1
|
Saha A, Choudhary S, Walia P, Kumar P, Tomar S. Transformative approaches in SARS-CoV-2 management: Vaccines, therapeutics and future direction. Virology 2025; 604:110394. [PMID: 39889481 DOI: 10.1016/j.virol.2025.110394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 02/03/2025]
Abstract
The global healthcare and economic challenges caused by the pandemic of COVID-19 reinforced the urgent demand for quick and effective therapeutic and preventative interventions. While vaccines served as the frontline of defense, antivirals emerged as adjunctive countermeasures, especially for people who developed infection, were immunocompromised, or were reluctant to be vaccinated. Beyond the serious complications of SARS-CoV-2 infection, the threats of long-COVID and the potential for zoonotic spillover continue to be significant health concerns that cannot be overlooked. Moreover, the incessant viral evolution, clinical safety issues, waning immune responses, and the emergence of drug-resistant variants pinpoint towards more severe viral threats in the future and call for broad-spectrum innovative therapies as a pre-pandemic preparedness measure. The present review provides a comprehensive up-to-date overview of the strategies utilized in the development of classical and next-generation vaccines against SARS-CoV-2, the clinical and experimental data obtained from clinical trials, while addressing safety risks that may arise. Besides vaccines, the review also covers recent breakthroughs in anti-SARS-CoV-2 drug discovery, emphasizing druggable viral and host targets, virus- and host-targeting antivirals, and highlighting mechanistically representative molecules that are either approved or are under clinical investigation. In conclusion, the integration of both vaccines and antiviral therapies, along with swift innovative strategies to address viral evolution and drug resistance is crucial to strengthen our preparedness against future viral outbreaks.
Collapse
Affiliation(s)
- Ankita Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Priyanshu Walia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
2
|
Krejcova K, Boura E. Structural basis for broad-spectrum binding of AT-9010 to flaviviral methyltransferases. Arch Virol 2025; 170:61. [PMID: 39976734 PMCID: PMC11842469 DOI: 10.1007/s00705-025-06227-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/06/2024] [Indexed: 02/23/2025]
Abstract
AT-9010 (2'-methyl-2'-fluoro guanosine triphosphate) is a GTP analog whose prodrug, AT-752 is under consideration in human medicine as a potential antiviral drug against certain flaviviruses. It was previously believed to inhibit viral replication by acting primarily as a chain terminator. However, it was discovered recently that it also binds the GTP binding site of the methyltransferase (MTase) domain of the orthoflavivirus polymerase, thus interfering with RNA capping. Here, we investigated the binding of AT-9010 to Ntaya and Zika virus MTases. Structural analysis using X-ray crystallography revealed similar interactions between the base and sugar moieties of AT-9010 and key residues in both MTases, although differences in hydrogen bonding were observed. Our analysis also suggested that the triphosphate part of AT-9010 is flexible. Despite minor variations, the overall binding mode of AT-9010 was found to be the same for all of the flaviviral MTases examined, suggesting a structural basis for the efficacy of AT-9010 against multiple orthoflavivirus MTases.
Collapse
Affiliation(s)
- Katerina Krejcova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, Prague, 16610, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, Prague, 16610, Czech Republic.
| |
Collapse
|
3
|
Álvarez-Mínguez A, del Río N, Belén-Blázquez A, Casanova E, Orduña JM, Camarero P, Hurtado-Marcos C, del Águila C, Pérez-Pérez M, Martín-Acebes MA, Agudo R. Development of a luminescence-based method for measuring West Nile Virus MTase activity and its application to screen for antivirals. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100282. [PMID: 39445035 PMCID: PMC11497361 DOI: 10.1016/j.crmicr.2024.100282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
West Nile virus (WNV) is a flavivirus responsible for causing febrile illness and severe neurological diseases, with an increasing impact on human health around the world. However, there is still no adequate therapeutic treatment available to struggle WNV infections. Therefore, there is an urgent need to develop new techniques to accelerate the discovery of drugs against this pathogen. The main protein implicated in the replication of WNV is the non-structural protein 5 (NS5). This multifunctional protein contains methyltransferase (MTase) activity involved in the capping formation at the 5'-end of RNA and the methylation of internal viral RNA residues, both functions being essential for viral processes, such as RNA translation and escape from the innate immune response. We have developed a straightforward luminescence-based assay to monitor the MTase activity of the WNV NS5 protein with potential for high-throughput screening. We have validated this method as a sensitive and suitable assay for the identification of WNV MTase inhibitors assessing the inhibitory effect of the broad MTase inhibitor sinefungin, a natural nucleoside analog of the universal methyl donor S-adenosyl methionine (SAM). The screening of a small series of purine derivatives identified an adenosine derivative as a dose-dependent inhibitor of the MTase activity. The antiviral efficacy of this compound was further confirmed in WNV infections, displaying a measurable antiviral effect. This result supports the utility of this novel method for the screening of inhibitors against WNV MTase activity, which can be of special relevance to the discovery and development of therapeutics against WNV.
Collapse
Affiliation(s)
- Alejandra Álvarez-Mínguez
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Spain
| | - Natalia del Río
- Instituto de Quimica Medica (IQM, CSIC) c/ Juan de la Cierva 3, 28006 Madrid, Spain
- Escuela de Doctorado, Universidad Autónoma de Madrid, Spain
| | - Ana Belén-Blázquez
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnologia Agraria y Alimentaria (INIA-CSIC) Carretera de A Coruña Km 7.5, 28040 Madrid, Spain
| | - Elena Casanova
- Instituto de Quimica Medica (IQM, CSIC) c/ Juan de la Cierva 3, 28006 Madrid, Spain
| | - José-María Orduña
- Instituto de Quimica Medica (IQM, CSIC) c/ Juan de la Cierva 3, 28006 Madrid, Spain
| | - Patricia Camarero
- Instituto de Quimica Medica (IQM, CSIC) c/ Juan de la Cierva 3, 28006 Madrid, Spain
| | - Carolina Hurtado-Marcos
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Spain
| | - Carmen del Águila
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Spain
| | | | - Miguel A. Martín-Acebes
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnologia Agraria y Alimentaria (INIA-CSIC) Carretera de A Coruña Km 7.5, 28040 Madrid, Spain
| | - Rubén Agudo
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Spain
| |
Collapse
|
4
|
Krejčová K, Krafcikova P, Klima M, Chalupska D, Chalupsky K, Zilecka E, Boura E. Structural and functional insights in flavivirus NS5 proteins gained by the structure of Ntaya virus polymerase and methyltransferase. Structure 2024; 32:1099-1109.e3. [PMID: 38781970 DOI: 10.1016/j.str.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 04/04/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Flaviviruses are single-stranded positive-sense RNA (+RNA) viruses that are responsible for several (re)emerging diseases such as yellow, dengue, or West Nile fevers. The Zika epidemic highlighted their dangerousness when a relatively benign virus known since the 1950s turned into a deadly pathogen. The central protein for their replication is NS5 (non-structural protein 5), which is composed of the N-terminal methyltransferase (MTase) domain and the C-terminal RNA-dependent RNA-polymerase (RdRp) domain. It is responsible for both RNA replication and installation of the 5' RNA cap. We structurally and biochemically analyzed the Ntaya virus MTase and RdRp domains and we compared their properties to other flaviviral NS5s. The enzymatic centers are well conserved across Flaviviridae, suggesting that the development of drugs targeting all flaviviruses is feasible. However, the enzymatic activities of the isolated proteins were significantly different for the MTase domains.
Collapse
Affiliation(s)
- Kateřina Krejčová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic; Faculty of Sciences, Charles University, Albertov 6, 128 00 Prague 2, Czech Republic
| | - Petra Krafcikova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Martin Klima
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Dominika Chalupska
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Karel Chalupsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Eva Zilecka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.
| |
Collapse
|
5
|
Goh JZH, De Hayr L, Khromykh AA, Slonchak A. The Flavivirus Non-Structural Protein 5 (NS5): Structure, Functions, and Targeting for Development of Vaccines and Therapeutics. Vaccines (Basel) 2024; 12:865. [PMID: 39203991 PMCID: PMC11360482 DOI: 10.3390/vaccines12080865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
Flaviviruses, including dengue (DENV), Zika (ZIKV), West Nile (WNV), Japanese encephalitis (JEV), yellow fever (YFV), and tick-borne encephalitis (TBEV) viruses, pose a significant global emerging threat. With their potential to cause widespread outbreaks and severe health complications, the development of effective vaccines and antiviral therapeutics is imperative. The flaviviral non-structural protein 5 (NS5) is a highly conserved and multifunctional protein that is crucial for viral replication, and the NS5 protein of many flaviviruses has been shown to be a potent inhibitor of interferon (IFN) signalling. In this review, we discuss the functions of NS5, diverse NS5-mediated strategies adopted by flaviviruses to evade the host antiviral response, and how NS5 can be a target for the development of vaccines and antiviral therapeutics.
Collapse
Affiliation(s)
| | | | | | - Andrii Slonchak
- Australian Infectious Diseases Research Center, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Z.H.G.); (L.D.H.); (A.A.K.)
| |
Collapse
|
6
|
Halder SK, Ahmad I, Shathi JF, Mim MM, Hassan MR, Jewel MJI, Dey P, Islam MS, Patel H, Morshed MR, Shakil MS, Hossen MS. A Comprehensive Study to Unleash the Putative Inhibitors of Serotype2 of Dengue Virus: Insights from an In Silico Structure-Based Drug Discovery. Mol Biotechnol 2024; 66:612-625. [PMID: 36307631 PMCID: PMC9616416 DOI: 10.1007/s12033-022-00582-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022]
Abstract
Dengue fever is a mosquito-borne disease that claims the lives of millions of people around the world. A number of factors like disease's non-specific symptoms, increased viral mutation, growing antiviral drug resistance due to reduced susceptibility, unavailability of an effective vaccine for dengue, weak immunity against the virus, and many more are involved. Dengue belongs to the Flaviviridae family of viruses. The two species of the vector transmitting dengue are Aedes aegypti and Aedes albopictus, with the former one being dominant. Serotypes 2 of dengue fever are spread to the human body and cause severe illness. Recently, dengue has imposed an aggressive effect synergistically with the COVID-19 pandemic. As a result, we concentrated our efforts on finding a potential therapeutic. For this, we chose natural compounds to fight dengue fever, which is currently regarded as successful among many drug therapies. Following this, we started the in silico experiment with 922 plant extracts as lead compounds to fight serotype 2. In this study, we used SwissADME for analyzing ligand drug-likeness, pkCSM for designing an ADMET profile, Autodock vina 4.2 and Swissdock tools for molecular docking, and finally Desmond for molecular dynamics simulation. Ultimately 45 were found effective against the 2'O methyltransferase protein of serotype 2. CHEMBL376820 was found as possible therapeutic candidates for inhibiting methyltransferase protein in this thorough analysis. Nevertheless, more in vitro and in vivo research are required to substantiate their potential therapeutic efficacy.
Collapse
Affiliation(s)
- Sajal Kumar Halder
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342 Bangladesh
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216 Bangladesh
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405 India
| | - Jannatul Fardous Shathi
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342 Bangladesh
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216 Bangladesh
| | - Maria Mulla Mim
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342 Bangladesh
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216 Bangladesh
| | - Md Rakibul Hassan
- Department of Biochemistry, Gono Bishwabidyalay, Savar, Dhaka 1344 Bangladesh
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216 Bangladesh
| | - Md Johurul Islam Jewel
- Department of Biochemistry and Molecular Biology, Primeasia University, Banani, Dhaka 1213 Bangladesh
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216 Bangladesh
| | - Piyali Dey
- Department of Biochemistry and Molecular Biology, Primeasia University, Banani, Dhaka 1213 Bangladesh
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216 Bangladesh
| | - Md Sirajul Islam
- Department of Biochemistry and Molecular Biology, Primeasia University, Banani, Dhaka 1213 Bangladesh
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216 Bangladesh
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405 India
| | - Md Reaz Morshed
- Department of Biochemistry and Molecular Biology, Noakhali Science and Technology University, Noakhali, 3814 Bangladesh
| | - Md Salman Shakil
- Department of Mathematics and Natural Sciences, Brac University, Dhaka, 1212 Bangladesh
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216 Bangladesh
| | - Md Sakib Hossen
- Department of Biochemistry and Molecular Biology, Primeasia University, Banani, Dhaka 1213 Bangladesh
- Division of Computer Aided Drug Design, BioAid, Mirpur, Dhaka, 1216 Bangladesh
| |
Collapse
|
7
|
Štefek M, Chalupská D, Chalupský K, Zgarbová M, Dvořáková A, Krafčíková P, Li ASM, Šála M, Dejmek M, Otava T, Chaloupecká E, Kozák J, Kozic J, Vedadi M, Weber J, Mertlíková-Kaiserová H, Nencka R. Rational Design of Highly Potent SARS-CoV-2 nsp14 Methyltransferase Inhibitors. ACS OMEGA 2023; 8:27410-27418. [PMID: 37546609 PMCID: PMC10398685 DOI: 10.1021/acsomega.3c02815] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023]
Abstract
The search for new drugs against COVID-19 and its causative agent, SARS-CoV-2, is one of the major trends in the current medicinal chemistry. Targeting capping machinery could be one of the therapeutic concepts based on a unique mechanism of action. Viral RNA cap synthesis involves two methylation steps, the first of which is mediated by the nsp14 protein. Here, we rationally designed and synthesized a series of compounds capable of binding to both the S-adenosyl-l-methionine and the RNA-binding site of SARS-CoV-2 nsp14 N7-methyltransferase. These hybrid molecules showed excellent potency, high selectivity toward various human methyltransferases, nontoxicity, and high cell permeability. Despite the outstanding activity against the enzyme, our compounds showed poor antiviral performance in vitro. This suggests that the activity of this viral methyltransferase has no significant effect on virus transcription and replication at the cellular level. Therefore, our compounds represent unique tools to further explore the role of the SARS-CoV-2 nsp14 methyltransferase in the viral life cycle and the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Milan Štefek
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí
2, Prague 6 166 10, Czech Republic
- Department
of Organic Chemistry, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Dominika Chalupská
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí
2, Prague 6 166 10, Czech Republic
| | - Karel Chalupský
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí
2, Prague 6 166 10, Czech Republic
| | - Michala Zgarbová
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí
2, Prague 6 166 10, Czech Republic
| | - Alexandra Dvořáková
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí
2, Prague 6 166 10, Czech Republic
| | - Petra Krafčíková
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí
2, Prague 6 166 10, Czech Republic
| | - Alice Shi Ming Li
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Michal Šála
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí
2, Prague 6 166 10, Czech Republic
| | - Milan Dejmek
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí
2, Prague 6 166 10, Czech Republic
| | - Tomáš Otava
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí
2, Prague 6 166 10, Czech Republic
| | - Ema Chaloupecká
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí
2, Prague 6 166 10, Czech Republic
| | - Jaroslav Kozák
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí
2, Prague 6 166 10, Czech Republic
| | - Ján Kozic
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí
2, Prague 6 166 10, Czech Republic
| | - Masoud Vedadi
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5S 1A8, Canada
- QBI
COVID-19 Research Group (QCRG), San Francisco, California 94158, United States
| | - Jan Weber
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí
2, Prague 6 166 10, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí
2, Prague 6 166 10, Czech Republic
| | - Radim Nencka
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Náměstí
2, Prague 6 166 10, Czech Republic
| |
Collapse
|
8
|
Wu X, Huang S, Wang M, Chen S, Liu M, Zhu D, Zhao X, Wu Y, Yang Q, Zhang S, Huang J, Ou X, Zhang L, Liu Y, Yu Y, Gao Q, Mao S, Sun D, Tian B, Yin Z, Jing B, Cheng A, Jia R. A novel live attenuated duck Tembusu virus vaccine targeting N7 methyltransferase protects ducklings against pathogenic strains. Vet Res 2023; 54:47. [PMID: 37308988 DOI: 10.1186/s13567-023-01170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/28/2023] [Indexed: 06/14/2023] Open
Abstract
Duck Tembusu virus (DTMUV), an emerging pathogenic flavivirus, causes markedly decreased egg production in laying duck and neurological dysfunction and death in ducklings. Vaccination is currently the most effective means for prevention and control of DTMUV. In previous study, we have found that methyltransferase (MTase) defective DTMUV is attenuated and induces a higher innate immunity. However, it is not clear whether MTase-deficient DTMUV can be used as a live attenuated vaccine (LAV). In this study, we investigated the immunogenicity and immunoprotection of N7-MTase defective recombinant DTMUV K61A, K182A and E218A in ducklings. These three mutants were highly attenuated in both virulence and proliferation in ducklings but still immunogenic. Furthermore, a single-dose immunization with K61A, K182A or E218A could induce robust T cell responses and humoral immune responses, which could protect ducks from the challenge of a lethal-dose of DTMUV-CQW1. Together, this study provides an ideal strategy to design LAVs for DTMUV by targeting N7-MTase without changing the antigen composition. This attenuated strategy targeting N7-MTase may apply to other flaviviruses.
Collapse
Affiliation(s)
- Xuedong Wu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shanzhi Huang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingshu Wang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Shun Chen
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Mafeng Liu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Dekang Zhu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Xinxin Zhao
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Ying Wu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Qiao Yang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Shaqiu Zhang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Juan Huang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Xumin Ou
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Ling Zhang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yunya Liu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanling Yu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qun Gao
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sai Mao
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Di Sun
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bin Tian
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Anchun Cheng
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China.
| | - Renyong Jia
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China.
| |
Collapse
|
9
|
Frank JC, Song BH, Lee YM. Mice as an Animal Model for Japanese Encephalitis Virus Research: Mouse Susceptibility, Infection Route, and Viral Pathogenesis. Pathogens 2023; 12:pathogens12050715. [PMID: 37242385 DOI: 10.3390/pathogens12050715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Japanese encephalitis virus (JEV), a zoonotic flavivirus, is principally transmitted by hematophagous mosquitoes, continually between susceptible animals and incidentally from those animals to humans. For almost a century since its discovery, JEV was geographically confined to the Asia-Pacific region with recurrent sizable outbreaks involving wildlife, livestock, and people. However, over the past decade, it has been detected for the first time in Europe (Italy) and Africa (Angola) but has yet to cause any recognizable outbreaks in humans. JEV infection leads to a broad spectrum of clinical outcomes, ranging from asymptomatic conditions to self-limiting febrile illnesses to life-threatening neurological complications, particularly Japanese encephalitis (JE). No clinically proven antiviral drugs are available to treat the development and progression of JE. There are, however, several live and killed vaccines that have been commercialized to prevent the infection and transmission of JEV, yet this virus remains the main cause of acute encephalitis syndrome with high morbidity and mortality among children in the endemic regions. Therefore, significant research efforts have been directed toward understanding the neuropathogenesis of JE to facilitate the development of effective treatments for the disease. Thus far, multiple laboratory animal models have been established for the study of JEV infection. In this review, we focus on mice, the most extensively used animal model for JEV research, and summarize the major findings on mouse susceptibility, infection route, and viral pathogenesis reported in the past and present, and discuss some unanswered key questions for future studies.
Collapse
Affiliation(s)
- Jordan C Frank
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | - Byung-Hak Song
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
10
|
Malik M, Vijayan P, Jagannath DK, Mishra RK, Lakshminarasimhan A. Sofosbuvir and its tri-phosphate metabolite inhibit the RNA-dependent RNA polymerase activity of non-structural protein 5 from the Kyasanur forest disease virus. Biochem Biophys Res Commun 2023; 641:50-56. [PMID: 36521285 DOI: 10.1016/j.bbrc.2022.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Kyasanur forest disease is a neglected zoonotic disease caused by a single-stranded RNA-based flavivirus, the incidence of which was first recorded in 1957 in the Southern part of India. Kyasanur forest disease virus is transmitted to monkeys and humans through the infected tick bite of Haemophysalis spinigera. Kyasanur forest disease is a febrile illness, which in severe cases, results in neurological complications leading to mortality. The current treatment regimens are symptomatic and supportive, and no targeted therapies are available for this disease. In this study, we evaluated the ability of FDA-approved drugs sofosbuvir (and its active metabolite) and Dasabuvir to inhibit the RNA-dependent RNA polymerase activity of NS5 protein from the Kyasanur forest disease virus. NS5 protein containing the N-terminal methyl transferase domain and C-terminal RNA-dependent RNA polymerase domain was expressed in Escherichia coli, and RNA-dependent RNA polymerase activity was demonstrated with the purified protein. The RNA-dependent RNA polymerase assay conditions were optimized, followed by the determination of apparent Km,ATP to validate the enzyme preparation. Half maximal-inhibitory concentrations against RNA-dependent RNA polymerase activity were determined for Sofosbuvir and its active metabolite. Dasabuvir did not show detectable inhibition with the tested conditions. This is the first demonstration of the inhibition of RNA-dependent RNA polymerase activity of NS5 protein from the Kyasanur forest disease virus with small molecule inhibitors. These initial findings can potentially facilitate the discovery and development of targeted therapies for treating Kyasanur forest disease.
Collapse
Affiliation(s)
- Mansi Malik
- Tata Institute for Genetics and Society, NCBS campus, GKVK, Bellary Road, Bengaluru, 560065, KA, India
| | - Parvathy Vijayan
- Tata Institute for Genetics and Society, NCBS campus, GKVK, Bellary Road, Bengaluru, 560065, KA, India
| | - Deepak K Jagannath
- Tata Institute for Genetics and Society, NCBS campus, GKVK, Bellary Road, Bengaluru, 560065, KA, India
| | - Rakesh K Mishra
- Tata Institute for Genetics and Society, NCBS campus, GKVK, Bellary Road, Bengaluru, 560065, KA, India
| | | |
Collapse
|
11
|
Furtado ND, de Mello IS, de Godoy AS, Noske GD, Oliva G, Canard B, Decroly E, Bonaldo MC. Amino Acid Polymorphisms on the Brazilian Strain of Yellow Fever Virus Methyltransferase Are Related to the Host's Immune Evasion Mediated by Type I Interferon. Viruses 2023; 15:191. [PMID: 36680231 PMCID: PMC9863089 DOI: 10.3390/v15010191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Since late 2016, a yellow fever virus (YFV) variant carrying a set of nine amino acid variations has circulated in South America. Three of them were mapped on the methyltransferase (MTase) domain of viral NS5 protein. To assess whether these changes affected viral infectivity, we synthesized YFV carrying the MTase of circulating lineage as well as its isoform with the residues of the previous strains (NS5 K101R, NS5 V138I, and NS5 G173S). We observed a slight difference in viral growth properties and plaque phenotype between the two synthetic YFVs. However, the MTase polymorphisms associated with the Brazilian strain of YFV (2016-2019) confer more susceptibility to the IFN-I. In addition, in vitro MTase assay revealed that the interaction between the YFV MTase and the methyl donor molecule (SAM) is altered in the Brazilian MTase variant. Altogether, the results reported here describe that the MTase carrying the molecular signature of the Brazilian YFV circulating since 2016 might display a slight decrease in its catalytic activity but virtually no effect on viral fitness in the parameters comprised in this study. The most marked influence of these residues stands in the immune escape against the antiviral response mediated by IFN-I.
Collapse
Affiliation(s)
- Nathália Dias Furtado
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Iasmim Silva de Mello
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Andre Schutzer de Godoy
- Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos-USP, São Paulo 13563-120, Brazil
| | - Gabriela Dias Noske
- Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos-USP, São Paulo 13563-120, Brazil
| | - Glaucius Oliva
- Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos-USP, São Paulo 13563-120, Brazil
| | - Bruno Canard
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, CNRS, UMR7257, 13009 Marseille, France
| | - Etienne Decroly
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, CNRS, UMR7257, 13009 Marseille, France
| | - Myrna C. Bonaldo
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
12
|
Jarerattanachat V, Boonarkart C, Hannongbua S, Auewarakul P, Ardkhean R. In silico and in vitro studies of potential inhibitors against Dengue viral protein NS5 Methyl Transferase from Ginseng and Notoginseng. J Tradit Complement Med 2023; 13:1-10. [PMID: 36685072 PMCID: PMC9845645 DOI: 10.1016/j.jtcme.2022.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Background and aim Dengue is a potentially deadly tropical infectious disease transmitted by mosquito vector Aedes aegypti with no antiviral drug available to date. Dengue NS5 protein is crucial for viral replication and is the most conserved among all four Dengue serotypes, making it an attractive drug target. Both Ginseng and Notoginseng extracts and isolates have been shown to be effective against various viral infections yet against Dengue Virus is understudied. We aim to identify potential inhibitors against Dengue NS5 Methyl transferase from small molecular compounds found in Ginseng and Notoginseng. Experimental procedure A molecular docking model of Dengue NS5 Methyl transferase (MTase) domain was tested with decoys and then used to screen 91 small molecular compounds found in Ginseng and Notoginseng followed by Molecular dynamics simulations and the per-residue free energy decompositions based on molecular mechanics/Poisson-Boltzmann (generalised Born) surface area (MM/PB(GB)SA) calculations of the hit. ADME predictions and drug-likeness analyses were discussed to evaluate the viability of the hit as a drug candidate. To confirm our findings, in vitro studies of antiviral activities against RNA and a E protein synthesis and cell toxicity were carried out. Results and conclusion The virtual screening resulted in Isoquercitrin as a single hit. Further analyses of the Isoquercitrin-MTase complex show that Isoquercitrin can reside within both of the NS5 Methyl Transferase active sites; the AdoMet binding site and the RNA capping site. The Isoquercitrin is safe for consumption and accessible on multikilogram scale. In vitro studies showed that Isoquercitrin can inhibit Dengue virus by reducing viral RNA and viral protein synthesis with low toxicity to cells (CC50 > 20 μM). Our work provides evidence that Isoquercitrin can serve as an inhibitor of Dengue NS5 protein at the Methyl Transferase domain, further supporting its role as an anti-DENV agent.
Collapse
Affiliation(s)
- Viwan Jarerattanachat
- NSTDA Supercomputer Center, National Electronics and Computer Technology Center, National Science and Technology Development Agency, Pathumthani, 12120, Thailand
| | - Chompunuch Boonarkart
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ruchuta Ardkhean
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| |
Collapse
|
13
|
Li R, Niu Z, Liu Y, Bai X, Wang D, Chen C. Crystal structure and cap binding analysis of the methyltransferase of langat virus. Antiviral Res 2022; 208:105459. [PMID: 36347437 DOI: 10.1016/j.antiviral.2022.105459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/08/2022]
Abstract
Tick-borne encephalitis virus (TBEV) is a major dangerous human pathogen, as TBEV infection can cause serious illness that can lead to irreversible neurological sequelae and even death. Langat virus (LGTV), a member of the tick-borne encephalitis virus (TBEV) serogroup, belongs to the family Flaviviridae, genus Flavivirus. Its nonstructural protein 5 (NS5) protein contains a methyltransferase (MTase) domain that can methylate RNA cap structures, which is critical for viral replication. We determined the structure of LGTV NS5 methyltransferase bound to S-adenosyl-L-homocysteine (SAH) at a 1.70 Å resolution. Sequence analysis and structural comparison of homologous MTases suggests that folds and structures are closely conserved throughout Flavivirus species and play important roles. This study provides the key structural information on LGTV MTase and the foundation for research on antiviral drugs targeting LGTV MTase.
Collapse
Affiliation(s)
- Ruixue Li
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Ziping Niu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yujie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xue Bai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Deping Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, the Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China.
| | - Chen Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
14
|
Mushegian A. Methyltransferases of Riboviria. Biomolecules 2022; 12:1247. [PMID: 36139088 PMCID: PMC9496149 DOI: 10.3390/biom12091247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022] Open
Abstract
Many viruses from the realm Riboviria infecting eukaryotic hosts encode protein domains with sequence similarity to S-adenosylmethionine-dependent methyltransferases. These protein domains are thought to be involved in methylation of the 5'-terminal cap structures in virus mRNAs. Some methyltransferase-like domains of Riboviria are homologous to the widespread cellular FtsJ/RrmJ-like methyltransferases involved in modification of cellular RNAs; other methyltransferases, found in a subset of positive-strand RNA viruses, have been assigned to a separate "Sindbis-like" family; and coronavirus-specific Nsp13/14-like methyltransferases appeared to be different from both those classes. The representative structures of proteins from all three groups belong to a specific variety of the Rossmann fold with a seven-stranded β-sheet, but it was unclear whether this structural similarity extends to the level of conserved sequence signatures. Here I survey methyltransferases in Riboviria and derive a joint sequence alignment model that covers all groups of virus methyltransferases and subsumes the previously defined conserved sequence motifs. Analysis of the spatial structures indicates that two highly conserved residues, a lysine and an aspartate, frequently contact a water molecule, which is located in the enzyme active center next to the methyl group of S-adenosylmethionine cofactor and could play a key role in the catalytic mechanism of the enzyme. Phylogenetic evidence indicates a likely origin of all methyltransferases of Riboviria from cellular RrmJ-like enzymes and their rapid divergence with infrequent horizontal transfer between distantly related viruses.
Collapse
Affiliation(s)
- Arcady Mushegian
- Division of Molecular and Cellular Biosciences, National Science Foundation, 2415 Eisenhower Ave., Alexandria, VA 22314, USA
| |
Collapse
|
15
|
Kumar S, Verma A, Yadav P, Dubey SK, Azhar EI, Maitra SS, Dwivedi VD. Molecular pathogenesis of Japanese encephalitis and possible therapeutic strategies. Arch Virol 2022; 167:1739-1762. [PMID: 35654913 PMCID: PMC9162114 DOI: 10.1007/s00705-022-05481-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/10/2022] [Indexed: 12/26/2022]
Abstract
Japanese encephalitis virus (JEV), a single-stranded, enveloped RNA virus, is a health concern across Asian countries, associated with severe neurological disorders, especially in children. Primarily, pigs, bats, and birds are the natural hosts for JEV, but humans are infected incidentally. JEV requires a few host proteins for its entry and replication inside the mammalian host cell. The endoplasmic reticulum (ER) plays a significant role in JEV genome replication and assembly. During this process, the ER undergoes stress due to its remodelling and accumulation of viral particles and unfolded proteins, leading to an unfolded protein response (UPR). Here, we review the overall strategy used by JEV to infect the host cell and various cytopathic effects caused by JEV infection. We also highlight the role of JEV structural proteins (SPs) and non-structural proteins (NSPs) at various stages of the JEV life cycle that are involved in up- and downregulation of different host proteins and are potentially relevant for developing efficient therapeutic drugs.
Collapse
Affiliation(s)
- Sanjay Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | - Akanksha Verma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Pardeep Yadav
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh 201310 India
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| | | | - Esam Ibraheem Azhar
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - S. S. Maitra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Vivek Dhar Dwivedi
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
| |
Collapse
|
16
|
Li K, Ji Q, Jiang S, Zhang N. Advancement in the Development of Therapeutics Against Zika Virus Infection. Front Cell Infect Microbiol 2022; 12:946957. [PMID: 35880081 PMCID: PMC9307976 DOI: 10.3389/fcimb.2022.946957] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Zika virus (ZIKV), a re-emerging arbovirus, causes teratogenic effects on the fetus and normal nerve functions, resulting in harmful autoimmune responses, which call for the development of therapeutics against ZIKV infection. In this review, we introduce the pathogenesis of ZIKV infection and summarize the advancement in the development of therapeutics against ZIKV infection. It provides guidance for the development of effective therapeutics against ZIKV infection.
Collapse
Affiliation(s)
- Kangchen Li
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Qianting Ji
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministry of Education (MOE), National Health Commission (NHC) and Chinese Academy of Medical Sciences (CAMS), School of Basic Medical Sciences and Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- *Correspondence: Shibo Jiang, ; Naru Zhang,
| | - Naru Zhang
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou, China
- *Correspondence: Shibo Jiang, ; Naru Zhang,
| |
Collapse
|
17
|
Singh K, Martinez MG, Lin J, Gregory J, Nguyen TU, Abdelaal R, Kang K, Brennand K, Grünweller A, Ouyang Z, Phatnani H, Kielian M, Wendel HG. Transcriptional and Translational Dynamics of Zika and Dengue Virus Infection. Viruses 2022; 14:1418. [PMID: 35891396 PMCID: PMC9316442 DOI: 10.3390/v14071418] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
Zika virus (ZIKV) and dengue virus (DENV) are members of the Flaviviridae family of RNA viruses and cause severe disease in humans. ZIKV and DENV share over 90% of their genome sequences, however, the clinical features of Zika and dengue infections are very different reflecting tropism and cellular effects. Here, we used simultaneous RNA sequencing and ribosome footprinting to define the transcriptional and translational dynamics of ZIKV and DENV infection in human neuronal progenitor cells (hNPCs). The gene expression data showed induction of aminoacyl tRNA synthetases (ARS) and the translation activating PIM1 kinase, indicating an increase in RNA translation capacity. The data also reveal activation of different cell stress responses, with ZIKV triggering a BACH1/2 redox program, and DENV activating the ATF/CHOP endoplasmic reticulum (ER) stress program. The RNA translation data highlight activation of polyamine metabolism through changes in key enzymes and their regulators. This pathway is needed for eIF5A hypusination and has been implicated in viral translation and replication. Concerning the viral RNA genomes, ribosome occupancy readily identified highly translated open reading frames and a novel upstream ORF (uORF) in the DENV genome. Together, our data highlight both the cellular stress response and the activation of RNA translation and polyamine metabolism during DENV and ZIKV infection.
Collapse
Affiliation(s)
- Kamini Singh
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA;
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Albert Einstein Cancer, Center, Bronx, NY 10461, USA;
| | - Maria Guadalupe Martinez
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.G.M.); (R.A.); (M.K.)
- Global Innovation, Boehringer Ingelheim Animal Health, 69800 Saint-Priest, France
| | - Jianan Lin
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 and Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA;
| | - James Gregory
- Department of Neurology, Vagelos College of Physicians & Surgeons of Columbia University, New York, NY 10032, USA; (J.G.); (K.K.); (H.P.)
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, USA
| | - Trang Uyen Nguyen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Albert Einstein Cancer, Center, Bronx, NY 10461, USA;
| | - Rawan Abdelaal
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.G.M.); (R.A.); (M.K.)
| | - Kristy Kang
- Department of Neurology, Vagelos College of Physicians & Surgeons of Columbia University, New York, NY 10032, USA; (J.G.); (K.K.); (H.P.)
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, USA
| | - Kristen Brennand
- Division of Molecular Psychiatry, Departments of Psychiatry and Genetics, Yale School of Medicine, New Haven, CT 06510, USA;
| | - Arnold Grünweller
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, 35032 Marburg, Germany;
| | - Zhengqing Ouyang
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA;
| | - Hemali Phatnani
- Department of Neurology, Vagelos College of Physicians & Surgeons of Columbia University, New York, NY 10032, USA; (J.G.); (K.K.); (H.P.)
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, USA
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.G.M.); (R.A.); (M.K.)
| | - Hans-Guido Wendel
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
18
|
Wu X, Pan Y, Huang J, Huang S, Wang M, Chen S, Liu M, Zhu D, Zhao X, Wu Y, Yang Q, Zhang S, Ou X, Zhang L, Liu Y, Yu Y, Gao Q, Mao S, Sun D, Tian B, Yin Z, Jing B, Cheng A, Jia R. The substitution at residue 218 of the NS5 protein methyltransferase domain of Tembusu virus impairs viral replication and translation and may triggers RIG-I-like receptor signaling. Poult Sci 2022; 101:102017. [PMID: 35901648 PMCID: PMC9334331 DOI: 10.1016/j.psj.2022.102017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/04/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022] Open
Abstract
Flavivirus RNA cap-methylation plays an important role in viral infection, proliferation, and escape from innate immunity. The methyltransferase (MTase) of the flavivirus NS5 protein catalyzes viral RNA methylation. The E218 amino acid of the NS5 protein MTase domain is one of the active sites of flavivirus methyltransferase. In flaviviruses, the E218A mutation abolished 2’-O methylation activity and significantly reduced N-7 methylation activity. Tembusu virus (TMUV, genus Flavivirus) was a pathogen that caused neurological symptoms in ducklings and decreased egg production in laying ducks. In this study, we focused on a comprehensive understanding of the effects of the E218A mutation on TMUV characteristics and the host immune response. E218A mutation reduced TMUV replication and proliferation, but did not affect viral adsorption and entry. Based on a TMUV replicon system, we found that the E218A mutation impaired viral translation. In addition, E218A mutant virus might be more readily recognized by RIG-I-like receptors to activate the corresponding antiviral immune signaling than WT virus. Together, our data suggest that the E218A mutation of TMUV MTase domain impairs viral replication and translation and may activates RIG-I-like receptor signaling, ultimately leading to a reduction in viral proliferation.
Collapse
Affiliation(s)
- Xuedong Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China
| | - Yuhong Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China
| | - Shanzhi Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Ling Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China
| | - Yunya Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China
| | - Yanling Yu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China
| | - Qun Gao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China
| | - Sai Mao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu City, Sichuan Province, 611130, China.
| |
Collapse
|
19
|
Zhang M, Li L, Wu L, Zhang J. Isarubrolone C Promotes Autophagic Degradation of Virus Proteins via Activating ATG10S in HepG2 Cells. JOURNAL OF NATURAL PRODUCTS 2022; 85:1018-1028. [PMID: 35201775 DOI: 10.1021/acs.jnatprod.1c01161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Isarubrolone C is a bioactive polycyclic tropoloalkaloid from Streptomyces. Our previous study showed that isarubrolone C could trigger autophagy. Here, we report isarubrolone C potential in broad-spectrum antiviral effect and its antiviral mechanism in vitro. Our results show that isarubrolone C activated autophagy and reduced levels of viral proteins in the cells harboring HCV-CORE/NS5B, HBx, ZIKV-NS5, and HIV-RT, respectively. The role of isarubrolone C in suppression of the viral proteins was via an autophagic degradation pathway rather than a proteasome pathway. Co-immunoprecipitation assays revealed that isarubrolone C promoted both autophagy flux opening and the viral proteins being enwrapped in autolysosomes. PCR assays showed that isarubrolone C elevated the transcription levels of ATG10/ATG10S and IL28A. Further, ATG10S high expression could efficiently enhance IL28A expression and the ability of isarubrolone C to degrade the viral proteins by promoting the colocalization of viral proteins with autolysosomes. Additionally, knockdown of endogenous IL28A caused both losses of the isarubrolone C antiviral effect and autolysosome formation. These results indicate that the role of isarubrolone C antiviruses is achieved by triggering the autophagic mechanism, which is mediated by endogenous ATG10S and IL28A activation. This is the first report about isarubrolone C potential of in vitro broad-spectrum antiviruses.
Collapse
Affiliation(s)
- Miaoqing Zhang
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Linli Li
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Linzhuan Wu
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jingpu Zhang
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
20
|
Du Pont KE, McCullagh M, Geiss BJ. Conserved motifs in the flavivirus NS3 RNA helicase enzyme. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1688. [PMID: 34472205 PMCID: PMC8888775 DOI: 10.1002/wrna.1688] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 01/04/2023]
Abstract
Flaviviruses are a major health concern because over half of the world population is at risk of infection and there are very few antiviral therapeutics to treat diseases resulting from infection. Replication is an essential part of the flavivirus survival. One of the viral proteins, NS3 helicase, is critical for unwinding the double stranded RNA intermediate during flaviviral replication. The helicase performs the unwinding of the viral RNA intermediate structure in an ATP-dependent manner. NS3 helicase is a member of the Viral/DEAH-like subfamily of the superfamily 2 helicase containing eight highly conserved structural motifs (I, Ia, II, III, IV, IVa, V, and VI) localized between the ATP-binding and RNA-binding pockets. Of these structural motifs only three are well characterized for function in flaviviruses (I, II, and VI). The roles of the other structural motifs are not well understood for NS3 helicase function, but comparison of NS3 with other superfamily 2 helicases within the viral/DEAH-like, DEAH/RHA, and DEAD-box subfamilies can be used to elucidate the roles of these structural motifs in the flavivirus NS3 helicase. This review aims to summarize the role of each conserved structural motif within flavivirus NS3 in RNA helicase function. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Kelly E. Du Pont
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, USA
| | - Martin McCullagh
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Brian J. Geiss
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA,Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA,School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
21
|
Hooda P, Ishtikhar M, Saraswat S, Bhatia P, Mishra D, Trivedi A, Kulandaisamy R, Aggarwal S, Munde M, Ali N, AlAsmari AF, Rauf MA, Inampudi KK, Sehgal D. Biochemical and Biophysical Characterisation of the Hepatitis E Virus Guanine-7-Methyltransferase. Molecules 2022; 27:1505. [PMID: 35268608 PMCID: PMC8911963 DOI: 10.3390/molecules27051505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 11/21/2022] Open
Abstract
Hepatitis E virus (HEV) is an understudied pathogen that causes infection through fecal contaminated drinking water and is prominently found in South Asian countries. The virus affects ~20 million people annually, leading to ~60,000 infections per year. The positive-stranded RNA genome of the HEV genotype 1 has four conserved open reading frames (ORFs), of which ORF1 encodes a polyprotein of 180 kDa in size, which is processed into four non-structural enzymes: methyltransferase (MTase), papain-like cysteine protease, RNA-dependent RNA polymerase, and RNA helicase. MTase is known to methylate guanosine triphosphate at the 5'-end of viral RNA, thereby preventing its degradation by host nucleases. In the present study, we cloned, expressed, and purified MTase spanning 33-353 amino acids of HEV genotype 1. The activity of the purified enzyme and the conformational changes were established through biochemical and biophysical studies. The binding affinity of MTase with magnesium ions (Mg2+) was studied by isothermal calorimetry (ITC), microscale thermophoresis (MST), far-UV CD analysis and, fluorescence quenching. In summary, a short stretch of nucleotides has been cloned, coding for the HEV MTase of 37 kDa, which binds Mg2+ and modulate its activity. The chelation of magnesium reversed the changes, confirming its role in enzyme activity.
Collapse
Affiliation(s)
- Preeti Hooda
- Virology Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, India; (P.H.); (M.I.); (S.S.); (P.B.); (D.M.); (A.T.)
| | - Mohd Ishtikhar
- Virology Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, India; (P.H.); (M.I.); (S.S.); (P.B.); (D.M.); (A.T.)
| | - Shweta Saraswat
- Virology Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, India; (P.H.); (M.I.); (S.S.); (P.B.); (D.M.); (A.T.)
| | - Pooja Bhatia
- Virology Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, India; (P.H.); (M.I.); (S.S.); (P.B.); (D.M.); (A.T.)
| | - Deepali Mishra
- Virology Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, India; (P.H.); (M.I.); (S.S.); (P.B.); (D.M.); (A.T.)
| | - Aditya Trivedi
- Virology Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, India; (P.H.); (M.I.); (S.S.); (P.B.); (D.M.); (A.T.)
| | - Rajkumar Kulandaisamy
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India;
| | - Soumya Aggarwal
- School of Physical Sciences, Jawaharlal Nehru University (JNU), New Delhi 110067, India; (S.A.); (M.M.)
| | - Manoj Munde
- School of Physical Sciences, Jawaharlal Nehru University (JNU), New Delhi 110067, India; (S.A.); (M.M.)
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia; (N.A.); (A.F.A.)
| | - Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia; (N.A.); (A.F.A.)
| | - Mohd A. Rauf
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA;
| | - Krishna K. Inampudi
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India;
| | - Deepak Sehgal
- Virology Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, India; (P.H.); (M.I.); (S.S.); (P.B.); (D.M.); (A.T.)
| |
Collapse
|
22
|
Zhou W, Wang X, Chang J, Cheng C, Miao C. The molecular structure and biological functions of RNA methylation, with special emphasis on the roles of RNA methylation in autoimmune diseases. Crit Rev Clin Lab Sci 2021; 59:203-218. [PMID: 34775884 DOI: 10.1080/10408363.2021.2002256] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Autoimmune diseases such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and systemic vasculitis are caused by the body's immune response to autoantigens. The pathogenesis of autoimmune diseases is complex. RNA methylation is known to play a key role in disease progression as it regulates almost all aspects of RNA processing, including RNA nuclear export, translation, splicing, and noncoding RNA processing. This review summarizes the mechanisms, molecular structures of RNA methylations and their roles in biological functions. Similar to the roles of RNA methylation in cancers, RNA methylation in RA and SLE involves "writers" that deposit methyl groups to form N6-methyladenosine (m6A) and 5-methylcytosine (m5C), "erasers" that remove these modifications, and "readers" that further affect mRNA splicing, export, translation, and degradation. Recent advances in detection methods have identified N1-methyladenosine (m1A), N6,2-O-dimethyladenosine (m6Am), and 7-methylguanosine (m7G) RNA modifications, and their roles in RA and SLE need to be further studied. The relationship between RNA methylation and other autoimmune diseases has not been reported, and the roles and mechanisms of RNA modifications in these diseases need to be explored in the future.
Collapse
Affiliation(s)
- Wanwan Zhou
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jun Chang
- Department of Orthopaedics, Fourth Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Chenglong Cheng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China.,Institute of Prevention and Treatment of Rheumatoid Arthritis, Anhui University of Chinese Medicine, Hefei, Anhui, China.,Department of Pharmacy, School of Life and Health Sciences, Anhui University of Science and Technology, Fengyang, Anhui Province, China
| |
Collapse
|
23
|
Wu X, Zhang Y, Wang M, Chen S, Liu M, Zhu D, Zhao X, Wu Y, Yang Q, Zhang S, Huang J, Ou X, Zhang L, Liu Y, Yu Y, Gao Q, Mao S, Sun D, Tian B, Yin Z, Jing B, Cheng A, Jia R. Methyltransferase-Deficient Avian Flaviviruses Are Attenuated Due to Suppression of Viral RNA Translation and Induction of a Higher Innate Immunity. Front Immunol 2021; 12:751688. [PMID: 34691066 PMCID: PMC8526935 DOI: 10.3389/fimmu.2021.751688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
The 5' end of the flavivirus genome contains a type 1 cap structure formed by sequential N-7 and 2'-O methylations by viral methyltransferase (MTase). Cap methylation of flavivirus genome is an essential structural modification to ensure the normal proliferation of the virus. Tembusu virus (TMUV) (genus Flavivirus) is a causative agent of duck egg drop syndrome and has zoonotic potential. Here, we identified the in vitro activity of TMUV MTase and determined the effect of K61-D146-K182-E218 enzymatic tetrad on N-7 and 2'-O methylation. The entire K61-D146-K182-E218 motif is essential for 2'-O MTase activity, whereas N-7 MTase activity requires only D146. To investigate its phenotype, the single point mutation (K61A, D146A, K182A or E218A) was introduced into TMUV replicon (pCMV-Rep-NanoLuc) and TMUV infectious cDNA clone (pACYC-TMUV). K-D-K-E mutations reduced the replication ability of replicon. K61A, K182A and E218A viruses were genetically stable, whereas D146A virus was unstable and reverted to WT virus. Mutant viruses were replication and virulence impaired, showing reduced growth and attenuated cytopathic effects and reduced mortality of duck embryos. Molecular mechanism studies showed that the translation efficiency of mutant viruses was inhibited and a higher host innate immunity was induced. Furthermore, we found that the translation inhibition of MTase-deficient viruses was caused by a defect in N-7 methylation, whereas the absence of 2'-O methylation did not affect viral translation. Taken together, our data validate the debilitating mechanism of MTase-deficient avian flavivirus and reveal an important role for cap-methylation in viral translation, proliferation, and escape from innate immunity.
Collapse
Affiliation(s)
- Xuedong Wu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuetian Zhang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
24
|
Egyed L, Biksi I, Varga T, Zöldi V, Dán Á. Analysing the genomes of two tick-borne encephalitis viruses isolated in Hungary in 1952 and 2019. Ticks Tick Borne Dis 2021; 12:101806. [PMID: 34455141 DOI: 10.1016/j.ttbdis.2021.101806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 07/20/2021] [Accepted: 08/09/2021] [Indexed: 11/24/2022]
Abstract
The genomes of two Tick-borne encephalitis virus (TBEV) strains were fully sequenced and compared to those of known Hungarian strains. One was a laboratory strain (KEM-1) isolated in 1952, which had gone through hundreds of passages both on Vero cell cultures and in laboratory mice, while the other was a recent isolate (2019) from questing female ticks. The laboratory strain formed a monophyletic group with the already published 4 Hungarian strains on the evolutionary tree, located relatively close to Finnish (Kumlinge) and Russian (Absettarov) strains. This KEM-1 strain was phylogenetically distantly related both to the geographically close reference strain Neudörfl and the chronologically close Czech isolates from 1953. The 2019 isolate, KEM-195 was related to TBEV isolates from Southern Slovakia and Styria, and had the longest (328 nucleotides) deletion in its 3'-non-coding region among published sequences of strains of European subtype. Our results show that decades of laboratory passage have not altered the viral genome too much and that at least two distinct branches of TBEV strains circulate in Hungary.
Collapse
Affiliation(s)
- L Egyed
- Veterinary Medical Research Institute, ELKH, Hungária krt. 21, Budapest 1143, Hungary.
| | - I Biksi
- SCG Diagnosztika Ltd., Délegyháza, Hungary
| | - T Varga
- SCG Diagnosztika Ltd., Délegyháza, Hungary
| | - V Zöldi
- Department of Pest control, National Centre for Epidemiology, Budapest, Hungary
| | - Á Dán
- Danam.Vet. Molbiol, Kőszeg, Hungary
| |
Collapse
|
25
|
Fernandes PO, Chagas MA, Rocha WR, Moraes AH. Non-structural protein 5 (NS5) as a target for antiviral development against established and emergent flaviviruses. Curr Opin Virol 2021; 50:30-39. [PMID: 34340199 DOI: 10.1016/j.coviro.2021.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/18/2021] [Accepted: 07/02/2021] [Indexed: 11/19/2022]
Abstract
Flaviviruses are among the most critical pathogens in tropical regions and cause a growing number of severe diseases in developing countries. The development of antiviral therapeutics is crucial for managing flavivirus outbreaks. Among the ten proteins encoded in the flavivirus RNA, non-structural protein 5, NS5, is a promising drug target. NS5 plays a fundamental role in flavivirus replication, viral RNA methylation, RNA polymerization, and host immune system evasion. Most of the NS5 inhibitor candidates target NS5 active sites. However, the similarity of NS5 activity sites with human enzymes can cause side effects. Identifying new allosteric sites in NS5 can contribute enormously to antiviral development. The NS5 structural characterization enabled exploring new regions, such as the residues involved in MTase-RdRp interaction, NS5 oligomerization, and NS5 interaction with other viral and host-cell proteins. Targeting NS5 critical interactions might lead to new compounds and overcomes the toxicity of current NS5-inhibitor candidates.
Collapse
Affiliation(s)
- Philipe O Fernandes
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Marcelo A Chagas
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Willian R Rocha
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Adolfo H Moraes
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil; Department of NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany.
| |
Collapse
|
26
|
Insights on Dengue and Zika NS5 RNA-dependent RNA polymerase (RdRp) inhibitors. Eur J Med Chem 2021; 224:113698. [PMID: 34274831 DOI: 10.1016/j.ejmech.2021.113698] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 11/20/2022]
Abstract
Over recent years, many outbreaks caused by (re)emerging RNA viruses have been reported worldwide, including life-threatening Flaviviruses, such as Dengue (DENV) and Zika (ZIKV). Currently, there is only one licensed vaccine against Dengue, Dengvaxia®. However, its administration is not recommended for children under nine years. Still, there are no specific inhibitors available to treat these infectious diseases. Among the flaviviral proteins, NS5 RNA-dependent RNA polymerase (RdRp) is a metalloenzyme essential for viral replication, suggesting that it is a promising macromolecular target since it has no human homolog. Nowadays, several NS5 RdRp inhibitors have been reported, while none inhibitors are currently in clinical development. In this context, this review constitutes a comprehensive work focused on RdRp inhibitors from natural, synthetic, and even repurposing sources. Furthermore, their main aspects associated with the structure-activity relationship (SAR), proposed mechanisms of action, computational studies, and other topics will be discussed in detail.
Collapse
|
27
|
Minasov G, Rosas-Lemus M, Shuvalova L, Inniss NL, Brunzelle JS, Daczkowski CM, Hoover P, Mesecar AD, Satchell KJF. Mn 2+ coordinates Cap-0-RNA to align substrates for efficient 2'- O-methyl transfer by SARS-CoV-2 nsp16. Sci Signal 2021; 14:scisignal.abh2071. [PMID: 34131072 PMCID: PMC8432954 DOI: 10.1126/scisignal.abh2071] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Virally encoded 2′-O-methyltransferases catalyze the last step in the capping of viral RNAs, which protects the RNAs from degradation and prevents them from triggering host defenses. Minasov et al. report structures of the SARS-CoV-2 methyltransferase, a heterodimeric complex of the enzyme nsp16 and its coactivator nsp10, in complex with a short, capped RNA (instead of the RNA cap analogs used to generate previous structures), the methyl donor SAM, and divalent metal cations. The metal ions and a four-residue insert of nsp16 were important for precisely aligning the RNA substrate in the active site for efficient catalysis. This insert is present in coronavirus but not in mammalian methyltransferases, suggesting this site as a potential target for the design of coronavirus-specific methyltransferase inhibitors. Capping of viral messenger RNAs is essential for efficient translation, for virus replication, and for preventing detection by the host cell innate response system. The SARS-CoV-2 genome encodes the 2′-O-methyltransferase nsp16, which, when bound to the coactivator nsp10, uses S-adenosylmethionine (SAM) as a donor to transfer a methyl group to the first ribonucleotide of the mRNA in the final step of viral mRNA capping. Here, we provide biochemical and structural evidence that this reaction requires divalent cations, preferably Mn2+, and a coronavirus-specific four-residue insert. We determined the x-ray structures of the SARS-CoV-2 2′-O-methyltransferase (the nsp16-nsp10 heterodimer) in complex with its reaction substrates, products, and divalent metal cations. These structural snapshots revealed that metal ions and the insert stabilize interactions between the capped RNA and nsp16, resulting in the precise alignment of the ribonucleotides in the active site. Comparison of available structures of 2′-O-methyltransferases with capped RNAs from different organisms revealed that the four-residue insert unique to coronavirus nsp16 alters the backbone conformation of the capped RNA in the binding groove, thereby promoting catalysis. This insert is highly conserved across coronaviruses, and its absence in mammalian methyltransferases makes this region a promising site for structure-guided drug design of selective coronavirus inhibitors.
Collapse
Affiliation(s)
- George Minasov
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine,,Chicago, IL 60611, USA.,Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Monica Rosas-Lemus
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine,,Chicago, IL 60611, USA.,Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ludmilla Shuvalova
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine,,Chicago, IL 60611, USA.,Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nicole L Inniss
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine,,Chicago, IL 60611, USA.,Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joseph S Brunzelle
- Northwestern Synchrotron Research Center, Life Sciences Collaborative Access Team, Northwestern University, Argonne, IL 60439, USA
| | - Courtney M Daczkowski
- Department of Biochemistry and Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Paul Hoover
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine,,Chicago, IL 60611, USA
| | - Andrew D Mesecar
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.,Department of Biochemistry and Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine,,Chicago, IL 60611, USA. .,Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
28
|
Molecular Insights into the Flavivirus Replication Complex. Viruses 2021; 13:v13060956. [PMID: 34064113 PMCID: PMC8224304 DOI: 10.3390/v13060956] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Flaviviruses are vector-borne RNA viruses, many of which are clinically relevant human viral pathogens, such as dengue, Zika, Japanese encephalitis, West Nile and yellow fever viruses. Millions of people are infected with these viruses around the world each year. Vaccines are only available for some members of this large virus family, and there are no effective antiviral drugs to treat flavivirus infections. The unmet need for vaccines and therapies against these flaviviral infections drives research towards a better understanding of the epidemiology, biology and immunology of flaviviruses. In this review, we discuss the basic biology of the flavivirus replication process and focus on the molecular aspects of viral genome replication. Within the virus-induced intracellular membranous compartments, flaviviral RNA genome replication takes place, starting from viral poly protein expression and processing to the assembly of the virus RNA replication complex, followed by the delivery of the progeny viral RNA to the viral particle assembly sites. We attempt to update the latest understanding of the key molecular events during this process and highlight knowledge gaps for future studies.
Collapse
|
29
|
Khalili Yazdi A, Li F, Devkota K, Perveen S, Ghiabi P, Hajian T, Bolotokova A, Vedadi M. A High-Throughput Radioactivity-Based Assay for Screening SARS-CoV-2 nsp10-nsp16 Complex. SLAS DISCOVERY 2021; 26:757-765. [PMID: 33874769 PMCID: PMC8216315 DOI: 10.1177/24725552211008863] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Frequent outbreaks of novel coronaviruses (CoVs), highlighted by the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, necessitate the development of therapeutics that could be easily and effectively administered worldwide. The conserved mRNA-capping process enables CoVs to evade their host immune system and is a target for antiviral development. Nonstructural protein (nsp) 16 in complex with nsp10 catalyzes the final step of coronaviral mRNA capping through its 2'-O-methylation activity. Like other methyltransferases, the SARS-CoV-2 nsp10-nsp16 complex is druggable. However, the availability of an optimized assay for high-throughput screening (HTS) is an unmet need. Here, we report the development of a radioactivity-based assay for the methyltransferase activity of the nsp10-nsp16 complex in a 384-well format, kinetic characterization, and optimization of the assay for HTS (Z' factor = 0.83). Considering the high conservation of nsp16 across known CoV species, the potential inhibitors targeting the SARS-CoV-2 nsp10-nsp16 complex may also be effective against other emerging pathogenic CoVs.
Collapse
Affiliation(s)
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Kanchan Devkota
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Sumera Perveen
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Pegah Ghiabi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Taraneh Hajian
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Albina Bolotokova
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Zika Virus Pathogenesis: A Battle for Immune Evasion. Vaccines (Basel) 2021; 9:vaccines9030294. [PMID: 33810028 PMCID: PMC8005041 DOI: 10.3390/vaccines9030294] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) infection and its associated congenital and other neurological disorders, particularly microcephaly and other fetal developmental abnormalities, constitute a World Health Organization (WHO) Zika Virus Research Agenda within the WHO’s R&D Blueprint for Action to Prevent Epidemics, and continue to be a Public Health Emergency of International Concern (PHEIC) today. ZIKV pathogenicity is initiated by viral infection and propagation across multiple placental and fetal tissue barriers, and is critically strengthened by subverting host immunity. ZIKV immune evasion involves viral non-structural proteins, genomic and non-coding RNA and microRNA (miRNA) to modulate interferon (IFN) signaling and production, interfering with intracellular signal pathways and autophagy, and promoting cellular environment changes together with secretion of cellular components to escape innate and adaptive immunity and further infect privileged immune organs/tissues such as the placenta and eyes. This review includes a description of recent advances in the understanding of the mechanisms underlying ZIKV immune modulation and evasion that strongly condition viral pathogenesis, which would certainly contribute to the development of anti-ZIKV strategies, drugs, and vaccines.
Collapse
|
31
|
Harima H, Orba Y, Torii S, Qiu Y, Kajihara M, Eto Y, Matsuta N, Hang'ombe BM, Eshita Y, Uemura K, Matsuno K, Sasaki M, Yoshii K, Nakao R, Hall WW, Takada A, Abe T, Wolfinger MT, Simuunza M, Sawa H. An African tick flavivirus forming an independent clade exhibits unique exoribonuclease-resistant RNA structures in the genomic 3'-untranslated region. Sci Rep 2021; 11:4883. [PMID: 33649491 PMCID: PMC7921595 DOI: 10.1038/s41598-021-84365-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
Tick-borne flaviviruses (TBFVs) infect mammalian hosts through tick bites and can cause various serious illnesses, such as encephalitis and hemorrhagic fevers, both in humans and animals. Despite their importance to public health, there is limited epidemiological information on TBFV infection in Africa. Herein, we report that a novel flavivirus, Mpulungu flavivirus (MPFV), was discovered in a Rhipicephalus muhsamae tick in Zambia. MPFV was found to be genetically related to Ngoye virus detected in ticks in Senegal, and these viruses formed a unique lineage in the genus Flavivirus. Analyses of dinucleotide contents of flaviviruses indicated that MPFV was similar to those of other TBFVs with a typical vertebrate genome signature, suggesting that MPFV may infect vertebrate hosts. Bioinformatic analyses of the secondary structures in the 3′-untranslated regions (UTRs) revealed that MPFV exhibited unique exoribonuclease-resistant RNA (xrRNA) structures. Utilizing biochemical approaches, we clarified that two xrRNA structures of MPFV in the 3′-UTR could prevent exoribonuclease activity. In summary, our findings provide new information regarding the geographical distribution of TBFV and xrRNA structures in the 3′-UTR of flaviviruses.
Collapse
Affiliation(s)
- Hayato Harima
- Hokudai Center for Zoonosis Control in Zambia, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Shiho Torii
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yongjin Qiu
- Hokudai Center for Zoonosis Control in Zambia, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Masahiro Kajihara
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yoshiki Eto
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Naoya Matsuta
- Department of Electrical and Information Engineering, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Bernard M Hang'ombe
- Department of Para-Clinical Studies, School of Veterinary Medicine, The University of Zambia, Lusaka, Zambia.,Africa Center of Excellence for Infectious Diseases of Humans and Animals, The University of Zambia, Lusaka, Zambia
| | - Yuki Eshita
- Hokudai Center for Zoonosis Control in Zambia, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Kentaro Uemura
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Keita Matsuno
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Unit of Risk Analysis and Management, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Kentaro Yoshii
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
| | - Ryo Nakao
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - William W Hall
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,National Virus Reference Laboratory, School of Medicine, University College Dublin, Dublin, Ireland.,Centre for Research in Infectious Diseases, School of Medicine, University College Dublin, Dublin, Ireland.,Global Virus Network, Baltimore, MD, USA
| | - Ayato Takada
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Africa Center of Excellence for Infectious Diseases of Humans and Animals, The University of Zambia, Lusaka, Zambia.,Department of Disease Control, School of Veterinary Medicine, The University of Zambia, Lusaka, Zambia
| | - Takashi Abe
- Department of Electrical and Information Engineering, Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Michael T Wolfinger
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria.,Research Group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Martin Simuunza
- Africa Center of Excellence for Infectious Diseases of Humans and Animals, The University of Zambia, Lusaka, Zambia.,Department of Disease Control, School of Veterinary Medicine, The University of Zambia, Lusaka, Zambia
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan. .,International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan. .,Africa Center of Excellence for Infectious Diseases of Humans and Animals, The University of Zambia, Lusaka, Zambia. .,Global Virus Network, Baltimore, MD, USA. .,Department of Disease Control, School of Veterinary Medicine, The University of Zambia, Lusaka, Zambia.
| |
Collapse
|
32
|
Maddipati VC, Mittal L, Mantipally M, Asthana S, Bhattacharyya S, Gundla R. A Review on the Progress and Prospects of Dengue Drug Discovery Targeting NS5 RNA- Dependent RNA Polymerase. Curr Pharm Des 2021; 26:4386-4409. [PMID: 32445444 DOI: 10.2174/1381612826666200523174753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/15/2020] [Indexed: 02/08/2023]
Abstract
Dengue virus (DENV) infection threatens the health and wellbeing of almost 100 million people in the world. Vectored by mosquitoes, DENV may cause a severe disease in human hosts called Dengue hemorrhagic fever (DHF)/Dengue shock syndrome (DSS), which is not preventable by any known drug. In the absence of a universally-accepted vaccine, a drug capable of inhibiting DENV multiplication is an urgent and unmet clinical need. Here we summarize inhibitory strategies by targeting either host biochemical pathways or virus-encoded proteins. A variety of approaches have been generated to design Directly-acting anti-virals or DAAs targeting different DENV proteins, with diverse success. Among them, DAAs targeting genome replicating viral enzymes have proven effective against many viruses including, Human Immuno-deficiency Virus and Hepatitis C Virus. DAAs may be derived either from existing compound libraries of novel molecules and plant secondary metabolites or devised through Computer-aided Drug design (CADD) methods. Here, we focus on compounds with reported DAA-activity against the DENV RNA-dependent RNA polymerase (RdRp), which replicate the viral RNA genome. The structure-activity relationship (SAR) and toxicity of the natural compounds, including secondary plant metabolites, have been discussed in detail. We have also tabulated novel compounds with known anti-RdRp activity. We concluded with a list of DAAs for which a co-crystal structure with RdRp is reported. Promising hit compounds are often discarded due to poor selectivity or unsuitable pharmacokinetics. We hope this review will provide a useful reference for further studies on the development of an anti-DENV drug.
Collapse
Affiliation(s)
- Venkatanarayana C Maddipati
- Department of Chemistry, School of Science, GITAM (Deemed to be University), Hyderabad 502329, Telangana, India
| | - Lovika Mittal
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rdMilestone, Faridabad-Gurugram Expressway, Faridabad - 121001, Haryana, India
| | - Manohar Mantipally
- Department of Chemistry, School of Science, GITAM (Deemed to be University), Hyderabad 502329, Telangana, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rdMilestone, Faridabad-Gurugram Expressway, Faridabad - 121001, Haryana, India
| | - Sankar Bhattacharyya
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rdMilestone, Faridabad-Gurugram Expressway, Faridabad - 121001, Haryana, India
| | - Rambabu Gundla
- Department of Chemistry, School of Science, GITAM (Deemed to be University), Hyderabad 502329, Telangana, India
| |
Collapse
|
33
|
Lee JY, Nguyen TTN, Myoung J. Zika Virus-Encoded NS2A and NS4A Strongly Downregulate NF-κB Promoter Activity. J Microbiol Biotechnol 2020; 30:1651-1658. [PMID: 33203823 PMCID: PMC9728285 DOI: 10.4014/jmb.2011.11003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Since Zika virus (ZIKV) was first detected in Uganda in 1947, serious outbreaks have occurred globally in Yap Island, French Polynesia and Brazil. Even though the number of infections and spread of ZIKV have risen sharply, the pathogenesis and replication mechanisms of ZIKV have not been well studied. ZIKV, a recently highlighted Flavivirus, is a mosquito-borne emerging virus causing microcephaly and the Guillain-Barre syndrome in fetuses and adults, respectively. ZIKV polyprotein consists of three structural proteins named C, prM and E and seven nonstructural proteins named NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5 in an 11-kb single-stranded positive sense RNA genome. The function of individual ZIKV genes on the host innate immune response has barely been studied. In this study, we investigated the modulations of the NF-κB promoter activity induced by the MDA5/RIG-I signaling pathway. According to our results, two nonstructural proteins, NS2A and NS4A, dramatically suppressed the NF-κB promoter activity by inhibiting signaling factors involved in the MDA5/RIG-I signaling pathway. Interestingly, NS2A suppressed all components of MDA5/RIG-I signaling pathway, but NS4A inhibited most signaling molecules, except IKKε and IRF3-5D. In addition, both NS2A and NS4A downregulated MDA5-induced NF-κB promoter activity in a dosedependent manner. Taken together, our results suggest that NS2A and NS4A signifcantly antagonize MDA5/RIG-I-mediated NF-κB production, and these proteins seem to be controlled by different mechanisms. This study could help understand the mechanisms of how ZIKV controls innate immune responses and may also assist in the development of ZIKV-specific therapeutics.
Collapse
Affiliation(s)
- Jeong Yoon Lee
- Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju 54531, Republic of Korea
| | - Thi Thuy Ngan Nguyen
- Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju 54531, Republic of Korea
| | - Jinjong Myoung
- Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju 54531, Republic of Korea
| |
Collapse
|
34
|
Identification of quinolone derivatives as effective anti-Dengue virus agents. Antiviral Res 2020; 184:104969. [PMID: 33160000 DOI: 10.1016/j.antiviral.2020.104969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 11/20/2022]
Abstract
Dengue virus (DENV) infection is one of the most important infectious diseases in tropical and subtropical regions around the world. Previously, we performed an initial phenotypic screening of 7000 compounds using DENV type 2 (DENV2)-infected BHK-21 cells to identify small molecules which could inhibit virus replication. In this study, we describe two novel compounds with anti-DENV2 activity, tentatively named Compound-X and Compound-Y. Both compounds possess a quinolone skeleton, and the EC50s of Compound-X and Compound-Y against DENV2 were 3.9 μM and 9.2 μM, respectively. Based on a DENV replicon assay, it was suggested that these compounds have anti-DENV2 activity by inhibition of a step in virus replication. Furthermore, using mutational analysis we obtained compounds-resistant to DENV2 infection and identified a mutation, V130A in the NS5 methyltransferase (MTase) domain. However, these compounds did not inhibit MTase activity. In addition, incorporation of an additional NS1 N246D mutation with the NS5 V130A mutation in DENV2 resulted in recovery of viral replication and a further reduction of the sensitivity to the quinolone compounds by an unknown mechanism. Therefore further investigations are required to clarify the antiviral mechanisms of these quinolone compounds.
Collapse
|
35
|
Konkolova E, Dejmek M, Hřebabecký H, Šála M, Böserle J, Nencka R, Boura E. Remdesivir triphosphate can efficiently inhibit the RNA-dependent RNA polymerase from various flaviviruses. Antiviral Res 2020; 182:104899. [PMID: 32763313 PMCID: PMC7403104 DOI: 10.1016/j.antiviral.2020.104899] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022]
Abstract
Remdesivir was shown to inhibit RNA-dependent RNA-polymerases (RdRp) from distinct viral families such as from Filoviridae (Ebola) and Coronaviridae (SARS-CoV, SARS-CoV-2, MERS). In this study, we tested the ability of remdesivir to inhibit RdRps from the Flaviviridae family. Instead of remdesivir, we used the active species that is produced in cells from remdesivir, the appropriate triphosphate, which could be directly tested in vitro using recombinant flaviviral polymerases. Our results show that remdesivir can efficiently inhibit RdRps from viruses causing severe illnesses such as Yellow fever, West Nile fever, Japanese and Tick-borne encephalitis, Zika and Dengue. Taken together, this study demonstrates that remdesivir or its derivatives have the potential to become a broad-spectrum antiviral agent effective against many RNA viruses.
Collapse
Affiliation(s)
- Eva Konkolova
- Institute of Organic Chemistry and Biochemistry AS CR, V.v.i., Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic
| | - Milan Dejmek
- Institute of Organic Chemistry and Biochemistry AS CR, V.v.i., Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic
| | - Hubert Hřebabecký
- Institute of Organic Chemistry and Biochemistry AS CR, V.v.i., Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic
| | - Michal Šála
- Institute of Organic Chemistry and Biochemistry AS CR, V.v.i., Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic
| | - Jiří Böserle
- Institute of Organic Chemistry and Biochemistry AS CR, V.v.i., Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry AS CR, V.v.i., Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic.
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry AS CR, V.v.i., Flemingovo Nam. 2, 166 10, Prague 6, Czech Republic.
| |
Collapse
|
36
|
Structural analysis of the SARS-CoV-2 methyltransferase complex involved in RNA cap creation bound to sinefungin. Nat Commun 2020; 11:3717. [PMID: 32709887 PMCID: PMC7381658 DOI: 10.1038/s41467-020-17495-9] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/01/2020] [Indexed: 11/17/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic. 2′-O-RNA methyltransferase (MTase) is one of the enzymes of this virus that is a potential target for antiviral therapy as it is crucial for RNA cap formation; an essential process for viral RNA stability. This MTase function is associated with the nsp16 protein, which requires a cofactor, nsp10, for its proper activity. Here we show the crystal structure of the nsp10-nsp16 complex bound to the pan-MTase inhibitor sinefungin in the active site. Our structural comparisons reveal low conservation of the MTase catalytic site between Zika and SARS-CoV-2 viruses, but high conservation of the MTase active site between SARS-CoV-2 and SARS-CoV viruses; these data suggest that the preparation of MTase inhibitors targeting several coronaviruses - but not flaviviruses - should be feasible. Together, our data add to important information for structure-based drug discovery. SARS-CoV-2 expresses a 2′-O RNA methyltransferase (MTase) that is involved in the viral RNA cap formation and therefore a target for antiviral therapy. Here the authors provide the structure of nsp10-nsp16 with the panMTase inhibitor sinefungin and report that the development of MTase inhibitor therapies that target multiple coronoaviruses is feasible.
Collapse
|
37
|
Chagas M, Rocha W, Moraes A. Dynamics and allostery of Zika virus non-structural protein 5 methyltransferase. J Biomol Struct Dyn 2020; 39:5526-5538. [DOI: 10.1080/07391102.2020.1792343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Marcelo Chagas
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Willian Rocha
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adolfo Moraes
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
38
|
Yun SI, Song BH, Woolley ME, Frank JC, Julander JG, Lee YM. Development, Characterization, and Application of Two Reporter-Expressing Recombinant Zika Viruses. Viruses 2020; 12:v12050572. [PMID: 32456014 PMCID: PMC7290298 DOI: 10.3390/v12050572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022] Open
Abstract
Zika virus (ZIKV), a mosquito-borne transplacentally transmissible flavivirus, is an enveloped virus with an ~10.8 kb plus-strand RNA genome that can cause neurological disease. To facilitate the identification of potential antivirals, we developed two reporter-expressing ZIKVs, each capable of expressing an enhanced green fluorescent protein or an improved luminescent NanoLuc luciferase. First, a full-length functional ZIKV cDNA clone was engineered as a bacterial artificial chromosome, with each reporter gene under the cap-independent translational control of a cardiovirus-derived internal ribosome entry site inserted downstream of the single open reading frame of the viral genome. Two reporter-expressing ZIKVs were then generated by transfection of ZIKV-susceptible BHK-21 cells with infectious RNAs derived by in vitro run-off transcription from the respective cDNAs. As compared to the parental virus, the two reporter-expressing ZIKVs grew to lower titers with slower growth kinetics and formed smaller foci; however, they displayed a genome-wide viral protein expression profile identical to that of the parental virus, except for two previously unrecognized larger forms of the C and NS1 proteins. We then used the NanoLuc-expressing ZIKV to assess the in vitro antiviral activity of three inhibitors (T-705, NITD-008, and ribavirin). Altogether, our reporter-expressing ZIKVs represent an excellent molecular tool for the discovery of novel antivirals.
Collapse
Affiliation(s)
- Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (S.-I.Y.); (B.-H.S.); (M.E.W.); (J.C.F.); (J.G.J.)
| | - Byung-Hak Song
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (S.-I.Y.); (B.-H.S.); (M.E.W.); (J.C.F.); (J.G.J.)
| | - Michael E. Woolley
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (S.-I.Y.); (B.-H.S.); (M.E.W.); (J.C.F.); (J.G.J.)
| | - Jordan C. Frank
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (S.-I.Y.); (B.-H.S.); (M.E.W.); (J.C.F.); (J.G.J.)
| | - Justin G. Julander
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (S.-I.Y.); (B.-H.S.); (M.E.W.); (J.C.F.); (J.G.J.)
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (S.-I.Y.); (B.-H.S.); (M.E.W.); (J.C.F.); (J.G.J.)
- Veterinary Diagnostics and Infectious Diseases, Utah Science Technology and Research, Utah State University, Logan, UT 84341, USA
- Correspondence: ; Tel.: +1-435-797-9667
| |
Collapse
|
39
|
Williams GD, Gokhale NS, Snider DL, Horner SM. The mRNA Cap 2'- O-Methyltransferase CMTR1 Regulates the Expression of Certain Interferon-Stimulated Genes. mSphere 2020; 5:e00202-20. [PMID: 32404510 PMCID: PMC7227766 DOI: 10.1128/msphere.00202-20] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023] Open
Abstract
Type I interferons (IFN) initiate an antiviral state through a signal transduction cascade that leads to the induction of hundreds of IFN-stimulated genes (ISGs) to restrict viral infection. Recently, RNA modifications on both host and viral RNAs have been described as regulators of infection. However, the impact of host mRNA cap modifications on the IFN response and how this regulates viral infection are unknown. Here, we reveal that CMTR1, an ISG that catalyzes 2'-O-methylation of the first transcribed nucleotide in cellular mRNA (Cap 1), promotes the protein expression of specific ISGs that contribute to the antiviral response. Depletion of CMTR1 reduces the IFN-induced protein levels of ISG15, MX1, and IFITM1, without affecting their transcript abundance. However, CMTR1 depletion does not significantly affect the IFN-induced protein or transcript abundance of IFIT1 and IFIT3. Importantly, knockdown of IFIT1, which acts with IFIT3 to inhibit the translation of RNAs lacking Cap 1 2'-O-methylation, restores protein expression of ISG15, MX1, and IFITM1 in cells depleted of CMTR1. Finally, we found that CMTR1 plays a role in restricting RNA virus replication, likely by ensuring the expression of specific antiviral ISGs. Taken together, these data reveal that CMTR1 is required to establish an antiviral state by ensuring the protein expression of a subset of ISGs during the type I IFN response.IMPORTANCE Induction of an efficient type I IFN response is important to control viral infection. We show that the host 2'-O-methyltransferase CMTR1 facilitates the protein expression of ISGs in human cells by preventing IFIT1 from inhibiting the translation of those mRNAs lacking cap 2'-O-methylation. Thus, CMTR1 promotes the IFN-mediated antiviral response.
Collapse
Affiliation(s)
- Graham D Williams
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Nandan S Gokhale
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Daltry L Snider
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Stacy M Horner
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
40
|
Huber TD, Clinger JA, Liu Y, Xu W, Miller MD, Phillips GN, Thorson JS. Methionine Adenosyltransferase Engineering to Enable Bioorthogonal Platforms for AdoMet-Utilizing Enzymes. ACS Chem Biol 2020; 15:695-705. [PMID: 32091873 DOI: 10.1021/acschembio.9b00943] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The structural conservation among methyltransferases (MTs) and MT functional redundancy is a major challenge to the cellular study of individual MTs. As a first step toward the development of an alternative biorthogonal platform for MTs and other AdoMet-utilizing enzymes, we describe the evaluation of 38 human methionine adenosyltransferase II-α (hMAT2A) mutants in combination with 14 non-native methionine analogues to identify suitable bioorthogonal mutant/analogue pairings. Enabled by the development and implementation of a hMAT2A high-throughput (HT) assay, this study revealed hMAT2A K289L to afford a 160-fold inversion of the hMAT2A selectivity index for a non-native methionine analogue over the native substrate l-Met. Structure elucidation of K289L revealed the mutant to be folded normally with minor observed repacking within the modified substrate pocket. This study highlights the first example of exchanging l-Met terminal carboxylate/amine recognition elements within the hMAT2A active-site to enable non-native bioorthgonal substrate utilization. Additionally, several hMAT2A mutants and l-Met substrate analogues produced AdoMet analogue products with increased stability. As many AdoMet-producing (e.g., hMAT2A) and AdoMet-utlizing (e.g., MTs) enzymes adopt similar active-site strategies for substrate recognition, the proof of concept first generation hMAT2A engineering highlighted herein is expected to translate to a range of AdoMet-utilizing target enzymes.
Collapse
Affiliation(s)
- Tyler D. Huber
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
- Center for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | | | - Yang Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
- Center for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | | | | | | | - Jon S. Thorson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
- Center for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
41
|
Abstract
Viruses must co-opt the cellular translation machinery to produce progeny virions. Eukaryotic viruses have evolved a variety of ways to manipulate the cellular translation apparatus, in many cases using elegant RNA-centred strategies. Viral RNAs can alter or control every phase of protein synthesis and have diverse targets, mechanisms and structures. In addition, as cells attempt to limit infection by downregulating translation, some of these viral RNAs enable the virus to overcome this response or even take advantage of it to promote viral translation over cellular translation. In this Review, we present important examples of viral RNA-based strategies to exploit the cellular translation machinery. We describe what is understood of the structures and mechanisms of diverse viral RNA elements that alter or regulate translation, the advantages that are conferred to the virus and some of the major unknowns that provide motivation for further exploration. Eukaryotic viruses have evolved a variety of ways to manipulate the cellular translation apparatus. In this Review, Jaafar and Kieft present important examples of viral RNA-based strategies to exploit the cellular translation machinery.
Collapse
Affiliation(s)
- Zane A Jaafar
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO, USA. .,RNA Bioscience Initiative, University of Colorado Denver School of Medicine, Aurora, CO, USA.
| |
Collapse
|
42
|
Abdullah AA, Lee YK, Chin SP, Lim SK, Lee VS, Othman R, Othman S, Rahman NA, Yusof R, Heh CH. Discovery of Dengue Virus Inhibitors. Curr Med Chem 2020; 27:4945-5036. [PMID: 30514185 DOI: 10.2174/0929867326666181204155336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/11/2018] [Accepted: 11/22/2018] [Indexed: 11/22/2022]
Abstract
To date, there is still no approved anti-dengue agent to treat dengue infection in the market. Although the only licensed dengue vaccine, Dengvaxia is available, its protective efficacy against serotypes 1 and 2 of dengue virus was reported to be lower than serotypes 3 and 4. Moreover, according to WHO, the risk of being hospitalized and having severe dengue increased in seronegative individuals after they received Dengvaxia vaccination. Nevertheless, various studies had been carried out in search of dengue virus inhibitors. These studies focused on the structural (C, prM, E) and non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5) of dengue virus as well as host factors as drug targets. Hence, this article provides an overall up-to-date review of the discovery of dengue virus inhibitors that are only targeting the structural and non-structural viral proteins as drug targets.
Collapse
Affiliation(s)
- Adib Afandi Abdullah
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Yean Kee Lee
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Sek Peng Chin
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - See Khai Lim
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Vannajan Sanghiran Lee
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Rozana Othman
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Shatrah Othman
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Noorsaadah Abdul Rahman
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Rohana Yusof
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| | - Choon Han Heh
- Drug Design and Development Research Group (DDDRG), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
43
|
Ablasser A, Hur S. Regulation of cGAS- and RLR-mediated immunity to nucleic acids. Nat Immunol 2020; 21:17-29. [PMID: 31819255 DOI: 10.1038/s41590-019-0556-1] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022]
Abstract
Pathogen-derived nucleic acids are crucial signals for innate immunity. Despite the structural similarity between those and host nucleic acids, mammalian cells have been able to evolve powerful innate immune signaling pathways that originate from the detection of cytosolic nucleic acid species, one of the most prominent being the cGAS-STING pathway for DNA and the RLR-MAVS pathway for RNA, respectively. Recent advances have revealed a plethora of regulatory mechanisms that are crucial for balancing the activity of nucleic acid sensors for the maintenance of overall cellular homeostasis. Elucidation of the various mechanisms that enable cells to maintain control over the activity of cytosolic nucleic acid sensors has provided new insight into the pathology of human diseases and, at the same time, offers a rich and largely unexplored source for new therapeutic targets. This Review addresses the emerging literature on regulation of the sensing of cytosolic DNA and RNA via cGAS and RLRs.
Collapse
Affiliation(s)
- Andrea Ablasser
- Global Health Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland.
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
44
|
Chong LC, Khan AM. Identification of highly conserved, serotype-specific dengue virus sequences: implications for vaccine design. BMC Genomics 2019; 20:921. [PMID: 31874646 PMCID: PMC6929274 DOI: 10.1186/s12864-019-6311-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 11/24/2022] Open
Abstract
Background The sequence diversity of dengue virus (DENV) is one of the challenges in developing an effective vaccine against the virus. Highly conserved, serotype-specific (HCSS), immune-relevant DENV sequences are attractive candidates for vaccine design, and represent an alternative to the approach of selecting pan-DENV conserved sequences. The former aims to limit the number of possible cross-reactive epitope variants in the population, while the latter aims to limit the cross-reactivity between the serotypes to favour a serotype-specific response. Herein, we performed a large-scale systematic study to map and characterise HCSS sequences in the DENV proteome. Methods All reported DENV protein sequence data for each serotype was retrieved from the NCBI Entrez Protein (nr) Database (txid: 12637). The downloaded sequences were then separated according to the individual serotype proteins by use of BLASTp search, and subsequently removed for duplicates and co-aligned across the serotypes. Shannon’s entropy and mutual information (MI) analyses, by use of AVANA, were performed to measure the diversity within and between the serotype proteins to identify HCSS nonamers. The sequences were evaluated for the presence of promiscuous T-cell epitopes by use of NetCTLpan 1.1 and NetMHCIIpan 3.2 server for human leukocyte antigen (HLA) class I and class II supertypes, respectively. The predicted epitopes were matched to reported epitopes in the Immune Epitope Database. Results A total of 2321 nonamers met the HCSS selection criteria of entropy < 0.25 and MI > 0.8. Concatenating these resulted in a total of 337 HCSS sequences. DENV4 had the most number of HCSS nonamers; NS5, NS3 and E proteins had among the highest, with none in the C and only one in prM. The HCSS sequences were immune-relevant; 87 HCSS sequences were both reported T-cell epitopes/ligands in human and predicted epitopes, supporting the accuracy of the predictions. A number of the HCSS clustered as immunological hotspots and exhibited putative promiscuity beyond a single HLA supertype. The HCSS sequences represented, on average, ~ 40% of the proteome length for each serotype; more than double of pan-DENV sequences (conserved across the four serotypes), and thus offer a larger choice of sequences for vaccine target selection. HCSS sequences of a given serotype showed significant amino acid difference to all the variants of the other serotypes, supporting the notion of serotype-specificity. Conclusion This work provides a catalogue of HCSS sequences in the DENV proteome, as candidates for vaccine target selection. The methodology described herein provides a framework for similar application to other pathogens.
Collapse
Affiliation(s)
- Li Chuin Chong
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Jalan MAEPS Perdana, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Asif M Khan
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Jalan MAEPS Perdana, 43400, Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
45
|
Manjula S, Kumaradhas P. Evaluating the suitability of RNA intervention mechanism exerted by some flavonoid molecules against dengue virus MTase RNA capping site: a molecular docking, molecular dynamics simulation, and binding free energy study. J Biomol Struct Dyn 2019; 38:3533-3543. [DOI: 10.1080/07391102.2019.1666744] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Saravanan Manjula
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, India
| | - Poomani Kumaradhas
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, India
| |
Collapse
|
46
|
Valente AP, Moraes AH. Zika virus proteins at an atomic scale: how does structural biology help us to understand and develop vaccines and drugs against Zika virus infection? J Venom Anim Toxins Incl Trop Dis 2019; 25:e20190013. [PMID: 31523227 PMCID: PMC6727858 DOI: 10.1590/1678-9199-jvatitd-2019-0013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In Brazil and in other tropical areas Zika virus infection was directly associated with clinical complications as microcephaly in newborn children whose mothers were infected during pregnancy and the Guillain-Barré syndrome in adults. Recently, research has been focused on developing new vaccines and drug candidates against Zika virus infection since none of those are available. In order to contribute to vaccine and drug development efforts, it becomes important the understanding of the molecular basis of the Zika virus recognition, infection and blockade. To this purpose, it is essential the structural determination of the Zika virus proteins. The genome sequencing of the Zika virus identified ten proteins, being three structural (protein E, protein C and protein prM) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5). Together, these proteins are the main targets for drugs and antibody recognition. Here we examine new discoveries on high-resolution structural biology of Zika virus, observing the interactions and functions of its proteins identified via state-of-art structural methodologies as X-ray crystallography, nuclear magnetic resonance spectroscopy and cryogenic electronic microscopy. The aim of the present study is to contribute to the understanding of the structural basis of Zika virus infection at an atomic level and to point out similarities and differences to others flaviviruses.
Collapse
Affiliation(s)
- Ana Paula Valente
- National Center of Magnetic Resonance, Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Adolfo Henrique Moraes
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
47
|
McIntyre W, Netzband R, Bonenfant G, Biegel JM, Miller C, Fuchs G, Henderson E, Arra M, Canki M, Fabris D, Pager CT. Positive-sense RNA viruses reveal the complexity and dynamics of the cellular and viral epitranscriptomes during infection. Nucleic Acids Res 2019; 46:5776-5791. [PMID: 29373715 PMCID: PMC6009648 DOI: 10.1093/nar/gky029] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/15/2018] [Indexed: 12/26/2022] Open
Abstract
More than 140 post-transcriptional modifications (PTMs) are known to decorate cellular RNAs, but their incidence, identity and significance in viral RNA are still largely unknown. We have developed an agnostic analytical approach to comprehensively survey PTMs on viral and cellular RNAs. Specifically, we used mass spectrometry to analyze PTMs on total RNA isolated from cells infected with Zika virus, Dengue virus, hepatitis C virus (HCV), poliovirus and human immunodeficiency virus type 1. All five RNA viruses significantly altered global PTM landscapes. Examination of PTM profiles of individual viral genomes isolated by affinity capture revealed a plethora of PTMs on viral RNAs, which far exceeds the handful of well-characterized modifications. Direct comparison of viral epitranscriptomes identified common and virus-specific PTMs. In particular, specific dimethylcytosine modifications were only present in total RNA from virus-infected cells, and in intracellular HCV RNA, and viral RNA from Zika and HCV virions. Moreover, dimethylcytosine abundance during viral infection was modulated by the cellular DEAD-box RNA helicase DDX6. By opening the Pandora's box on viral PTMs, this report presents numerous questions and hypotheses on PTM function and strongly supports PTMs as a new tier of regulation by which RNA viruses subvert the host and evade cellular surveillance systems.
Collapse
Affiliation(s)
- Will McIntyre
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Rachel Netzband
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Gaston Bonenfant
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Jason M Biegel
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Clare Miller
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Gabriele Fuchs
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Eric Henderson
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Manoj Arra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Mario Canki
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Daniele Fabris
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| | - Cara T Pager
- The RNA Institute, University at Albany-SUNY, Albany, NY 12222, USA
| |
Collapse
|
48
|
Huang C, Wang X, Huang S, Ou L, Dai J, Wang K. Evasion strategies of Zika virus antagonizing host innate immunity. Future Virol 2019. [DOI: 10.2217/fvl-2019-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zika virus is a small enveloped positive-strand RNA virus, which belongs to the Flaviviridae family. The RNA genome of all flaviviruses encodes three structural and seven nonstructural genes, together with 5′- and 3′-untranslated region genes flanking. Accompanying the explosive nature of the Zika outbreak in 2014, there was a devastating congenital neurodevelopmental disease in fetuses. Apart from viral RNA replication, polyprotein cleavage, Zika virus nonstructural proteins also play vital roles in the host's innate immune evasion. In this brief report, we summarize the evasion mechanisms of the viral nonstructural proteins antagonizing host antiviral innate immunity.
Collapse
Affiliation(s)
- Chenxiao Huang
- Institutes of Biology & Medical Sciences, Jiangsu Key Laboratory of Infection & Immunity, Soochow University, Suzhou 215123, PR China
| | - Xiujuan Wang
- Institutes of Biology & Medical Sciences, Jiangsu Key Laboratory of Infection & Immunity, Soochow University, Suzhou 215123, PR China
| | - Shuyi Huang
- Institutes of Biology & Medical Sciences, Jiangsu Key Laboratory of Infection & Immunity, Soochow University, Suzhou 215123, PR China
| | - Linlin Ou
- Institutes of Biology & Medical Sciences, Jiangsu Key Laboratory of Infection & Immunity, Soochow University, Suzhou 215123, PR China
| | - Jianfeng Dai
- Institutes of Biology & Medical Sciences, Jiangsu Key Laboratory of Infection & Immunity, Soochow University, Suzhou 215123, PR China
| | - Kezhen Wang
- Institutes of Biology & Medical Sciences, Jiangsu Key Laboratory of Infection & Immunity, Soochow University, Suzhou 215123, PR China
| |
Collapse
|
49
|
Kovanich D, Saisawang C, Sittipaisankul P, Ramphan S, Kalpongnukul N, Somparn P, Pisitkun T, Smith DR. Analysis of the Zika and Japanese Encephalitis Virus NS5 Interactomes. J Proteome Res 2019; 18:3203-3218. [PMID: 31199156 DOI: 10.1021/acs.jproteome.9b00318] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mosquito-borne flaviviruses, including dengue virus (DENV), Japanese encephalitis virus (JEV), and Zika virus (ZIKV), are major human pathogens. Among the flaviviral proteins, the nonstructural protein 5 (NS5) is the largest, most conserved, and major enzymatic component of the viral replication complex. Disruption of the common key NS5-host protein-protein interactions critical for viral replication could aid in the development of broad-spectrum antiflaviviral therapeutics. Hundreds of NS5 interactors have been identified, but these are mostly DENV-NS5 interactors. To this end, we sought to investigate the JEV- and ZIKV-NS5 interactomes using EGFP immunoprecipitation with label-free quantitative mass spectrometry analysis. We report here a total of 137 NS5 interactors with a significant enrichment of spliceosomal and spliceosomal-associated proteins. The transcription complex Paf1C and phosphatase 6 were identified as common NS5-associated complexes. PAF1 was shown to play opposite roles in JEV and ZIKV infections. Additionally, we validated several NS5 targets and proposed their possible roles in infection. These include lipid-shuttling proteins OSBPL9 and OSBPL11, component of RNAP3 transcription factor TFIIIC, minichromosome maintenance, and cochaperone PAQosome. Mining this data set, our study expands the current interaction landscape of NS5 and uncovers several NS5 targets that are new to flavivirus biology.
Collapse
Affiliation(s)
- Duangnapa Kovanich
- Institute of Molecular Biosciences, Mahidol University , Nakhon Pathom , Thailand
| | - Chonticha Saisawang
- Institute of Molecular Biosciences, Mahidol University , Nakhon Pathom , Thailand
| | | | - Suwipa Ramphan
- Institute of Molecular Biosciences, Mahidol University , Nakhon Pathom , Thailand
| | - Nuttiya Kalpongnukul
- Center of Excellence in Systems Biology, Research affairs, Faculty of Medicine , Chulalongkorn University , Bangkok , Thailand
| | - Poorichaya Somparn
- Center of Excellence in Systems Biology, Research affairs, Faculty of Medicine , Chulalongkorn University , Bangkok , Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Research affairs, Faculty of Medicine , Chulalongkorn University , Bangkok , Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University , Nakhon Pathom , Thailand
| |
Collapse
|
50
|
Andrews RJ, Roche J, Moss WN. ScanFold: an approach for genome-wide discovery of local RNA structural elements-applications to Zika virus and HIV. PeerJ 2018; 6:e6136. [PMID: 30627482 PMCID: PMC6317755 DOI: 10.7717/peerj.6136] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/15/2018] [Indexed: 12/24/2022] Open
Abstract
In addition to encoding RNA primary structures, genomes also encode RNA secondary and tertiary structures that play roles in gene regulation and, in the case of RNA viruses, genome replication. Methods for the identification of functional RNA structures in genomes typically rely on scanning analysis windows, where multiple partially-overlapping windows are used to predict RNA structures and folding metrics to deduce regions likely to form functional structure. Separate structural models are produced for each window, where the step size can greatly affect the returned model. This makes deducing unique local structures challenging, as the same nucleotides in each window can be alternatively base paired. We are presenting here a new approach where all base pairs from analysis windows are considered and weighted by favorable folding. This results in unique base pairing throughout the genome and the generation of local regions/structures that can be ranked by their propensity to form unusually thermodynamically stable folds. We applied this approach to the Zika virus (ZIKV) and HIV-1 genomes. ZIKV is linked to a variety of neurological ailments including microcephaly and Guillain-Barré syndrome and its (+)-sense RNA genome encodes two, previously described, functionally essential structured RNA regions. HIV, the cause of AIDS, contains multiple functional RNA motifs in its genome, which have been extensively studied. Our approach is able to successfully identify and model the structures of known functional motifs in both viruses, while also finding additional regions likely to form functional structures. All data have been archived at the RNAStructuromeDB (www.structurome.bb.iastate.edu), a repository of RNA folding data for humans and their pathogens.
Collapse
Affiliation(s)
- Ryan J. Andrews
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Julien Roche
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Walter N. Moss
- Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|