1
|
Field-Reassortment of Bluetongue Virus Illustrates Plasticity of Virus Associated Phenotypic Traits in the Arthropod Vector and Mammalian Host In Vivo. J Virol 2022; 96:e0053122. [PMID: 35727032 PMCID: PMC9278112 DOI: 10.1128/jvi.00531-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Segmented RNA viruses are a taxonomically diverse group that can infect plant, wildlife, livestock and human hosts. A shared feature of these viruses is the ability to exchange genome segments during coinfection of a host by a process termed "reassortment." Reassortment enables rapid evolutionary change, but where transmission involves a biological arthropod vector, this change is constrained by the selection pressures imposed by the requirement for replication in two evolutionarily distant hosts. In this study, we use an in vivo, host-arbovirus-vector model to investigate the impact of reassortment on two phenotypic traits, virus infection rate in the vector and virulence in the host. Bluetongue virus (BTV) (Reoviridae) is the causative agent of bluetongue (BT), an economically important disease of domestic and wild ruminants and deer. The genome of BTV comprises 10 linear segments of dsRNA, and the virus is transmitted between ruminants by Culicoides biting midges (Diptera: Ceratopogonidae). Five strains of BTV representing three serotypes (BTV-1, BTV-4, and BTV-8) were isolated from naturally infected ruminants in Europe and ancestral/reassortant lineage status assigned through full genome sequencing. Each strain was then assessed in parallel for the ability to replicate in vector Culicoides and to cause BT in sheep. Our results demonstrate that two reassortment strains, which themselves became established in the field, had obtained high replication ability in C. sonorensis from one of the ancestral virus strains, which allowed inferences of the genome segments conferring this phenotypic trait. IMPORTANCE Reassortment between virus strains can lead to major shifts in the transmission parameters and virulence of segmented RNA viruses, with consequences for spread, persistence, and impact. The ability of these pathogens to adapt rapidly to their environment through this mechanism presents a major challenge in defining the conditions under which emergence can occur. Utilizing a representative mammalian host-insect vector infection and transmission model, we provide direct evidence of this phenomenon in closely related ancestral and reassortant strains of BTV. Our results demonstrate that efficient infection of Culicoides observed for one of three ancestral BTV strains was also evident in two reassortant strains that had subsequently emerged in the same ecosystem.
Collapse
|
2
|
Petersen H, Mostafa A, Tantawy MA, Iqbal AA, Hoffmann D, Tallam A, Selvakumar B, Pessler F, Beer M, Rautenschlein S, Pleschka S. NS Segment of a 1918 Influenza A Virus-Descendent Enhances Replication of H1N1pdm09 and Virus-Induced Cellular Immune Response in Mammalian and Avian Systems. Front Microbiol 2018; 9:526. [PMID: 29623073 PMCID: PMC5874506 DOI: 10.3389/fmicb.2018.00526] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/08/2018] [Indexed: 12/14/2022] Open
Abstract
The 2009 pandemic influenza A virus (IAV) H1N1 strain (H1N1pdm09) has widely spread and is circulating in humans and swine together with other human and avian IAVs. This fact raises the concern that reassortment between H1N1pdm09 and co-circulating viruses might lead to an increase of H1N1pdm09 pathogenicity in different susceptible host species. Herein, we explored the potential of different NS segments to enhance the replication dynamics, pathogenicity and host range of H1N1pdm09 strain A/Giessen/06/09 (Gi-wt). The NS segments were derived from (i) human H1N1- and H3N2 IAVs, (ii) highly pathogenic- (H5- or H7-subtypes) or (iii) low pathogenic avian influenza viruses (H7- or H9-subtypes). A significant increase of growth kinetics in A549 (human lung epithelia) and NPTr (porcine tracheal epithelia) cells was only noticed in vitro for the reassortant Gi-NS-PR8 carrying the NS segment of the 1918-descendent A/Puerto Rico/8/34 (PR8-wt, H1N1), whereas all other reassortants showed either reduced or comparable replication efficiencies. Analysis using ex vivo tracheal organ cultures of turkeys (TOC-Tu), a species susceptible to IAV H1N1 infection, demonstrated increased replication of Gi-NS-PR8 compared to Gi-wt. Also, Gi-NS-PR8 induced a markedly higher expression of immunoregulatory and pro-inflammatory cytokines, chemokines and interferon-stimulated genes in A549 cells, THP-1-derived macrophages (dHTP) and TOC-Tu. In vivo, Gi-NS-PR8 induced an earlier onset of mortality than Gi-wt in mice, whereas, 6-week-old chickens were found to be resistant to both viruses. These data suggest that the specific characteristics of the PR8 NS segments can impact on replication, virus induced cellular immune responses and pathogenicity of the H1N1pdm09 in different avian and mammalian host species.
Collapse
Affiliation(s)
- Henning Petersen
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Ahmed Mostafa
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany.,Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Cairo, Egypt
| | - Mohamed A Tantawy
- Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research, Hanover, Germany.,Department of Hormones, Medical Research Division, National Research Centre, Cairo, Egypt
| | - Azeem A Iqbal
- Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research, Hanover, Germany.,Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Aravind Tallam
- Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research, Hanover, Germany
| | - Balachandar Selvakumar
- Max-Planck Laboratory for Heart and Lung Research, Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Frank Pessler
- Institute for Experimental Infection Research, TWINCORE Centre for Experimental and Clinical Infection Research, Hanover, Germany.,Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
3
|
Li H, Bradley KC, Long JS, Frise R, Ashcroft JW, Hartgroves LC, Shelton H, Makris S, Johansson C, Cao B, Barclay WS. Internal genes of a highly pathogenic H5N1 influenza virus determine high viral replication in myeloid cells and severe outcome of infection in mice. PLoS Pathog 2018; 14:e1006821. [PMID: 29300777 PMCID: PMC5771632 DOI: 10.1371/journal.ppat.1006821] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 01/17/2018] [Accepted: 12/15/2017] [Indexed: 12/26/2022] Open
Abstract
The highly pathogenic avian influenza (HPAI) H5N1 influenza virus has been a public health concern for more than a decade because of its frequent zoonoses and the high case fatality rate associated with human infections. Severe disease following H5N1 influenza infection is often associated with dysregulated host innate immune response also known as cytokine storm but the virological and cellular basis of these responses has not been clearly described. We rescued a series of 6:2 reassortant viruses that combined a PR8 HA/NA pairing with the internal gene segments from human adapted H1N1, H3N2, or avian H5N1 viruses and found that mice infected with the virus with H5N1 internal genes suffered severe weight loss associated with increased lung cytokines but not high viral load. This phenotype did not map to the NS gene segment, and NS1 protein of H5N1 virus functioned as a type I IFN antagonist as efficient as NS1 of H1N1 or H3N2 viruses. Instead we discovered that the internal genes of H5N1 virus supported a much higher level of replication of viral RNAs in myeloid cells in vitro, but not in epithelial cells and that this was associated with high induction of type I IFN in myeloid cells. We also found that in vivo during H5N1 recombinant virus infection cells of haematopoetic origin were infected and produced type I IFN and proinflammatory cytokines. Taken together our data infer that human and avian influenza viruses are differently controlled by host factors in alternative cell types; internal gene segments of avian H5N1 virus uniquely drove high viral replication in myeloid cells, which triggered an excessive cytokine production, resulting in severe immunopathology. Some avian influenza viruses, including highly pathogenic H5N1 virus, cause severe disease in humans and in experimental animal models associated with excessive cytokine production. We aimed to understand the virological mechanism behind the cytokine storm, and particularly the contribution of internal gene segments that encode the viral polymerase and the non-structural proteins, since these might be retained in a pandemic virus. We found that the internal genes from an H5N1 avian influenza virus allowed virus to replicate to strikingly higher levels in myeloid cells compared to internal genes of human adapted strains. The higher viral RNA levels did not lead to higher viral load but drove excessive cytokine production and more severe outcome in infected mice. The remarkable difference in viral replication in myeloid cells was not observed in lung epithelial cells, suggesting that cell type specific differences in host factors were responsible. Understanding the molecular basis of excessive viral replication in myeloid cells may guide future therapeutic options for viruses that have recently crossed into humans from birds.
Collapse
MESH Headings
- A549 Cells
- Animals
- Cells, Cultured
- Dogs
- Female
- Genes, Viral/physiology
- HEK293 Cells
- Humans
- Immunity, Innate/physiology
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/pathogenicity
- Influenza A Virus, H5N1 Subtype/physiology
- Influenza, Human/genetics
- Influenza, Human/immunology
- Influenza, Human/virology
- Madin Darby Canine Kidney Cells
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Myeloid Cells/immunology
- Myeloid Cells/metabolism
- Myeloid Cells/virology
- Orthomyxoviridae Infections/genetics
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/mortality
- Orthomyxoviridae Infections/virology
- Severity of Illness Index
- Virus Replication/genetics
Collapse
Affiliation(s)
- Hui Li
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Konrad C. Bradley
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Jason S. Long
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Rebecca Frise
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Jonathan W. Ashcroft
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Lorian C. Hartgroves
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Holly Shelton
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Spyridon Makris
- Section of Respiratory Infections, National Heart and Lung Institute, Imperial College London
| | - Cecilia Johansson
- Section of Respiratory Infections, National Heart and Lung Institute, Imperial College London
| | - Bin Cao
- Department of Respiratory Medicine, Capital Medical University; Center for Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
- * E-mail: (WSB); (BC)
| | - Wendy S. Barclay
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
- * E-mail: (WSB); (BC)
| |
Collapse
|
4
|
Coleman MD, Ha SD, Haeryfar SMM, Barr SD, Kim SO. Cathepsin B plays a key role in optimal production of the influenza A virus. ACTA ACUST UNITED AC 2018; 7:178. [PMID: 29349092 DOI: 10.4172/2324-8955.1000178] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background Influenza A virus (IAV) is the etiologic agent of the febrile respiratory illness, commonly referred to as 'flu'. The lysosomal protease cathepsin B (CTSB) has shown to be involved in the lifecycle of various viruses. Here, we examined the role of CTSB in the IAV lifecycle. Methods CTSB-deficient (CTSB-/-) macrophages and the human lung epithelial cell line A549 cells treated with CA-074Me were infected with the A/Puerto Rico/8/34 strain of IAV (IAV-PR8). Viral entry and propagation were measured through quantitative real-time RT-PCR; production and localization of hemagglutinin (HA) protein in the infected host cells were analysed by Western blots, flow cytometry and confocal microscopy; production of progeny viruses were measured by a hemagglutination assay. Results CTSB-/- macrophages and CA-074Me-treated A549 cells had no defects in incorporating IAV-PR8 virions and permitting viral RNA synthesis. However, these cells produced significantly lower amounts of HA protein and progeny virions than wild-type or untreated cells. Conclusion These data indicate that CTSB is involved in the expression of IAV-PR8 HA protein and subsequent optimal production of IAV-PR8 progeny virions. Targeting CTSB can be a novel therapeutic strategy for treating IAV infection.
Collapse
Affiliation(s)
- Macon D Coleman
- Department of Microbiology and Immunology and Center for Human Immunology, Siebens-Drake Research Institute, Western University, London, Ontario, Canada N6G 2V4
| | - Soon-Duck Ha
- Department of Microbiology and Immunology and Center for Human Immunology, Siebens-Drake Research Institute, Western University, London, Ontario, Canada N6G 2V4
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology and Center for Human Immunology, Siebens-Drake Research Institute, Western University, London, Ontario, Canada N6G 2V4
| | - Stephen Dominic Barr
- Department of Microbiology and Immunology and Center for Human Immunology, Siebens-Drake Research Institute, Western University, London, Ontario, Canada N6G 2V4
| | - Sung Ouk Kim
- Department of Microbiology and Immunology and Center for Human Immunology, Siebens-Drake Research Institute, Western University, London, Ontario, Canada N6G 2V4
| |
Collapse
|
5
|
Abstract
Influenza A virus (IAV) is an RNA virus with a segmented genome. These viral properties allow for the rapid evolution of IAV under selective pressure, due to mutation occurring from error-prone replication and the exchange of gene segments within a co-infected cell, termed reassortment. Both mutation and reassortment give rise to genetic diversity, but constraints shape their impact on viral evolution: just as most mutations are deleterious, most reassortment events result in genetic incompatibilities. The phenomenon of segment mismatch encompasses both RNA- and protein-based incompatibilities between co-infecting viruses and results in the production of progeny viruses with fitness defects. Segment mismatch is an important determining factor of the outcomes of mixed IAV infections and has been addressed in multiple risk assessment studies undertaken to date. However, due to the complexity of genetic interactions among the eight viral gene segments, our understanding of segment mismatch and its underlying mechanisms remain incomplete. Here, we summarize current knowledge regarding segment mismatch and discuss the implications of this phenomenon for IAV reassortment and diversity.
Collapse
Affiliation(s)
- Maria C White
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
6
|
Plant EP, Ilyushina NA, Sheikh F, Donnelly RP, Ye Z. Influenza virus NS1 protein mutations at position 171 impact innate interferon responses by respiratory epithelial cells. Virus Res 2017; 240:81-86. [PMID: 28757142 DOI: 10.1016/j.virusres.2017.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/21/2017] [Accepted: 07/26/2017] [Indexed: 01/09/2023]
Abstract
The influenza virus NS1 protein interacts with a wide range of proteins to suppress the host cell immune response and facilitate virus replication. The amino acid sequence of the 2009 pandemic virus NS1 protein differed from sequences of earlier related viruses. The functional impact of these differences has not been fully defined. Therefore, we made mutations to the NS1 protein based on these sequence differences, and assessed the impact of these changes on host cell interferon (IFN) responses. We found that viruses with mutations at position 171 replicated efficiently but did not induce expression of interferon genes as effectively as wild-type viruses in A459 lung epithelial cells. The decreased ability of these NS1 mutant viruses to induce IFN gene and protein expression correlated with decreased activation of STAT1 and lower levels of IFN-stimulated gene (ISG) expression. These findings demonstrate that mutations at position 171 in the NS1 protein result in decreased expression of IFN and ISGs by A549 cells. Consequently, these viruses may be more virulent than the parental strains that do not contain mutations at position 171 in the NS1 protein.
Collapse
Affiliation(s)
- Ewan P Plant
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD, USA.
| | - Natalia A Ilyushina
- Division of Biotechnology Research and Review II, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD, USA.
| | - Faruk Sheikh
- Division of Biotechnology Research and Review II, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD, USA.
| | - Raymond P Donnelly
- Division of Biotechnology Research and Review II, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD, USA.
| | - Zhiping Ye
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Ave., Silver Spring, MD, USA.
| |
Collapse
|
7
|
Sonnberg S, Ducatez MF, DeBeauchamp J, Crumpton JC, Rubrum A, Sharp B, Hall RJ, Peacey M, Huang S, Webby RJ. Pandemic Seasonal H1N1 Reassortants Recovered from Patient Material Display a Phenotype Similar to That of the Seasonal Parent. J Virol 2016; 90:7647-56. [PMID: 27279619 PMCID: PMC4988147 DOI: 10.1128/jvi.00772-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/06/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED We have previously shown that 11 patients became naturally coinfected with seasonal H1N1 (A/H1N1) and pandemic H1N1 (pdm/H1N1) during the Southern hemisphere winter of 2009 in New Zealand. Reassortment of influenza A viruses is readily observed during coinfection of host animals and in vitro; however, reports of reassortment occurring naturally in humans are rare. Using clinical specimen material, we show reassortment between the two coinfecting viruses occurred with high likelihood directly in one of the previously identified patients. Despite the lack of spread of these reassortants in the community, we did not find them to be attenuated in several model systems for viral replication and virus transmission: multistep growth curves in differentiated human bronchial epithelial cells revealed no growth deficiency in six recovered reassortants compared to A/H1N1 and pdm/H1N1 isolates. Two reassortant viruses were assessed in ferrets and showed transmission to aerosol contacts. This study demonstrates that influenza virus reassortants can arise in naturally coinfected patients. IMPORTANCE Reassortment of influenza A viruses is an important driver of virus evolution, but little has been done to address humans as hosts for the generation of novel influenza viruses. We show here that multiple reassortant viruses were generated during natural coinfection of a patient with pandemic H1N1 (2009) and seasonal H1N1 influenza A viruses. Though apparently fit in model systems, these reassortants did not become established in the wider population, presumably due to herd immunity against their seasonal H1 antigen.
Collapse
Affiliation(s)
| | | | | | | | - Adam Rubrum
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Bridgett Sharp
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richard J Hall
- Institute of Environmental Science and Research, Upper Hutt, New Zealand
| | - Matthew Peacey
- Institute of Environmental Science and Research, Upper Hutt, New Zealand
| | - Sue Huang
- Institute of Environmental Science and Research, Upper Hutt, New Zealand
| | - Richard J Webby
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
8
|
Kobayashi Y, Dadonaite B, van Doremalen N, Suzuki Y, Barclay WS, Pybus OG. Computational and molecular analysis of conserved influenza A virus RNA secondary structures involved in infectious virion production. RNA Biol 2016; 13:883-94. [PMID: 27399914 DOI: 10.1080/15476286.2016.1208331] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
As well as encoding viral proteins, genomes of RNA viruses harbor secondary and tertiary RNA structures that have been associated with functions essential for successful replication and propagation. Here, we identified stem-loop structures that are extremely conserved among 1,884 M segment sequences of influenza A virus (IAV) strains from various subtypes and host species using computational and evolutionary methods. These structures were predicted within the 3' and 5' ends of the coding regions of M1 and M2, respectively, where packaging signals have been previously proposed to exist. These signals are thought to be required for the incorporation of a single copy of 8 different negative-strand RNA segments (vRNAs) into an IAV particle. To directly test the functionality of conserved stem-loop structures, we undertook reverse genetic experiments to introduce synonymous mutations designed to disrupt secondary structures predicted at 3 locations and found them to attenuate infectivity of recombinant virus. In one mutant, predicted to disrupt stem loop structure at nucleotide positions 219-240, attenuation was more evident at increased temperature and was accompanied by an increase in the production of defective virus particles. Our results suggest that the conserved secondary structures predicted in the M segment are involved in the production of infectious viral particles during IAV replication.
Collapse
Affiliation(s)
- Yuki Kobayashi
- a Nihon University Veterinary Research Center , Fujisawa , Kanagawa , Japan.,b Department of Zoology , University of Oxford , Oxford , UK
| | - Bernadeta Dadonaite
- c Section of Virology, Department of Medicine, Imperial College London , London , UK
| | - Neeltje van Doremalen
- c Section of Virology, Department of Medicine, Imperial College London , London , UK.,d Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Hamilton , MT , USA
| | - Yoshiyuki Suzuki
- e Graduate School of Natural Sciences, Nagoya City University , Nagoya , Japan
| | - Wendy S Barclay
- c Section of Virology, Department of Medicine, Imperial College London , London , UK
| | - Oliver G Pybus
- b Department of Zoology , University of Oxford , Oxford , UK
| |
Collapse
|
9
|
Matos-Patrón A, Byrd-Leotis L, Steinhauer DA, Barclay WS, Ayora-Talavera G. Amino acid substitution D222N from fatal influenza infection affects receptor-binding properties of the influenza A(H1N1)pdm09 virus. Virology 2015; 484:15-21. [DOI: 10.1016/j.virol.2015.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/15/2015] [Accepted: 05/12/2015] [Indexed: 12/12/2022]
|
10
|
Kim IH, Kwon HJ, Park JK, Song CS, Kim JH. Optimal attenuation of a PR8-derived mouse pathogenic H5N1 recombinant virus for testing antigenicity and protective efficacy in mice. Vaccine 2015; 33:6314-9. [PMID: 26428455 DOI: 10.1016/j.vaccine.2015.09.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/04/2015] [Accepted: 09/16/2015] [Indexed: 10/23/2022]
Abstract
The PR8-based reverse genetics vector system is widely used to generate commercial vaccine strains, but the pathogenicity of PR8-derived recombinant viruses in mice hinders further immunological studies. In the present study, we generated PR8-derived H5N1 recombinant viruses, in which haemagglutinin (HA) and neuraminidase (NA) originated from a mouse-pathogenic H5N1 low pathogenic avian influenza virus (LPAIV), and the non-structural proteins (NS) and polymerase basic protein 2 (PB2) originated from different H9N2 LPAIVs. In contrast to the control H5N1 recombinant virus, harboring six internal genes from PR8, the NS and PB2 recombinant viruses did not cause body weight loss in mice. However, the NS recombinant virus replicated in the lungs of mice. It was more immunogenic than the PB2 recombinant virus to protect efficiently against a lethal challenge of a H5N1 highly pathogenic AIV with 89 and 88% amino acid identity in HA and NA, respectively. Therefore, the NS gene may be useful for generating nonpathogenic and immunogenic PR8-derived recombinant viruses for studies of antigenicity and protective efficacy in mice.
Collapse
Affiliation(s)
- Il-Hwan Kim
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyuk-Joon Kwon
- Laboratory of Poultry Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea; Farm Animal Clinical Training and Research Center, Institutes of Green Bio Science and Technology, Seoul National University, Seoul, Republic of Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| | - Jae-Keun Park
- Laboratory of Avian Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Chang-Seon Song
- Laboratory of Avian Diseases, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jae-Hong Kim
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Effects of different NS genes of avian influenza viruses and amino acid changes on pathogenicity of recombinant A/Puerto Rico/8/34 viruses. Vet Microbiol 2014; 175:17-25. [PMID: 25480165 DOI: 10.1016/j.vetmic.2014.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/04/2014] [Accepted: 11/07/2014] [Indexed: 11/21/2022]
Abstract
To examine the effects of the NS1 and NEP genes of avian influenza viruses (AIVs) on pathogenicity in mice, we generated recombinant PR8 viruses containing 3 different NS genes of AIVs. In contrast to the reverse genetics-generated PR8 (rPR8) strain and other recombinant viruses, the recombinant virus rPR8-NS(0028), which contained the NS gene of A/chicken/KBNP-0028/2000 (H9N2) (0028), was non-pathogenic to mice. The novel single mutations of 0028 NS1 to corresponding amino acid of PR8 NS1, G139D and S151T increased the pathogenicity of rPR8-NS(0028). The replacement of the PL motifs (EPEV or RSEV) of pathogenic recombinant viruses with that of 0028 (GSEV) did not reduce the pathogenicity of the viruses. However, a recombinant virus with an EPEV-grafted 0028 NS gene was more pathogenic than rPR8-NS(0028) but less than rPR8. The lower pathogenicity of rPR8-NS(0028) might be associated with the lower virus titer and IFN-β level in the lungs of infected mice, and be attributed to G139, S151 and GSEV-PL motif of NS1 gene of 0028. In conclusion we defined new amino acid residues of NS1 related to mice pathogenicity and the presence of pathogenic NS genes among low pathogenic AIVs may encourage continuous monitoring of their mammalian pathogenicity.
Collapse
|
12
|
Accumulation of human-adapting mutations during circulation of A(H1N1)pdm09 influenza virus in humans in the United Kingdom. J Virol 2014; 88:13269-83. [PMID: 25210166 PMCID: PMC4249111 DOI: 10.1128/jvi.01636-14] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The influenza pandemic that emerged in 2009 provided an unprecedented opportunity to study adaptation of a virus recently acquired from an animal source during human transmission. In the United Kingdom, the novel virus spread in three temporally distinct waves between 2009 and 2011. Phylogenetic analysis of complete viral genomes showed that mutations accumulated over time. Second- and third-wave viruses replicated more rapidly in human airway epithelial (HAE) cells than did the first-wave virus. In infected mice, weight loss varied between viral isolates from the same wave but showed no distinct pattern with wave and did not correlate with viral load in the mouse lungs or severity of disease in the human donor. However, second- and third-wave viruses induced less alpha interferon in the infected mouse lungs. NS1 protein, an interferon antagonist, had accumulated several mutations in second- and third-wave viruses. Recombinant viruses with the third-wave NS gene induced less interferon in human cells, but this alone did not account for increased virus fitness in HAE cells. Mutations in HA and NA genes in third-wave viruses caused increased binding to α-2,6-sialic acid and enhanced infectivity in human mucus. A recombinant virus with these two segments replicated more efficiently in HAE cells. A mutation in PA (N321K) enhanced polymerase activity of third-wave viruses and also provided a replicative advantage in HAE cells. Therefore, multiple mutations allowed incremental changes in viral fitness, which together may have contributed to the apparent increase in severity of A(H1N1)pdm09 influenza virus during successive waves. IMPORTANCE Although most people infected with the 2009 pandemic influenza virus had mild or unapparent symptoms, some suffered severe and devastating disease. The reasons for this variability were unknown, but the numbers of severe cases increased during successive waves of human infection in the United Kingdom. To determine the causes of this variation, we studied genetic changes in virus isolates from individual hospitalized patients. There were no consistent differences between these viruses and those circulating in the community, but we found multiple evolutionary changes that in combination over time increased the virus's ability to infect human cells. These adaptations may explain the remarkable ability of A(H1N1)pdm09 virus to continue to circulate despite widespread immunity and the apparent increase in severity of influenza over successive waves of infection.
Collapse
|
13
|
Magnitude of influenza virus replication and cell damage is associated with interleukin-6 production in primary cultures of human tracheal epithelium. Respir Physiol Neurobiol 2014; 202:16-23. [PMID: 25064661 DOI: 10.1016/j.resp.2014.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/15/2014] [Accepted: 07/15/2014] [Indexed: 01/22/2023]
Abstract
Primary cultures of human tracheal epithelium were infected with influenza viruses to examine the relationships between the magnitude of viral replication and infection-induced cell damage and cytokine production in airway epithelial cells. Infection with four strains of the type A influenza virus increased the detached cell number and lactate dehydrogenase (LDH) levels in the supernatants. The detached cell number and LDH levels were related to the viral titers and interleukin (IL)-6 levels and the nuclear factor kappa B (NF-κB) p65 activation. Treatment of the cells with an anti-IL-6 receptor antibody and an NF-κB inhibitor, caffeic acid phenethyl ester, reduced the detached cell number, viral titers and the LDH levels and improved cell viability after infection with the pandemic influenza virus [A/Sendai-H/N0633/2009 (H1N1) pdm09]. A caspase-3 inhibitor, benzyloxycarbonyl-DEVD-fluoromethyl ketone, reduced the detached cell number and viral titers. Influenza viral infection-induced cell damage may be partly related to the magnitude of viral replication, NF-κB-p65-mediated IL-6 production and caspase-3 activation.
Collapse
|
14
|
The PDZ-binding motif of the avian NS1 protein affects transmission of the 2009 influenza A(H1N1) virus. Biochem Biophys Res Commun 2014; 449:19-25. [DOI: 10.1016/j.bbrc.2014.04.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 04/25/2014] [Indexed: 11/19/2022]
|
15
|
Abdelwhab EM, Veits J, Mettenleiter TC. Avian influenza virus NS1: A small protein with diverse and versatile functions. Virulence 2013; 4:583-8. [PMID: 24051601 PMCID: PMC3906290 DOI: 10.4161/viru.26360] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- E M Abdelwhab
- Friedrich-Loeffler-Institut; Federal Research Institute for Animal Health; Institute of Molecular Biology; Insel Riems, Germany
| | | | | |
Collapse
|
16
|
SUMOylation affects the interferon blocking activity of the influenza A nonstructural protein NS1 without affecting its stability or cellular localization. J Virol 2013; 87:5602-20. [PMID: 23468495 DOI: 10.1128/jvi.02063-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our pioneering studies on the interplay between the small ubiquitin-like modifier (SUMO) and influenza A virus identified the nonstructural protein NS1 as the first known SUMO target of influenza virus and one of the most abundantly SUMOylated influenza virus proteins. Here, we further characterize the role of SUMOylation for the A/Puerto Rico/8/1934 (PR8) NS1 protein, demonstrating that NS1 is SUMOylated not only by SUMO1 but also by SUMO2/3 and mapping the main SUMOylation sites in NS1 to residues K219 and K70. Furthermore, by using SUMOylatable and non-SUMOylatable forms of NS1 and an NS1-specific artificial SUMO ligase (ASL) that increases NS1 SUMOylation ~4-fold, we demonstrate that SUMOylation does not affect the stability or cellular localization of PR8 NS1. However, NS1's ability to be SUMOylated appears to affect virus multiplication, as indicated by the delayed growth of a virus expressing the non-SUMOylatable form of NS1 in the interferon (IFN)-competent MDCK cell line. Remarkably, while a non-SUMOylatable form of NS1 exhibited a substantially diminished ability to neutralize IFN production, increasing NS1 SUMOylation beyond its normal levels also exerted a negative effect on its IFN-blocking function. This observation indicates the existence of an optimal level of NS1 SUMOylation that allows NS1 to achieve maximal activity and suggests that the limited amount of SUMOylation normally observed for most SUMO targets may correspond to an optimal level that maximizes the contribution of SUMOylation to protein function. Finally, protein cross-linking data suggest that SUMOylation may affect NS1 function by regulating the abundance of NS1 dimers and trimers in the cell.
Collapse
|
17
|
Shaw AE, Ratinier M, Nunes SF, Nomikou K, Caporale M, Golder M, Allan K, Hamers C, Hudelet P, Zientara S, Breard E, Mertens P, Palmarini M. Reassortment between two serologically unrelated bluetongue virus strains is flexible and can involve any genome segment. J Virol 2013; 87:543-57. [PMID: 23097432 PMCID: PMC3536370 DOI: 10.1128/jvi.02266-12] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/16/2012] [Indexed: 11/20/2022] Open
Abstract
Coinfection of a cell by two different strains of a segmented virus can give rise to a "reassortant" with phenotypic characteristics that might differ from those of the parental strains. Bluetongue virus (BTV) is a double-stranded RNA (dsRNA) segmented virus and the cause of bluetongue, a major infectious disease of livestock. BTV exists as at least 26 different serotypes (BTV-1 to BTV-26). Prompted by the isolation of a field reassortant between BTV-1 and BTV-8, we systematically characterized the process of BTV reassortment. Using a reverse genetics approach, our study clearly indicates that any BTV-1 or BTV-8 genome segment can be rescued in the heterologous "backbone." To assess phenotypic variation as a result of reassortment, we examined viral growth kinetics and plaque sizes in in vitro experiments and virulence in an experimental mouse model of bluetongue disease. The monoreassortants generated had phenotypes that were very similar to those of the parental wild-type strains both in vitro and in vivo. Using a forward genetics approach in cells coinfected with BTV-1 and BTV-8, we have shown that reassortants between BTV-1 and BTV-8 are generated very readily. After only four passages in cell culture, we could not detect wild-type BTV-1 or BTV-8 in any of 140 isolated viral plaques. In addition, most of the isolated reassortants contained heterologous VP2 and VP5 structural proteins, while only 17% had homologous VP2 and VP5 proteins. Our study has shown that reassortment in BTV is very flexible, and there is no fundamental barrier to the reassortment of any genome segment. Given the propensity of BTV to reassort, it is increasingly important to have an alternative classification system for orbiviruses.
Collapse
Affiliation(s)
- Andrew E. Shaw
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Maxime Ratinier
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sandro Filipe Nunes
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Marco Caporale
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Istituto G. Caporale, Teramo, Italy
| | - Matthew Golder
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kathryn Allan
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | - Stéphan Zientara
- French Agency for Food, Environment and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| | - Emmanuel Breard
- French Agency for Food, Environment and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| | | | - Massimo Palmarini
- MRC–University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|