1
|
Hewson I, Johnson MR, Reyes-Chavez B. Lessons Learned from the Sea Star Wasting Disease Investigation. ANNUAL REVIEW OF MARINE SCIENCE 2025; 17:257-279. [PMID: 38885431 DOI: 10.1146/annurev-marine-040623-082617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Marine invertebrate mass mortality events (MMEs) threaten biodiversity and have the potential to catastrophically alter ecosystem structure. A proximal question around acute MMEs is their etiologies and/or environmental drivers. Establishing a robust cause of mortality is challenging in marine habitats due to the complexity of the interactions among species and the free dispersal of microorganisms from surrounding waters to metazoan microbiomes. The 2013-2014 sea star wasting disease (SSWD) MME in the northeast Pacific Ocean highlights the difficulty in establishing responsible agents. In less than a year of scientific investigation, investigators identified a candidate agent and provided at the time convincing data of pathogenic and transmissible disease. However, later investigation failed to support the initial results, and critical retrospective analyses of experimental procedures and reinterpretation of early findings disbanded any candidate agent. Despite the circuitous path that the investigation and understanding of SSWD have taken, lessons learned from the initial investigation-improving on approaches that led to misinterpretation-have been successfully applied to the 2022 Diadema antillarum investigation. In this review, we outline the history of the initial SSWD investigation, examine how early exploration led to spurious interpretations, summarize the lessons learned, provide recommendations for future work in other systems, and examine potential links between the SSWD event and the Diadema antillarum MME.
Collapse
Affiliation(s)
- Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, New York, USA;
| | - Mitchell R Johnson
- Department of Biology, San Diego State University, San Diego, California, USA
| | | |
Collapse
|
2
|
Tu W, Guo M, Zhang Z, Li C. Pathogen-induced apoptosis in echinoderms: A review. FISH & SHELLFISH IMMUNOLOGY 2024; 155:109990. [PMID: 39481501 DOI: 10.1016/j.fsi.2024.109990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/16/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
Echinoderms possess unique biological traits that make them valuable models in immunology, regeneration, and developmental biology studies. As a class rich in active substances with significant nutritional and medicinal value, echinoderms face threats from marine pathogens, including bacteria, viruses, fungi, protozoa, and parasites, which have caused substantial economic losses in echinoderm aquaculture. Echinoderms counteract pathogen invasion through innate immunity and programmed cell death, in particular, with apoptosis being essential for eliminating infected or damaged cells and maintaining homeostasis in many echinoderm cell types. Despite the importance of this process, there is a lack of comprehensive and updated reviews on this topic. This review underscores that echinoderm apoptotic pathways exhibit a complexity comparable to that of vertebrates, featuring proteins with unique domains that may indicate the presence of novel signaling mechanisms. We synthesize current knowledge on how echinoderms utilize diverse transcriptional and post-transcriptional mechanisms to regulate apoptosis in response to pathogen infections and explore how pathogens have evolved strategies to manipulate echinoderm apoptosis, either by inhibiting it to create survival niches or by inducing excessive apoptosis to weaken the host. By elucidating the primary apoptotic pathways in echinoderms and the host-pathogen interactions that modulate these pathways, this review aims to reveal new mechanisms of apoptosis in animal immune defense and provide insights into the evolutionary arms race between hosts and pathogens.
Collapse
Affiliation(s)
- Weitao Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Zhen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
3
|
Kibenge F, Kibenge M, Montes de Oca M, Godoy M. Parvoviruses of Aquatic Animals. Pathogens 2024; 13:625. [PMID: 39204226 PMCID: PMC11357303 DOI: 10.3390/pathogens13080625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Family Parvoviridae consists of small, non-enveloped viruses with linear, single-stranded DNA genomes of approximately 4-6 kilobases, subdivided into three subfamilies, Parvovirinae, Densovirinae, and Hamaparvovirinae, and unassigned genus Metalloincertoparvovirus. Parvoviruses of aquatic animals infect crustaceans, mollusks, and finfish. This review describes these parvoviruses, which are highly host-specific and associated with mass morbidity and mortality in both farmed and wild aquatic animals. They include Cherax quadricarinatus densovirus (CqDV) in freshwater crayfish in Queensland, Australia; sea star-associated densovirus (SSaDV) in sunflower sea star on the Northeastern Pacific Coast; Clinch densovirus 1 in freshwater mussels in the Clinch River, Virginia, and Tennessee, USA, in subfamily Densovirinae; hepatopancreatic parvovirus (HPV) and infectious hypodermal and hematopoietic necrosis virus (IHHNV) in farmed shrimp worldwide; Syngnathid ichthamaparvovirus 1 in gulf pipefish in the Gulf of Mexico and parts of South America; tilapia parvovirus (TiPV) in farmed tilapia in China, Thailand, and India, in the subfamily Hamaparvovirinae; and Penaeus monodon metallodensovirus (PmMDV) in Vietnamese P. monodon, in unassigned genus Metalloincertoparvovirus. Also included in the family Parvoviridae are novel parvoviruses detected in both diseased and healthy animals using metagenomic sequencing, such as zander parvovirus from zander in Hungary and salmon parvovirus from sockeye salmon smolts in British Columbia, Canada.
Collapse
Affiliation(s)
- Frederick Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada;
| | - Molly Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada;
| | - Marco Montes de Oca
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Puerto Montt 5480000, Chile; (M.M.d.O.); or (M.G.)
| | - Marcos Godoy
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Puerto Montt 5480000, Chile; (M.M.d.O.); or (M.G.)
- Laboratorio de Biotecnología Aplicada, Facultad de Ciencias de la Naturaleza, Escuela de Medicina Veterinaria, Sede de la Patagonia, Universidad San Sebastián, Puerto Montt 5480000, Chile
| |
Collapse
|
4
|
Oulhen N, Byrne M, Duffin P, Gomez-Chiarri M, Hewson I, Hodin J, Konar B, Lipp EK, Miner BG, Newton AL, Schiebelhut LM, Smolowitz R, Wahltinez SJ, Wessel GM, Work TM, Zaki HA, Wares JP. A Review of Asteroid Biology in the Context of Sea Star Wasting: Possible Causes and Consequences. THE BIOLOGICAL BULLETIN 2022; 243:50-75. [PMID: 36108034 PMCID: PMC10642522 DOI: 10.1086/719928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
AbstractSea star wasting-marked in a variety of sea star species as varying degrees of skin lesions followed by disintegration-recently caused one of the largest marine die-offs ever recorded on the west coast of North America, killing billions of sea stars. Despite the important ramifications this mortality had for coastal benthic ecosystems, such as increased abundance of prey, little is known about the causes of the disease or the mechanisms of its progression. Although there have been studies indicating a range of causal mechanisms, including viruses and environmental effects, the broad spatial and depth range of affected populations leaves many questions remaining about either infectious or non-infectious mechanisms. Wasting appears to start with degradation of mutable connective tissue in the body wall, leading to disintegration of the epidermis. Here, we briefly review basic sea star biology in the context of sea star wasting and present our current knowledge and hypotheses related to the symptoms, the microbiome, the viruses, and the associated environmental stressors. We also highlight throughout the article knowledge gaps and the data needed to better understand sea star wasting mechanistically, its causes, and potential management.
Collapse
Affiliation(s)
- Nathalie Oulhen
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Maria Byrne
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Paige Duffin
- Department of Genetics, University of Georgia, Athens, Georgia
| | - Marta Gomez-Chiarri
- Department of Fisheries, Animal, and Veterinary Science, University of Rhode Island, Kingston, Rhode Island
| | - Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, New York
| | - Jason Hodin
- Friday Harbor Labs, University of Washington, Friday Harbor, Washington
| | - Brenda Konar
- College of Fisheries and Ocean Sciences, University of Alaska, Fairbanks, Alaska
| | - Erin K. Lipp
- Department of Environmental Health Science, University of Georgia, Athens, Georgia
| | - Benjamin G. Miner
- Department of Biology, Western Washington University, Bellingham, Washington
| | | | - Lauren M. Schiebelhut
- Department of Life and Environmental Sciences, University of California, Merced, California
| | - Roxanna Smolowitz
- Department of Biology and Marine Biology, Roger Williams University, Bristol, Rhode Island
| | - Sarah J. Wahltinez
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Gary M. Wessel
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Thierry M. Work
- US Geological Survey, National Wildlife Health Center, Honolulu Field Station, Honolulu, Hawaii
| | - Hossam A. Zaki
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - John P. Wares
- Department of Genetics, University of Georgia, Athens, Georgia
- Odum School of Ecology, University of Georgia, Athens, Georgia
| |
Collapse
|
5
|
Abstract
Echinoderms are a phylum of marine invertebrates that include model organisms, keystone species, and animals commercially harvested for seafood. Despite their scientific, ecological, and economic importance, there is little known about the diversity of RNA viruses that infect echinoderms compared to other invertebrates. We screened over 900 transcriptomes and viral metagenomes to characterize the RNA virome of 38 echinoderm species from all five classes (Crinoidea, Holothuroidea, Asteroidea, Ophiuroidea and Echinoidea). We identified 347 viral genome fragments that were classified to genera and families within nine viral orders - Picornavirales, Durnavirales, Martellivirales, Nodamuvirales, Reovirales, Amarillovirales, Ghabrivirales, Mononegavirales, and Hepelivirales. We compared the relative viral representation across three life stages (embryo, larvae, adult) and characterized the gene content of contigs which encoded complete or near-complete genomes. The proportion of viral reads in a given transcriptome was not found to significantly differ between life stages though the majority of viral contigs were discovered from transcriptomes of adult tissue. This study illuminates the biodiversity of RNA viruses from echinoderms, revealing the occurrence of viral groups in natural populations.
Collapse
Affiliation(s)
- Elliot W Jackson
- Department of Microbiology, Cornell University, Ithaca, NY, USA.,Scripps Institution of Oceanography, University of California San Diego, La Jolla CA, USA
| | - Roland C Wilhelm
- School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, NY, USA
| | - Daniel H Buckley
- Department of Microbiology, Cornell University, Ithaca, NY, USA.,School of Integrative Plant Science, Bradfield Hall, Cornell University, Ithaca, NY, USA
| | - Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
6
|
Hewson I, Sewell MA. Surveillance of densoviruses and mesomycetozoans inhabiting grossly normal tissues of three Aotearoa New Zealand asteroid species. PLoS One 2021; 16:e0241026. [PMID: 33886557 PMCID: PMC8061988 DOI: 10.1371/journal.pone.0241026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/23/2021] [Indexed: 11/19/2022] Open
Abstract
Asteroid wasting events and mass mortality have occurred for over a century. We currently lack a fundamental understanding of the microbial ecology of asteroid disease, with disease investigations hindered by sparse information about the microorganisms associated with grossly normal specimens. We surveilled viruses and protists associated with grossly normal specimens of three asteroid species (Patiriella regularis, Stichaster australis, Coscinasterias muricata) on the North Island / Te Ika-a-Māui, Aotearoa New Zealand, using metagenomes prepared from virus and ribosome-sized material. We discovered several densovirus-like genome fragments in our RNA and DNA metagenomic libraries. Subsequent survey of their prevalence within populations by quantitative PCR (qPCR) demonstrated their occurrence in only a few (13%) specimens (n = 36). Survey of large and small subunit rRNAs in metagenomes revealed the presence of a mesomycete (most closely matching Ichthyosporea sp.). Survey of large subunit prevalence and load by qPCR revealed that it is widely detectable (80%) and present predominately in body wall tissues across all 3 species of asteroid. Our results raise interesting questions about the roles of these microbiome constituents in host ecology and pathogenesis under changing ocean conditions.
Collapse
Affiliation(s)
- Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| | - Mary A. Sewell
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Guo M, Li C. Current progress on identification of virus pathogens and the antiviral effectors in echinoderms. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103912. [PMID: 33129884 DOI: 10.1016/j.dci.2020.103912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/25/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
Echinoderms are important marine organisms that live in a wide range from the intertidal zone to the abyssal zone. Members of this phylum are prone to dramatic population fluctuations that may trigger dramatic shifts in ecosystem structure. Despite the extremely complex nature of the marine environment, the immune systems of echinoderms induce a complex innate immune response to prokaryotic and eukaryotic pathogens. Previous studies showed that many echinoderm disease outbreaks were associated with specific bacteria, whereas recent scientific investigations using newly developed technologies revealed the amazing diversity of viruses in seawater. Viruses are potential pathogens of several infectious diseases of marine echinoderms. We reviewed the discovery of viruses in echinoderms and discussed the relationship between viruses and diseases for the first time. We further summarized the research progress of the potential immune-related genes and signal pathways induced by viruses and poly (I:C). Additionally, numbers of studies showed that active substances extracted from echinoderms, or the compounds synthesized from these substances, have significant antihuman virus ability. This result suggests that the active substances derived from echinoderms provide potential antiviral protection for the organism, which may provide future research directions for the antiviral immunity of echinoderms. Thus, this review also collected information on the antiviral activities of biologically active substances from echinoderms, which may pave the way for new trends in antiviral immunity for echinoderms and antiviral drugs in humans.
Collapse
Affiliation(s)
- Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
8
|
Virwani A, Rajeev S, Carmichael-Branford G, Freeman MA, Dennis MM. Gross and microscopic pathology of West Indian sea eggs (Tripneustes ventricosus). J Invertebr Pathol 2020; 179:107526. [PMID: 33385401 DOI: 10.1016/j.jip.2020.107526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 11/28/2022]
Abstract
In this study, we performed comprehensive pathology examinations on 83 Tripneustes ventricosus from 11 locations on St. Kitts to build baseline data necessary for disease diagnosis in this species. Gross abnormalities were observed in 23/83 (28%) urchins and included spine loss, visceral hyperpigmentation, test discoloration, and test ulceration. Ciliates were the only protists identified in this study via examination of tissue wet mounts and histology, documented in 50/83 (60%) urchins. Microscopic observations associated with visibly abnormal status included muscle necrosis, test and appendage inflammation, appendage (tube feet, spines, and pedicellariae) degeneration, severe coelomocytosis, and generalized hypermelanosis. Enterocyte intranuclear inclusion bodies, microbial aggregates, nerve pigmentation, enteric pigmentation, integument-associated crustaceans, and encysted metazoan parasites were of uncertain pathological significance. The etiology for any lesion was not microscopically apparent, contrasting literature implicating common marine bacteria in urchin diseases. This study highlights the importance of histopathology in urchin disease investigations and facilitates the recognition of disease in T. ventricosus.
Collapse
Affiliation(s)
- Aakansha Virwani
- Center for Conservation Medicine and Ecosystem Health, Ross University School of Veterinary Medicine, Saint Kitts and Nevis.
| | - Sreekumari Rajeev
- Center for Conservation Medicine and Ecosystem Health, Ross University School of Veterinary Medicine, Saint Kitts and Nevis; Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996, USA.
| | - Gillian Carmichael-Branford
- Center for Conservation Medicine and Ecosystem Health, Ross University School of Veterinary Medicine, Saint Kitts and Nevis.
| | - Mark A Freeman
- Center for Conservation Medicine and Ecosystem Health, Ross University School of Veterinary Medicine, Saint Kitts and Nevis.
| | - Michelle M Dennis
- Center for Conservation Medicine and Ecosystem Health, Ross University School of Veterinary Medicine, Saint Kitts and Nevis; Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996, USA.
| |
Collapse
|
9
|
Diversity of Sea Star-Associated Densoviruses and Transcribed Endogenous Viral Elements of Densovirus Origin. J Virol 2020; 95:JVI.01594-20. [PMID: 32967964 PMCID: PMC7737747 DOI: 10.1128/jvi.01594-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
The primary interest in sea star densoviruses, specifically SSaDV, has been their association with sea star wasting syndrome (SSWS), a disease that has decimated sea star populations across the West Coast of the United States since 2013. The association of SSaDV with SSWS was originally drawn from metagenomic analysis, which was further studied through field surveys using quantitative PCR (qPCR), with the conclusion that it was the most likely viral candidate in the metagenomic data based on its representation in symptomatic sea stars compared to asymptomatic sea stars. We reexamined the original metagenomic data with additional genomic data sets and found that SSaDV was 1 of 10 densoviruses present in the original data set and was no more represented in symptomatic sea stars than in asymptomatic sea stars. Instead, SSaDV appears to be a widespread, generalist virus that exists among a large diversity of densoviruses present in sea star populations. A viral etiology of sea star wasting syndrome (SSWS) was originally explored with virus-sized material challenge experiments, field surveys, and metagenomics, leading to the conclusion that a densovirus is the predominant DNA virus associated with this syndrome and, thus, the most promising viral candidate pathogen. Single-stranded DNA viruses are, however, highly diverse and pervasive among eukaryotic organisms, which we hypothesize may confound the association between densoviruses and SSWS. To test this hypothesis and assess the association of densoviruses with SSWS, we compiled past metagenomic data with new metagenomic-derived viral genomes from sea stars collected from Antarctica, California, Washington, and Alaska. We used 179 publicly available sea star transcriptomes to complement our approaches for densovirus discovery. Lastly, we focus the study on sea star-associated densovirus (SSaDV), the first sea star densovirus discovered, by documenting its biogeography and putative tissue tropism. Transcriptomes contained only endogenized densovirus elements similar to the NS1 gene, while numerous extant densoviral genomes were recovered from viral metagenomes. SSaDV was associated with nearly all tested species from southern California to Alaska, and in contrast to previous work, we show that SSaDV is one genotype among a high diversity of densoviruses present in sea stars across the West Coast of the United States and globally that are commonly associated with grossly normal (i.e., healthy or asymptomatic) animals. The diversity and ubiquity of these viruses in sea stars confound the original hypothesis that one densovirus is the etiological agent of SSWS. IMPORTANCE The primary interest in sea star densoviruses, specifically SSaDV, has been their association with sea star wasting syndrome (SSWS), a disease that has decimated sea star populations across the West Coast of the United States since 2013. The association of SSaDV with SSWS was originally drawn from metagenomic analysis, which was further studied through field surveys using quantitative PCR (qPCR), with the conclusion that it was the most likely viral candidate in the metagenomic data based on its representation in symptomatic sea stars compared to asymptomatic sea stars. We reexamined the original metagenomic data with additional genomic data sets and found that SSaDV was 1 of 10 densoviruses present in the original data set and was no more represented in symptomatic sea stars than in asymptomatic sea stars. Instead, SSaDV appears to be a widespread, generalist virus that exists among a large diversity of densoviruses present in sea star populations.
Collapse
|
10
|
Cárdenas A, Ye J, Ziegler M, Payet JP, McMinds R, Vega Thurber R, Voolstra CR. Coral-Associated Viral Assemblages From the Central Red Sea Align With Host Species and Contribute to Holobiont Genetic Diversity. Front Microbiol 2020; 11:572534. [PMID: 33117317 PMCID: PMC7561429 DOI: 10.3389/fmicb.2020.572534] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Coral reefs are highly diverse marine ecosystems increasingly threatened on a global scale. The foundation species of reef ecosystems are stony corals that depend on their symbiotic microalgae and bacteria for aspects of their metabolism, immunity, and environmental adaptation. Conversely, the function of viruses in coral biology is less well understood, and we are missing an understanding of the diversity and function of coral viruses, particularly in understudied regions such as the Red Sea. Here we characterized coral-associated viruses using a large metagenomic and metatranscriptomic survey across 101 cnidarian samples from the central Red Sea. While DNA and RNA viral composition was different across coral hosts, biological traits such as coral life history strategy correlated with patterns of viral diversity. Coral holobionts were broadly associated with Mimiviridae and Phycodnaviridae that presumably infect protists and algal cells, respectively. Further, Myoviridae and Siphoviridae presumably target members of the bacterial phyla Actinobacteria, Firmicutes, and Proteobacteria, whereas Hepadnaviridae and Retroviridae might infect the coral host. Genes involved in bacterial virulence and auxiliary metabolic genes were common among the viral sequences, corroborating a contribution of viruses to the holobiont’s genetic diversity. Our work provides a first insight into Red Sea coral DNA and RNA viral assemblages and reveals that viral diversity is consistent with global coral virome patterns.
Collapse
Affiliation(s)
- Anny Cárdenas
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Jin Ye
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Maren Ziegler
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Giessen, Germany
| | - Jérôme P Payet
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| | - Ryan McMinds
- Center of Modeling, Simulation and Interactions, Université Côte d'Azur, Nice, France
| | - Rebecca Vega Thurber
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Christian R Voolstra
- Department of Biology, University of Konstanz, Konstanz, Germany.,Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
11
|
Hewson I, Johnson MR, Tibbetts IR. An Unconventional Flavivirus and Other RNA Viruses in the Sea Cucumber (Holothuroidea; Echinodermata) Virome. Viruses 2020; 12:v12091057. [PMID: 32972018 PMCID: PMC7551563 DOI: 10.3390/v12091057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
Sea cucumbers (Holothuroidea; Echinodermata) are ecologically significant constituents of benthic marine habitats. We surveilled RNA viruses inhabiting eight species (representing four families) of holothurian collected from four geographically distinct locations by viral metagenomics, including a single specimen of Apostichopus californicus affected by a hitherto undocumented wasting disease. The RNA virome comprised genome fragments of both single-stranded positive sense and double stranded RNA viruses, including those assigned to the Picornavirales, Ghabrivirales, and Amarillovirales. We discovered an unconventional flavivirus genome fragment which was most similar to a shark virus. Ghabivirales-like genome fragments were most similar to fungal totiviruses in both genome architecture and homology and had likely infected mycobiome constituents. Picornavirales, which are commonly retrieved in host-associated viral metagenomes, were similar to invertebrate transcriptome-derived picorna-like viruses. The greatest number of viral genome fragments was recovered from the wasting A. californicus library compared to the asymptomatic A. californicus library. However, reads from the asymptomatic library recruited to nearly all recovered wasting genome fragments, suggesting that they were present but not well represented in the grossly normal specimen. These results expand the known host range of flaviviruses and suggest that fungi and their viruses may play a role in holothurian ecology.
Collapse
Affiliation(s)
- Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA;
- Correspondence: ; Tel.: +1-607-255-0151
| | | | - Ian R. Tibbetts
- School of Biological Sciences, University of Queensland, St Lucia, Brisbane, QLD 4072, Australia;
| |
Collapse
|
12
|
Molecular biology and structure of a novel penaeid shrimp densovirus elucidate convergent parvoviral host capsid evolution. Proc Natl Acad Sci U S A 2020; 117:20211-20222. [PMID: 32747554 DOI: 10.1073/pnas.2008191117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The giant tiger prawn (Penaeus monodon) is a decapod crustacean widely reared for human consumption. Currently, viruses of two distinct lineages of parvoviruses (PVs, family Parvoviridae; subfamily Hamaparvovirinae) infect penaeid shrimp. Here, a PV was isolated and cloned from Vietnamese P. monodon specimens, designated Penaeus monodon metallodensovirus (PmMDV). This is the first member of a third divergent lineage shown to infect penaeid decapods. PmMDV has a transcription strategy unique among invertebrate PVs, using extensive alternative splicing and incorporating transcription elements characteristic of vertebrate-infecting PVs. The PmMDV proteins have no significant sequence similarity with other PVs, except for an SF3 helicase domain in its nonstructural protein. Its capsid structure, determined by cryoelectron microscopy to 3-Å resolution, has a similar surface morphology to Penaeus stylirostris densovirus, despite the lack of significant capsid viral protein (VP) sequence similarity. Unlike other PVs, PmMDV folds its VP without incorporating a βA strand and displayed unique multimer interactions, including the incorporation of a Ca2+ cation, attaching the N termini under the icosahedral fivefold symmetry axis, and forming a basket-like pentamer helix bundle. While the PmMDV VP sequence lacks a canonical phospholipase A2 domain, the structure of an EDTA-treated capsid, determined to 2.8-Å resolution, suggests an alternative membrane-penetrating cation-dependent mechanism in its N-terminal region. PmMDV is an observed example of convergent evolution among invertebrate PVs with respect to host-driven capsid structure and unique as a PV showing a cation-sensitive/dependent basket structure for an alternative endosomal egress.
Collapse
|
13
|
Van Eynde B, Christiaens O, Delbare D, Shi C, Vanhulle E, Yinda CK, Matthijnssens J, Smagghe G. Exploration of the virome of the European brown shrimp (Crangon crangon). J Gen Virol 2020; 101:651-666. [DOI: 10.1099/jgv.0.001412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Crangon crangon is economically a very important species. Recently, promising culture attempts have been made, but a major problem is the uncontrollable mortality during the grow-out phase. As of yet, the life cycle of C. crangon is not closed in captivity so wild-caught individuals are used for further rearing. Therefore, it is important to investigate the virome of C. crangon both in wild-caught animals as in cultured animals. In recent years, next-generation-sequencing (NGS) technologies have been very important in the unravelling of the virome of a wide range of environments and matrices, such as soil, sea, potable water, but also of a wide range of animal species. This will be the first report of a virome study in C. crangon using NGS in combination with the NetoVIR protocol. The near complete genomes of 16 novel viruses were described, most of which were rather distantly related to unclassified viruses or viruses belonging to the Picornavirales, Bunyavirales Nudiviridae, Parvoviridae, Flaviviridae, Hepeviridae, Tombusviridae, Narnaviridae, Nodaviridae, Sobemovirus. A difference in virome composition was observed between muscle and hepatopancreatic tissue, suggesting a distinct tissue tropism of several of these viruses. Some differences in the viral composition were noted between the cultured and wild shrimp, which could indicate that in sub-optimal aquaculture conditions some viruses become more abundant. This research showed that a plethora of unknown viruses is present in C. crangon and that more research is needed to determine which virus is potentially dangerous for the culture of C. crangon.
Collapse
Affiliation(s)
- Benigna Van Eynde
- Animal Sciences Unit-Fisheries, Flanders research institute for agriculture, fisheries and food (ILVO), 8400 Ostend, Belgium
- Department of Plant and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Olivier Christiaens
- Department of Plant and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Daan Delbare
- Animal Sciences Unit-Fisheries, Flanders research institute for agriculture, fisheries and food (ILVO), 8400 Ostend, Belgium
| | - Chenyan Shi
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Emiel Vanhulle
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Claude Kwe Yinda
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Jelle Matthijnssens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Viral Metagenomics, Leuven, Belgium
| | - Guy Smagghe
- Department of Plant and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
14
|
A Highly Prevalent and Pervasive Densovirus Discovered among Sea Stars from the North American Atlantic Coast. Appl Environ Microbiol 2020; 86:AEM.02723-19. [PMID: 31924612 PMCID: PMC7054102 DOI: 10.1128/aem.02723-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/27/2019] [Indexed: 12/04/2022] Open
Abstract
Sea star wasting syndrome is a disease primarily observed on the Pacific and Atlantic Coasts of North America that has significantly impacted sea star populations. The etiology of this disease is unknown, although it is hypothesized to be caused by a densovirus, SSaDV. However, previous studies have not found a correlation between SSaDV and sea star wasting syndrome on the North American Atlantic Coast. This study suggests that this observation may be explained by the presence of a genetically similar densovirus, AfaDV, that may have confounded previous studies. SSaDV was not present in sea stars screened in this study, and instead, AfaDV was commonly found in sea star populations across the New England region, with no apparent signs of disease. These results suggest that sea star densoviruses may be common constituents of the animals’ microbiome, and the diversity and extent of these viruses among wild populations may be greater than previously recognized. The etiology of sea star wasting syndrome is hypothesized to be caused by a densovirus, sea star-associated densovirus (SSaDV), that has previously been reported on the Pacific and Atlantic Coasts of the United States. In this study, we reevaluated the presence of SSaDV among sea stars from the North American Atlantic Coast and in doing so discovered a novel densovirus that we have named Asterias forbesi-associated densovirus (AfaDV), which shares 78% nucleotide pairwise identity with SSaDV. In contrast to previous studies, SSaDV was not detected in sea stars from the North American Atlantic Coast. Using a variety of PCR-based techniques, we investigated the tissue tropism, host specificity, and prevalence of AfaDV among populations of sea stars at five locations along the Atlantic Coast. AfaDV was detected in three sea star species (Asterias forbesi, Asterias rubens, and Henricia sp.) found in this region and was highly prevalent (>80% of individuals tested; n = 134), among sampled populations. AfaDV was detected in the body wall, gonads, and pyloric caeca (digestive gland) of specimens but was not detected in their coelomic fluid. A significant difference in viral load (copies mg−1) was found between tissue types, with the pyloric caeca having the highest viral loads. Further investigation of Asterias forbesi gonad tissue found germ line cells (oocytes) to be virus positive, suggesting a potential route of vertical transmission. Taken together, these observations show that the presence of AfaDV is not an indicator of sea star wasting syndrome because AfaDV is a common constituent of these animals’ microbiome, regardless of health. IMPORTANCE Sea star wasting syndrome is a disease primarily observed on the Pacific and Atlantic Coasts of North America that has significantly impacted sea star populations. The etiology of this disease is unknown, although it is hypothesized to be caused by a densovirus, SSaDV. However, previous studies have not found a correlation between SSaDV and sea star wasting syndrome on the North American Atlantic Coast. This study suggests that this observation may be explained by the presence of a genetically similar densovirus, AfaDV, that may have confounded previous studies. SSaDV was not present in sea stars screened in this study, and instead, AfaDV was commonly found in sea star populations across the New England region, with no apparent signs of disease. These results suggest that sea star densoviruses may be common constituents of the animals’ microbiome, and the diversity and extent of these viruses among wild populations may be greater than previously recognized.
Collapse
|
15
|
Altinli M, Lequime S, Courcelle M, François S, Justy F, Gosselin-Grenet AS, Ogliastro M, Weill M, Sicard M. Evolution and phylogeography of Culex pipiens densovirus. Virus Evol 2019; 5:vez053. [PMID: 31807318 PMCID: PMC6884738 DOI: 10.1093/ve/vez053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Viruses of the Parvoviridae family infect a wide range of animals including vertebrates and invertebrates. So far, our understanding of parvovirus diversity is biased towards medically or economically important viruses mainly infecting vertebrate hosts, while invertebrate infecting parvoviruses—namely densoviruses—have been largely neglected. Here, we investigated the prevalence and the evolution of the only mosquito-infecting ambidensovirus, Culex pipiens densovirus (CpDV), from laboratory mosquito lines and natural populations collected worldwide. CpDV diversity generally grouped in two clades, here named CpDV-1 and -2. The incongruence of the different gene trees for some samples suggested the possibility of recombination events between strains from different clades. We further investigated the role of selection on the evolution of CpDV genome and detected many individual sites under purifying selection both in non-structural and structural genes. However, some sites in structural genes were under diversifying selection, especially during the divergence of CpDV-1 and -2 clades. These substitutions between CpDV-1 and -2 clades were mostly located in the capsid protein encoding region and might cause changes in host specificity or pathogenicity of CpDV strains from the two clades. However, additional functional and experimental studies are necessary to fully understand the protein conformations and the resulting phenotype of these substitutions between clades of CpDV.
Collapse
Affiliation(s)
- Mine Altinli
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Sebastian Lequime
- KU Leuven, Department of Microbiology, Immunology, and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, Leuven, Belgium
| | - Maxime Courcelle
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Sarah François
- DGIMI, INRA, Université de Montpellier, Montpellier, France.,Department of Zoology, University of Oxford, Oxford, UK
| | - Fabienne Justy
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | | | | | - Mylene Weill
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Mathieu Sicard
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
16
|
Chiaramonte M, Arizza V, Russo R. Evolutionary conserved pathway of the innate immune response after a viral insult in
Paracentrotus lividus
sea urchin. Int J Immunogenet 2019; 46:192-202. [DOI: 10.1111/iji.12424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Marco Chiaramonte
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche Università degli Studi di Palermo Palermo Italy
- Consiglio Nazionale delle Ricerche Istituto di Biomedicina e Immunologia Molecolare “Alberto Monroy” Palermo Italy
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche Università degli Studi di Palermo Palermo Italy
| | - Roberta Russo
- Consiglio Nazionale delle Ricerche Istituto di Biomedicina e Immunologia Molecolare “Alberto Monroy” Palermo Italy
| |
Collapse
|
17
|
Moreno-Gallego JL, Chou SP, Di Rienzi SC, Goodrich JK, Spector TD, Bell JT, Youngblut ND, Hewson I, Reyes A, Ley RE. Virome Diversity Correlates with Intestinal Microbiome Diversity in Adult Monozygotic Twins. Cell Host Microbe 2019; 25:261-272.e5. [PMID: 30763537 PMCID: PMC6411085 DOI: 10.1016/j.chom.2019.01.019] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/31/2018] [Accepted: 01/24/2019] [Indexed: 01/01/2023]
Abstract
The virome is one of the most variable components of the human gut microbiome. Within twin pairs, viromes have been shown to be similar for infants, but not for adults, indicating that as twins age and their environments and microbiomes diverge, so do their viromes. The degree to which the microbiome drives the vast virome diversity is unclear. Here, we examine the relationship between microbiome and virome diversity in 21 adult monozygotic twin pairs selected for high or low microbiome concordance. Viromes derived from virus-like particles are unique to each individual, are dominated by Caudovirales and Microviridae, and exhibit a small core that includes crAssphage. Microbiome-discordant twins display more dissimilar viromes compared to microbiome-concordant twins, and the richer the microbiomes, the richer the viromes. These patterns are driven by bacteriophages, not eukaryotic viruses. Collectively, these observations support a strong role of the microbiome in patterning for the virome.
Collapse
Affiliation(s)
- J Leonardo Moreno-Gallego
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Shao-Pei Chou
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Sara C Di Rienzi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Julia K Goodrich
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - Nicholas D Youngblut
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Alejandro Reyes
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá 111711, Colombia; Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO 63108, USA
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany.
| |
Collapse
|
18
|
Núñez-Pons L, Work TM, Angulo-Preckler C, Moles J, Avila C. Exploring the pathology of an epidermal disease affecting a circum-Antarctic sea star. Sci Rep 2018; 8:11353. [PMID: 30054527 PMCID: PMC6063859 DOI: 10.1038/s41598-018-29684-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Over the past decade, unusual mortality outbreaks have decimated echinoderm populations over broad geographic regions, raising awareness globally of the importance of investigating such events. Echinoderms are key components of marine benthos for top-down and bottom-up regulations of plants and animals; population declines of these individuals can have significant ecosystem-wide effects. Here we describe the first case study of an outbreak affecting Antarctic echinoderms and consisting of an ulcerative epidermal disease affecting ~10% of the population of the keystone asteroid predator Odontaster validus at Deception Island, Antarctica. This event was first detected in the Austral summer 2012–2013, coinciding with unprecedented high seawater temperatures and increased seismicity. Histological analyses revealed epidermal ulceration, inflammation, and necrosis in diseased animals. Bacterial and fungal alpha diversity was consistently lower and of different composition in lesioned versus unaffected tissues (32.87% and 16.94% shared bacterial and fungal operational taxonomic units OTUs respectively). The microbiome of healthy stars was more consistent across individuals than in diseased specimens suggesting microbial dysbiosis, especially in the lesion fronts. Because these microbes were not associated with tissue damage at the microscopic level, their contribution to the development of epidermal lesions remains unclear. Our study reveals that disease events are reaching echinoderms as far as the polar regions thereby highlighting the need to develop a greater understanding of the microbiology and physiology of marine diseases and ecosystems health, especially in the era of global warming.
Collapse
Affiliation(s)
- Laura Núñez-Pons
- Section Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121, Napoli, Italy. .,Smithsonian Tropical Research Institute (STRI), Tupper/Naos/Bocas del Toro Labs, Ancón, 0843-03092, Panamá City, Republic of Panama.
| | - Thierry M Work
- US Geological Survey, National Wildlife Health Center, Honolulu Field Station, Honolulu, HI 96850, USA
| | - Carlos Angulo-Preckler
- Department of Evolutionary Biology Ecology and Environmental Sciences, and Biodiversity Research Institute (IrBIO), University of Barcelona, Faculty of Biology, Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain
| | - Juan Moles
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Conxita Avila
- Department of Evolutionary Biology Ecology and Environmental Sciences, and Biodiversity Research Institute (IrBIO), University of Barcelona, Faculty of Biology, Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain
| |
Collapse
|
19
|
Orosco FL, Lluisma AO. Variation in virome diversity in wild populations of Penaeus monodon (Fabricius 1798) with emphasis on pathogenic viruses. Virusdisease 2017; 28:262-271. [PMID: 29291212 DOI: 10.1007/s13337-017-0389-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/20/2017] [Indexed: 11/28/2022] Open
Abstract
Marine animals typically harbor a community of viruses, a number of which are known to cause diseases. In shrimp aquaculture, viral pathogens are the principal causes of major economic losses. However, the composition of the viral load of shrimps in wild population is poorly known. In this study, we explored the viral diversity in the microbiome of wild Penaeus monodon collected from six sites in the Philippines, with a view to detecting pathogenic forms. We employed a metagenomic approach via particle-associated nucleic acid isolation, sequence-independent single primer amplification, and pyrosequencing. Virome analysis of shrimp samples from different sites revealed distinct virome profiles, and hence significant differences in diversity, among the various sites based on number of OTUs, Shannon-Weaver Index, and Inverse Simpson Index. Sequences of key shrimp pathogens were detected such as the white spot syndrome virus (WSSV), and Penaeus stylirostris densovirus (PstDV). However, the patterns of distribution of the pathogenic viruses varied; whereas WSSV was found only in three out of six sites and PstDV were found in all but one site. The results also revealed shrimp-associated viruses that have not yet been observed in P. monodon such as avian virus-like, insect virus-like, plankton virus-like and bacteriophage-like sequences. Despite the diverse array of viruses detected in the study, a large proportion remains unidentified (i.e., similarity to sequences in the database was lower than the threshold required for definitive identification), and therefore could represent unexplored virus sequences and viral genomes in the environment.
Collapse
Affiliation(s)
- Fredmoore L Orosco
- Marine Genomics and Molecular Genetics Laboratory, Marine Science Institute, University of the Philippines - Diliman, 1101 Quezon City, Philippines.,Institute of Biology, University of the Philippines - Diliman, 1101 Quezon City, Philippines
| | - Arturo O Lluisma
- Marine Genomics and Molecular Genetics Laboratory, Marine Science Institute, University of the Philippines - Diliman, 1101 Quezon City, Philippines
| |
Collapse
|
20
|
Munang'andu HM, Mugimba KK, Byarugaba DK, Mutoloki S, Evensen Ø. Current Advances on Virus Discovery and Diagnostic Role of Viral Metagenomics in Aquatic Organisms. Front Microbiol 2017; 8:406. [PMID: 28382024 PMCID: PMC5360701 DOI: 10.3389/fmicb.2017.00406] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/27/2017] [Indexed: 12/20/2022] Open
Abstract
The global expansion of the aquaculture industry has brought with it a corresponding increase of novel viruses infecting different aquatic organisms. These emerging viral pathogens have proved to be a challenge to the use of traditional cell-cultures and immunoassays for identification of new viruses especially in situations where the novel viruses are unculturable and no antibodies exist for their identification. Viral metagenomics has the potential to identify novel viruses without prior knowledge of their genomic sequence data and may provide a solution for the study of unculturable viruses. This review provides a synopsis on the contribution of viral metagenomics to the discovery of viruses infecting different aquatic organisms as well as its potential role in viral diagnostics. High throughput Next Generation sequencing (NGS) and library construction used in metagenomic projects have simplified the task of generating complete viral genomes unlike the challenge faced in traditional methods that use multiple primers targeted at different segments and VPs to generate the entire genome of a novel virus. In terms of diagnostics, studies carried out this far show that viral metagenomics has the potential to serve as a multifaceted tool able to study and identify etiological agents of single infections, co-infections, tissue tropism, profiling viral infections of different aquatic organisms, epidemiological monitoring of disease prevalence, evolutionary phylogenetic analyses, and the study of genomic diversity in quasispecies viruses. With sequencing technologies and bioinformatics analytical tools becoming cheaper and easier, we anticipate that metagenomics will soon become a routine tool for the discovery, study, and identification of novel pathogens including viruses to enable timely disease control for emerging diseases in aquaculture.
Collapse
Affiliation(s)
- Hetron M. Munang'andu
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life SciencesOslo, Norway
| | - Kizito K. Mugimba
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life SciencesOslo, Norway
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere UniversityKampala, Uganda
| | - Denis K. Byarugaba
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere UniversityKampala, Uganda
| | - Stephen Mutoloki
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life SciencesOslo, Norway
| | - Øystein Evensen
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life SciencesOslo, Norway
| |
Collapse
|
21
|
Jackson EW, Bistolas KSI, Button JB, Hewson I. Novel Circular Single-Stranded DNA Viruses among an Asteroid, Echinoid and Holothurian (Phylum: Echinodermata). PLoS One 2016; 11:e0166093. [PMID: 27855181 PMCID: PMC5113903 DOI: 10.1371/journal.pone.0166093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/21/2016] [Indexed: 11/24/2022] Open
Abstract
Echinoderms are prone to large population fluctuations that can be mediated by pervasive disease events. For the majority of echinoderm disease events the causative pathogen is unknown. Viruses have only recently been explored as potential pathogens using culture-independent techniques though little information currently exists on echinoderm viruses. In this study, ten circular ssDNA viruses were discovered in tissues among an asteroid (Asterias forbesi), an echinoid (Strongylocentrotus droebachiensis) and a holothurian (Parastichopus californicus) using viral metagenomics. Genome architecture and sequence similarity place these viruses among the rapidly expanding circular rep-encoding single stranded (CRESS) DNA viral group. Multiple genomes from the same tissue were no more similar in sequence identity to each other than when compared to other known CRESS DNA viruses. The results from this study are the first to describe a virus from a holothurian and continue to show the ubiquity of these viruses among aquatic invertebrates.
Collapse
Affiliation(s)
- Elliot W. Jackson
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| | - Kalia S. I. Bistolas
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Jason B. Button
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
22
|
François S, Filloux D, Roumagnac P, Bigot D, Gayral P, Martin DP, Froissart R, Ogliastro M. Discovery of parvovirus-related sequences in an unexpected broad range of animals. Sci Rep 2016; 6:30880. [PMID: 27600734 PMCID: PMC5013282 DOI: 10.1038/srep30880] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/11/2016] [Indexed: 02/06/2023] Open
Abstract
Our knowledge of the genetic diversity and host ranges of viruses is fragmentary. This is particularly true for the Parvoviridae family. Genetic diversity studies of single stranded DNA viruses within this family have been largely focused on arthropod- and vertebrate-infecting species that cause diseases of humans and our domesticated animals: a focus that has biased our perception of parvovirus diversity. While metagenomics approaches could help rectify this bias, so too could transcriptomics studies. Large amounts of transcriptomic data are available for a diverse array of animal species and whenever this data has inadvertently been gathered from virus-infected individuals, it could contain detectable viral transcripts. We therefore performed a systematic search for parvovirus-related sequences (PRSs) within publicly available transcript, genome and protein databases and eleven new transcriptome datasets. This revealed 463 PRSs in the transcript databases of 118 animals. At least 41 of these PRSs are likely integrated within animal genomes in that they were also found within genomic sequence databases. Besides illuminating the ubiquity of parvoviruses, the number of parvoviral sequences discovered within public databases revealed numerous previously unknown parvovirus-host combinations; particularly in invertebrates. Our findings suggest that the host-ranges of extant parvoviruses might span the entire animal kingdom.
Collapse
Affiliation(s)
- S. François
- INRA, UMR DGIMI, F-34095, Montpellier, France
| | - D. Filloux
- CIRAD-INRA-SupAgro, UMR BGPI, Campus International de Montferrier-Baillarguet, Montpellier Cedex-5, France
| | - P. Roumagnac
- CIRAD-INRA-SupAgro, UMR BGPI, Campus International de Montferrier-Baillarguet, Montpellier Cedex-5, France
| | - D. Bigot
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS–Université François Rabelais, 37200 Tours, France
| | - P. Gayral
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS–Université François Rabelais, 37200 Tours, France
- UMR5554–Institut des Sciences de l’Evolution UMR5554, Université Montpellier–CNRS–IRD–EPHE, 34000 Montpellier, France
| | - D. P. Martin
- Computational Biology Group, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - R. Froissart
- CIRAD-INRA-SupAgro, UMR BGPI, Campus International de Montferrier-Baillarguet, Montpellier Cedex-5, France
- CNRS-IRD-UM, UMR 5290, MIVEGEC, 911 avenue Agropolis, 34394, Montpellier, France
| | | |
Collapse
|
23
|
First complete genome of an Ambidensovirus; Cherax quadricarinatus densovirus, from freshwater crayfish Cherax quadricarinatus. Mar Genomics 2015; 24 Pt 3:305-12. [DOI: 10.1016/j.margen.2015.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/29/2015] [Accepted: 07/29/2015] [Indexed: 11/18/2022]
|
24
|
Discovery of a novel circular DNA virus in the Forbes sea star, Asterias forbesi. Arch Virol 2015; 160:2349-51. [DOI: 10.1007/s00705-015-2503-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/15/2015] [Indexed: 10/23/2022]
|
25
|
Shen H, Zhang W, Shao S. Phylogenetic and recombination analysis of genomic sequences of IHHNV. J Basic Microbiol 2015; 55:1048-52. [DOI: 10.1002/jobm.201400900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/05/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Hongxing Shen
- Medical School of Jiangsu University; Zhenjiang P. R. China
| | - Wen Zhang
- Medical School of Jiangsu University; Zhenjiang P. R. China
| | - Shihe Shao
- Medical School of Jiangsu University; Zhenjiang P. R. China
| |
Collapse
|
26
|
Gudenkauf BM, Hewson I. Metatranscriptomic Analysis of Pycnopodia helianthoides (Asteroidea) Affected by Sea Star Wasting Disease. PLoS One 2015; 10:e0128150. [PMID: 26020776 PMCID: PMC4447261 DOI: 10.1371/journal.pone.0128150] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/22/2015] [Indexed: 11/30/2022] Open
Abstract
Sea star wasting disease (SSWD) describes a suite of symptoms reported in asteroids of the North American Pacific Coast. We performed a metatranscriptomic survey of asymptomatic and symptomatic sunflower star (Pycnopodia helianthoides) body wall tissues to understand holobiont gene expression in tissues affected by SSWD. Metatranscriptomes were highly variable between replicate libraries, and most differentially expressed genes represented either transcripts of associated microorganisms (particularly Pseudomonas and Vibrio relatives) or low-level echinoderm transcripts of unknown function. However, the pattern of annotated host functional genes reflects enhanced apoptotic and tissue degradation processes and decreased energy metabolism, while signalling of death-related proteins was greater in asymptomatic and symptomatic tissues. Our results suggest that the body wall tissues of SSWD-affected asteroids may undergo structural changes during disease progression, and that they are stimulated to undergo autocatalytic cell death processes.
Collapse
Affiliation(s)
- Brent M. Gudenkauf
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
27
|
Buckley KM, Rast JP. Diversity of animal immune receptors and the origins of recognition complexity in the deuterostomes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:179-189. [PMID: 25450907 DOI: 10.1016/j.dci.2014.10.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/01/2014] [Accepted: 10/20/2014] [Indexed: 06/04/2023]
Abstract
Invertebrate animals are characterized by extraordinary diversity in terms of body plan, life history and life span. The past impression that invertebrate immune responses are controlled by relatively simple innate systems is increasingly contradicted by genomic analyses that reveal significant evolutionary novelty and complexity. One accessible measure of this complexity is the multiplicity of genes encoding homologs of pattern recognition receptors. These multigene families vary significantly in size, and their sequence character suggests that they vary in function. At the same time, certain aspects of downstream signaling appear to be conserved. Here, we analyze five major classes of immune recognition receptors from newly available animal genome sequences. These include the Toll-like receptors (TLR), Nod-like receptors (NLR), SRCR domain scavenger receptors, peptidoglycan recognition proteins (PGRP), and Gram negative binding proteins (GNBP). We discuss innate immune complexity in the invertebrate deuterostomes, which was first recognized in sea urchins, within the wider context of emerging genomic information across animal phyla.
Collapse
MESH Headings
- Animals
- Biodiversity
- Evolution, Molecular
- Genetic Variation
- Genome/genetics
- Immunity, Innate/genetics
- Immunity, Innate/immunology
- Invertebrates/classification
- Invertebrates/genetics
- Invertebrates/immunology
- Multigene Family/genetics
- Multigene Family/immunology
- Phylogeny
- Receptors, Immunologic/classification
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Pattern Recognition/genetics
- Receptors, Pattern Recognition/immunology
- Receptors, Scavenger/genetics
- Receptors, Scavenger/immunology
- Species Specificity
- Toll-Like Receptors/genetics
- Toll-Like Receptors/immunology
Collapse
Affiliation(s)
- Katherine M Buckley
- Department of Immunology and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada.
| | - Jonathan P Rast
- Department of Immunology and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
28
|
Abstract
Populations of at least 20 asteroid species on the Northeast Pacific Coast have recently experienced an extensive outbreak of sea-star (asteroid) wasting disease (SSWD). The disease leads to behavioral changes, lesions, loss of turgor, limb autotomy, and death characterized by rapid degradation ("melting"). Here, we present evidence from experimental challenge studies and field observations that link the mass mortalities to a densovirus (Parvoviridae). Virus-sized material (i.e., <0.2 μm) from symptomatic tissues that was inoculated into asymptomatic asteroids consistently resulted in SSWD signs whereas animals receiving heat-killed (i.e., control) virus-sized inoculum remained asymptomatic. Viral metagenomic investigations revealed the sea star-associated densovirus (SSaDV) as the most likely candidate virus associated with tissues from symptomatic asteroids. Quantification of SSaDV during transmission trials indicated that progression of SSWD paralleled increased SSaDV load. In field surveys, SSaDV loads were more abundant in symptomatic than in asymptomatic asteroids. SSaDV could be detected in plankton, sediments and in nonasteroid echinoderms, providing a possible mechanism for viral spread. SSaDV was detected in museum specimens of asteroids from 1942, suggesting that it has been present on the North American Pacific Coast for at least 72 y. SSaDV is therefore the most promising candidate disease agent responsible for asteroid mass mortality.
Collapse
|
29
|
Gene expression of five different iteradensoviruses: Bombyx mori densovirus, Casphalia extranea densovirus, Papilio polyxenes densovirus, Sibine fusca densovirus, and Danaus plexippus densovirus. J Virol 2014; 88:12152-7. [PMID: 25078704 DOI: 10.1128/jvi.01719-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iteradensoviruses are 5-kb parvoviruses with typical J-shaped inverted terminal repeats of about 250 nucleotides and terminal hairpins of about 165 nucleotides. The single-stranded DNA genome contains several open reading frames, but their expression strategy is still unknown. Here the transcription maps and expression of the viruses in this genus were explored. As for brevidensoviruses, the two nonstructural (NS) genes were expressed by overlapping promoters with alternate transcription starts at both sides of the NS1 start codon.
Collapse
|