1
|
Gupta Y, Baranwal M, Chudasama B. Immunoinformatics-Based Identification of the Conserved Immunogenic Peptides Targeting of Zika Virus Precursor Membrane Protein. Viral Immunol 2023; 36:503-519. [PMID: 37486711 DOI: 10.1089/vim.2023.0015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
Zika virus infections lead to neurological complications such as congenital Zika syndrome and Guillain-Barré syndrome. Rising Zika infections in newborns and adults have triggered the need for vaccine development. In the current study, the precursor membrane (prM) protein of the Zika virus is explored for its functional importance and design of epitopes enriched conserved peptides with the usage of different immunoinformatics approach. Phylogenetic and mutational analyses inferred that the prM protein is highly conserved. Three conserved peptides containing multiple T and B cell epitopes were designed by employing different epitope prediction algorithms. IEDB population coverage analysis of selected peptides in six different continents has shown the population coverage of 60-99.8% (class I HLA) and 80-100% (class II HLA). Molecular docking of selected peptides/epitopes was carried out with each of class I and II HLA alleles using HADDOCK. A majority of peptide-HLA complex (pHLA) have HADDOCK scores found to be comparable and more than native-HLA complex representing the good binding interaction of peptides to HLA. Molecular dynamics simulation with best docked pHLA complexes revealed that pHLA complexes are stable with RMSD <5.5Å. Current work highlights the importance of prM as a strong antigenic protein and selected peptides have the potential to elicit humoral and cell-mediated immune responses.
Collapse
Affiliation(s)
- Yogita Gupta
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Bhupendra Chudasama
- School of Physics & Materials Science, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
2
|
Chiffi G, Grandgirard D, Leib SL, Chrdle A, Růžek D. Tick-borne encephalitis: A comprehensive review of the epidemiology, virology, and clinical picture. Rev Med Virol 2023; 33:e2470. [PMID: 37392370 DOI: 10.1002/rmv.2470] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/31/2023] [Accepted: 06/12/2023] [Indexed: 07/03/2023]
Abstract
Tick-borne encephalitis virus (TBEV) is a flavivirus commonly found in at least 27 European and Asian countries. It is an emerging public health problem, with steadily increasing case numbers over recent decades. Tick-borne encephalitis virus affects between 10,000 and 15,000 patients annually. Infection occurs through the bite of an infected tick and, much less commonly, through infected milk consumption or aerosols. The TBEV genome comprises a positive-sense single-stranded RNA molecule of ∼11 kilobases. The open reading frame is > 10,000 bases long, flanked by untranslated regions (UTR), and encodes a polyprotein that is co- and post-transcriptionally processed into three structural and seven non-structural proteins. Tick-borne encephalitis virus infection results in encephalitis, often with a characteristic biphasic disease course. After a short incubation time, the viraemic phase is characterised by non-specific influenza-like symptoms. After an asymptomatic period of 2-7 days, more than half of patients show progression to a neurological phase, usually characterised by central and, rarely, peripheral nervous system symptoms. Mortality is low-around 1% of confirmed cases, depending on the viral subtype. After acute tick-borne encephalitis (TBE), a minority of patients experience long-term neurological deficits. Additionally, 40%-50% of patients develop a post-encephalitic syndrome, which significantly impairs daily activities and quality of life. Although TBEV has been described for several decades, no specific treatment exists. Much remains unknown regarding the objective assessment of long-lasting sequelae. Additional research is needed to better understand, prevent, and treat TBE. In this review, we aim to provide a comprehensive overview of the epidemiology, virology, and clinical picture of TBE.
Collapse
Affiliation(s)
- Gabriele Chiffi
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Denis Grandgirard
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stephen L Leib
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Aleš Chrdle
- Department of Infectious Diseases, Hospital Ceske Budejovice, Ceske Budejovice, Czech Republic
- Faculty of Health and Social Sciences, University of South Bohemia, Ceske Budejovice, Czech Republic
- Royal Liverpool University Hospital, Liverpool, UK
| | - Daniel Růžek
- Veterinary Research Institute, Emerging Viral Diseases, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| |
Collapse
|
3
|
Tian Z, Zhang H, Yu R, Du J, Gao S, Wang Q, Guan G, Yin H. The GTPase activity and isoprenylation of Swine GBP1 are critical for inhibiting the production of Japanese Encephalitis Virus. Vet Microbiol 2023; 284:109843. [PMID: 37540998 DOI: 10.1016/j.vetmic.2023.109843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
Japanese encephalitis virus (JEV) is a flavivirus that cause severe neurological deficits. The guanylate-binding protein 1 (GBP1) gene is an interferon-stimulated gene and exerts antiviral functions on many RNA and DNA viruses via diverse mechanisms, however, the roles and the action modes of GBP1 in the antiviral effect on the production of JEV RNA and infectious virions remain to be clarified. In this study, we found that the RNA levels of swine GBP1 (sGBP1) in PK15 cells were up-regulated at the late stage of JEV infection. The overexpression of sGBP1 significantly inhibited the production of JEV while the knockdown of sGBP1 promoted the production of JEV. The GTPase activity and isoprenylation of sGBP1 both are critical for anti-JEV activity. The GTPase activity of sGBP1 is responsible for inhibiting the production of JEV genomic RNA. The isoprenylation of sGBP1 inhibited the expression and cleavage of JEV prM to decrease the yields of infectious virions, which may be associated with the interaction between sGBP1 and cellular proprotein convertase furin. Taken together, the study dissected the action modes of sGBP1with potent anti-JEV activity in more details.
Collapse
Affiliation(s)
- Zhancheng Tian
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China.
| | - Hongge Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Ruiming Yu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Junzheng Du
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Shandian Gao
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Qiongjie Wang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| |
Collapse
|
4
|
Leiva S, Bugnon Valdano M, Gardiol D. Unravelling the epidemiological diversity of Zika virus by analyzing key protein variations. Arch Virol 2023; 168:115. [PMID: 36943525 DOI: 10.1007/s00705-023-05726-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/19/2023] [Indexed: 03/23/2023]
Abstract
The consequences of Zika virus (ZIKV) infections were limited to sporadic mild diseases until almost a decade ago, when epidemic outbreaks took place, with quick spread into the Americas. Simultaneously, novel severe neurological manifestations of ZIKV infections were identified, including congenital microcephaly. However, why the epidemic strains behave differently is not yet completely understood, and many questions remain about the actual significance of genetic variations in the epidemiology and biology of ZIKV. In this study, we analysed a large number of viral sequences to identify genes with different levels of variability and patterns of genomic variations that could be associated with ZIKV diversity. We compared numerous epidemic strains with pre-epidemic strains, using the BWA-mem algorithm, and we also examined specific variations among the epidemic ZIKV strains derived from microcephaly cases. We identified several viral genes with dissimilar mutation rates among the ZIKV strain groups and novel protein variation profiles that might be associated with epidemiological particularities. Finally, we assessed the impact of the detected changes on the structure and stability of the NS1, NS5, and E proteins using the I-TASSER, trRosetta, and RaptorX modelling algorithms, and we found some interesting variations that might help to explain the heterogeneous features of the diverse ZIKA strains. This work contributes to the identification of genetic differences in the ZIKV genome that might have a phenotypic impact, providing a basis for future experimental analysis to elucidate the genetic causes of the recent ZIKV emergency.
Collapse
Affiliation(s)
- Santiago Leiva
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario-CONICET, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Marina Bugnon Valdano
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario-CONICET, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| | - Daniela Gardiol
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario-CONICET, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
5
|
Sui L, Zhao Y, Wang W, Chi H, Tian T, Wu P, Zhang J, Zhao Y, Wei ZK, Hou Z, Zhou G, Wang G, Wang Z, Liu Q. Flavivirus prM interacts with MDA5 and MAVS to inhibit RLR antiviral signaling. Cell Biosci 2023; 13:9. [PMID: 36639652 PMCID: PMC9837762 DOI: 10.1186/s13578-023-00957-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Vector-borne flaviviruses, including tick-borne encephalitis virus (TBEV), Zika virus (ZIKV), West Nile virus (WNV), yellow fever virus (YFV), dengue virus (DENV), and Japanese encephalitis virus (JEV), pose a growing threat to public health worldwide, and have evolved complex mechanisms to overcome host antiviral innate immunity. However, the underlying mechanisms of flavivirus structural proteins to evade host immune response remain elusive. RESULTS We showed that TBEV structural protein, pre-membrane (prM) protein, could inhibit type I interferon (IFN-I) production. Mechanically, TBEV prM interacted with both MDA5 and MAVS and interfered with the formation of MDA5-MAVS complex, thereby impeding the nuclear translocation and dimerization of IRF3 to inhibit RLR antiviral signaling. ZIKV and WNV prM was also demonstrated to interact with both MDA5 and MAVS, while dengue virus serotype 2 (DENV2) and YFV prM associated only with MDA5 or MAVS to suppress IFN-I production. In contrast, JEV prM could not suppress IFN-I production. Overexpression of TBEV and ZIKV prM significantly promoted the replication of TBEV and Sendai virus. CONCLUSION Our findings reveal the immune evasion mechanisms of flavivirus prM, which may contribute to understanding flavivirus pathogenicity, therapeutic intervention and vaccine development.
Collapse
Affiliation(s)
- Liyan Sui
- grid.430605.40000 0004 1758 4110Department of Infectious Diseases and Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Key Laboratory of Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yinghua Zhao
- grid.430605.40000 0004 1758 4110Department of Infectious Diseases and Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Key Laboratory of Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Wenfang Wang
- grid.64924.3d0000 0004 1760 5735College of Basic Medical Science, Jilin University, Changchun, China
| | - Hongmiao Chi
- grid.64924.3d0000 0004 1760 5735College of Basic Medical Science, Jilin University, Changchun, China
| | - Tian Tian
- grid.64924.3d0000 0004 1760 5735College of Basic Medical Science, Jilin University, Changchun, China
| | - Ping Wu
- grid.412246.70000 0004 1789 9091College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Jinlong Zhang
- grid.430605.40000 0004 1758 4110Department of Infectious Diseases and Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Key Laboratory of Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yicheng Zhao
- grid.430605.40000 0004 1758 4110Department of Infectious Diseases and Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Key Laboratory of Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Zheng-Kai Wei
- grid.443369.f0000 0001 2331 8060School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Zhijun Hou
- grid.412246.70000 0004 1789 9091College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Guoqiang Zhou
- grid.482450.f0000 0004 8514 6702The Biological safety level-3 Laboratory, Changchun Institute of Biological Products Co., Ltd, Changchun, China
| | - Guoqing Wang
- grid.64924.3d0000 0004 1760 5735College of Basic Medical Science, Jilin University, Changchun, China
| | - Zedong Wang
- grid.430605.40000 0004 1758 4110Department of Infectious Diseases and Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Key Laboratory of Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Quan Liu
- grid.430605.40000 0004 1758 4110Department of Infectious Diseases and Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Key Laboratory of Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China ,grid.443369.f0000 0001 2331 8060School of Life Sciences and Engineering, Foshan University, Foshan, China
| |
Collapse
|
6
|
Dong S, Xiao MZX, Liang Q. Modulation of cellular machineries by Zika virus-encoded proteins. J Med Virol 2023; 95:e28243. [PMID: 36262094 DOI: 10.1002/jmv.28243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 01/11/2023]
Abstract
The strain of Zika virus (ZIKV) that circulated during the 2015 epidemic in Brazil has been associated with more than 2000 cases of microcephaly from September 2015 through November 2016. The viral genome determines the biology and pathogenesis of a virus and the virus employs its own gene products to evade host immune surveillance, manipulate cellular machineries, and establish efficient replication. Therefore, understanding the functions of virus-encoded protein not only aids the knowledge of ZIKV biology but also guides the development of anti-ZIKV drugs. In this review, we focus on 10 proteins encoded by ZIKV and summarize their functions in ZIKV replication and pathogenesis according to studies published in the past 6 years.
Collapse
Affiliation(s)
- Shupeng Dong
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maggie Z X Xiao
- Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Qiming Liang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Increased Cleavage of Japanese Encephalitis Virus prM Protein Promotes Viral Replication but Attenuates Virulence. Microbiol Spectr 2022; 10:e0141722. [PMID: 35695552 PMCID: PMC9241796 DOI: 10.1128/spectrum.01417-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In flavivirus, the furin-mediated cleavage of prM is mandatory to produce infectious particles, and the immature particles containing uncleaved prM cannot undergo membrane fusion and release to the extracellular environment. However, the detailed relationship between viral replication or pathogenicity and furin in Japanese encephalitis virus (JEV) hasn't been clarified. Here, JEV with the mutations in furin cleavage sites and its nearby were constructed. Compared with WT virus, the mutant virus showed enhanced cleavage efficiency of prM protein and increased replication ability. Furthermore, we found that the mutations mainly promote genomic replication and assembly of JEV. However, the mutant formed smaller plaques than WT virus in plaque forming assay, indicating the lower cytopathogenicity of mutant virus. To assess the virulence of JEV mutant, an in vivo assay was performed using a mouse model. A higher survival rate and attenuated neuroinflammation were observed in JEV mutant-infected mice than those of WT-infected mice, suggesting the cleavage of prM by furin was closely related to viral virulence. These findings will provide new understanding on JEV pathogenesis and contribute to the development of novel JEV vaccines. IMPORTANCE Japanese encephalitis virus (JEV) is the leading cause of viral encephalitis epidemics in Southeast Asia, affecting mostly children, with high morbidity and mortality. During the viral maturation process, prM is cleaved into M by the cellular endoprotease furin in the acidic secretory system. After cleavage of the prM protein, mature virions are exocytosed. Here, the mutant in furin cleavage sites and its nearby was constructed, and the results showed that the mutant virus with enhanced replication mainly occurred in the process of genomic replication and assembly. Meanwhile, the mutant showed an attenuated virulence than WT virus in vivo. Our study contributes to understanding the function of prM and M proteins and provides new clues for live vaccine designation for JEV.
Collapse
|
8
|
S AH, Pujar GV, Sethu AK, Bhagyalalitha M, Singh M. Dengue structural proteins as antiviral drug targets: Current status in the drug discovery & development. Eur J Med Chem 2021; 221:113527. [PMID: 34020338 DOI: 10.1016/j.ejmech.2021.113527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/30/2021] [Accepted: 04/20/2021] [Indexed: 01/04/2023]
Abstract
Dengue virus belongs to the class of RNA viruses and subclass of enveloped single-stranded positive-sense RNA virus. It causes dengue fever (DF), dengue hemorrhagic fever (DHF), or dengue shock syndrome (DSS), where DHF and DSS are life-threatening. Even though dengue is an age-old disease, it is still a mystery and continues to be a global threat. Numerous attempts have been carried out in the past few decades to eradicate the virus through vaccine and antiviral drugs, but still battle continues. In this review, the possible drug targets for discovery and development of potential antiviral drugs against structural proteins of dengue virus, the current development status of the antiviral drugs against dengue around the world, and challenges that need to be addressed to overcome the shortcomings in the process of drug discovery have been discussed.
Collapse
Affiliation(s)
- Akshatha H S
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| | - Gurubasavaraj V Pujar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India.
| | - Arun Kumar Sethu
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| | - Meduri Bhagyalalitha
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| | - Manisha Singh
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| |
Collapse
|
9
|
Blasdell KR, Wynne JW, Perera D, Firth C. First detection of a novel 'unknown host' flavivirus in a Malaysian rodent. Access Microbiol 2021; 3:000223. [PMID: 34151174 PMCID: PMC8208762 DOI: 10.1099/acmi.0.000223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/22/2021] [Indexed: 11/18/2022] Open
Abstract
Current phylogenetic analysis of the flavivirus genus has identified a group of mosquito-borne viruses for which the vertebrate hosts are currently unknown. Here we report the identification of a novel member of this group from a peridomestic rodent species (Sundamys muelleri) collected in Sarawak, Malaysia in 2016. We propose to name this novel flavivirus Batu Kawa virus after the location in which it was identified, with the abbreviation BKWV. Characterization of the BKWV genome allowed identification of putative mature peptides, potential enzyme motifs and conserved structural elements. Phylogenetic analysis found BKWV to be most closely related to Nhumirim virus (from Brazil) and Barkedji virus (from Senegal and Israel). Both of these viruses have been identified in Culex mosquitoes and belong to a group of viruses with unknown vertebrate hosts. This is the first known report of a member of this group of viruses from a potential mammalian host.
Collapse
Affiliation(s)
- Kim R Blasdell
- Health and Biosecurity Business Unit, Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia
| | - James W Wynne
- Agriculture and Food Business Unit, Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, Australia
| | - David Perera
- The Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Cadhla Firth
- Health and Biosecurity Business Unit, Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia.,Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| |
Collapse
|
10
|
Zika M Oligopeptide ZAMP Confers Cell Death-Promoting Capability to a Soluble Tumor-Associated Antigen through Caspase-3/7 Activation. Int J Mol Sci 2020; 21:ijms21249578. [PMID: 33339164 PMCID: PMC7765671 DOI: 10.3390/ijms21249578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022] Open
Abstract
Mosquito-borne Zika virus (ZIKV) is an emerging flavivirus of medical concern associated with neurological disorders. ZIKV utilizes apoptosis as a mechanism of cell killing. The structural M protein may play a role in flavivirus-induced apoptosis. The death-promoting capability of M has been restricted to an oligopeptide representing the residues M-32/40. Here, we evaluated the apoptosis inducing ability of the residues M-31/41 of ZIKV. The ZIKV M oligopeptide was associated to a soluble form of GFP (sGFP) and the resulting sGFP-M31/41 construct was assessed in Huh7 cells. Expression of sGFP-M31/41 can trigger apoptosis in Huh7 cells through caspase-3/7 activation. The translocation of sGFP-M31/41 in the endoplasmic reticulum was a prerequisite for apoptosis induction. The residues M-33/35/38 may play a critical role in the death-promoting activity of sGFP-M31/41. The effect of ZIKV M oligopeptide defined as ZAMP (for Zika Apoptosis M Peptide) on expression of a tumor-associated antigen was assayed on megakaryocyte-potentiating factor (MPF). Expression of MPF-ZAMP construct resulted in caspase-associated apoptosis activation in A549 and Huh7 cells. ZIKV has been proposed as an oncolytic virus for cancer therapy. The ability of the Zika M oligopeptide to confer death-promoting capability to MPF opens up attractive perspectives for ZAMP as an innovative anticancer agent.
Collapse
|
11
|
Adaptation of a live-attenuated genotype I Japanese encephalitis virus to vero cells is associated with mutations in structural protein genes. Virus Res 2020; 292:198256. [PMID: 33285172 DOI: 10.1016/j.virusres.2020.198256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 11/24/2022]
Abstract
The SD12-F120 is a live-attenuated genotype I strain of Japanese encephalitis virus (JEV) and was obtained by serial passage of wild-type strain SD12 on BHK-21 cells combined with multiple plaque purification and virulence selection in mice. The large scale production and vast clinical trials always demand ideal safety and efficacy profile of live-attenuated vaccines. In the present study, SD12-F120VC has undergone serial passaging of P1-P30 in WHO qualified Vero cells to assess the potential effect of adaptation to growth on Vero cells. The series of experiments showed that vaccine SD12-F120VC (Vero cell adapted) variants have consistently increased in peak virus titer compared to early passages and have good adaptation to growth in Vero cells. The animal experiments showed that Vero cell adapted SD12-F120VC variants have attenuation phenotype in suckling mice and the plaque morphology for all SD12-F120VC variants was small. Vaccination of mice with SD12-F120VC vaccine produced complete protection for homologous SD12 genotype I strain, but failed to give the complete protection of vaccinated mice against the challenge of heterologous N28 genotype III strain. In response to immunization of SD12-F120VC in mice, the neutralizing antibodies titer against homologous SD12-F120VC and SD12 (GI) was higher than heterologous N28 (GIII) strain. The prM protein has 6 amino acid substitutions, of which 5 amino acid changes were confined at the start of the pr domain in the ∼40 amino acids, and some mutations in the pr domain of prM might contribute to Vero cell adaptation. Our findings in this study are important for validation, evaluation and quality control study of live attenuated flaviviruses vaccines and show that Vero cells are a suitable substrate for the production of a safe and stable live-attenuated JEV vaccine.
Collapse
|
12
|
Abstract
The flavivirus genus encompasses more than 75 unique viruses, including dengue virus which accounts for almost 390 million global infections annually. Flavivirus infection can result in a myriad of symptoms ranging from mild rash and flu-like symptoms, to severe encephalitis and even hemorrhagic fever. Efforts to combat the impact of these viruses have been hindered due to limited antiviral drug and vaccine development. However, the advancement of knowledge in the structural biology of flaviviruses over the last 25 years has produced unique perspectives for the identification of potential therapeutic targets. With particular emphasis on the assembly and maturation stages of the flavivirus life cycle, it is the goal of this review to comparatively analyze the structural similarities between flaviviruses to provide avenues for new research and innovation.
Collapse
Affiliation(s)
- Conrrad M R Nicholls
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Madhumati Sevvana
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States; Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
13
|
Nambala P, Yu WY, Lo YC, Lin CW, Su WC. Ubiquitination of Zika virus precursor membrane protein promotes the release of viral proteins. Virus Res 2020; 286:198065. [DOI: 10.1016/j.virusres.2020.198065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 01/22/2023]
|
14
|
Decanoyl-Arg-Val-Lys-Arg-Chloromethylketone: An Antiviral Compound That Acts against Flaviviruses through the Inhibition of Furin-Mediated prM Cleavage. Viruses 2019; 11:v11111011. [PMID: 31683742 PMCID: PMC6893617 DOI: 10.3390/v11111011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 01/04/2023] Open
Abstract
Flaviviruses, such as Zika virus (ZIKV), Japanese encephalitis virus (JEV), Dengue virus (DENV), and West Nile virus (WNV), are important arthropod-borne pathogens that present an immense global health problem. Their unpredictable disease severity, unusual clinical features, and severe neurological manifestations underscore an urgent need for antiviral interventions. Furin, a host proprotein convertase, is a key contender in processing flavivirus prM protein to M protein, turning the inert virus to an infectious particle. For this reason, the current study was planned to evaluate the antiviral activity of decanoyl-Arg-Val-Lys-Arg-chloromethylketone, a specific furin inhibitor, against flaviviruses, including ZIKV and JEV. Analysis of viral proteins revealed a significant increase in the prM/E index of ZIKV or JEV in dec-RVKR-cmk-treated Vero cells compared to DMSO-treated control cells, indicating dec-RVKR-cmk inhibits prM cleavage. Plaque assay, qRT-PCR, and immunofluorescence assay revealed a strong antiviral activity of dec-RVKR-cmk against ZIKV and JEV in terms of the reduction in virus progeny titer and in viral RNA and protein production in both mammalian cells and mosquito cells. Time-of-drug addition assay revealed that the maximum reduction of virus titer was observed in post-infection treatment. Furthermore, our results showed that dec-RVKR-cmk exerts its inhibitory action on the virus release and next round infectivity but not on viral RNA replication. Taken together, our study highlights an interesting antiviral activity of dec-RVKR-cmk against flaviviruses.
Collapse
|
15
|
Simón D, Fajardo A, Moreno P, Moratorio G, Cristina J. An Evolutionary Insight into Zika Virus Strains Isolated in the Latin American Region. Viruses 2018; 10:v10120698. [PMID: 30544785 PMCID: PMC6316622 DOI: 10.3390/v10120698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 02/04/2023] Open
Abstract
Zika virus (ZIKV) is an emerging pathogen member of the Flaviviridae family. ZIKV has spread rapidly in the Latin American region, causing hundreds of thousands of cases of ZIKV disease, as well as microcephaly in congenital infections. Detailed studies on the pattern of evolution of ZIKV strains have been extremely important to our understanding of viral survival, fitness, and evasion of the host’s immune system. For these reasons, we performed a comprehensive phylogenetic analysis of ZIKV strains recently isolated in the Americas. The results of these studies revealed evidence of diversification of ZIKV strains circulating in the Latin American region into at least five different genetic clusters. This diversification was also reflected in the different trends in dinucleotide bias and codon usage variation. Amino acid substitutions were found in E and prM proteins of the ZIKV strains isolated in this region, revealing the presence of novel genetic variants circulating in Latin America.
Collapse
Affiliation(s)
- Diego Simón
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
- Laboratorio de Organización y Evolución del Genoma, Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
| | - Alvaro Fajardo
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
| | - Pilar Moreno
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
| | - Gonzalo Moratorio
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay.
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
| |
Collapse
|
16
|
Nambala P, Su WC. Role of Zika Virus prM Protein in Viral Pathogenicity and Use in Vaccine Development. Front Microbiol 2018; 9:1797. [PMID: 30116235 PMCID: PMC6083217 DOI: 10.3389/fmicb.2018.01797] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/17/2018] [Indexed: 01/07/2023] Open
Abstract
Recent Zika virus (ZIKV) epidemics necessitate the urgent development of effective drugs and vaccines, which can be accelerated by an enhanced understanding of ZIKV biology. One of the ZIKV structural proteins, precursor membrane (prM), plays an important role in the assembly of mature virions through cleavage of prM into M protein. Recent studies have suggested that prM protein might be implicated in the neurovirulence of ZIKV. Most vaccines targeting ZIKV include prM as the immunogen. Here, we review progress in our understanding of ZIKV prM protein and its application in ZIKV vaccine development.
Collapse
Affiliation(s)
- Peter Nambala
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Wen-Chi Su
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan,Research Center for Emerging Viruses, China Medical University Hospital, Taichung, Taiwan,*Correspondence: Wen-Chi Su,
| |
Collapse
|
17
|
Bos S, Viranaicken W, Turpin J, El-Kalamouni C, Roche M, Krejbich-Trotot P, Desprès P, Gadea G. The structural proteins of epidemic and historical strains of Zika virus differ in their ability to initiate viral infection in human host cells. Virology 2018; 516:265-273. [PMID: 29395111 DOI: 10.1016/j.virol.2017.12.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 11/30/2022]
Abstract
Mosquito-borne Zika virus (ZIKV) recently emerged in South Pacific islands and Americas where large epidemics were documented. In the present study, we investigated the contribution of the structural proteins C, prM and E in the permissiveness of human host cells to epidemic strains of ZIKV. To this end, we evaluated the capacity of the epidemic strain BeH819015 to infect epithelial A549 and neuronal SH-SY5Y cells in comparison to the African historical MR766 strain. For that purpose, we generated a molecular clone of BeH819015 and a chimeric clone of MR766 which contains the BeH819015 structural protein region. We showed that ZIKV containing BeH819015 structural proteins was much less efficient in cell-attachment leading to a reduced susceptibility of A549 and SH-SY5Y cells to viral infection. Our data illustrate a previously underrated role for C, prM, and E in ZIKV epidemic strain ability to initiate viral infection in human host cells.
Collapse
Affiliation(s)
- Sandra Bos
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France
| | - Wildriss Viranaicken
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France
| | - Jonathan Turpin
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France
| | - Chaker El-Kalamouni
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France
| | - Marjolaine Roche
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France
| | - Pascale Krejbich-Trotot
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France
| | - Philippe Desprès
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France.
| | - Gilles Gadea
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France.
| |
Collapse
|
18
|
Sasaki M, Anindita PD, Phongphaew W, Carr M, Kobayashi S, Orba Y, Sawa H. Development of a rapid and quantitative method for the analysis of viral entry and release using a NanoLuc luciferase complementation assay. Virus Res 2017; 243:69-74. [PMID: 29074234 DOI: 10.1016/j.virusres.2017.10.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/06/2017] [Accepted: 10/20/2017] [Indexed: 11/24/2022]
Abstract
Subviral particles (SVPs) self-assemble and are released from cells transfected with expression plasmids encoding flavivirus structural proteins. Flavivirus-like particles (VLPs), consisting of flavivirus structural proteins and a subgenomic replicon, can enter cells and cause single-round infections. Neither SVPs or VLPs possess complete viral RNA genomes, therefore are replication-incompetent systems; however, they retain the capacity to fuse and bud from target cells and follow the same maturation process as whole virions. SVPs and VLPs have been previously employed in studies analyzing entry and release steps of viral life cycles. In this study, we have developed quantitative methods for the detection of cellular entry and release of SVPs and VLPs by applying a luciferase complementation assay based on the high affinity interaction between the split NanoLuc luciferase protein, LgBiT and the small peptide, HiBiT. We introduced HiBiT into the structural protein of West Nile virus and generated SVPs and VLPs harboring HiBiT (SVP-HiBiT and VLP-HiBiT, respectively). As SVP-HiBiT emitted strong luminescence upon exposure to LgBiT and its substrate, the nascently budded SVP-HiBiT in the supernatant was readily quantified by luminometry. Similarly, the cellular entry of VLP-HiBiT generated luminescence when VLP-HiBiT was infected into LgBiT-expressing cells. These methods utilizing SVP-HiBiT and VLP-HiBiT will facilitate research into life cycles of flaviviruses, including WNV.
Collapse
Affiliation(s)
- Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Paulina D Anindita
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Wallaya Phongphaew
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Michael Carr
- Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0020, Japan; National Virus Reference Laboratory, University College of Dublin, Dublin 4, Ireland
| | - Shintaro Kobayashi
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0020, Japan; Global Virus Network, Baltimore, MD 21201, USA.
| |
Collapse
|
19
|
Huang X, Shi T, Mo K, Wang D, Peng X, Liao M, Zhou J. Monoclonal Antibody Against Premembrane Viral Protein of Avian Tembusu Virus. Monoclon Antib Immunodiagn Immunother 2017; 36:57-61. [PMID: 28409665 DOI: 10.1089/mab.2016.0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Premembrane (prM) is a viral protein of flavivirus, which is important for the generation of infectious virion and for virus infection to the host. However, the biological properties and function of the prM of Avian Tembusu virus (ATMUV) have scarcely been studied to date. Monoclonal antibodies (mAbs) are a powerful tool for functional analysis of viral protein. To produce a mAb against prM protein of ATMUV, the prM gene sequence was amplified by reverse transcription polymerase chain reaction (RT-PCR) and cloned into the prokaryotic expression vector pET-28a (+). The recombinant prM protein was successfully expressed in BL21 (DE3). Using the purified prM as immunogen in mice, three hybridoma cells secreting mAbs against prM protein were obtained. These mAbs showed a strong reaction with ATMUV-infected DF-1 cells and pEGFP-C3-prM transfected 293-T cells in both Western blotting analysis and immunofluorescence assay. The mAbs developed in this study will be useful tools for analysis of the prM protein functions on ATMUV infection and the interaction between prM and its host molecules.
Collapse
Affiliation(s)
- Xiaozhi Huang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University , Hangzhou, China
| | - Tingting Shi
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University , Hangzhou, China
| | - Kaikun Mo
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University , Hangzhou, China
| | - Dandan Wang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University , Hangzhou, China
| | - Xing Peng
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University , Hangzhou, China
| | - Min Liao
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University , Hangzhou, China
| | - Jiyong Zhou
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University , Hangzhou, China
| |
Collapse
|
20
|
Madani TA, Abuelzein ETME, Jalalah SM, Abu-Araki H, Azhar EI, Hassan AM, Al-Bar HMS. Electron Microscopy of Alkhumra Hemorrhagic Fever Virus. Vector Borne Zoonotic Dis 2017; 17:195-199. [PMID: 28051359 DOI: 10.1089/vbz.2016.2064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Alkhumra hemorrhagic fever virus (AHFV) is a newly described zoonotic flavivirus that was first isolated during 1994-1995 from the Alkhumra district south of Jeddah, Saudi Arabia. Subsequently, the virus was also isolated from Makkah city (2001-2003) and Najran (2008-2009), Saudi Arabia. The virus causes acute febrile illness with hepatitis, hemorrhagic manifestations, and encephalitis. A case fatality rate of 25% was reported among hospitalized patients. Although several biological and molecular characteristics of the virus have been published, no data are available on electron microscopic features of the virus. In this article, we describe the morphological features and metrics of the AHFV particles under electron microscopy, and localization of the virus particles in brain cells of newborn Wistar rats and in Rhesus monkey (Macaca mulatta) kidney epithelial cells (LLC-MK2). Virus particles in both the LLC-MK2 cells and the rat brain cells showed dark hexagonal core (capsid) and a translucent envelope. The mean diameter of the enveloped virus particle was 40.59 ± 1.29 nm in the rat brain cells (n = 154) and 40.97 ± 1.40 nm in the LLC-MK2 cells (n = 105; p > 0.05). The virus particles, both in vitro and in vivo, were enclosed into cytoplasmic vesicles. In conclusion, the shape, size, and diameter of the AHFV particle lie within the framework of the genus Flavivirus, family Flaviviridae.
Collapse
Affiliation(s)
- Tariq A Madani
- 1 Department of Medicine, Faculty of Medicine, King Abdulaziz University , Jeddah, Saudi Arabia .,2 The Scientific Chair of Sheikh Mohammad Hussein Al-Amoudi for Viral Hemorrhagic Fever, King Abdulaziz University , Jeddah, Saudi Arabia
| | - El-Tayb M E Abuelzein
- 2 The Scientific Chair of Sheikh Mohammad Hussein Al-Amoudi for Viral Hemorrhagic Fever, King Abdulaziz University , Jeddah, Saudi Arabia .,3 Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University , Jeddah, Saudi Arabia
| | - Sawsan M Jalalah
- 4 Department of Pathology, Faculty of Medicine, King Abdulaziz University , Jeddah, Saudi Arabia
| | - Huda Abu-Araki
- 2 The Scientific Chair of Sheikh Mohammad Hussein Al-Amoudi for Viral Hemorrhagic Fever, King Abdulaziz University , Jeddah, Saudi Arabia .,5 Laboratory Animals Unit, King Fahd Medical Research Center, King Abdulaziz University , Jeddah, Saudi Arabia
| | - Esam I Azhar
- 2 The Scientific Chair of Sheikh Mohammad Hussein Al-Amoudi for Viral Hemorrhagic Fever, King Abdulaziz University , Jeddah, Saudi Arabia .,3 Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University , Jeddah, Saudi Arabia .,6 Department of Medical Laboratory Technology, Faculty of Applied Medical Science, King Abdulaziz University , Jeddah, Saudi Arabia
| | - Ahmed M Hassan
- 2 The Scientific Chair of Sheikh Mohammad Hussein Al-Amoudi for Viral Hemorrhagic Fever, King Abdulaziz University , Jeddah, Saudi Arabia .,3 Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University , Jeddah, Saudi Arabia
| | - Hussein M S Al-Bar
- 2 The Scientific Chair of Sheikh Mohammad Hussein Al-Amoudi for Viral Hemorrhagic Fever, King Abdulaziz University , Jeddah, Saudi Arabia .,7 Department of Family and Community Medicine, Faculty of Medicine, King Abdulaziz University , Jeddah, Saudi Arabia
| |
Collapse
|
21
|
A Single Amino Acid Substitution in the M Protein Attenuates Japanese Encephalitis Virus in Mammalian Hosts. J Virol 2015; 90:2676-89. [PMID: 26656690 DOI: 10.1128/jvi.01176-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 11/30/2015] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED Japanese encephalitis virus (JEV) membrane (M) protein plays important structural roles in the processes of fusion and maturation of progeny virus during cellular infection. The M protein is anchored in the viral membrane, and its ectodomain is composed of a flexible N-terminal loop and a perimembrane helix. In this study, we performed site-directed mutagenesis on residue 36 of JEV M protein and showed that the resulting mutation had little or no effect on the entry process but greatly affected virus assembly in mammalian cells. Interestingly, this mutant virus had a host-dependent phenotype and could develop a wild-type infection in insect cells. Experiments performed on infectious virus as well as in a virus-like particle (VLP) system indicate that the JEV mutant expresses structural proteins but fails to form infectious particles in mammalian cells. Using a mouse model for JEV pathogenesis, we showed that the mutation conferred complete attenuation in vivo. The production of JEV neutralizing antibodies in challenged mice was indicative of the immunogenicity of the mutant virus in vivo. Together, our results indicate that the introduction of a single mutation in the M protein, while being tolerated in insect cells, strongly impacts JEV infection in mammalian hosts. IMPORTANCE JEV is a mosquito-transmitted flavivirus and is a medically important pathogen in Asia. The M protein is thought to be important for accommodating the structural rearrangements undergone by the virion during viral assembly and may play additional roles in the JEV infectious cycle. In the present study, we show that a sole mutation in the M protein impairs the JEV infection cycle in mammalian hosts but not in mosquito cells. This finding highlights differences in flavivirus assembly pathways among hosts. Moreover, infection of mice indicated that the mutant was completely attenuated and triggered a strong immune response to JEV, thus providing new insights for further development of JEV vaccines.
Collapse
|
22
|
Williams DT, Diviney SM, Niazi AUR, Durr PA, Chua BH, Herring B, Pyke A, Doggett SL, Johansen CA, Mackenzie JS. The Molecular Epidemiology and Evolution of Murray Valley Encephalitis Virus: Recent Emergence of Distinct Sub-lineages of the Dominant Genotype 1. PLoS Negl Trop Dis 2015; 9:e0004240. [PMID: 26600318 PMCID: PMC4657991 DOI: 10.1371/journal.pntd.0004240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/26/2015] [Indexed: 12/14/2022] Open
Abstract
Background Recent increased activity of the mosquito-borne Murray Valley encephalitis virus (MVEV) in Australia has renewed concerns regarding its potential to spread and cause disease. Methodology/Principal Findings To better understand the genetic relationships between earlier and more recent circulating strains, patterns of virus movement, as well as the molecular basis of MVEV evolution, complete pre-membrane (prM) and Envelope (Env) genes were sequenced from sixty-six MVEV strains from different regions of the Australasian region, isolated over a sixty year period (1951–2011). Phylogenetic analyses indicated that, of the four recognized genotypes, only G1 and G2 are contemporary. G1 viruses were dominant over the sampling period and found across the known geographic range of MVEV. Two distinct sub-lineages of G1 were observed (1A and 1B). Although G1B strains have been isolated from across mainland Australia, Australian G1A strains have not been detected outside northwest Australia. Similarly, G2 is comprised of only Western Australian isolates from mosquitoes, suggesting G1B and G2 viruses have geographic or ecological restrictions. No evidence of recombination was found and a single amino acid substitution in the Env protein (S332G) was found to be under positive selection, while several others were found to be under directional evolution. Evolutionary analyses indicated that extant genotypes of MVEV began to diverge from a common ancestor approximately 200 years ago. G2 was the first genotype to diverge, followed by G3 and G4, and finally G1, from which subtypes G1A and G1B diverged between 1964 and 1994. Conclusions/Significance The results of this study provides new insights into the genetic diversity and evolution of MVEV. The demonstration of co-circulation of all contemporary genetic lineages of MVEV in northwestern Australia, supports the contention that this region is the enzootic focus for this virus. Murray Valley encephalitis virus is the most significant cause of mosquito-borne encephalitis in humans in Australia, and can also cause neurological disease in horses. This study reports an expanded phylogenetic study of this virus and the first molecular evolutionary analysis. Of the four recognized genotypes of Murray Valley encephalitis virus, only two were found to be actively circulating (genotypes 1 and 2), and genotype 1 was dominant. Distinct genetic sub-lineages within genotype 1 were found to have recently emerged. Molecular clock analysis indicated that genotype 2 viruses are the oldest genetic lineage while genotype 1 viruses are the most recent to diverge. The co-circulation of distinct genetic lineages of this virus in northwestern Australia, comprising the oldest and youngest lineages, supports previous findings that MVEV circulates endemically in this region.
Collapse
Affiliation(s)
- David T. Williams
- CSIRO, Australian Animal Health Laboratory, Geelong, Victoria, Australia
- * E-mail: (DW); (SMD)
| | - Sinéad M. Diviney
- Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
- * E-mail: (DW); (SMD)
| | - Aziz-ur-Rahman Niazi
- Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| | - Peter A. Durr
- CSIRO, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Beng Hooi Chua
- Office of Research and Development, Curtin University, Perth, Western Australia, Australia
| | - Belinda Herring
- Infectious Diseases and Immunology, University of Sydney, New South Wales, Australia
| | - Alyssa Pyke
- Public Health Virology, Queensland Health Forensic and Scientific Services, Coopers Plains, Queensland, Australia
| | - Stephen L. Doggett
- Department of Medical Entomology, Westmead Hospital, University of Sydney and Institute for Clinical Pathology and Medical Research, New South Wales, Australia
| | - Cheryl A. Johansen
- Arbovirus Surveillance and Research Laboratory, School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - John S. Mackenzie
- Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
23
|
Suphatrakul A, Yasanga T, Keelapang P, Sriburi R, Roytrakul T, Pulmanausahakul R, Utaipat U, Kawilapan Y, Puttikhunt C, Kasinrerk W, Yoksan S, Auewarakul P, Malasit P, Charoensri N, Sittisombut N. Generation and preclinical immunogenicity study of dengue type 2 virus-like particles derived from stably transfected mosquito cells. Vaccine 2015; 33:5613-5622. [PMID: 26382602 DOI: 10.1016/j.vaccine.2015.08.090] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/02/2015] [Accepted: 08/30/2015] [Indexed: 10/23/2022]
Abstract
Recent phase IIb/III trials of a tetravalent live attenuated vaccine candidate revealed a need for improvement in the stimulation of protective immunity against diseases caused by dengue type 2 virus (DENV-2). Our attempts to develop particulate antigens for possibly supplementing live attenuated virus preparation involve generation and purification of recombinant DENV-2 virus-like particles (VLPs) derived from stably (prM+E)-expressing mosquito cells. Two VLP preparations generated with either negligible or enhanced prM cleavage exhibited different proportions of spherical particles and tubular particles of variable lengths. In BALB/c mice, VLPs were moderately immunogenic, requiring adjuvants for the induction of strong virus neutralizing antibody responses. VLPs with enhanced prM cleavage induced higher levels of neutralizing antibody than those without, but the stimulatory activity of both VLPs was similar in the presence of adjuvants. Comparison of EDIII-binding antibodies in mice following two adjuvanted doses of these VLPs revealed subtle differences in the stimulation of anti-EDIII binding antibodies. In cynomolgus macaques, VLPs with enhanced prM cleavage augmented strongly neutralizing antibody and EDIII-binding antibody responses in live attenuated virus-primed recipients, suggesting that these DENV-2 VLPs may be useful as the boosting antigen in prime-boost immunization. As the levels of neutralizing antibody induced in macaques with the prime-boost immunization were comparable to those infected with wild type virus, this virus-prime VLP-boost regimen may provide an immunization platform in which a need for robust neutralizing antibody response in the protection against DENV-2-associated illnesses could be tested.
Collapse
Affiliation(s)
- Amporn Suphatrakul
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand
| | - Thippawan Yasanga
- Medical Science Research Equipment Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Poonsook Keelapang
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Rungtawan Sriburi
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thaneeya Roytrakul
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand; Dengue Hemorrhagic Fever Research Unit, Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | | - Utaiwan Utaipat
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yanee Kawilapan
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chunya Puttikhunt
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand; Dengue Hemorrhagic Fever Research Unit, Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Watchara Kasinrerk
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sutee Yoksan
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Prasert Auewarakul
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Prida Malasit
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand; Dengue Hemorrhagic Fever Research Unit, Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nicha Charoensri
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Nopporn Sittisombut
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok 10700, Thailand; Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
24
|
Sim S, Aw PPK, Wilm A, Teoh G, Hue KDT, Nguyen NM, Nagarajan N, Simmons CP, Hibberd ML. Tracking Dengue Virus Intra-host Genetic Diversity during Human-to-Mosquito Transmission. PLoS Negl Trop Dis 2015; 9:e0004052. [PMID: 26325059 PMCID: PMC4556672 DOI: 10.1371/journal.pntd.0004052] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/12/2015] [Indexed: 12/26/2022] Open
Abstract
Dengue virus (DENV) infection of an individual human or mosquito host produces a dynamic population of closely-related sequences. This intra-host genetic diversity is thought to offer an advantage for arboviruses to adapt as they cycle between two very different host species, but it remains poorly characterized. To track changes in viral intra-host genetic diversity during horizontal transmission, we infected Aedes aegypti mosquitoes by allowing them to feed on DENV2-infected patients. We then performed whole-genome deep-sequencing of human- and matched mosquito-derived DENV samples on the Illumina platform and used a sensitive variant-caller to detect single nucleotide variants (SNVs) within each sample. >90% of SNVs were lost upon transition from human to mosquito, as well as from mosquito abdomen to salivary glands. Levels of viral diversity were maintained, however, by the regeneration of new SNVs at each stage of transmission. We further show that SNVs maintained across transmission stages were transmitted as a unit of two at maximum, suggesting the presence of numerous variant genomes carrying only one or two SNVs each. We also present evidence for differences in selection pressures between human and mosquito hosts, particularly on the structural and NS1 genes. This analysis provides insights into how population drops during transmission shape RNA virus genetic diversity, has direct implications for virus evolution, and illustrates the value of high-coverage, whole-genome next-generation sequencing for understanding viral intra-host genetic diversity.
Collapse
Affiliation(s)
- Shuzhen Sim
- Infectious Diseases, Genome Institute of Singapore, Singapore, Singapore
| | - Pauline P. K. Aw
- Infectious Diseases, Genome Institute of Singapore, Singapore, Singapore
| | - Andreas Wilm
- Infectious Diseases, Genome Institute of Singapore, Singapore, Singapore
| | - Garrett Teoh
- Infectious Diseases, Genome Institute of Singapore, Singapore, Singapore
| | - Kien Duong Thi Hue
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Nguyet Minh Nguyen
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Niranjan Nagarajan
- Infectious Diseases, Genome Institute of Singapore, Singapore, Singapore
| | - Cameron P. Simmons
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Department of Microbiology and Immunology, University of Melbourne, Carlton, Victoria, Australia
| | - Martin L. Hibberd
- Infectious Diseases, Genome Institute of Singapore, Singapore, Singapore
| |
Collapse
|
25
|
Analysis of Dengue Virus Genetic Diversity during Human and Mosquito Infection Reveals Genetic Constraints. PLoS Negl Trop Dis 2015; 9:e0004044. [PMID: 26327586 PMCID: PMC4556638 DOI: 10.1371/journal.pntd.0004044] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 08/10/2015] [Indexed: 12/15/2022] Open
Abstract
Dengue viruses (DENV) cause debilitating and potentially life-threatening acute disease throughout the tropical world. While drug development efforts are underway, there are concerns that resistant strains will emerge rapidly. Indeed, antiviral drugs that target even conserved regions in other RNA viruses lose efficacy over time as the virus mutates. Here, we sought to determine if there are regions in the DENV genome that are not only evolutionarily conserved but genetically constrained in their ability to mutate and could hence serve as better antiviral targets. High-throughput sequencing of DENV-1 genome directly from twelve, paired dengue patients’ sera and then passaging these sera into the two primary mosquito vectors showed consistent and distinct sequence changes during infection. In particular, two residues in the NS5 protein coding sequence appear to be specifically acquired during infection in Ae. aegypti but not Ae. albopictus. Importantly, we identified a region within the NS3 protein coding sequence that is refractory to mutation during human and mosquito infection. Collectively, these findings provide fresh insights into antiviral targets and could serve as an approach to defining evolutionarily constrained regions for therapeutic targeting in other RNA viruses. Dengue viruses cause debilitating and potentially life-threatening acute disease throughout the tropical world. While drug development efforts are underway, there are concerns that drug-resistant strains will emerge rapidly. Indeed, many antiviral drugs for other RNA viruses lose efficacy over time as the virus mutates. Here, we sought to determine if there are regions in the dengue virus genome that are constrained in their ability to mutate and could therefore serve as better targets for antiviral drugs. Deep sequencing of the dengue virus 1 genome directly from the blood of twelve dengue patients and from mosquitoes given this blood showed consistent and distinct mutation patterns during infection. Importantly, we identified regions within the viral genome that are resistant to mutation during human and mosquito infection. Collectively, these findings provide fresh insights into potential antiviral targets and could serve as an approach to defining better regions for therapeutic targeting in other RNA viruses.
Collapse
|
26
|
Roby JA, Setoh YX, Hall RA, Khromykh AA. Post-translational regulation and modifications of flavivirus structural proteins. J Gen Virol 2015; 96:1551-69. [PMID: 25711963 DOI: 10.1099/vir.0.000097] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Flaviviruses are a group of single-stranded, positive-sense RNA viruses that generally circulate between arthropod vectors and susceptible vertebrate hosts, producing significant human and veterinary disease burdens. Intensive research efforts have broadened our scientific understanding of the replication cycles of these viruses and have revealed several elegant and tightly co-ordinated post-translational modifications that regulate the activity of viral proteins. The three structural proteins in particular - capsid (C), pre-membrane (prM) and envelope (E) - are subjected to strict regulatory modifications as they progress from translation through virus particle assembly and egress. The timing of proteolytic cleavage events at the C-prM junction directly influences the degree of genomic RNA packaging into nascent virions. Proteolytic maturation of prM by host furin during Golgi transit facilitates rearrangement of the E proteins at the virion surface, exposing the fusion loop and thus increasing particle infectivity. Specific interactions between the prM and E proteins are also important for particle assembly, as prM acts as a chaperone, facilitating correct conformational folding of E. It is only once prM/E heterodimers form that these proteins can be secreted efficiently. The addition of branched glycans to the prM and E proteins during virion transit also plays a key role in modulating the rate of secretion, pH sensitivity and infectivity of flavivirus particles. The insights gained from research into post-translational regulation of structural proteins are beginning to be applied in the rational design of improved flavivirus vaccine candidates and make attractive targets for the development of novel therapeutics.
Collapse
Affiliation(s)
- Justin A Roby
- 1Australian Infectious Diseases Research Centre, The University of Queensland, Australia 2School of Chemistry and Molecular Biosciences, The University of Queensland, Australia
| | - Yin Xiang Setoh
- 1Australian Infectious Diseases Research Centre, The University of Queensland, Australia 2School of Chemistry and Molecular Biosciences, The University of Queensland, Australia
| | - Roy A Hall
- 1Australian Infectious Diseases Research Centre, The University of Queensland, Australia 2School of Chemistry and Molecular Biosciences, The University of Queensland, Australia
| | - Alexander A Khromykh
- 1Australian Infectious Diseases Research Centre, The University of Queensland, Australia 2School of Chemistry and Molecular Biosciences, The University of Queensland, Australia
| |
Collapse
|
27
|
Hsieh SC, Wu YC, Zou G, Nerurkar VR, Shi PY, Wang WK. Highly conserved residues in the helical domain of dengue virus type 1 precursor membrane protein are involved in assembly, precursor membrane (prM) protein cleavage, and entry. J Biol Chem 2014; 289:33149-60. [PMID: 25326389 DOI: 10.1074/jbc.m114.610428] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The envelope and precursor membrane (prM) proteins of dengue virus (DENV) are present on the surface of immature virions. During maturation, prM protein is cleaved by furin protease into pr peptide and membrane (M) protein. Although previous studies mainly focusing on the pr region have identified several residues important for DENV replication, the functional role of M protein, particularly the α-helical domain (MH), which is predicted to undergo a large conformational change during maturation, remains largely unknown. In this study, we investigated the role of nine highly conserved MH domain residues in the replication cycle of DENV by site-directed mutagenesis in a DENV1 prME expression construct and found that alanine substitutions introduced to four highly conserved residues at the C terminus and one at the N terminus of the MH domain greatly affect the production of both virus-like particles and replicon particles. Eight of the nine alanine mutants affected the entry of replicon particles, which correlated with the impairment in prM cleavage. Moreover, seven mutants were found to have reduced prM-E interaction at low pH, which may inhibit the formation of smooth immature particles and exposure of prM cleavage site during maturation, thus contributing to inefficient prM cleavage. Taken together, these results are the first report showing that highly conserved MH domain residues, located at 20-38 amino acids downstream from the prM cleavage site, can modulate the prM cleavage, maturation of particles, and virus entry. The highly conserved nature of these residues suggests potential targets of antiviral strategy.
Collapse
Affiliation(s)
- Szu-Chia Hsieh
- From the Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813 and
| | - Yi-Chieh Wu
- From the Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813 and
| | - Gang Zou
- the Wadsworth Center, New York State Department of Health, Albany, New York 12208
| | - Vivek R Nerurkar
- From the Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813 and
| | - Pei-Yong Shi
- the Wadsworth Center, New York State Department of Health, Albany, New York 12208
| | - Wei-Kung Wang
- From the Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813 and
| |
Collapse
|
28
|
Chen P, Liu J, Jiang Y, Zhao Y, Li Q, Wu L, He X, Chen H. The vaccine efficacy of recombinant duck enteritis virus expressing secreted E with or without PrM proteins of duck tembusu virus. Vaccine 2014; 32:5271-7. [DOI: 10.1016/j.vaccine.2014.07.082] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/10/2014] [Accepted: 07/22/2014] [Indexed: 11/25/2022]
|
29
|
Kolodziejek J, Pachler K, Bin H, Mendelson E, Shulman L, Orshan L, Nowotny N. Barkedji virus, a novel mosquito-borne flavivirus identified in Culex perexiguus mosquitoes, Israel, 2011. J Gen Virol 2013; 94:2449-2457. [PMID: 23939978 DOI: 10.1099/vir.0.056200-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Barkedji virus, named after the area of its first identification in Senegal, is a newly discovered flavivirus (FV), for which we propose the abbreviation BJV. In the present study, we report the first-time detection of BJV in Culex perexiguus mosquitoes in Israel in 2011 and determination of its almost complete polyprotein gene sequence. We characterized the BJV genome and defined putative mature proteins, conserved structural elements and potential enzyme motifs along the polyprotein precursor. By comparing polyproteins and individual proteins of BJV with several other FVs, a distant relationship of BJV to Nounane virus (NOUV), a recently described African FV, is demonstrated. Phylogenetic analysis of 55 selected flaviviral polyprotein gene sequences exhibits two major clusters, one made up of the classical three clades of FVs: mosquito-borne, tick-borne and those without known vectors. The other cluster exclusively contains so-called 'insect-specific' FVs, which do not replicate in vertebrate cells. Based on our phylogenetic analysis, BJV is related to other members of the mosquito-borne clade with yet unknown vertebrate hosts, such as NOUV, Donggang virus, Chaoyang virus and Lammi virus. However, with a maximum identity of only 54 % to NOUV, BJV represents a distinct new virus species.
Collapse
Affiliation(s)
- Jolanta Kolodziejek
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karin Pachler
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Hanna Bin
- National Center for Zoonotic Viruses, Central Virology Laboratory, Public Health Services, Ministry of Health, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Ella Mendelson
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,National Center for Zoonotic Viruses, Central Virology Laboratory, Public Health Services, Ministry of Health, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Lester Shulman
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,National Center for Zoonotic Viruses, Central Virology Laboratory, Public Health Services, Ministry of Health, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Laor Orshan
- Laboratory of Entomology, Central Laboratories, Ministry of Health, Jerusalem, Israel
| | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
30
|
Song KY, Zhao H, Li SH, Li XF, Deng YQ, Wang HJ, Ye Q, Zhu SY, Jiang ZY, Zhang FC, Qin ED, Qin CF. Identification and characterization of a linearized B-cell epitope on the pr protein of dengue virus. J Gen Virol 2013; 94:1510-1516. [PMID: 23559476 DOI: 10.1099/vir.0.052084-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The four serotypes of dengue virus (DENV) represent one of the major mosquito-borne pathogens globally; so far no vaccine or specific antiviral is available. During virion maturation, the pr protein is cleaved from its precursor form the prM protein on the surface of immature DENV by host protease. Recent findings have demonstrated that the pr protein not only played critical roles in virion assembly and maturation, but was also involved in antibody-dependent enhancement of DENV infection. However, the B-cell epitopes on the pr protein of DENV have not been well characterized. In this study, a set of 11 partially overlapping peptides spanning the entire pr protein of DENV-2 were fused with glutathione S-transferase and expressed in Escherichia coli. ELISA screening with murine hyperimmune antiserum against immature DENV identified the P8 peptide (⁵⁷KQNEPEDIDCWCNST⁷¹) in the pr protein as the major immunodominant epitope. Fine mapping by truncated protein assays confirmed the 8-e peptide ⁵⁷KQNEPEDI⁶⁴ was the smallest unit capable of antibody binding. Importantly, the 8-e epitope reacted with sera from dengue fever patients. Site-directed mutagenesis revealed the asparagine residue at position 59 was important for epitope recognition. The 8-e epitope coincided well with the B-cell epitopes predicted by Immune Epitope Database analysis, and 3D structural modelling mapped the 8-e peptide on the surface of prM-E heterodimers. Overall, our findings characterized a linearized B-cell epitope on the pr protein of DENV, which will help to understand the life cycle of DENV and pathogenesis of dengue infections in human.
Collapse
Affiliation(s)
- Ke-Yu Song
- Guangzhou No. 8 People's Hospital, Guangzhou Medical College, Guangzhou 510060, China.,Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Hui Zhao
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Shi-Hua Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiao-Feng Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yong-Qiang Deng
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Hong-Jiang Wang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Qing Ye
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Shun-Ya Zhu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Zhen-You Jiang
- Department of Microbiology and Immunology, School of Medicine Jinan University, Guangzhou 510632, China
| | - Fu-Chun Zhang
- Guangzhou No. 8 People's Hospital, Guangzhou Medical College, Guangzhou 510060, China
| | - E-De Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| |
Collapse
|
31
|
Wilm A, Aw PPK, Bertrand D, Yeo GHT, Ong SH, Wong CH, Khor CC, Petric R, Hibberd ML, Nagarajan N. LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. Nucleic Acids Res 2012; 40:11189-201. [PMID: 23066108 PMCID: PMC3526318 DOI: 10.1093/nar/gks918] [Citation(s) in RCA: 961] [Impact Index Per Article: 73.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The study of cell-population heterogeneity in a range of biological systems, from viruses to bacterial isolates to tumor samples, has been transformed by recent advances in sequencing throughput. While the high-coverage afforded can be used, in principle, to identify very rare variants in a population, existing ad hoc approaches frequently fail to distinguish true variants from sequencing errors. We report a method (LoFreq) that models sequencing run-specific error rates to accurately call variants occurring in <0.05% of a population. Using simulated and real datasets (viral, bacterial and human), we show that LoFreq has near-perfect specificity, with significantly improved sensitivity compared with existing methods and can efficiently analyze deep Illumina sequencing datasets without resorting to approximations or heuristics. We also present experimental validation for LoFreq on two different platforms (Fluidigm and Sequenom) and its application to call rare somatic variants from exome sequencing datasets for gastric cancer. Source code and executables for LoFreq are freely available at http://sourceforge.net/projects/lofreq/.
Collapse
Affiliation(s)
- Andreas Wilm
- Genome Institute of Singapore, 60 Biopolis Street, Genome, #02-01, Singapore 138672, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mutations in the West Nile prM protein affect VLP and virion secretion in vitro. Virology 2012; 433:35-44. [PMID: 22858174 DOI: 10.1016/j.virol.2012.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 05/25/2012] [Accepted: 07/13/2012] [Indexed: 12/22/2022]
Abstract
Mutation of the West Nile virus-like particle (WN VLP) prM protein (T20D, K31A, K31V, or K31T) results in undetectable VLP secretion from transformed COS-1 cells. K31 mutants formed intracellular prM-E heterodimers; however these proteins remained in the ER and ER-Golgi intermediary compartments of transfected cells. The T20D mutation affected glycosylation, heterodimer formation, and WN VLP secretion. When infectious viruses bearing the same mutations were used to infect COS-1 cells, K31 mutant viruses exhibited delayed growth and reduced infectivity compared to WT virus. Epitope maps of WN VLP and WNV prM were also different. These results suggest that while mutations in the prM protein can reduce or eliminate secretion of WN VLPs, they have less effect on virus. This difference may be due to the quantity of prM in WN VLPs compared to WNV or to differences in maturation, structure, and symmetry of these particles.
Collapse
|
33
|
Setoh YX, Prow NA, Hobson-Peters J, Lobigs M, Young PR, Khromykh AA, Hall RA. Identification of residues in West Nile virus pre-membrane protein that influence viral particle secretion and virulence. J Gen Virol 2012; 93:1965-1975. [PMID: 22764317 DOI: 10.1099/vir.0.044453-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The pre-membrane protein (prM) of West Nile virus (WNV) functions as a chaperone for correct folding of the envelope (E) protein, and prevents premature fusion during virus egress. However, little is known about its role in virulence. To investigate this, we compared the amino acid sequences of prM between a highly virulent North American strain (WNV(NY99)) and a weakly virulent Australian subtype (WNV(KUN)). Five amino acid differences occur in WNV(NY99) compared with WNV(KUN) (I22V, H43Y, L72S, S105A and A156V). When expressed in mammalian cells, recombinant WNV(NY99) prM retained native antigenic structure, and was partially exported to the cell surface. In contrast, WNV(KUN) prM (in the absence of the E protein) failed to express a conserved conformational epitope and was mostly retained at the pre-Golgi stage. Substitutions in residues 22 (Ile to Val) and 72 (Leu to Ser) restored the antigenic structure and cell surface expression of WNV(KUN) prM to the same level as that of WNV(NY99), and enhanced the secretion of WNV(KUN) prME particles when expressed in the presence of E. Introduction of the prM substitutions into a WNV(KUN) infectious clone (FLSDX) enhanced the secretion of infectious particles in Vero cells, and enhanced virulence in mice. These findings highlight the role of prM in viral particle secretion and virulence, and suggest the involvement of the L72S and I22V substitutions in modulating these activities.
Collapse
Affiliation(s)
- Y X Setoh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - N A Prow
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - J Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - M Lobigs
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - P R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - A A Khromykh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - R A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, QLD, Australia
| |
Collapse
|
34
|
Mutagenesis of the DI/DIII linker in dengue virus envelope protein impairs viral particle assembly. J Virol 2012; 86:7072-83. [PMID: 22532681 DOI: 10.1128/jvi.00224-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The dengue virus (DV) envelope (E) protein is important in mediating viral entry and assembly of progeny virus during cellular infection. Domains I and III (DI and DIII, respectively) of the DV E protein are connected by a highly conserved but poorly ordered region, the DI/DIII linker. Although the flexibility of the DI/DIII linker is thought to be important for accommodating the structural rearrangements undergone by the E protein during viral entry, the function of the linker in the DV infectious cycle is not well understood. In this study, we performed site-directed mutagenesis on conserved residues in the DI/DIII linker of the DV2 E protein and showed that the resulting mutations had little or no effect on the entry process but greatly affected virus assembly. Biochemical fractionation and immunofluorescence microscopy experiments performed on infectious virus as well as in a virus-like particle (VLP) system indicate that the DI/DIII linker mutants express the DV structural proteins at the sites of particle assembly near the ER but fail to form infectious particles. This defect is not due to disruption of E's interaction with prM and pr in immature and mature virions, respectively. Serial passaging of the DV2 mutant E-Y299F led to the identification of a mutation in the membrane-proximal stem region of E that fully compensates for the assembly defect of this DI/DIII linker mutant. Together, our results suggest a critical and previously unidentified role for the E protein DI/DIII linker region during the DV2 assembly process.
Collapse
|