1
|
Thiiru JW, Langat S, Mulwa F, Cinkovich S, Koka H, Yalwala S, Khamadi S, Onguso J, Odemba N, Ngere F, Johnson J, Egbo T, Garges E, Ojwang E, Eyase F. Characterization of West Nile virus Koutango lineage from phlebotomine sandflies in Kenya. PLoS One 2024; 19:e0301956. [PMID: 39173002 PMCID: PMC11341046 DOI: 10.1371/journal.pone.0301956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024] Open
Abstract
The West Nile virus (WNV), primarily transmitted by mosquitoes, is one of the most widespread flaviviruses globally, with past outbreaks occurring in the USA and Europe. Recent studies in parts of Africa, including Kenya, have identified the West Nile virus Koutango lineage (WN-KOUTV) among phlebotomine sandfly populations, however, our understanding of this virus remains limited. This study aimed to characterize WN-KOUTV from phlebotomine sandflies. Sandflies were sampled between 12th -16th March 2021 and 16th -20th March 2023 from six villages each in Baringo and Isiolo Counties, using CDC light traps. Female sandflies were taxonomically identified and pooled based on genus and site of collection. Virus isolation was performed in Vero cells. Viral genomes were determined using next-generation sequencing. Phylogenetic and molecular clock analyses were done to decipher the virus's evolutionary relationships. Comparative analyses of amino acid sequences were performed to determine variations. Protein modeling in Pymol was conducted to elucidate variations in key protein regions. Evolutionary pressure analysis investigated the selection pressures on the virus. In vitro experiments were done to investigate the virus growth kinetics in mammalian Vero E6 and mosquito C6/36 cells. We report the isolation of WN-KOUTV from Salabani in Baringo and Aremet in Isiolo, Kenya. The isolated WN-KOUTVs clustered with previously identified WN-KOUTV strains. Comparative analysis revealed a unique amino acid at NS5 653. The WN-KOUTV lineage as a whole is under purifying selective pressure, with diversifying pressure acting at site NS3 267. The current WN-KOUTV replicated in Vero E6 and C6/36 cells comparable to West Nile virus Lineage 1a, isolated from mosquitoes. Subsequent isolations of WN-KOUTV in phlebotomine sandflies suggest potential vectors, however, vector competence studies would confirm this. Replication in mammalian and insect cell lines suggests there may exist a vector/host relationship. We speculate the close genetic relationship of WN-KOUTV strains from East and West Africa may potentially be enabled by bird migratory routes between the two regions. If proven, this could point to a potential future pandemic pathway for this virus.
Collapse
Affiliation(s)
- Jane Wambui Thiiru
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa, Nairobi, Kenya
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Solomon Langat
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Francis Mulwa
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Stephanie Cinkovich
- Global Emerging Infections Surveillance Branch, United States Armed Forces Health Surveillance Division, Silver Spring, Maryland, United States of America
| | - Hellen Koka
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Santos Yalwala
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa, Nairobi, Kenya
| | - Samoel Khamadi
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Justus Onguso
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Nicholas Odemba
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa, Nairobi, Kenya
| | - Francis Ngere
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa, Nairobi, Kenya
| | - Jaree Johnson
- United States Armed Forces Pest Management Board, Silver Spring, Maryland, United States of America
| | - Timothy Egbo
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa, Nairobi, Kenya
| | - Eric Garges
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa, Nairobi, Kenya
| | - Elly Ojwang
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa, Nairobi, Kenya
| | - Fredrick Eyase
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa, Nairobi, Kenya
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
2
|
Tian Z, Zhang H, Yu R, Du J, Gao S, Wang Q, Guan G, Yin H. The GTPase activity and isoprenylation of Swine GBP1 are critical for inhibiting the production of Japanese Encephalitis Virus. Vet Microbiol 2023; 284:109843. [PMID: 37540998 DOI: 10.1016/j.vetmic.2023.109843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
Japanese encephalitis virus (JEV) is a flavivirus that cause severe neurological deficits. The guanylate-binding protein 1 (GBP1) gene is an interferon-stimulated gene and exerts antiviral functions on many RNA and DNA viruses via diverse mechanisms, however, the roles and the action modes of GBP1 in the antiviral effect on the production of JEV RNA and infectious virions remain to be clarified. In this study, we found that the RNA levels of swine GBP1 (sGBP1) in PK15 cells were up-regulated at the late stage of JEV infection. The overexpression of sGBP1 significantly inhibited the production of JEV while the knockdown of sGBP1 promoted the production of JEV. The GTPase activity and isoprenylation of sGBP1 both are critical for anti-JEV activity. The GTPase activity of sGBP1 is responsible for inhibiting the production of JEV genomic RNA. The isoprenylation of sGBP1 inhibited the expression and cleavage of JEV prM to decrease the yields of infectious virions, which may be associated with the interaction between sGBP1 and cellular proprotein convertase furin. Taken together, the study dissected the action modes of sGBP1with potent anti-JEV activity in more details.
Collapse
Affiliation(s)
- Zhancheng Tian
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China.
| | - Hongge Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Ruiming Yu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Junzheng Du
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Shandian Gao
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Qiongjie Wang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| |
Collapse
|
3
|
Schvartz G, Karniely S, Azar R, Kabat A, Steinman A, Erster O. Detection and Analysis of West Nile Virus Structural Protein Genes in Animal or Bird Samples. Methods Mol Biol 2023; 2585:127-143. [PMID: 36331771 DOI: 10.1007/978-1-0716-2760-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
West Nile virus (WNV) is an important zoonotic pathogen, which is detected mainly by identification of its RNA using PCR. Genetic differentiation between WNV lineages is usually performed by complete genome sequencing, which is not available in many research and diagnostic laboratories. In this chapter, we describe a protocol for detection and analysis of WNV samples by sequencing the entire region of their structural genes capsid (C), preM/membrane, and envelope. The primary step is the detection of WNV RNA by quantitative PCR of the NS2A gene or the C gene regions. Next, the entire region containing the structural protein genes is amplified by PCR. The primary PCR product is then amplified again in parallel reactions, and these secondary PCR products are sequenced. Finally, bioinformatic analysis enables detection of mutations and classification of the samples of interest. This protocol is designed to be used by any laboratory equipped for endpoint and quantitative PCR. The sequencing can be performed either in-house or outsourced to a third-party service provider. This protocol may therefore be useful for rapid and affordable classification of WNV samples, obviating the need for complete genome sequencing.
Collapse
Affiliation(s)
- Gili Schvartz
- Kimron Veterinary Institute, Israel Ministry of Agriculture, Bet Dagan, Israel
- Koret School of Veterinary Medicine, The Robert H. Smith, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Sharon Karniely
- Kimron Veterinary Institute, Israel Ministry of Agriculture, Bet Dagan, Israel
| | - Roberto Azar
- Central Virology Laboratory of Israel Ministry of Health, Sheba Medical Center, Ramat Gan, Israel
| | - Areej Kabat
- Central Virology Laboratory of Israel Ministry of Health, Sheba Medical Center, Ramat Gan, Israel
| | - Amir Steinman
- Koret School of Veterinary Medicine, The Robert H. Smith, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Veterinary Teaching Hospital, Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Oran Erster
- Central Virology Laboratory of Israel Ministry of Health, Sheba Medical Center, Ramat Gan, Israel.
| |
Collapse
|
4
|
Nakayama E, Kato F, Tajima S, Ogawa S, Yan K, Takahashi K, Sato Y, Suzuki T, Kawai Y, Inagaki T, Taniguchi S, Le TT, Tang B, Prow NA, Uda A, Maeki T, Lim CK, Khromykh AA, Suhrbier A, Saijo M. Neuroinvasiveness of the MR766 strain of Zika virus in IFNAR-/- mice maps to prM residues conserved amongst African genotype viruses. PLoS Pathog 2021; 17:e1009788. [PMID: 34310650 PMCID: PMC8341709 DOI: 10.1371/journal.ppat.1009788] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 08/05/2021] [Accepted: 07/07/2021] [Indexed: 12/23/2022] Open
Abstract
Zika virus (ZIKV) strains are classified into the African and Asian genotypes. The higher virulence of the African MR766 strain, which has been used extensively in ZIKV research, in adult IFNα/β receptor knockout (IFNAR-/-) mice is widely viewed as an artifact associated with mouse adaptation due to at least 146 passages in wild-type suckling mouse brains. To gain insights into the molecular determinants of MR766's virulence, a series of genes from MR766 were swapped with those from the Asian genotype PRVABC59 isolate, which is less virulent in IFNAR-/- mice. MR766 causes 100% lethal infection in IFNAR-/- mice, but when the prM gene of MR766 was replaced with that of PRVABC59, the chimera MR/PR(prM) showed 0% lethal infection. The reduced virulence was associated with reduced neuroinvasiveness, with MR766 brain titers ≈3 logs higher than those of MR/PR(prM) after subcutaneous infection, but was not significantly different in brain titers of MR766 and MR/PR(prM) after intracranial inoculation. MR/PR(prM) also showed reduced transcytosis when compared with MR766 in vitro. The high neuroinvasiveness of MR766 in IFNAR-/- mice could be linked to the 10 amino acids that differ between the prM proteins of MR766 and PRVABC59, with 5 of these changes affecting positive charge and hydrophobicity on the exposed surface of the prM protein. These 10 amino acids are highly conserved amongst African ZIKV isolates, irrespective of suckling mouse passage, arguing that the high virulence of MR766 in adult IFNAR-/- mice is not the result of mouse adaptation.
Collapse
Affiliation(s)
- Eri Nakayama
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Fumihiro Kato
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shigeru Tajima
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shinya Ogawa
- Department of Applied Biological Chemistry, School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kexin Yan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kenta Takahashi
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasuhiro Kawai
- Management Department of Biosafety and Laboratory Animal, Division of Biosafety Control and Research, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takuya Inagaki
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Satoshi Taniguchi
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Thuy T. Le
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Bing Tang
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Natalie A. Prow
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takahiro Maeki
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Chang-Kweng Lim
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Alexander A. Khromykh
- Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
5
|
Fall G, Diallo D, Soumaila H, Ndiaye EH, Lagare A, Sadio BD, Ndione MHD, Wiley M, Dia M, Diop M, Ba A, Sidikou F, Ngoy BB, Faye O, Testa J, Loucoubar C, Sall AA, Diallo M, Faye O. First Detection of the West Nile Virus Koutango Lineage in Sandflies in Niger. Pathogens 2021; 10:257. [PMID: 33668365 PMCID: PMC7996184 DOI: 10.3390/pathogens10030257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 11/23/2022] Open
Abstract
West Nile virus (WNV), belonging to the Flaviviridae family, causes a mosquito-borne disease and shows great genetic diversity, with at least eight different lineages. The Koutango lineage of WNV (WN-KOUTV), mostly associated with ticks and rodents in the wild, is exclusively present in Africa and shows evidence of infection in humans and high virulence in mice. In 2016, in a context of Rift Valley fever (RVF) outbreak in Niger, mosquitoes, biting midges and sandflies were collected for arbovirus isolation using cell culture, immunofluorescence and RT-PCR assays. Whole genome sequencing and in vivo replication studies using mice were later conducted on positive samples. The WN-KOUTV strain was detected in a sandfly pool. The sequence analyses and replication studies confirmed that this strain belonged to the WN-KOUTV lineage and caused 100% mortality of mice. Further studies should be done to assess what genetic traits of WN-KOUTV influence this very high virulence in mice. In addition, given the risk of WN-KOUTV to infect humans, the possibility of multiple vectors as well as birds as reservoirs of WNV, to spread the virus beyond Africa, and the increasing threats of flavivirus infections in the world, it is important to understand the potential of WN-KOUTV to emerge.
Collapse
Affiliation(s)
- Gamou Fall
- Pole of Virology, WHO Collaborating Center For Arbovirus and Haemorrhagic Fever Virus, Institut Pasteur, Dakar BP 220, Senegal; (B.D.S.); (M.H.D.N.); (M.D.); (A.B.); (O.F.); (A.A.S.); (O.F.)
| | - Diawo Diallo
- Pole of Zoology, Medical Entomology Unit, Institut Pasteur, Dakar BP 220, Senegal; (D.D.); (E.H.N.); (M.D.)
| | - Hadiza Soumaila
- Programme National de Lutte contre le Paludisme, Ministère de la Santé Publique du Niger, Niamey BP 623, Niger;
- PMI Vector Link Project, Niamey BP 11051, Niger
| | - El Hadji Ndiaye
- Pole of Zoology, Medical Entomology Unit, Institut Pasteur, Dakar BP 220, Senegal; (D.D.); (E.H.N.); (M.D.)
| | - Adamou Lagare
- Centre de Recherche Médicale et Sanitaire, Niamey BP 10887, Niger; (A.L.); (F.S.); (J.T.)
| | - Bacary Djilocalisse Sadio
- Pole of Virology, WHO Collaborating Center For Arbovirus and Haemorrhagic Fever Virus, Institut Pasteur, Dakar BP 220, Senegal; (B.D.S.); (M.H.D.N.); (M.D.); (A.B.); (O.F.); (A.A.S.); (O.F.)
| | - Marie Henriette Dior Ndione
- Pole of Virology, WHO Collaborating Center For Arbovirus and Haemorrhagic Fever Virus, Institut Pasteur, Dakar BP 220, Senegal; (B.D.S.); (M.H.D.N.); (M.D.); (A.B.); (O.F.); (A.A.S.); (O.F.)
| | - Michael Wiley
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702-5011, USA;
- Department of Environmental, Agricultural, and Occupational Health, University of Nebraska, Omaha, NE 68198-4355, USA
| | - Moussa Dia
- Pole of Virology, WHO Collaborating Center For Arbovirus and Haemorrhagic Fever Virus, Institut Pasteur, Dakar BP 220, Senegal; (B.D.S.); (M.H.D.N.); (M.D.); (A.B.); (O.F.); (A.A.S.); (O.F.)
| | - Mamadou Diop
- Biostatistic, Biomathematics and Modelling Group, Institut Pasteur, Dakar BP 220, Senegal; (M.D.); (C.L.)
| | - Arame Ba
- Pole of Virology, WHO Collaborating Center For Arbovirus and Haemorrhagic Fever Virus, Institut Pasteur, Dakar BP 220, Senegal; (B.D.S.); (M.H.D.N.); (M.D.); (A.B.); (O.F.); (A.A.S.); (O.F.)
| | - Fati Sidikou
- Centre de Recherche Médicale et Sanitaire, Niamey BP 10887, Niger; (A.L.); (F.S.); (J.T.)
| | | | - Oumar Faye
- Pole of Virology, WHO Collaborating Center For Arbovirus and Haemorrhagic Fever Virus, Institut Pasteur, Dakar BP 220, Senegal; (B.D.S.); (M.H.D.N.); (M.D.); (A.B.); (O.F.); (A.A.S.); (O.F.)
| | - Jean Testa
- Centre de Recherche Médicale et Sanitaire, Niamey BP 10887, Niger; (A.L.); (F.S.); (J.T.)
| | - Cheikh Loucoubar
- Biostatistic, Biomathematics and Modelling Group, Institut Pasteur, Dakar BP 220, Senegal; (M.D.); (C.L.)
| | - Amadou Alpha Sall
- Pole of Virology, WHO Collaborating Center For Arbovirus and Haemorrhagic Fever Virus, Institut Pasteur, Dakar BP 220, Senegal; (B.D.S.); (M.H.D.N.); (M.D.); (A.B.); (O.F.); (A.A.S.); (O.F.)
| | - Mawlouth Diallo
- Pole of Zoology, Medical Entomology Unit, Institut Pasteur, Dakar BP 220, Senegal; (D.D.); (E.H.N.); (M.D.)
| | - Ousmane Faye
- Pole of Virology, WHO Collaborating Center For Arbovirus and Haemorrhagic Fever Virus, Institut Pasteur, Dakar BP 220, Senegal; (B.D.S.); (M.H.D.N.); (M.D.); (A.B.); (O.F.); (A.A.S.); (O.F.)
| |
Collapse
|
6
|
Autochthonous Transmission of West Nile Virus by a New Vector in Iran, Vector-Host Interaction Modeling and Virulence Gene Determinants. Viruses 2020; 12:v12121449. [PMID: 33339336 PMCID: PMC7766443 DOI: 10.3390/v12121449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Using molecular techniques and bioinformatics tools, we studied the vector-host interactions and the molecular epidemiology of West Nile virus (WNV) in western Iran. Mosquitoes were collected during 2017 and 2018. DNA typing assays were used to study vector-host interactions. Mosquitoes were screened by RT-PCR for the genomes of five virus families. WNV-positive samples were fully sequenced and evolutionary tree and molecular architecture were constructed by Geneious software and SWISS-MODEL workspace, respectively. A total of 5028 mosquito specimens were collected and identified. The most prevalent species was Culex (Cx.) pipiens complex (57.3%). Analysis of the blood-feeding preferences of blood-fed mosquitoes revealed six mammalian and one bird species as hosts. One mosquito pool containing non-blood-fed Cx. theileri and one blood-fed Culex pipiens pipiens (Cpp.) biotype pipiens were positive for WNV. A phylogram indicated that the obtained WNV sequences belonged to lineage 2, subclade 2 g. Several amino acid substitutions suspected as virulence markers were observed in the Iranian WNV strains. The three-dimensional structural homology model of the E-protein identified hot spot domains known to facilitate virus invasion and neurotropism. The recent detection of WNV lineage 2 in mosquitoes from several regions of Iran in consecutive years suggests that the virus is established in the country.
Collapse
|
7
|
Hobson-Peters J, Harrison JJ, Watterson D, Hazlewood JE, Vet LJ, Newton ND, Warrilow D, Colmant AMG, Taylor C, Huang B, Piyasena TBH, Chow WK, Setoh YX, Tang B, Nakayama E, Yan K, Amarilla AA, Wheatley S, Moore PR, Finger M, Kurucz N, Modhiran N, Young PR, Khromykh AA, Bielefeldt-Ohmann H, Suhrbier A, Hall RA. A recombinant platform for flavivirus vaccines and diagnostics using chimeras of a new insect-specific virus. Sci Transl Med 2020; 11:11/522/eaax7888. [PMID: 31826984 DOI: 10.1126/scitranslmed.aax7888] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
Abstract
Flaviviruses such as dengue, yellow fever, Zika, West Nile, and Japanese encephalitis virus present substantial global health burdens. New vaccines are being sought to address safety and manufacturing issues associated with current live attenuated vaccines. Here, we describe a new insect-specific flavivirus, Binjari virus, which was found to be remarkably tolerant for exchange of its structural protein genes (prME) with those of the aforementioned pathogenic vertebrate-infecting flaviviruses (VIFs). Chimeric BinJ/VIF-prME viruses remained replication defective in vertebrate cells but replicated with high efficiency in mosquito cells. Cryo-electron microscopy and monoclonal antibody binding studies illustrated that the chimeric BinJ/VIF-prME virus particles were structurally and immunologically similar to their parental VIFs. Pilot manufacturing in C6/36 cells suggests that high yields can be reached up to 109.5 cell culture infectious dose/ml or ≈7 mg/liter. BinJ/VIF-prME viruses showed utility in diagnostic (microsphere immunoassays and ELISAs using panels of human and equine sera) and vaccine applications (illustrating protection against Zika virus challenge in murine IFNAR-/- mouse models). BinJ/VIF-prME viruses thus represent a versatile, noninfectious (for vertebrate cells), high-yield technology for generating chimeric flavivirus particles with low biocontainment requirements.
Collapse
Affiliation(s)
- Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.
| | - Jessica J Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Jessamine E Hazlewood
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Laura J Vet
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Natalee D Newton
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - David Warrilow
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Agathe M G Colmant
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Carmel Taylor
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Bixing Huang
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Thisun B H Piyasena
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Weng Kong Chow
- Australian Defence Force Malaria and Infectious Disease Institute, Gallipoli Barracks, Queensland, Australia
| | - Yin Xiang Setoh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Bing Tang
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Eri Nakayama
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Alberto A Amarilla
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Sarah Wheatley
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Peter R Moore
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Mitchell Finger
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Nina Kurucz
- Centre for Disease Control, Health Protection Division, Northern Territory Department of Health, Darwin, Northern Territory, Australia
| | - Naphak Modhiran
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Alexander A Khromykh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.,School of Veterinary Science, University of Queensland Gatton Campus, Queensland 4343, Australia
| | - Andreas Suhrbier
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.,Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
8
|
Martins IC, Santos NC. Intrinsically disordered protein domains in flavivirus infection. Arch Biochem Biophys 2020; 683:108298. [PMID: 32045581 DOI: 10.1016/j.abb.2020.108298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/30/2022]
Abstract
Intrinsically disordered protein regions are at the core of biological processes and involved in key protein-ligand interactions. The Flavivirus proteins, of viruses of great biomedical importance such as Zika and dengue viruses, exemplify this. Several proteins of these viruses have disordered regions that are of the utmost importance for biological activity. Disordered proteins can adopt several conformations, each able to interact with and/or bind to different ligands. In fact, such interactions can help stabilize a particular fold. Moreover, by being promiscuous in the number of target molecules they can bind to, these protein regions increase the number of functions that their small proteome (10 proteins) can achieve. A folding energy waterfall better describes the protein folding landscape of these proteins. A disordered protein can be thought as rolling down the folding energy cascade, in order "to fall, fold and function". This is the case of many viral protein regions, as seen in the flaviviruses proteome. Given their small size, flaviviruses are a good model system for understanding the role of intrinsically disordered protein regions in viral function. Finally, studying these viruses disordered protein regions will certainly contribute to the development of therapeutic approaches against such promising (yet challenging) targets.
Collapse
Affiliation(s)
- Ivo C Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
9
|
Prow NA, Edmonds JH, Williams DT, Setoh YX, Bielefeldt-Ohmann H, Suen WW, Hobson-Peters J, van den Hurk AF, Pyke AT, Hall-Mendelin S, Northill JA, Johansen CA, Warrilow D, Wang J, Kirkland PD, Doggett S, Andrade CC, Brault AC, Khromykh AA, Hall RA. Virulence and Evolution of West Nile Virus, Australia, 1960-2012. Emerg Infect Dis 2018; 22:1353-62. [PMID: 27433830 PMCID: PMC4982165 DOI: 10.3201/eid2208.151719] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Despite the absence of disease in humans and animals, virulent virus strains have been circulating for >30 years. Worldwide, West Nile virus (WNV) causes encephalitis in humans, horses, and birds. The Kunjin strain of WNV (WNVKUN) is endemic to northern Australia, but infections are usually asymptomatic. In 2011, an unprecedented outbreak of equine encephalitis occurred in southeastern Australia; most of the ≈900 reported cases were attributed to a newly emerged WNVKUN strain. To investigate the origins of this virus, we performed genetic analysis and in vitro and in vivo studies of 13 WNVKUN isolates collected from different regions of Australia during 1960–2012. Although no disease was recorded for 1984, 2000, or 2012, isolates collected during those years (from Victoria, Queensland, and New South Wales, respectively) exhibited levels of virulence in mice similar to that of the 2011 outbreak strain. Thus, virulent strains of WNVKUN have circulated in Australia for >30 years, and the first extensive outbreak of equine disease in Australia probably resulted from a combination of specific ecologic and epidemiologic conditions.
Collapse
|
10
|
Cedillo-Barrón L, García-Cordero J, Shrivastava G, Carrillo-Halfon S, León-Juárez M, Bustos Arriaga J, León Valenzuela P, Gutiérrez Castañeda B. The Role of Flaviviral Proteins in the Induction of Innate Immunity. Subcell Biochem 2018; 88:407-442. [PMID: 29900506 DOI: 10.1007/978-981-10-8456-0_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Flaviviruses are positive, single-stranded, enveloped cytoplasmic sense RNA viruses that cause a variety of important diseases worldwide. Among them, Zika virus, West Nile virus, Japanese encephalitis virus, and Dengue virus have the potential to cause severe disease. Extensive studies have been performed to elucidate the structure and replication strategies of flaviviruses, and current studies are aiming to unravel the complex molecular interactions between the virus and host during the very early stages of infection. The outcomes of viral infection and rapid establishment of the antiviral state, depends on viral detection by pathogen recognition receptors and rapid initiation of signalling cascades to induce an effective innate immune response. Extracellular and intracellular pathogen recognition receptors play a crucial role in detecting flavivirus infection and inducing a robust antiviral response. One of the main hallmarks of flaviviral nonstructural proteins is their multiple strategies to antagonise the interferon system. In this chapter, we summarize the molecular characteristics of flaviviral proteins and discuss how viral proteins target different components of the interferon signalling pathway by blocking phosphorylation, enhancing degradation, and downregulating the expression of major components of the Janus kinase/signal transducer and activator of transcription pathway. We also discuss how the interactions of viral proteins with host proteins facilitate viral pathogenesis. Due to the lack of antivirals or prophylactic treatments for many flaviviral infections, it is necessary to fully elucidate how these viruses disrupt cellular processes to influence pathogenesis and disease outcomes.
Collapse
Affiliation(s)
- L Cedillo-Barrón
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico.
| | - J García-Cordero
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - G Shrivastava
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - S Carrillo-Halfon
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - M León-Juárez
- Department of Immunobiochemistry, National Institute of Perinatology, México City, Mexico
| | - J Bustos Arriaga
- Unidad de Biomedicina. Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autonoma de México, Edo. de México, Mexico
| | - Pc León Valenzuela
- Departamento de Biomedicina Molecular, CINVESTAV IPN, México, D.F, Mexico
| | - B Gutiérrez Castañeda
- Immunology Department UMF Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autonoma de México, Edo. de México, Mexico
| |
Collapse
|
11
|
Fall G, Di Paola N, Faye M, Dia M, Freire CCDM, Loucoubar C, Zanotto PMDA, Faye O, Sall AA. Biological and phylogenetic characteristics of West African lineages of West Nile virus. PLoS Negl Trop Dis 2017; 11:e0006078. [PMID: 29117195 PMCID: PMC5695850 DOI: 10.1371/journal.pntd.0006078] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 11/20/2017] [Accepted: 10/27/2017] [Indexed: 11/19/2022] Open
Abstract
The West Nile virus (WNV), isolated in 1937, is an arbovirus (arthropod-borne virus) that infects thousands of people each year. Despite its burden on global health, little is known about the virus’ biological and evolutionary dynamics. As several lineages are endemic in West Africa, we obtained the complete polyprotein sequence from three isolates from the early 1990s, each representing a different lineage. We then investigated differences in growth behavior and pathogenicity for four distinct West African lineages in arthropod (Ap61) and primate (Vero) cell lines, and in mice. We found that genetic differences, as well as viral-host interactions, could play a role in the biological properties in different WNV isolates in vitro, such as: (i) genome replication, (ii) protein translation, (iii) particle release, and (iv) virulence. Our findings demonstrate the endemic diversity of West African WNV strains and support future investigations into (i) the nature of WNV emergence, (ii) neurological tropism, and (iii) host adaptation. The West Nile virus (WNV) can cause severe neurological diseases including meningitis, encephalitis, and acute flaccid paralysis. Differences in WNV genetics could play a role in the frequency of neurological symptoms from an infection. For the first time, we observed how geographically similar but genetically distinct lineages grow in cellular environments that agree with the transmission chain of West Nile virus—vertebrate-arthropod-vertebrate. We were able to connect our in vitro and in vivo results with relevant epidemiological and molecular data. Our findings highlight the existence of West African lineages with higher virulence and replicative efficiency in vitro and in vivo compared to lineages similar to circulating strains in the United States and Europe. Our investigation of four West African lineages of West Nile virus will help us better understand the biology of the virus and assess future epidemiological threats.
Collapse
Affiliation(s)
- Gamou Fall
- Pôle de Virologie, Unité des Arbovirus et virus des fièvres hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Nicholas Di Paola
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Martin Faye
- Pôle de Virologie, Unité des Arbovirus et virus des fièvres hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Moussa Dia
- Pôle de Virologie, Unité des Arbovirus et virus des fièvres hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | | | - Cheikh Loucoubar
- Groupe à 4 ans de Biostatistiques, Bioinformatique et modélisation, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Paolo Marinho de Andrade Zanotto
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Biomedical Sciences Institute, University of Sao Paulo, Sao Paulo, Brazil
- * E-mail:
| | - Ousmane Faye
- Pôle de Virologie, Unité des Arbovirus et virus des fièvres hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| | - Amadou Alpha Sall
- Pôle de Virologie, Unité des Arbovirus et virus des fièvres hémorragiques, Institut Pasteur de Dakar, Dakar, Sénégal
| |
Collapse
|
12
|
Setoh YX, Tan CSE, Prow NA, Hobson-Peters J, Young PR, Khromykh AA, Hall RA. The I22V and L72S substitutions in West Nile virus prM protein promote enhanced prM/E heterodimerisation and nucleocapsid incorporation. Virol J 2015; 12:72. [PMID: 25946997 PMCID: PMC4424586 DOI: 10.1186/s12985-015-0303-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/28/2015] [Indexed: 11/10/2022] Open
Abstract
Background Amino acid substitutions I22V and L72S in the prM protein of West Nile virus Kunjin strain (WNVKUN) were previously shown to enhance virus secretion and virulence, but a mechanism by which this occurred was not determined. Findings Using pulse-chase experiments followed by co-immunoprecipitation with anti-E antibody, we demonstrated that the I22V and L72S substitutions enhanced prM/E heterodimerization for both the E-glycosylated and E-unglycosylated virus. Furthermore, analysis of secreted particles revealed that I22V and L72S substitutions also enhanced nucleocapsid incorporation. Conclusions We have demonstrated mechanistically that improved secretion of virus particles in the presence of I22V and L72S substitutions was contributed by more efficient prM/E heterodimerization.
Collapse
Affiliation(s)
- Yin Xiang Setoh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Cindy Si En Tan
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia. .,Present Address: Sir Albert Sakzewski Virus Research Centre, Clinical Medical Virology Centre, Herston, QLD, Australia.
| | - Natalie A Prow
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia. .,Present Address: QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Alexander A Khromykh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
13
|
Roby JA, Setoh YX, Hall RA, Khromykh AA. Post-translational regulation and modifications of flavivirus structural proteins. J Gen Virol 2015; 96:1551-69. [PMID: 25711963 DOI: 10.1099/vir.0.000097] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Flaviviruses are a group of single-stranded, positive-sense RNA viruses that generally circulate between arthropod vectors and susceptible vertebrate hosts, producing significant human and veterinary disease burdens. Intensive research efforts have broadened our scientific understanding of the replication cycles of these viruses and have revealed several elegant and tightly co-ordinated post-translational modifications that regulate the activity of viral proteins. The three structural proteins in particular - capsid (C), pre-membrane (prM) and envelope (E) - are subjected to strict regulatory modifications as they progress from translation through virus particle assembly and egress. The timing of proteolytic cleavage events at the C-prM junction directly influences the degree of genomic RNA packaging into nascent virions. Proteolytic maturation of prM by host furin during Golgi transit facilitates rearrangement of the E proteins at the virion surface, exposing the fusion loop and thus increasing particle infectivity. Specific interactions between the prM and E proteins are also important for particle assembly, as prM acts as a chaperone, facilitating correct conformational folding of E. It is only once prM/E heterodimers form that these proteins can be secreted efficiently. The addition of branched glycans to the prM and E proteins during virion transit also plays a key role in modulating the rate of secretion, pH sensitivity and infectivity of flavivirus particles. The insights gained from research into post-translational regulation of structural proteins are beginning to be applied in the rational design of improved flavivirus vaccine candidates and make attractive targets for the development of novel therapeutics.
Collapse
Affiliation(s)
- Justin A Roby
- 1Australian Infectious Diseases Research Centre, The University of Queensland, Australia 2School of Chemistry and Molecular Biosciences, The University of Queensland, Australia
| | - Yin Xiang Setoh
- 1Australian Infectious Diseases Research Centre, The University of Queensland, Australia 2School of Chemistry and Molecular Biosciences, The University of Queensland, Australia
| | - Roy A Hall
- 1Australian Infectious Diseases Research Centre, The University of Queensland, Australia 2School of Chemistry and Molecular Biosciences, The University of Queensland, Australia
| | - Alexander A Khromykh
- 1Australian Infectious Diseases Research Centre, The University of Queensland, Australia 2School of Chemistry and Molecular Biosciences, The University of Queensland, Australia
| |
Collapse
|
14
|
The West Nile virus-like flavivirus Koutango is highly virulent in mice due to delayed viral clearance and the induction of a poor neutralizing antibody response. J Virol 2014; 88:9947-62. [PMID: 24942584 DOI: 10.1128/jvi.01304-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED The mosquito-borne West Nile virus (WNV) is responsible for outbreaks of viral encephalitis in humans, horses, and birds, with particularly virulent strains causing recent outbreaks of disease in eastern Europe, the Middle East, North America, and Australia. Previous studies have phylogenetically separated WNV strains into two main genetic lineages (I and II) containing virulent strains associated with neurological disease. Several WNV-like strains clustering outside these lineages have been identified and form an additional five proposed lineages. However, little is known about whether these strains have the potential to induce disease. In a comparative analysis with the highly virulent lineage I American strain (WNVNY99), the low-pathogenicity lineage II strain (B956), a benign Australian strain, Kunjin (WNVKUN), the African WNV-like Koutango virus (WNVKOU), and a WNV-like isolate from Sarawak, Malaysia (WNVSarawak), were assessed for neuroinvasive properties in a murine model and for their replication kinetics in vitro. While WNVNY99 replicated to the highest levels in vitro, in vivo mouse challenge revealed that WNVKOU was more virulent, with a shorter time to onset of neurological disease and higher morbidity. Histological analysis of WNVKOU- and WNVNY99-infected brain and spinal cords demonstrated more prominent meningoencephalitis and the presence of viral antigen in WNVKOU-infected mice. Enhanced virulence of WNVKOU also was associated with poor viral clearance in the periphery (sera and spleen), a skewed innate immune response, and poor neutralizing antibody development. These data demonstrate, for the first time, potent neuroinvasive and neurovirulent properties of a WNV-like virus outside lineages I and II. IMPORTANCE In this study, we characterized the in vitro and in vivo properties of previously uncharacterized West Nile virus strains and West Nile-like viruses. We identified a West Nile-like virus, Koutango virus (WNVKOU), that was more virulent than a known virulent lineage I virus, WNVNY99. The enhanced virulence of WNVKOU was associated with poor viral clearance and the induction of a poor neutralizing antibody response. These findings provide new insights into the pathogenesis of West Nile virus.
Collapse
|
15
|
Garg H, Lee RTC, Tek NO, Maurer-Stroh S, Joshi A. Identification of conserved motifs in the West Nile virus envelope essential for particle secretion. BMC Microbiol 2013; 13:197. [PMID: 24007503 PMCID: PMC3766686 DOI: 10.1186/1471-2180-13-197] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/27/2013] [Indexed: 12/31/2022] Open
Abstract
Background Enveloped viruses utilize cellular membranes to bud from infected cells. The process of virion assembly and budding is often facilitated by the presence of certain conserved motifs within viral proteins in conjunction with cellular factors. We hence examined the West Nile Virus (WNV) Envelope protein for the presence of any such motifs and their functional characterization. Results We identified conserved 461PXAP464 and 349YCYL352 motifs in the WNV envelope glycoprotein bearing resemblance to retroviral late domains. Disruptive mutations of PXAP to LAAL and of the highly conserved Cys350 in the YCYL motif, led to a severe reduction in WNV particle production. Similar motifs in case of retroviruses are known to interact with components of host sorting machinery like PXAP with Tsg101 and YXXL with Alix. However, in the case of WNV, siRNA mediated depletion of Alix or Tsg101 did not have an effect on WNV release. Molecular modeling suggested that while the 461PXAP464 motif is surface accessible and could potentially interact with cellular proteins required for WNV assembly, the 349YCYL352 motif was found to be internal with Cys350 important for protein folding via disulphide bonding. Conclusions The conserved 461PXAP464 and 349YCYL352 motifs in the WNV envelope are indispensable for WNV particle production. Although these motifs bear sequence similarity to retroviral late domains and are essential for WNV assembly, they are functionally distinct suggesting that they are not the typical late domain like motifs of retroviruses and may play a role other than Alix/Tsg101 utilization/dependence.
Collapse
Affiliation(s)
- Himanshu Garg
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, 5001 El Paso Dr, MSB-1 Annex, El Paso, TX 79905, USA.
| | | | | | | | | |
Collapse
|