1
|
Graf A, Rziha HJ, Krebs S, Wolf E, Blum H, Büttner M. Parapoxvirus species revisited by whole genome sequencing: A retrospective analysis of bovine virus isolates. Virus Res 2024; 346:199404. [PMID: 38782262 PMCID: PMC11152744 DOI: 10.1016/j.virusres.2024.199404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Parapoxviruses (PPV) of animals are spread worldwide. While the Orf virus (ORFV) species is a molecularly well-characterized prototype pathogen of small ruminants, the genomes of virus species affecting large ruminants, namely Bovine papular stomatitis virus (BPSV) and Pseudocowpox virus (PCPV), are less well known. Using Nanopore sequencing we retrospectively show the whole genome sequences (WGS) of six BPSV, three PCPV isolates and an attenuated ORFV strain, originating from different geographic locations. A phylogenetic tree shows that the de novo assembled genomes belong to PPV species including WGS of reference PPV. Remarkably, Nanopore sequencing allowed the molecular resolution of inverted terminal repeats (ITR) and the hairpin loop within the de novo assembled WGS. Additionally, peculiarities regarding map location of two genes and the heterogeneity of a genomic region were noted. Details for the molecular variability of an interferon response modulatory gene (ORF116) and the PCPV specificity of gene 073.5 are reported. In summary, WGS gained by Nanopore sequencing allowed analysis of complete PPV genomes and confident virus species attribution within a phylogenetic tree avoiding uncertainty of limited gene-based diagnostics. Nanopore-based WGS provides robust comparison of PPV genomes and reliable identity determination of new Poxviruses.
Collapse
Affiliation(s)
- Alexander Graf
- Laboratory for Functional Genome Analysis (LAFUGA), Dept. Genomics, Gene Centre, Ludwig-Maximilians-Universität München (LMU), 81377 Munich, Germany
| | - Hanns-Joachim Rziha
- Institute of Immunology, University Hospital Tübingen, Eberhard Karls Universität Tübingen, 72076, Tübingen, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Dept. Genomics, Gene Centre, Ludwig-Maximilians-Universität München (LMU), 81377 Munich, Germany
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis (LAFUGA), Dept. Genomics, Gene Centre, Ludwig-Maximilians-Universität München (LMU), 81377 Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Dept. Genomics, Gene Centre, Ludwig-Maximilians-Universität München (LMU), 81377 Munich, Germany
| | - Mathias Büttner
- Institute of Immunology, Faculty of Veterinary Medicine, University of Leipzig, 04103, Leipzig, Germany.
| |
Collapse
|
2
|
Yao X, Pang M, Wang T, Chen X, Tang X, Chang J, Chen D, Ma W. Genomic Features and Evolution of the Parapoxvirus during the Past Two Decades. Pathogens 2020; 9:E888. [PMID: 33120928 PMCID: PMC7694016 DOI: 10.3390/pathogens9110888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/21/2020] [Accepted: 10/24/2020] [Indexed: 11/23/2022] Open
Abstract
Parapoxvirus (PPV) has been identified in some mammals and poses a great threat to both the livestock production and public health. However, the prevalence and evolution of this virus are still not fully understood. Here, we performed an in silico analysis to investigate the genomic features and evolution of PPVs. We noticed that although there were significant differences of GC contents between orf virus (ORFV) and other three species of PPVs, all PPVs showed almost identical nucleotide bias, that is GC richness. The structural analysis of PPV genomes showed the divergence of different PPV species, which may be due to the specific adaptation to their natural hosts. Additionally, we estimated the phylogenetic diversity of seven different genes of PPV. According to all available sequences, our results suggested that during 2010-2018, ORFV was the dominant virus species under the selective pressure of the optimal gene patterns. Furthermore, we found the substitution rates ranged from 3.56 × 10-5 to 4.21 × 10-4 in different PPV segments, and the PPV VIR gene evolved at the highest substitution rate. In these seven protein-coding regions, purifying selection was the major evolutionary pressure, while the GIF and VIR genes suffered the greatest positive selection pressure. These results may provide useful knowledge on the virus genetic evolution from a new perspective which could help to create prevention and control strategies.
Collapse
Affiliation(s)
- Xiaoting Yao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| | - Ming Pang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| | - Tianxing Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| | - Xi Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| | - Xidian Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| | - Jianjun Chang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China;
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Dekun Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| | - Wentao Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| |
Collapse
|
3
|
Shimizu K, Takaiwa A, Takeshima SN, Okada A, Inoshima Y. Genetic Variability of 3'-Proximal Region of Genomes of Orf Viruses Isolated From Sheep and Wild Japanese Serows ( Capricornis crispus) in Japan. Front Vet Sci 2020; 7:188. [PMID: 32391386 PMCID: PMC7193945 DOI: 10.3389/fvets.2020.00188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/23/2020] [Indexed: 12/04/2022] Open
Abstract
Orf virus is a prototype species of the genus Parapoxvirus, subfamily Chordopoxvirinae, family Poxviridae. Japanese orf viruses, infecting sheep and wild Japanese serows (Capricornis crispus), have been considered to be genetically closely related based on the sequence identities of the open reading frames (ORFs) 11, 20, and 132 in their genomes. However, since the genome size of orf viruses is about 140 kbp long, genetic variation among Japanese orf viruses remains unclear. In this study, we analyzed the sequences of ORFs 117, 119, 125, and 127 located in the 3′-proximal region of the viral genome using two strains from sheep and three strains from Japanese serows isolated from 1970 to 2007, and compared them with the corresponding sequences of reference orf viruses from other countries. Sequence analysis revealed that ORFs 125 and 127, which encode the inhibitor of apoptosis and viral interleukin (IL)-10, respectively, were highly conserved among the five Japanese orf viruses. However, high genetic variability with deletions or duplications was observed in ORFs 117 and 119, which encode granulocyte macrophage colony-stimulating factor and IL-2 inhibition factor (GIF), and inducer of cell apoptosis, respectively, in one strain from sheep and two strains from Japanese serows. Our results suggest that genetic variability exists in Japanese orf viruses even in the same host species. This is the first report of genetic variability of orf viruses in Japan.
Collapse
Affiliation(s)
- Kaori Shimizu
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Gifu University, Gifu, Japan
| | - Asari Takaiwa
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Gifu University, Gifu, Japan
| | | | - Ayaka Okada
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Gifu University, Gifu, Japan.,Education and Research Center for Food Animal Health, Gifu University (GeFAH), Gifu, Japan
| | - Yasuo Inoshima
- Laboratory of Food and Environmental Hygiene, Cooperative Department of Veterinary Medicine, Gifu University, Gifu, Japan.,Education and Research Center for Food Animal Health, Gifu University (GeFAH), Gifu, Japan.,The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan.,Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
4
|
Genomic Characterization of Orf Virus Strain D1701-V ( Parapoxvirus) and Development of Novel Sites for Multiple Transgene Expression. Viruses 2019; 11:v11020127. [PMID: 30704093 PMCID: PMC6409557 DOI: 10.3390/v11020127] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 02/06/2023] Open
Abstract
The Orf virus (ORFV; Parapoxvirus) strain D1701 with an attenuated phenotype and excellent immunogenic capacity is successfully used for the generation of recombinant vaccines against different viral infections. Adaption for growth in Vero cells was accompanied by additional major genomic changes resulting in ORFV strain variant D1701-V. In this study, restriction enzyme mapping, blot hybridization and DNA sequencing of the deleted region s (A, AT and D) in comparison to the predecessor strain D1701-B revealed the loss of 7 open reading frames (ORF008, ORF101, ORF102, ORF114, ORF115, ORF116, ORF117). The suitability of deletion site D for expression of foreign genes is demonstrated using novel synthetic early promoter eP1 and eP2. Comparison of promoter strength showed that the original vegf-e promoter Pv as well as promoter eP2 display an up to 11-fold stronger expression than promoter eP1, irrespective of the insertion site. Successful integration and expression of the fluorescent marker genes is demonstrated by gene- and insertion-site specific PCR assays, fluorescence microscopy and flow cytometry. For the first time ORFV recombinants are generated simultaneously expressing transgenes in two different insertion loci. That allows production of polyvalent vaccines containing several antigens against one or different pathogens in a single vectored ORFV vaccine.
Collapse
|
5
|
Ahanger SA, Parveen R, Nazki S, Dar Z, Dar T, Dar KH, Dar A, Rai N, Dar P. Detection and phylogenetic analysis of Orf virus in Kashmir Himalayas. Virusdisease 2018; 29:405-410. [PMID: 30159380 PMCID: PMC6111950 DOI: 10.1007/s13337-018-0473-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/28/2018] [Indexed: 10/28/2022] Open
Abstract
Orf virus (ORFV) is a zoonotic pathogen that primarily infects sheep and goats, and is responsible for significant economic losses. ORFV is endemic in all the major sheep and goat rearing areas of the world including Indian subcontinent. However, the nature of ORFV circulating among sheep and goat in Kashmir Himalayas has not yet been characterized. In the present study, we describe natural outbreaks of ORFV in sheep and goats of Kashmir Himalayas. We detected the presence of ORFV in the scab lesion by PCR amplification of the major envelope protein (B2L) gene. We sequenced the virus interferon resistance (VIR) gene and determined their phylogenetic relationship with that of the published reference sequences. Phylogenetic analysis based on VIR gene revealed that the ORFV isolates from Kashmir Himalayas separated into main two clusters. The sheep isolates showed genetic homology with the sheep strains reported from Greece and Italy, whereas the goat-specific strain show homology with the goat strains reported from China. This study demonstrates the presence of ORFV infection in sheep and goats, and report first phylogenetic analysis of the ORFV strains prevalent in the Kashmir Himalayas.
Collapse
Affiliation(s)
- Showket A. Ahanger
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Sciences and Animal Husbandry (FVSc & AH), Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, 190006 India
| | - Rafia Parveen
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Sciences and Animal Husbandry (FVSc & AH), Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, 190006 India
| | - Salik Nazki
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Sciences and Animal Husbandry (FVSc & AH), Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, 190006 India
| | - Zahoor Dar
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Sciences and Animal Husbandry (FVSc & AH), Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, 190006 India
| | - Tanveer Dar
- Faculty of Veterinary Sciences and Animal Husbandry (FVSc & AH), Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, 190006 India
| | - Khadim Hussain Dar
- Faculty of Veterinary Sciences and Animal Husbandry (FVSc & AH), Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, 190006 India
| | - Aijaz Dar
- Faculty of Veterinary Sciences and Animal Husbandry (FVSc & AH), Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, 190006 India
| | - Niraj Rai
- Center for Cellular and Molecular Biology, Hyderabad, Telangana 500007 India
| | - Pervaiz Dar
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Sciences and Animal Husbandry (FVSc & AH), Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, 190006 India
- Present Address: Department of Medicine, University of Toledo, Toledo, OH USA
| |
Collapse
|
6
|
Sharif S, Nakatani Y, Wise L, Corbett M, Real NC, Stuart GS, Lateef Z, Krause K, Mercer AA, Fleming SB. A Broad-Spectrum Chemokine-Binding Protein of Bovine Papular Stomatitis Virus Inhibits Neutrophil and Monocyte Infiltration in Inflammatory and Wound Models of Mouse Skin. PLoS One 2016; 11:e0168007. [PMID: 27936239 PMCID: PMC5148066 DOI: 10.1371/journal.pone.0168007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 11/23/2016] [Indexed: 12/21/2022] Open
Abstract
Bovine papular stomatitis virus (BPSV) is a Parapoxvirus that induces acute pustular skin lesions in cattle and is transmissible to humans. Previous studies have shown that BPSV encodes a distinctive chemokine-binding protein (CBP). Chemokines are critically involved in the trafficking of immune cells to sites of inflammation and infected tissue, suggesting that the CBP plays a role in immune evasion by preventing immune cells reaching sites of infection. We hypothesised that the BPSV-CBP binds a wide range of inflammatory chemokines particularly those involved in BPSV skin infection, and inhibits the recruitment of immune cells from the blood into inflamed skin. Molecular analysis of the purified protein revealed that the BPSV-CBP is a homodimeric polypeptide with a MW of 82.4 kDa whilst a comprehensive screen of inflammatory chemokines by surface plasmon resonance showed high-affinity binding to a range of chemokines within the CXC, CC and XC subfamilies. Structural analysis of BPSV-CBP, based on the crystal structure of orf virus CBP, provided a probable explanation for these chemokine specificities at a molecular level. Functional analysis of the BPSV-CBP using transwell migration assays demonstrated that it potently inhibited chemotaxis of murine neutrophils and monocytes in response to CXCL1, CXCL2 as well as CCL2, CCL3 and CCL5 chemokines. In order to examine the effects of CBP in vivo, we used murine skin models to determine its impact on inflammatory cell recruitment such as that observed during BPSV infection. Intradermal injection of BPSV-CBP blocked the influx of neutrophils and monocytes in murine skin in which inflammation was induced with lipopolysaccharide. Furthermore, intradermal injection of BPSV-CBP into injured skin, which more closely mimics BPSV lesions, delayed the influx of neutrophils and reduced the recruitment of MHC-II+ immune cells to the wound bed. Our findings suggest that the CBP could be important in pathogenesis of BPSV infections.
Collapse
Affiliation(s)
- Saeed Sharif
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Yoshio Nakatani
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Lyn Wise
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Michael Corbett
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Nicola C. Real
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Gabriella S. Stuart
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Zabeen Lateef
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Kurt Krause
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Andrew A. Mercer
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Stephen B. Fleming
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- * E-mail:
| |
Collapse
|
7
|
Comparative genomic sequence analysis of Chinese orf virus strain NA1/11 with other parapoxviruses. Arch Virol 2014; 160:253-66. [PMID: 25385177 DOI: 10.1007/s00705-014-2274-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/30/2014] [Indexed: 12/14/2022]
Abstract
Orf virus (ORFV) is a typical member of the genus Parapoxvirus. The parapoxvirus genome consists of highly variable terminal regions and relatively conserved central regions with a high G + C content. In our previous study, a novel ORFV strain, NA1/11, was isolated from northeastern China. To fully characterize this strain, we sequenced the entire genome of NA1/11 and conducted a comparative analysis using multiple parapoxviruses. The genomic sequence of NA1/11 was found to consist of 137,080 nucleotides with a G + C content of 63.6 %, but it did not contain the terminal hairpin sequence. Alignment of ORFs from NA1/11 with NZ2, IA82 and SA00 revealed several highly variable ORFs, while the most evident ones are ORFs 001, 103, 109-110, 116 and 132. An odd phenomenon in the region of ORFs 118-120 is that the non-coding fragments are almost as long as the coding fragments. By comparative analysis of inverted terminal repeats, we identified one repeat motif and a long conserved fragment. By comparing the ITRs of SA00 with those of three other ORFVs, more clues were obtained about the correlation between ITR sequence and host adaption. Comparison of the NA1/11 genome with the sequences of other strains of ORFV revealed highly variable regions, thus providing new insights into the genetic diversity of ORFV.
Collapse
|
8
|
Lacek K, Bauer B, Bieńkowska-Szewczyk K, Rziha HJ. Orf virus (ORFV) ANK-1 protein mitochondrial localization is mediated by ankyrin repeat motifs. Virus Genes 2014; 49:68-79. [PMID: 24743940 DOI: 10.1007/s11262-014-1069-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 04/03/2014] [Indexed: 10/25/2022]
Abstract
Orf virus (ORFV) strain D1701-V, a Parapoxvirus belonging to the family Poxviridae, became attractive as a novel virus vector system that we successfully used for the generation of recombinant vaccines. Therefore, the identification of viral genes involved in host tropisms or immune modulation is of great interest, as for instance the ORFV-encoded ankyrin-repeat (AR) containing proteins. The present study shows for the first time that the ANK-1 designated gene product of ORFV126 is targeted to mitochondria of ORFV-infected and in ANK-1 transiently expressing cells. Taking advantage of ANK-1 EGFP fusion proteins and confocal fluorescence microscopy mutational and deletion analyses indicated the importance of AR8 and AR9, which may contain a novel class of mitochondria-targeting sequence (MTS) in the central to C-terminal part of this AR-containing protein. The fluorescent findings were corroborated by cell fractionation and Western blotting experiments. The presented results open the avenue for more detailed investigations on cellular binding partners and the function of ANK-1 in viral replication or virulence.
Collapse
Affiliation(s)
- Krzysztof Lacek
- Laboratory of Virus Molecular Biology, University of Gdańsk, 80-822, Gdańsk, Poland
| | | | | | | |
Collapse
|
9
|
Hosamani M, Scagliarini A, Bhanuprakash V, McInnes CJ, Singh RK. Orf: an update on current research and future perspectives. Expert Rev Anti Infect Ther 2014; 7:879-93. [PMID: 19735227 DOI: 10.1586/eri.09.64] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Madhusudan Hosamani
- Indian Veterinary Research Institute, Mukteswar-263138, Nainital Distt., India and Indian Veterinary Research Institute, Hebbal, Bangalore-24, India.
| | | | | | | | | |
Collapse
|
10
|
Nagarajan G, Swami SK, Dahiya SS, Sivakumar G, Narnaware S, Tuteja F, Patil N. Comparison of virokine from camel pseudocowpoxvirus (PCPV) with Interleukin 10 of the Dromedary camel (Camelus dromedarius). Cytokine 2013; 61:356-9. [DOI: 10.1016/j.cyto.2012.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 10/10/2012] [Accepted: 12/06/2012] [Indexed: 11/29/2022]
|
11
|
Hautaniemi M, Ueda N, Tuimala J, Mercer AA, Lahdenperä J, McInnes CJ. The genome of pseudocowpoxvirus: comparison of a reindeer isolate and a reference strain. J Gen Virol 2010; 91:1560-76. [PMID: 20107016 DOI: 10.1099/vir.0.018374-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parapoxviruses (PPV), of the family Poxviridae, cause a pustular cutaneous disease in sheep and goats (orf virus, ORFV) and cattle (pseudocowpoxvirus, PCPV and bovine papular stomatitis virus, BPSV). Here, we present the first genomic sequence of a reference strain of PCPV (VR634) along with the genomic sequence of a PPV (F00.120R) isolated in Finland from reindeer (Rangifer tarandus tarandus). The F00.120R and VR634 genomes are 135 and 145 kb in length and contain 131 and 134 putative genes, respectively, with their genome organization being similar to that of other PPVs. The predicted proteins of F00.120R and VR634 have an average amino acid sequence identity of over 95%, whereas they share only 88 and 73% amino acid identity with the ORFV and BPSV proteomes, respectively. The most notable differences were found near the genome termini. F00.120R lacks six and VR634 lacks three genes seen near the right terminus of other PPVs. Four genes at the left end of F00.120R and one in the middle of both genomes appear to be fragmented paralogues of other genes within the genome. VR634 has larger than expected inverted terminal repeats possibly as a result of genomic rearrangements. The high G+C content (64%) of these two viruses along with amino acid sequence comparisons and whole genome phylogenetic analyses confirm the classification of PCPV as a separate species within the genus Parapoxvirus and verify that the virus responsible for an outbreak of contagious stomatitis in reindeer over the winter of 1999-2000 can be classified as PCPV.
Collapse
Affiliation(s)
- Maria Hautaniemi
- Finnish Food Safety Authority Evira, Research Department/Veterinary Virology, Mustialankatu 3, FI-00790, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
12
|
Inoshima Y, Ishiguro N. Molecular and biological characterization of vascular endothelial growth factor of parapoxviruses isolated from wild Japanese serows (Capricornis crispus). Vet Microbiol 2010; 140:63-71. [DOI: 10.1016/j.vetmic.2009.07.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 07/18/2009] [Accepted: 07/31/2009] [Indexed: 11/30/2022]
|
13
|
Hosamani M, Yadav S, Kallesh DJ, Mondal B, Bhanuprakash V, Singh RK. Isolation and Characterization of an Indian Orf Virus from Goats. Zoonoses Public Health 2007; 54:204-8. [PMID: 17542963 DOI: 10.1111/j.1863-2378.2007.01046.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Isolation and characterization of an orf virus has been described here. The virus was isolated from an outbreak of 'scabby mouth' in goats in Northern India. Viral morphology from the scab biopsy revealed typical ovoid-shaped particles characteristic of Parapoxvirus. Virus was isolated from sonicated scab suspension and characterized by restriction enzyme (RE) analysis and sequencing of full-length GM-CSF- and interleukin-2 inhibitory factor (GIF) gene. RE pattern of the virus did not show close resemblance to most of the orf viruses published earlier. However, it showed high sequence identity and closer phylogenetic relationship with previously published ORFV-SA00 strain, as evident from the nucleotide and deduced amino acid sequence of GIF gene.
Collapse
Affiliation(s)
- M Hosamani
- Division of Virology, Indian Veterinary Research Institute, Mukteswar Campus, Nainital 263 138, Uttaranchal, India.
| | | | | | | | | | | |
Collapse
|
14
|
McInnes CJ, Wood AR, Thomas K, Sainsbury AW, Gurnell J, Dein FJ, Nettleton PF. Genomic characterization of a novel poxvirus contributing to the decline of the red squirrel (Sciurus vulgaris) in the UK. J Gen Virol 2006; 87:2115-2125. [PMID: 16847106 DOI: 10.1099/vir.0.81966-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genome of a virulent squirrelpox virus (SQPV) isolate was characterized in order to determine its relationship with other poxviruses. Restriction enzyme analysis suggested a genome length of approximately 158 kb, whilst sequence analysis of the two ends of the genome indicated a G + C composition of approximately 66 %. Two contiguous stretches of 23 and 37 kb at the left-hand and right-hand ends of the genome, respectively, were sequenced allowing the identification of at least 59 genes contained therein. The partial sequence of a further 15 genes was determined by spot sequencing of restriction fragments located across the genome. Phylogenetic analysis of 15 genes conserved in all the recognized genera of the subfamily Chordopoxvirinae confirmed that the SQPV does not group within the family Parapoxvirinae, but instead partitions on its own in a separate clade of the poxviruses. Analysis of serum from British woodland rodents failed to find any evidence of SQPV infection in wood mice or bank voles, but for the first time serum samples from grey squirrels in the USA were found to contain antibody against SQPV.
Collapse
Affiliation(s)
- Colin J McInnes
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK
| | - Ann R Wood
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK
| | - Kathryn Thomas
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK
| | | | | | | | - Peter F Nettleton
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK
| |
Collapse
|
15
|
Abstract
BACKGROUND Detection of parapoxviruses is important in various animals as well as in humans as zoonotic infections. Reliable detection of parapoxviruses is fundamental for the exclusion of other rash-causing illnesses, for both veterinarians and medical practitioners. To date, however, no real-time PCR assay for the detection of parapoxviruses has been reported. METHODS A minor groove binder-based quantitative real-time PCR assay targeting the B2L gene of parapoxviruses was developed on the ABI Prism and the LightCycler platforms. RESULTS The real-time PCR assay successfully amplified DNA fragments from a total of 41 parapoxvirus strains and isolates representing the species orf virus, bovine papular stomatitis virus, pseudocowpoxvirus, and sealpoxvirus. Probit analysis gave a limit of detection of 4.7 copies per assay (95% confidence interval, 3.7-6.8 copies per reaction). Scabs contain a sufficient amount of parapoxvirus DNA and can therefore be used for PCR without any DNA preparation step. No cross-reactivity to human, bovine, or sheep genomic DNA or other DNA viruses, including orthopoxviruses, molluscum contagiosum viruses, and yaba-like disease viruses, was observed. CONCLUSION The presented assay is suitable for the detection of parapoxvirus infections in clinical material of human and animal origin.
Collapse
Affiliation(s)
- Andreas Nitsche
- Robert Koch-Institut, Zentrum für Biologische Sicherheit 1, Berlin, Germany.
| | | | | | | | | |
Collapse
|
16
|
Klein J, Tryland M. Characterisation of parapoxviruses isolated from Norwegian semi-domesticated reindeer (Rangifer tarandus tarandus). Virol J 2005; 2:79. [PMID: 16143041 PMCID: PMC1242257 DOI: 10.1186/1743-422x-2-79] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Accepted: 09/05/2005] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Two outbreaks of the disease contagious ecthyma were reported in 1999 and 2000 in Norwegian semi-domesticated reindeer (Rangifer tarandus tarandus). Contagious ecthyma is an epidermal disease of sheep and goats worldwide, which is caused by the zoonotic parapoxvirus orf virus. Characterisation of clinical samples from the two outbreaks in semi-domesticated reindeer in Norway by electron microscopy and PCR (B2L) revealed typical parapoxvirus particles and partial gene sequences corresponding to parapoxvirus, respectively. If contagious ecthyma in reindeer is caused by orf virus, the virus may be transferred from sheep and goats, via people, equipment and common use of pastures and corrals, to reindeer. Another possibility is that contagious ecthyma in reindeer is caused by a hitherto unclassified member of the parapoxvirus genus that circulates among reindeer herds and remains endemic in Norway. RESULTS Genomic comparisons of one standard orf strain (orf NZ2) and the reindeer isolates, employing restriction fragment length polymorphism (RFLP) and random amplified polymorphic DNA (RAPD) analysis, demonstrated high similarity between the reindeer viruses and known orf virus strains. Partial DNA sequences of two different viral genes were determined for the different isolates and compared with corresponding parapoxvirus genebank sequences. The comparison/alignment and construction of phylogenetic trees also point to an affiliation of the reindeer viruses to the species orf virus. CONCLUSION The results of this work imply that the parapoxvirus causing contagious ecthyma in Norwegian semi-domesticated reindeer belongs to the species orf virus and that the orf virus crosses the host species barrier from sheep and goat to semi-domesticated reindeer.
Collapse
Affiliation(s)
- Joern Klein
- Department of Microbiology and Virology, University of Tromsø, Breivika, N-9037 Tromsø, Norway
- Danish Institute for Food and Veterinary Research, Department of Virology, Lindholm, DK-4771 Kalvehave, Denmark
| | - Morten Tryland
- Department of Microbiology and Virology, University of Tromsø, Breivika, N-9037 Tromsø, Norway
- Section of Arctic Veterinary Medicine, Department of Food Safety and Infection Biology, The Norwegian School of Veterinary Science, PO Box 6204, N-9292 Tromsø, Norway
| |
Collapse
|
17
|
Delhon G, Tulman ER, Afonso CL, Lu Z, de la Concha-Bermejillo A, Lehmkuhl HD, Piccone ME, Kutish GF, Rock DL. Genomes of the parapoxviruses ORF virus and bovine papular stomatitis virus. J Virol 2004; 78:168-77. [PMID: 14671098 PMCID: PMC303426 DOI: 10.1128/jvi.78.1.168-177.2004] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bovine papular stomatitis virus (BPSV) and orf virus (ORFV), members of the genus Parapoxvirus of the Poxviridae, are etiologic agents of worldwide diseases affecting cattle and small ruminants, respectively. Here we report the genomic sequences and comparative analysis of BPSV strain BV-AR02 and ORFV strains OV-SA00, isolated from a goat, and OV-IA82, isolated from a sheep. Parapoxvirus (PPV) BV-AR02, OV-SA00, and OV-IA82 genomes range in size from 134 to 139 kbp, with an average nucleotide composition of 64% G+C. BPSV and ORFV genomes contain 131 and 130 putative genes, respectively, and share colinearity over 127 genes, 88 of which are conserved in all characterized chordopoxviruses. BPSV and ORFV contain 15 and 16 open reading frames (ORFs), respectively, which lack similarity to other poxvirus or cellular proteins. All genes with putative roles in pathogenesis, including a vascular endothelial growth factor (VEGF)-like gene, are present in both viruses; however, BPSV contains two extra ankyrin repeat genes absent in ORFV. Interspecies sequence variability is observed in all functional classes of genes but is highest in putative virulence/host range genes, including genes unique to PPV. At the amino acid level, OV-SA00 is 94% identical to OV-IA82 and 71% identical to BV-AR02. Notably, ORFV 006/132, 103, 109, 110, and 116 genes (VEGF, homologues of vaccinia virus A26L, A33R, and A34R, and a novel PPV ORF) show an unusual degree of intraspecies variability. These genomic differences are consistent with the classification of BPSV and ORFV as two PPV species. Compared to other mammalian chordopoxviruses, PPV shares unique genomic features with molluscum contagiosum virus, including a G+C-rich nucleotide composition, three orthologous genes, and a paucity of nucleotide metabolism genes. Together, these data provide a comparative view of PPV genomics.
Collapse
Affiliation(s)
- G Delhon
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, New York 11944, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Thomas K, Tompkins DM, Sainsbury AW, Wood AR, Dalziel R, Nettleton PF, McInnes CJ. A novel poxvirus lethal to red squirrels (Sciurus vulgaris). J Gen Virol 2003; 84:3337-3341. [PMID: 14645914 DOI: 10.1099/vir.0.19464-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A parapoxvirus has been implicated in the decline of the red squirrel in the United Kingdom. Virus was isolated from an outbreak of lethal disease in red squirrels in the north-east of England. Experimental infection of captive-bred red squirrels confirmed that this virus was the cause of the severe skin lesions observed. Electron microscopic examination of the virus showed that it had a morphology typical of parapoxviruses whilst preliminary sequence data suggested a genomic G+C composition of approximately 66 %, again similar to that found in other parapoxviruses. However Southern hybridization analysis failed to detect three known parapoxvirus genes, two of which have been found so far only in the genus Parapoxvirus. Comparative sequence analysis of two other genes, conserved across the eight recognized chordopoxvirus genera, suggests that the squirrel virus represents a previously unrecognized genus of the Chordopoxviridae.
Collapse
Affiliation(s)
- Kathryn Thomas
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK
| | | | | | - Ann R Wood
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK
| | | | - Peter F Nettleton
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK
| | - Colin J McInnes
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK
| |
Collapse
|
19
|
Abstract
The full complement of genes encoded by Orf virus (ORFV) is not yet known. A cDNA library was constructed using mRNA isolated 5 h post-infection from cells infected with ORFV in vitro and grown in the presence of cytosine arabinoside. Using 12 non-overlapping probes representing the entire genome of the Orf-11 strain of the virus, cDNA clones representing individual genes expressed early in infection were isolated. Thirty-eight early genes were identified, either via isolation of their cDNA from the library or via Northern blotting. Twenty-nine of the isolated cDNAs represented orthologues of other poxvirus genes or had been identified previously as genes of ORFV, whilst seven appeared unrelated to any known poxvirus gene or indeed to any known gene in the DNA databases. The sequences described in this paper constitute approximately 30 kb of the ORFV genome and contain the complete or partial sequence of 47 genes.
Collapse
Affiliation(s)
- Ann R Wood
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK
| | - Colin J McInnes
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK
| |
Collapse
|
20
|
Fischer T, Planz O, Stitz L, Rziha HJ. Novel recombinant parapoxvirus vectors induce protective humoral and cellular immunity against lethal herpesvirus challenge infection in mice. J Virol 2003; 77:9312-23. [PMID: 12915547 PMCID: PMC187421 DOI: 10.1128/jvi.77.17.9312-9323.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Orf virus (ORFV; Parapoxvirus ovis) was used to develop a novel vector system for the generation of effective and safe live vaccines. Based on the attenuated ORFV strain D1701-V, recombinants were produced that express the glycoproteins gC (D1701-VrVgC) or gD (D1701-VrVgD) of the alphaherpesvirus of swine, pseudorabies virus (PRV). Expression of gC and gD was also demonstrated on the surface of recombinant virus-infected murine cells that do not produce infectious ORFV. Single or combined immunization with the ORFV recombinants protected different mouse strains of a host species nonpermissive for ORFV against a fulminant, lethal PRV challenge infection equal to immunization with PRV live vaccine. Most notably, even a single immunization with D1701-VrVgC was protective, whereas two applications of D1701-VrVgD were required for immune protection. The higher protective capacity of D1701-VrVgC correlated with the induction of a strong specific humoral immune response. This suggestion was supported by transfer experiments using sera from recombinant-immunized mice, which resulted in partial gC but not gD antibody-mediated protection of the naïve recipients. Remarkably, immunization of different immune-deficient mice demonstrated that the application of the PRV gC-expressing recombinant controlled the challenge infection in the absence of either CD4(+) or CD8(+) T cells, B cells, or an intact perforin pathway. In contrast, D1701-VrVgD-immunized mice lacking CD4(+) T cells exhibited reduced protection, whereas animals lacking CD8(+) T cells, B cells, or perforin resisted the challenge infection. The present study demonstrates the potential of these new vector vaccines to efficiently prime both protective humoral and cell-mediated immune mechanisms in a host species nonpermissive for the vector virus.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- Genetic Vectors
- Genome, Viral
- Herpesvirus 1, Suid/genetics
- Herpesvirus 1, Suid/immunology
- Immunity, Cellular
- Immunization, Passive
- Immunologic Deficiency Syndromes/genetics
- Immunologic Deficiency Syndromes/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Parapoxvirus/genetics
- Pseudorabies/immunology
- Pseudorabies/prevention & control
- Recombination, Genetic
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/pharmacology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Vaccines/genetics
- Viral Vaccines/pharmacology
Collapse
Affiliation(s)
- Timo Fischer
- Federal Research Centre for Virus Diseases of Animals, Institute of Immunology, D-72076 Tuebingen, Germany
| | | | | | | |
Collapse
|