastatin and eicosapentaenoic acid improves outcome of peginterferon plus ribavirin treatment for chronic hepatitis C. J Med Virol 2013; 85:250-260. [PMID: 23161429 DOI: 10.1002/jmv.23464] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2012] [Indexed: 12/19/2022]
Abstract
Despite the use of pegylated-interferon (peg-IFN) plus ribavirin combination therapy, many patients infected with hepatitis C virus (HCV)-1b remain HCV-positive. To determine whether addition of pitavastatin and eicosapentaenoic acid (EPA) is beneficial, the "add-on" therapy option (add-on group) was compared retrospectively with unmodified peg-IFN/ribavirin therapy (standard group). Association of host- or virus-related factors with sustained virological response was assessed. In HCV replicon cells, the effects of pitavastatin and/or EPA on HCV replication and expression of innate-immunity- and lipid-metabolism-associated genes were investigated. In patients infected with HCV-1b, sustained virological response rates were significantly higher in the add-on than standard group. In both groups, sustained virological response rates were significantly higher in patients with genotype TT of IL-28B (rs8099917) than in those with non-TT genotype. Among the patients with non-TT genotype, sustained virological response rates were markedly higher in the add-on than standard group. By multivariate analysis, genome variation of IL28B but not add-on therapy remained as a predictive factor of sustained virological response. In replicon cells, pitavastatin and EPA suppressed HCV replication. Activation of innate immunity was obvious in pitavastatin-treated cells and EPA suppressed the expression of sterol regulatory element binding protein-1c and low-density lipoprotein receptor. Addition of pitavastatin and EPA to peg-IFN/ribavirin treatment improved sustained virological response in patients infected with HCV-1b. Genotype variation of IL-28B is a strong predictive factor in add-on therapy.
Collapse
Affiliation(s)
- Motoyuki Kohjima
- Department of Gastroenterology, Kyushu Medical Center, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Vieyres G, Pietschmann T. Entry and replication of recombinant hepatitis C viruses in cell culture. Methods 2012; 59:233-48. [PMID: 23009812 DOI: 10.1016/j.ymeth.2012.09.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 08/05/2012] [Accepted: 09/13/2012] [Indexed: 12/23/2022] Open
Abstract
Hepatitis C virus (HCV) is a positive-strand enveloped RNA virus and belongs to the Flaviviridae family. The heavy health burden associated with the virus infection in humans and the intriguing peculiarities of the interaction between the HCV replication cycle and the hepatocyte host cell have stimulated a flourishing research field. The present review aims at recapitulating the different viral and cellular systems modelling HCV entry and replication, and in particular at gathering the tools available to dissect the HCV entry pathway.
Collapse
Affiliation(s)
- Gabrielle Vieyres
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; A Joint Venture Between The Medical School Hannover and The Helmholtz Centre for Infection Research, Feodor-Lynen-Straße 7-9, 30625 Hannover, Germany
| | | |
Collapse
|
19
|
Suzuki T. Morphogenesis of infectious hepatitis C virus particles. Front Microbiol 2012; 3:38. [PMID: 22347224 PMCID: PMC3273859 DOI: 10.3389/fmicb.2012.00038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 01/23/2012] [Indexed: 12/17/2022] Open
Abstract
More than 170 million individuals are currently infected with hepatitis C virus (HCV) worldwide and are at continuous risk of developing chronic liver disease. Since a cell culture system enabling relatively efficient propagation of HCV has become available, an increasing number of viral and host factors involved in HCV particle formation have been identified. Association of the viral Core, which forms the capsid with lipid droplets appears to be prerequisite for early HCV morphogenesis. Maturation and release of HCV particles is tightly linked to very-low-density lipoprotein biogenesis. Although expression of Core as well as E1 and E2 envelope proteins produces virus-like particles in heterologous expression systems, there is increasing evidence that non-structural viral proteins and p7 are also required for the production of infectious particles, suggesting that HCV genome replication and virion assembly are closely linked. Advances in our understanding of the various molecular mechanisms by which infectious HCV particles are formed are summarized.
Collapse
Affiliation(s)
- Tetsuro Suzuki
- Department of Infectious Diseases, Hamamatsu University School of Medicine Hamamatsu, Japan
| |
Collapse
|
20
|
Sainz B, Barretto N, Martin DN, Hiraga N, Imamura M, Hussain S, Marsh KA, Yu X, Chayama K, Alrefai WA, Uprichard SL. Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor. Nat Med 2012; 18:281-5. [PMID: 22231557 PMCID: PMC3530957 DOI: 10.1038/nm.2581] [Citation(s) in RCA: 351] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 10/25/2011] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) is a leading cause of liver disease worldwide. With ∼170 million individuals infected and current interferon-based treatment having toxic side effects and marginal efficacy, more effective antivirals are crucially needed. Although HCV protease inhibitors were just approved by the US Food and Drug Administration (FDA), optimal HCV therapy, analogous to HIV therapy, will probably require a combination of antivirals targeting multiple aspects of the viral lifecycle. Viral entry represents a potential multifaceted target for antiviral intervention; however, to date, FDA-approved inhibitors of HCV cell entry are unavailable. Here we show that the cellular Niemann-Pick C1-like 1 (NPC1L1) cholesterol uptake receptor is an HCV entry factor amendable to therapeutic intervention. Specifically, NPC1L1 expression is necessary for HCV infection, as silencing or antibody-mediated blocking of NPC1L1 impairs cell culture-derived HCV (HCVcc) infection initiation. In addition, the clinically available FDA-approved NPC1L1 antagonist ezetimibe potently blocks HCV uptake in vitro via a virion cholesterol-dependent step before virion-cell membrane fusion. Moreover, ezetimibe inhibits infection by all major HCV genotypes in vitro and in vivo delays the establishment of HCV genotype 1b infection in mice with human liver grafts. Thus, we have not only identified NPC1L1 as an HCV cell entry factor but also discovered a new antiviral target and potential therapeutic agent.
Collapse
Affiliation(s)
- Bruno Sainz
- Department of Medicine, University of Illinois-Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lipoprotein lipase inhibits hepatitis C virus (HCV) infection by blocking virus cell entry. PLoS One 2011; 6:e26637. [PMID: 22039521 PMCID: PMC3198807 DOI: 10.1371/journal.pone.0026637] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 09/29/2011] [Indexed: 12/12/2022] Open
Abstract
A distinctive feature of HCV is that its life cycle depends on lipoprotein metabolism. Viral morphogenesis and secretion follow the very low-density lipoprotein (VLDL) biogenesis pathway and, consequently, infectious HCV in the serum is associated with triglyceride-rich lipoproteins (TRL). Lipoprotein lipase (LPL) hydrolyzes TRL within chylomicrons and VLDL but, independently of its catalytic activity, it has a bridging activity, mediating the hepatic uptake of chylomicrons and VLDL remnants. We previously showed that exogenously added LPL increases HCV binding to hepatoma cells by acting as a bridge between virus-associated lipoproteins and cell surface heparan sulfate, while simultaneously decreasing infection levels. We show here that LPL efficiently inhibits cell infection with two HCV strains produced in hepatoma cells or in primary human hepatocytes transplanted into uPA-SCID mice with fully functional human ApoB-lipoprotein profiles. Viruses produced in vitro or in vivo were separated on iodixanol gradients into low and higher density populations, and the infection of Huh 7.5 cells by both virus populations was inhibited by LPL. The effect of LPL depended on its enzymatic activity. However, the lipase inhibitor tetrahydrolipstatin restored only a minor part of HCV infectivity, suggesting an important role of the LPL bridging function in the inhibition of infection. We followed HCV cell entry by immunoelectron microscopy with anti-envelope and anti-core antibodies. These analyses demonstrated the internalization of virus particles into hepatoma cells and their presence in intracellular vesicles and associated with lipid droplets. In the presence of LPL, HCV was retained at the cell surface. We conclude that LPL efficiently inhibits HCV infection by acting on TRL associated with HCV particles through mechanisms involving its lipolytic function, but mostly its bridging function. These mechanisms lead to immobilization of the virus at the cell surface. HCV-associated lipoproteins may therefore be a promising target for the development of new therapeutic approaches.
Collapse
|