1
|
Penkler DL, Jiwaji M, Domitrovic T, Short JR, Johnson JE, Dorrington RA. Binding and entry of a non-enveloped T=4 insect RNA virus is triggered by alkaline pH. Virology 2016; 498:277-287. [PMID: 27614703 DOI: 10.1016/j.virol.2016.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 11/29/2022]
Abstract
Tetraviruses are small, non-enveloped, RNA viruses that exclusively infect lepidopteran insects. Their particles comprise 240 copies of a single capsid protein precursor (CP), which undergoes autoproteolytic cleavage during maturation. The molecular mechanisms of capsid assembly and maturation are well understood, but little is known about the viral infectious lifecycle due to a lack of tissue culture cell lines that are susceptible to tetravirus infection. We show here that binding and entry of the alphatetravirus, Helicoverpa armigera stunt virus (HaSV), is triggered by alkaline pH. At pH 9.0, wild-type HaSV virus particles undergo conformational changes that induce membrane-lytic activity and binding to Spodoptera frugiperda Sf9 cells. Binding is followed by entry and infection, with virus replication complexes detected by immunofluorescence microscopy within 2h post-infection and the CP after 12h. HaSV particles produced in S. frugiperda Sf9 cells are infectious. Helicoverpa armigera larval virus biofeed assays showed that pre-treatment with the V-ATPase inhibitor, Bafilomycin A1, resulted in a 50% decrease in larval mortality and stunting, while incubation of virus particles at pH 9.0 prior to infection restored infectivity. Together, these data show that HaSV, and likely other tetraviruses, requires the alkaline environment of the lepidopteran larval midgut for binding and entry into host cells.
Collapse
Affiliation(s)
- David L Penkler
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Meesbah Jiwaji
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Tatiana Domitrovic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - James R Short
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa; Illumina Inc., 5200 Illumina Way, San Diego, CA 92122, USA
| | - John E Johnson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rosemary A Dorrington
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa.
| |
Collapse
|
2
|
Neuman BW, Angelini MM, Buchmeier MJ. Does form meet function in the coronavirus replicative organelle? Trends Microbiol 2014; 22:642-7. [PMID: 25037114 PMCID: PMC7127430 DOI: 10.1016/j.tim.2014.06.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 12/14/2022]
Abstract
If we use the analogy of a virus as a living entity, then the replicative organelle is the part of the body where its metabolic and reproductive activities are concentrated. Recent studies have illuminated the intricately complex replicative organelles of coronaviruses, a group that includes the largest known RNA virus genomes. This review takes a virus-centric look at the coronavirus replication transcription complex organelle in the context of the wider world of positive sense RNA viruses, examining how the mechanisms of protein expression and function act to produce the factories that power the viral replication cycle.
Collapse
Affiliation(s)
- Benjamin W Neuman
- School of Biological Sciences, University of Reading, Reading, Berkshire, UK.
| | - Megan M Angelini
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Michael J Buchmeier
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA; Department of Medicine, Division of Infectious Disease, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
3
|
Gammon DB, Duraffour S, Rozelle DK, Hehnly H, Sharma R, Sparks ME, West CC, Chen Y, Moresco JJ, Andrei G, Connor JH, Conte D, Gundersen-Rindal DE, Marshall WL, Yates JR, Silverman N, Mello CC. A single vertebrate DNA virus protein disarms invertebrate immunity to RNA virus infection. eLife 2014; 3:e02910. [PMID: 24966209 PMCID: PMC4112549 DOI: 10.7554/elife.02910] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/25/2014] [Indexed: 12/12/2022] Open
Abstract
Virus-host interactions drive a remarkable diversity of immune responses and countermeasures. We found that two RNA viruses with broad host ranges, vesicular stomatitis virus (VSV) and Sindbis virus (SINV), are completely restricted in their replication after entry into Lepidopteran cells. This restriction is overcome when cells are co-infected with vaccinia virus (VACV), a vertebrate DNA virus. Using RNAi screening, we show that Lepidopteran RNAi, Nuclear Factor-κB, and ubiquitin-proteasome pathways restrict RNA virus infection. Surprisingly, a highly conserved, uncharacterized VACV protein, A51R, can partially overcome this virus restriction. We show that A51R is also critical for VACV replication in vertebrate cells and for pathogenesis in mice. Interestingly, A51R colocalizes with, and stabilizes, host microtubules and also associates with ubiquitin. We show that A51R promotes viral protein stability, possibly by preventing ubiquitin-dependent targeting of viral proteins for destruction. Importantly, our studies reveal exciting new opportunities to study virus-host interactions in experimentally-tractable Lepidopteran systems.
Collapse
Affiliation(s)
- Don B Gammon
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
| | | | - Daniel K Rozelle
- Department of Microbiology, Boston University, Boston, United States
| | - Heidi Hehnly
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Rita Sharma
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| | - Michael E Sparks
- Agricultural Research Service, United States Department of Agriculture, Beltsville, United States
| | - Cara C West
- Department of Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Ying Chen
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
| | - James J Moresco
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
| | - Graciela Andrei
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - John H Connor
- Department of Microbiology, Boston University, Boston, United States
| | - Darryl Conte
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
| | - Dawn E Gundersen-Rindal
- Agricultural Research Service, United States Department of Agriculture, Beltsville, United States
| | - William L Marshall
- Department of Medicine, University of Massachusetts Medical School, Worcester, United States
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, United States
| | - Neal Silverman
- Department of Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Craig C Mello
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
4
|
Short JR, Nakayinga R, Hughes GE, Walter CT, Dorrington RA. Providence virus (family: Carmotetraviridae) replicates vRNA in association with the Golgi apparatus and secretory vesicles. J Gen Virol 2013; 94:1073-1078. [PMID: 23343628 DOI: 10.1099/vir.0.047647-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Providence virus (PrV) is the sole member of the family Carmotetraviridae (formerly Tetraviridae) sharing the characteristic T=4 capsid architecture with other tetravirus families. Despite significant structural similarities, PrV differs from other tetraviruses in terms of genome organization, non-structural protein sequence and regulation of gene expression. In addition, it is the only tetravirus that infects tissue culture cells. Previous studies showed that in persistently infected Helicoverpa zea MG8 cells, the PrV replicase associates with detergent-resistant membranes in punctate cytosolic structures, which is similar to the distribution of an alpha-like tetravirus replicase (Helicoverpa armigera stunt virus). Here, we demonstrate that the site of PrV vRNA replication coincides with the presence of PrV p40/p104 proteins in infected cells and that these replication proteins associate with the Golgi apparatus and secretory vesicles in transfected cells.
Collapse
Affiliation(s)
- James R Short
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - Ritah Nakayinga
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - Gareth E Hughes
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - Cheryl T Walter
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - Rosemary A Dorrington
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|
5
|
Wang Q, Han Y, Qiu Y, Zhang S, Tang F, Wang Y, Zhang J, Hu Y, Zhou X. Identification and characterization of RNA duplex unwinding and ATPase activities of an alphatetravirus superfamily 1 helicase. Virology 2012; 433:440-8. [PMID: 22995190 PMCID: PMC7111927 DOI: 10.1016/j.virol.2012.08.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/24/2012] [Accepted: 08/28/2012] [Indexed: 12/20/2022]
Abstract
Dendrolimus punctatus tetravirus (DpTV) belongs to the genus omegatetravirus of the Alphatetraviridae family. Sequence analysis predicts that DpTV replicase contains a putative helicase domain (Hel). However, the helicase activity in alphatetraviruses has never been formally determined. In this study, we determined that DpTV Hel is a functional RNA helicase belonging to superfamily-1 helicase with 5′–3′ dsRNA unwinding directionality. Further characterization determined the length requirement of the 5′ single-stranded tail on the RNA template and the optimal reaction conditions for the unwinding activity of DpTV Hel. Moreover, DpTV Hel also contains NTPase activity. The ATPase activity of DpTV Hel could be significantly stimulated by dsRNA, and dsRNA could partially rescue the ATPase activity abolishment caused by mutations. Our study is the first to identify an alphatetravirus RNA helicase and further characterize its dsRNA unwinding and NTPase activities in detail and should foster our understanding of DpTV and other alphatetraviruses.
Collapse
Affiliation(s)
- Qinrong Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | | | | | | | | | | | | | | | | |
Collapse
|