1
|
Activation of Early Proinflammatory Responses by TBEV NS1 Varies between the Strains of Various Subtypes. Int J Mol Sci 2023; 24:ijms24021011. [PMID: 36674524 PMCID: PMC9863113 DOI: 10.3390/ijms24021011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Tick-borne encephalitis (TBE) is an emerging zoonosis that may cause long-term neurological sequelae or even death. Thus, there is a growing interest in understanding the factors of TBE pathogenesis. Viral genetic determinants may greatly affect the severity and consequences of TBE. In this study, nonstructural protein 1 (NS1) of the tick-borne encephalitis virus (TBEV) was tested as such a determinant. NS1s of three strains with similar neuroinvasiveness belonging to the European, Siberian and Far-Eastern subtypes of TBEV were studied. Transfection of mouse cells with plasmids encoding NS1 of the three TBEV subtypes led to different levels of NS1 protein accumulation in and secretion from the cells. NS1s of TBEV were able to trigger cytokine production either in isolated mouse splenocytes or in mice after delivery of NS1 encoding plasmids. The profile and dynamics of TNF-α, IL-6, IL-10 and IFN-γ differed between the strains. These results demonstrated the involvement of TBEV NS1 in triggering an immune response and indicated the diversity of NS1 as one of the genetic factors of TBEV pathogenicity.
Collapse
|
2
|
Recovery of a Far-Eastern Strain of Tick-Borne Encephalitis Virus with a Full-Length Infectious cDNA Clone. Virol Sin 2021; 36:1375-1386. [PMID: 34191223 DOI: 10.1007/s12250-021-00396-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a pathogenic virus known to cause central nervous system (CNS) diseases in humans, and has become an increasing public health threat nowadays. The rates of TBEV infection in the endemic countries are increasing. However, there is no effective antiviral against the disease. This underscores the urgent need for tools to study the emergence and pathogenesis of TBEV and to accelerate the development of vaccines and antivirals. In this study, we reported an infectious cDNA clone of TBEV that was isolated in China (the WH2012 strain). A beta-globin intron was inserted in the coding region of nonstructural protein 1 (NS1) gene to improve the stability of viral genome in bacteria. In mammalian cells, the inserted intron was excised and spliced precisely, which did not lead to the generation of inserted mutants. High titers of infectious progeny viruses were generated after the transfection of the infectious clone. The cDNA-derived TBEV replicated efficiently, and caused typical cytopathic effect (CPE) and plaques in BHK-21 cells. In addition, the CPE and growth curve of cDNA-derived virus were similar to that of its parental isolate in cells. Together, we have constructed the first infectious TBEV cDNA clone in China, and the clone can be used to investigate the genetic determinants of TBEV virulence and disease pathogenesis, and to develop countermeasures against the virus.
Collapse
|
3
|
Helmová R, Hönig V, Tykalová H, Palus M, Bell-Sakyi L, Grubhoffer L. Tick-Borne Encephalitis Virus Adaptation in Different Host Environments and Existence of Quasispecies. Viruses 2020; 12:v12080902. [PMID: 32824843 PMCID: PMC7472235 DOI: 10.3390/v12080902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
A highly virulent strain (Hypr) of tick-borne encephalitis virus (TBEV) was serially subcultured in the mammalian porcine kidney stable (PS) and Ixodes ricinus tick (IRE/CTVM19) cell lines, producing three viral variants. These variants exhibited distinct plaque sizes and virulence in a mouse model. Comparing the full-genome sequences of all variants, several nucleotide changes were identified in different genomic regions. Furthermore, different sequential variants were revealed to co-exist within one sample as quasispecies. Interestingly, the above-mentioned nucleotide changes found within the whole genome sequences of the new variants were present alongside the nucleotide sequence of the parental strain, which was represented as a minority quasispecies. These observations further imply that TBEV exists as a heterogeneous population that contains virus variants pre-adapted to reproduction in different environments, probably enabling virus survival in ticks and mammals.
Collapse
Affiliation(s)
- Renata Helmová
- Faculty of Science, University of South Bohemia in České Budějovice, 37005 České Budějovice, Czech Republic; (R.H.); (H.T.); (L.G.)
| | - Václav Hönig
- Faculty of Science, University of South Bohemia in České Budějovice, 37005 České Budějovice, Czech Republic; (R.H.); (H.T.); (L.G.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic;
- Department of Virology, Veterinary Research Institute, 62100 Brno, Czech Republic
- Correspondence: ; Tel.: +420-387-775-463
| | - Hana Tykalová
- Faculty of Science, University of South Bohemia in České Budějovice, 37005 České Budějovice, Czech Republic; (R.H.); (H.T.); (L.G.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic;
| | - Martin Palus
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic;
- Department of Virology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Lesley Bell-Sakyi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK;
| | - Libor Grubhoffer
- Faculty of Science, University of South Bohemia in České Budějovice, 37005 České Budějovice, Czech Republic; (R.H.); (H.T.); (L.G.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic;
| |
Collapse
|
4
|
Takahashi Y, Kobayashi S, Ishizuka M, Hirano M, Muto M, Nishiyama S, Kariwa H, Yoshii K. Characterization of tick-borne encephalitis virus isolated from a tick in central Hokkaido in 2017. J Gen Virol 2020; 101:497-509. [PMID: 32134377 DOI: 10.1099/jgv.0.001400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a zoonotic virus in the genus Flavivirus, family Flaviviridae. TBEV is widely distributed in northern regions of the Eurasian continent, including Japan, and causes severe encephalitis in humans. Tick-borne encephalitis (TBE) was recently reported in central Hokkaido, and wild animals with anti-TBEV antibodies were detected over a wide area of Hokkaido, although TBEV was only isolated in southern Hokkaido. In this study, we conducted a survey of ticks to isolate TBEV in central Hokkaido. One strain, designated Sapporo-17-Io1, was isolated from ticks (Ixodes ovatus) collected in Sapporo city. Sequence analysis revealed that the isolated strain belonged to the Far Eastern subtype of TBEV and was classified in a different subcluster from Oshima 5-10, which had previously been isolated in southern Hokkaido. Sapporo-17-Io1 showed similar growth properties to those of Oshima 5-10 in cultured cells and mouse brains. The mortality rate of mice infected intracerebrally with each virus was similar, but the survival time of mice inoculated with Sapporo-17-Io1 was significantly longer than that of mice inoculated with Oshima 5-10. These results indicate that the neurovirulence of Sapporo-17-Io1 was lower than that of Oshima 5-10. Using an infectious cDNA clone, the replacement of genes encoding non-structural genes from Oshima 5-10 with those from Sapporo-17-Io1 attenuated the neuropathogenicity of the cloned viruses. This result indicated that the non-structural proteins determine the neurovirulence of these two strains. Our results provide important insights for evaluating epidemiological risk in TBE-endemic areas of Hokkaido.
Collapse
Affiliation(s)
- Yuji Takahashi
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shintaro Kobayashi
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Mariko Ishizuka
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Minato Hirano
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Memi Muto
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shoko Nishiyama
- Laboratory for Zoonotic Disease, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Hiroaki Kariwa
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kentaro Yoshii
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
| |
Collapse
|
5
|
Velay A, Paz M, Cesbron M, Gantner P, Solis M, Soulier E, Argemi X, Martinot M, Hansmann Y, Fafi-Kremer S. Tick-borne encephalitis virus: molecular determinants of neuropathogenesis of an emerging pathogen. Crit Rev Microbiol 2019; 45:472-493. [PMID: 31267816 DOI: 10.1080/1040841x.2019.1629872] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tick-borne encephalitis virus (TBEV) is a zoonotic agent causing severe encephalitis. The transmission cycle involves the virus, the Ixodes tick vector, and a vertebrate reservoir, such as small mammals (rodents, or shrews). Humans are accidentally involved in this transmission cycle. Tick-borne encephalitis (TBE) has been a growing public health problem in Europe and Asia over the past 30 years. The mechanisms involved in the development of TBE are very complex and likely multifactorial, involving both host and viral factors. The purpose of this review is to provide an overview of the current literature on TBE neuropathogenesis in the human host and to demonstrate the emergence of common themes in the molecular pathogenesis of TBE in humans. We discuss and review data on experimental study models and on both viral (molecular genetics of TBEV) and host (immune response, and genetic background) factors involved in TBE neuropathogenesis in the context of human infection.
Collapse
Affiliation(s)
- Aurélie Velay
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France.,INSERM, IRM UMR_S 1109 , Strasbourg , France
| | - Magali Paz
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France
| | - Marlène Cesbron
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France
| | - Pierre Gantner
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France.,INSERM, IRM UMR_S 1109 , Strasbourg , France
| | - Morgane Solis
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France.,INSERM, IRM UMR_S 1109 , Strasbourg , France
| | | | - Xavier Argemi
- Service des maladies infectieuses et tropicales, Hôpitaux Universitaires de Strasbourg , Strasbourg , France
| | - Martin Martinot
- Service de Médecine Interne et de Rhumatologie, Hôpitaux Civils de Colmar , Colmar , France
| | - Yves Hansmann
- Service des maladies infectieuses et tropicales, Hôpitaux Universitaires de Strasbourg , Strasbourg , France
| | - Samira Fafi-Kremer
- Virology Laboratory, University Hospital of Strasbourg , Strasbourg , France.,INSERM, IRM UMR_S 1109 , Strasbourg , France
| |
Collapse
|
6
|
Abstract
Tick-borne encephalitis virus (TBEV), a member of the genus Flavivirus within the family Flaviviridae, causes fatal encephalitis with severe sequelae in humans. TBEV is
prevalent over a wide area of the Eurasian continent including Europe, Russia, Far-Eastern Asia, and Japan. While it was previously thought that TBEV was not endemic in Japan, the first
confirmed case of serologically diagnosed TBE was reported in 1993 in the southern area of Hokkaido Prefecture, Japan. In addition, TBEV has been isolated from dogs, wild rodents and ticks
in the area. Our epizootiological survey indicated that endemic foci of TBEV were maintained in Hokkaido and other areas of Honshu. TBEV can be divided into three subtypes based on
phylogenetic analyses. The Japanese isolates were classified as the Far Eastern subtype, which causes severe neural disorders with a higher mortality rate up to 30%. However, how viral
replication and pathogenicity contribute to the neurological manifestations remains unclear. Recent studies have revealed distinctive mechanisms of TBEV pathogenicity and viral genetic
factors associated with virulence. This review discusses the recent findings regarding the epidemiology and pathogenesis of TBEV.
Collapse
Affiliation(s)
- Kentaro Yoshii
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
7
|
Kellman EM, Offerdahl DK, Melik W, Bloom ME. Viral Determinants of Virulence in Tick-Borne Flaviviruses. Viruses 2018; 10:v10060329. [PMID: 29914165 PMCID: PMC6024809 DOI: 10.3390/v10060329] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 12/27/2022] Open
Abstract
Tick-borne flaviviruses have a global distribution and cause significant human disease, including encephalitis and hemorrhagic fever, and often result in neurologic sequelae. There are two distinct properties that determine the neuropathogenesis of a virus. The ability to invade the central nervous system (CNS) is referred to as the neuroinvasiveness of the agent, while the ability to infect and damage cells within the CNS is referred to as its neurovirulence. Examination of laboratory variants, cDNA clones, natural isolates with varying pathogenicity, and virally encoded immune evasion strategies have contributed extensively to our understanding of these properties. Here we will review the major viral determinants of virulence that contribute to pathogenesis and influence both neuroinvasiveness and neurovirulence properties of tick-borne flaviviruses, focusing particularly on the envelope protein (E), nonstructural protein 5 (NS5), and the 3′ untranslated region (UTR).
Collapse
Affiliation(s)
- Eliza M Kellman
- Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA.
| | - Danielle K Offerdahl
- Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA.
| | - Wessam Melik
- School of Medical Sciences, Orebro University, SE-703 62 Örebro, Sweden.
| | - Marshall E Bloom
- Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT 59840, USA.
| |
Collapse
|
8
|
A Simple Mechanism Based on Amino Acid Substitutions is not a Critical Determinant of High Mortality of Japanese Encephalitis Virus Infection in Mice. Viruses 2018; 10:v10020062. [PMID: 29401664 PMCID: PMC5850369 DOI: 10.3390/v10020062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/24/2018] [Accepted: 02/01/2018] [Indexed: 11/30/2022] Open
Abstract
For the development of effective treatment strategies for Japanese encephalitis (JE), it is important to identify the viral factors causing severe disease during JE virus (JEV) infection. In this study, we assessed whether amino acid substitutions are critical factors for higher mortality of JaTH160 compared with JaOArS982 in mice using the technique of infectious cDNA clones. We raised the possibility that two amino acids of C124 and NS3482 of JaTH160 may contribute to increased mortality in mice. However, simultaneous substitutions of these amino acids did not significantly increase the virulence of JaOArS982, suggesting that high mortality due to JaTH160 viral infection cannot be simply attributed to the specific amino acids. Multiple and complex, but not simple, mechanisms may induce the high mortality of JaTH160 infection in mice.
Collapse
|
9
|
Structure of tick-borne encephalitis virus and its neutralization by a monoclonal antibody. Nat Commun 2018; 9:436. [PMID: 29382836 PMCID: PMC5789857 DOI: 10.1038/s41467-018-02882-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 01/03/2018] [Indexed: 02/04/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) causes 13,000 cases of human meningitis and encephalitis annually. However, the structure of the TBEV virion and its interactions with antibodies are unknown. Here, we present cryo-EM structures of the native TBEV virion and its complex with Fab fragments of neutralizing antibody 19/1786. Flavivirus genome delivery depends on membrane fusion that is triggered at low pH. The virion structure indicates that the repulsive interactions of histidine side chains, which become protonated at low pH, may contribute to the disruption of heterotetramers of the TBEV envelope and membrane proteins and induce detachment of the envelope protein ectodomains from the virus membrane. The Fab fragments bind to 120 out of the 180 envelope glycoproteins of the TBEV virion. Unlike most of the previously studied flavivirus-neutralizing antibodies, the Fab fragments do not lock the E-proteins in the native-like arrangement, but interfere with the process of virus-induced membrane fusion. The tick-borne encephalitis virus (TBEV) causes thousands of cases of meningitis and encephalitis annually. Here, the authors describe a cryo-EM structure of the TBEV virion bound by Fab fragments of the neutralizing antibody 19/1786, revealing a mechanism whereby this antibody prevents virus membrane fusion.
Collapse
|
10
|
Abstract
Many tick-borne flaviviruses causes fatal encephalitis in humans and animals with severe sequelae. However, it remains unclear how viral replication and pathogenicity contribute to the neurologic manifestations. In this paper, I summarized the specific replication mechanism of tick-borne flaviviruses in neurons and their effect on the pathogenicity of neurological disease. Our findings of the unique virus-host interaction in central nerve system will improve further understanding of the molecular mechanisms of viral replication and the pathogenicity of neurotropic viruses.
Collapse
Affiliation(s)
- Kentaro Yoshii
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University
| |
Collapse
|
11
|
Abstract
Tick-borne encephalitis virus (TBEV) belongs to the Flaviviridae family and Flavivirus genus. TBEV is maintained in transmission cycles between Ixodid ticks and wild mammalian hosts, particularly rodents. A wide range of animal species are also infected with TBEV by the bite of infected ticks, and TBEV infection causes fatal encephalitis in humans. TBEV is endemic widely in the Eurasian continent, and more than 10,000 cases of the disease are reported annually. In Japan, the 1st confirmed case of TBE was reported in the southern area of Hokkaido in 1993, and after 20 years, the 2nd to 4th cases were reported in Hokkaido in 2016 and 2017. Our sero-epizootiological survey indicated endemic foci of TBEV are widely distributed in Hokkaido and that those of TBEV or tick-borne flavivirus outside Hokkaido. In this review, I introduced recent topics of TBEV including newly developed diagnostic methods, epidemiology and pathogenesis of TBEV.
Collapse
|
12
|
Escape of Tick-Borne Flavivirus from 2'- C-Methylated Nucleoside Antivirals Is Mediated by a Single Conservative Mutation in NS5 That Has a Dramatic Effect on Viral Fitness. J Virol 2017; 91:JVI.01028-17. [PMID: 28814513 DOI: 10.1128/jvi.01028-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/01/2017] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) causes a severe and potentially fatal neuroinfection in humans. Despite its high medical relevance, no specific antiviral therapy is currently available. Here we demonstrate that treatment with a nucleoside analog, 7-deaza-2'-C-methyladenosine (7-deaza-2'-CMA), substantially improved disease outcomes, increased survival, and reduced signs of neuroinfection and viral titers in the brains of mice infected with a lethal dose of TBEV. To investigate the mechanism of action of 7-deaza-2'-CMA, two drug-resistant TBEV clones were generated and characterized. The two clones shared a signature amino acid substitution, S603T, in the viral NS5 RNA-dependent RNA polymerase (RdRp) domain. This mutation conferred resistance to various 2'-C-methylated nucleoside derivatives, but no cross-resistance was seen with other nucleoside analogs, such as 4'-C-azidocytidine and 2'-deoxy-2'-beta-hydroxy-4'-azidocytidine (RO-9187). All-atom molecular dynamics simulations revealed that the S603T RdRp mutant repels a water molecule that coordinates the position of a metal ion cofactor as 2'-C-methylated nucleoside analogs approach the active site. To investigate its phenotype, the S603T mutation was introduced into a recombinant TBEV strain (Oshima-IC) generated from an infectious cDNA clone and into a TBEV replicon that expresses a reporter luciferase gene (Oshima-REP-luc2A). The mutants were replication impaired, showing reduced growth and a small plaque size in mammalian cell culture and reduced levels of neuroinvasiveness and neurovirulence in rodent models. These results indicate that TBEV resistance to 2'-C-methylated nucleoside inhibitors is conferred by a single conservative mutation that causes a subtle atomic effect within the active site of the viral NS5 RdRp and is associated with strong attenuation of the virus.IMPORTANCE This study found that the nucleoside analog 7-deaza-2'-C-methyladenosine (7-deaza-2'-CMA) has high antiviral activity against tick-borne encephalitis virus (TBEV), a pathogen that causes severe human neuroinfections in large areas of Europe and Asia and for which there is currently no specific therapy. Treating mice infected with a lethal dose of TBEV with 7-deaza-2'-CMA resulted in significantly higher survival rates and reduced the severity of neurological signs of the disease. Thus, this compound shows promise for further development as an anti-TBEV drug. It is important to generate drug-resistant mutants to understand how the drug works and to develop guidelines for patient treatment. We generated TBEV mutants that were resistant not only to 7-deaza-2'-CMA but also to a broad range of other 2'-C-methylated antiviral medications. Our findings suggest that combination therapy may be used to improve treatment and reduce the emergence of drug-resistant viruses during nucleoside analog therapy for TBEV infection.
Collapse
|
13
|
Utilisation of ISA Reverse Genetics and Large-Scale Random Codon Re-Encoding to Produce Attenuated Strains of Tick-Borne Encephalitis Virus within Days. PLoS One 2016; 11:e0159564. [PMID: 27548676 PMCID: PMC4993482 DOI: 10.1371/journal.pone.0159564] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/05/2016] [Indexed: 11/19/2022] Open
Abstract
Large-scale codon re-encoding is a new method of attenuating RNA viruses. However, the use of infectious clones to generate attenuated viruses has inherent technical problems. We previously developed a bacterium-free reverse genetics protocol, designated ISA, and now combined it with large-scale random codon-re-encoding method to produce attenuated tick-borne encephalitis virus (TBEV), a pathogenic flavivirus which causes febrile illness and encephalitis in humans. We produced wild-type (WT) and two re-encoded TBEVs, containing 273 or 273+284 synonymous mutations in the NS5 and NS5+NS3 coding regions respectively. Both re-encoded viruses were attenuated when compared with WT virus using a laboratory mouse model and the relative level of attenuation increased with the degree of re-encoding. Moreover, all infected animals produced neutralizing antibodies. This novel, rapid and efficient approach to engineering attenuated viruses could potentially expedite the development of safe and effective new-generation live attenuated vaccines.
Collapse
|
14
|
Sakai M, Muto M, Hirano M, Kariwa H, Yoshii K. Virulence of tick-borne encephalitis virus is associated with intact conformational viral RNA structures in the variable region of the 3'-UTR. Virus Res 2015; 203:36-40. [PMID: 25801453 DOI: 10.1016/j.virusres.2015.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 02/07/2023]
Abstract
Tick-borne encephalitis virus (TBEV) is maintained between ticks and mammals in nature and causes severe neurological disease in human. However, the mechanism of viral pathogenicity is unknown. Previously, we showed that the deletion in the variable region of the 3'-untranslated region (UTR) is involved in the pathogenicity of the strains from the Far-Eastern subtype of TBEV. To investigate the detailed function of the variable region, we constructed recombinant TBEV with partial deletions in the region. In a mouse model, the partial deletions drastically increased the virulence of the virus, with no effect on virus multiplication in mouse brain. Furthermore, the mutations did not affect the production of subgenomic flavivirus RNA from the 3'-UTR, and the induction of interferon (IFN) and IFN-stimulated genes. These data suggested that the conformational structure of the variable region is associated with the pathogenicity of the Far-Eastern subtype of TBEV. These findings provide a foundation for further research to identify the pathogenic mechanisms of TBEV.
Collapse
Affiliation(s)
- Mizuki Sakai
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Memi Muto
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Minato Hirano
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Hiroaki Kariwa
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Kentaro Yoshii
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan.
| |
Collapse
|
15
|
de Fabritus L, Nougairède A, Aubry F, Gould EA, de Lamballerie X. Attenuation of tick-borne encephalitis virus using large-scale random codon re-encoding. PLoS Pathog 2015; 11:e1004738. [PMID: 25734338 PMCID: PMC4348424 DOI: 10.1371/journal.ppat.1004738] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/09/2015] [Indexed: 12/20/2022] Open
Abstract
Large-scale codon re-encoding (i.e. introduction of a large number of synonymous mutations) is a novel method of generating attenuated viruses. Here, it was applied to the pathogenic flavivirus, tick-borne encephalitis virus (TBEV) which causes febrile illness and encephalitis in humans in forested regions of Europe and Asia. Using an infectious clone of the Oshima 5–10 strain ("wild-type virus"), a cassette of 1.4kb located in the NS5 coding region, was modified by randomly introducing 273 synonymous mutations ("re-encoded virus"). Whilst the in cellulo replicative fitness of the re-encoded virus was only slightly reduced, the re-encoded virus displayed an attenuated phenotype in a laboratory mouse model of non-lethal encephalitis. Following intra-peritoneal inoculation of either 2.105 or 2.106 TCID50 of virus, the frequency of viraemia, neurovirulence (measured using weight loss and appearance of symptoms) and neuroinvasiveness (detection of virus in the brain) were significantly decreased when compared with the wild-type virus. Mice infected by wild-type or re-encoded viruses produced comparable amounts of neutralising antibodies and results of challenge experiments demonstrated that mice previously infected with the re-encoded virus were protected against subsequent infection by the wild-type virus. This constitutes evidence that a mammalian species can be protected against infection by a virulent wild-type positive-stranded RNA virus following immunisation with a derived randomly re-encoded strain. Our results demonstrate that random codon re-encoding is potentially a simple and effective method of generating live-attenuated vaccine candidates against pathogenic flaviviruses. The arbovirus Tick-borne encephalitis virus (TBEV; genus Flavivirus) is transmitted by ticks of the Ixodes genus. TBEV causes febrile illness and encephalitis in humans in forested regions of Europe and Asia. The incidence of TBE is increasing across Central and Eastern European countries despite the availability of several licensed inactivated vaccines and appropriate vaccination programmes. Large-scale codon re-encoding, a recently developed attenuation method that modifies viral RNA nucleotide composition of large coding regions without alteration of the encoded proteins, has been successfully applied to a variety of RNA viruses. In contrast with previous empirical methods of generating live attenuated vaccines, large-scale codon re-encoding facilitates rapid generation of vaccine candidates using reverse genetics methods, by direct control of the attenuation phenotype. Additional benefits include reduced costs and induction of long-term immunity. Here, we have applied the large-scale codon re-encoding method to the TBEV to demonstrate the principle of developing a live attenuated virus vaccine which protects mice against subsequent infection with the wild type virulent virus. This study therefore illustrates that codon re-encoding is potentially an easily derived and effective method of producing live attenuated vaccine candidates against positive-stranded RNA viruses.
Collapse
Affiliation(s)
- Lauriane de Fabritus
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 “Emergence des Pathologies Virales”, Marseille, France
- * E-mail:
| | - Antoine Nougairède
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 “Emergence des Pathologies Virales”, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Fabien Aubry
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 “Emergence des Pathologies Virales”, Marseille, France
| | - Ernest A Gould
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 “Emergence des Pathologies Virales”, Marseille, France
| | - Xavier de Lamballerie
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 “Emergence des Pathologies Virales”, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| |
Collapse
|
16
|
Flavivirus reverse genetic systems, construction techniques and applications: a historical perspective. Antiviral Res 2014; 114:67-85. [PMID: 25512228 PMCID: PMC7173292 DOI: 10.1016/j.antiviral.2014.12.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/26/2014] [Accepted: 12/03/2014] [Indexed: 12/20/2022]
Abstract
The study of flaviviruses, which cause some of the most important emerging tropical and sub-tropical human arbovirus diseases, has greatly benefited from the use of reverse genetic systems since its first development for yellow fever virus in 1989. Reverse genetics technology has completely revolutionized the study of these viruses, making it possible to manipulate their genomes and evaluate the direct effects of these changes on their biology and pathogenesis. The most commonly used reverse genetics system is the infectious clone technology. Whilst flavivirus infectious clones provide a powerful tool, their construction as full-length cDNA molecules in bacterial vectors can be problematic, laborious and time consuming, because they are often unstable, contain unwanted induced substitutions and may be toxic for bacteria due to viral protein expression. The incredible technological advances that have been made during the past 30years, such as the use of PCR or new sequencing methods, have allowed the development of new approaches to improve preexisting systems or elaborate new strategies that overcome these problems. This review summarizes the evolution and major technical breakthroughs in the development of flavivirus reverse genetics technologies and their application to the further understanding and control of these viruses and their diseases.
Collapse
|
17
|
Belikov SI, Kondratov IG, Potapova UV, Leonova GN. The relationship between the structure of the tick-borne encephalitis virus strains and their pathogenic properties. PLoS One 2014; 9:e94946. [PMID: 24740396 PMCID: PMC3989262 DOI: 10.1371/journal.pone.0094946] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/20/2014] [Indexed: 12/11/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is transmitted to vertebrates by taiga or forest ticks through bites, inducing disease of variable severity. The reasons underlying these differences in the severity of the disease are unknown. In order to identify genetic factors affecting the pathogenicity of virus strains, we have sequenced and compared the complete genomes of 34 Far-Eastern subtype (FE) TBEV strains isolated from patients with different disease severity (Primorye, the Russian Far East). We analyzed the complete genomes of 11 human pathogenic strains isolated from the brains of dead patients with the encephalitic form of the disease (Efd), 4 strains from the blood of patients with the febrile form of TBE (Ffd), and 19 strains from patients with the subclinical form of TBE (Sfd). On the phylogenetic tree, pathogenic Efd strains formed two clusters containing the prototype strains, Senzhang and Sofjin, respectively. Sfd strains formed a third separate cluster, including the Oshima strain. The strains that caused the febrile form of the disease did not form a separate cluster. In the viral proteins, we found 198 positions with at least one amino acid residue substitution, of which only 17 amino acid residue substitutions were correlated with the variable pathogenicity of these strains in humans and they authentically differed between the groups. We considered the role of each amino acid substitution and assumed that the deletion of 111 amino acids in the capsid protein in combination with the amino acid substitutions R16K and S45F in the NS3 protease may affect the budding process of viral particles. These changes may be the major reason for the diminished pathogenicity of TBEV strains. We recommend Sfd strains for testing as attenuation vaccine candidates.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- 5' Untranslated Regions/genetics
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Base Sequence
- Capsid Proteins/chemistry
- Capsid Proteins/genetics
- China
- Encephalitis Viruses, Tick-Borne/classification
- Encephalitis Viruses, Tick-Borne/genetics
- Encephalitis Viruses, Tick-Borne/pathogenicity
- Encephalitis, Tick-Borne/blood
- Encephalitis, Tick-Borne/virology
- Genetic Structures
- Genome, Viral/genetics
- Geography
- Humans
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Phylogeny
- Protein Structure, Tertiary
- RNA Helicases/chemistry
- RNA Helicases/genetics
- RNA, Viral/chemistry
- RNA, Viral/genetics
- Russia
- Sequence Homology, Amino Acid
- Serine Endopeptidases/chemistry
- Serine Endopeptidases/genetics
- Viral Nonstructural Proteins/chemistry
- Viral Nonstructural Proteins/genetics
- Virulence/genetics
Collapse
Affiliation(s)
- Sergei I. Belikov
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - Ilya G. Kondratov
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - Ulyana V. Potapova
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - Galina N. Leonova
- Research Institute of Epidemiology and Microbiology, Siberian Branch, Russian Academy of Medical Sciences, Vladivostok, Russia
| |
Collapse
|
18
|
Takamatsu Y, Okamoto K, Dinh DT, Yu F, Hayasaka D, Uchida L, Nabeshima T, Buerano CC, Morita K. NS1' protein expression facilitates production of Japanese encephalitis virus in avian cells and embryonated chicken eggs. J Gen Virol 2014; 95:373-383. [PMID: 24443559 DOI: 10.1099/vir.0.057968-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Japanese encephalitis virus (JEV), which belongs to the genus Flavivirus of the family Flaviviridae, is a leading cause of meningo-encephalitis in Asian countries. The flavivirus non-structural protein 1 (NS1) plays a role in virus replication and in the elicitation of an immune response. The NS1' protein found among the members of the JEV subgroup is an extended form of NS1 and is generated by a -1 ribosomal frameshift. This protein is known to be involved in viral pathogenicity; however, its specific function is still unknown. Here, we describe an investigation of the molecular function of NS1' protein through the production of JEV NS1'-expressing and -non-expressing clones and their infection of avian and mammalian cells. Efficient NS1' protein expression was observed in avian cells and was found to facilitate JEV production in both avian cultured cells and embryonated chicken eggs. NS1' protein was observed to co-localize with NS5 protein and resulted in increased viral RNA levels in avian cells. These findings clearly indicate that NS1' enhances the production of JEV in avian cells and may facilitate the amplification/maintenance role of birds in the virus transmission cycle in nature.
Collapse
Affiliation(s)
- Yuki Takamatsu
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Kenta Okamoto
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Duc Tuan Dinh
- Respiratory Viruses Laboratory, Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam.,Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Fuxun Yu
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Daisuke Hayasaka
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Leo Uchida
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Takeshi Nabeshima
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Corazon C Buerano
- Department of Molecular Epidemiology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.,Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| |
Collapse
|
19
|
A critical determinant of neurological disease associated with highly pathogenic tick-borne flavivirus in mice. J Virol 2014; 88:5406-20. [PMID: 24574402 DOI: 10.1128/jvi.00421-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Tick-borne encephalitis virus (TBEV) and Omsk hemorrhagic fever virus (OHFV) are highly pathogenic tick-borne flaviviruses; TBEV causes neurological disease in humans, while OHFV causes a disease typically identified with hemorrhagic fever. Although TBEV and OHFV are closely related genetically, the viral determinants responsible for these distinct disease phenotypes have not been identified. In this study, chimeric viruses incorporating components of TBEV and OHFV were generated using infectious clone technology, and their pathological characteristics were analyzed in a mouse model to identify virus-specific determinants of disease. We found that only four amino acids near the C terminus of the NS5 protein were primarily responsible for the development of neurological disease. Mutation of these four amino acids had no effect on viral replication or histopathological features, including inflammatory responses, in mice. These findings suggest a critical role for NS5 in stimulating neuronal dysfunction and degeneration following TBEV infection and provide new insights into the molecular mechanisms underlying the pathogenesis of tick-borne flaviviruses. IMPORTANCE Tick-borne encephalitis virus (TBEV) and Omsk hemorrhagic fever virus (OHFV) belong to the tick-borne encephalitis serocomplex, genus Flavivirus, family Flaviviridae. Although TBEV causes neurological disease in humans while OHFV causes a disease typically identified with hemorrhagic fever. In this study, we investigated the viral determinants responsible for the different disease phenotypes using reverse genetics technology. We identified a cluster of only four amino acids in nonstructural protein 5 primarily involved in the development of neurological disease in a mouse model. Moreover, the effect of these four amino acids was independent of viral replication property and did not affect the formation of virus-induced lesions in the brain directly. These data suggest that these amino acids may be involved in the induction of neuronal dysfunction and degeneration in virus-infected neurons, ultimately leading to the neurological disease phenotype. These findings provide new insight into the molecular mechanisms of tick-borne flavivirus pathogenesis.
Collapse
|
20
|
Hirano M, Yoshii K, Sakai M, Hasebe R, Ichii O, Kariwa H. Tick-borne flaviviruses alter membrane structure and replicate in dendrites of primary mouse neuronal cultures. J Gen Virol 2014; 95:849-861. [PMID: 24394700 DOI: 10.1099/vir.0.061432-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neurological diseases caused by encephalitic flaviviruses are severe and associated with high levels of mortality. However, detailed mechanisms of viral replication in the brain and features of viral pathogenesis remain poorly understood. We carried out a comparative analysis of replication of neurotropic flaviviruses: West Nile virus, Japanese encephalitis virus and tick-borne encephalitis virus (TBEV), in primary cultures of mouse brain neurons. All the flaviviruses multiplied well in primary neuronal cultures from the hippocampus, cerebral cortex and cerebellum. The distribution of viral-specific antigen in the neurons varied: TBEV infection induced accumulation of viral antigen in the neuronal dendrites to a greater extent than infection with other viruses. Viral structural proteins, non-structural proteins and dsRNA were detected in regions in which viral antigens accumulated in dendrites after TBEV replication. Replication of a TBEV replicon after infection with virus-like particles of TBEV also induced antigen accumulation, indicating that accumulated viral antigen was the result of viral RNA replication. Furthermore, electron microscopy confirmed that TBEV replication induced characteristic ultrastructural membrane alterations in the neurites: newly formed laminal membrane structures containing virion-like structures. This is the first report describing viral replication in and ultrastructural alterations of neuronal dendrites, which may cause neuronal dysfunction. These findings encourage further work aimed at understanding the molecular mechanisms of viral replication in the brain and the pathogenicity of neurotropic flaviviruses.
Collapse
Affiliation(s)
- Minato Hirano
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kentaro Yoshii
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Mizuki Sakai
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Rie Hasebe
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Osamu Ichii
- Laboratory of Anatomy, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroaki Kariwa
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
21
|
Sakai M, Yoshii K, Sunden Y, Yokozawa K, Hirano M, Kariwa H. Variable region of the 3' UTR is a critical virulence factor in the Far-Eastern subtype of tick-borne encephalitis virus in a mouse model. J Gen Virol 2014; 95:823-835. [PMID: 24394696 DOI: 10.1099/vir.0.060046-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a major arbovirus that causes thousands of cases of severe neurological illness in humans annually. However, virulence factors and pathological mechanisms of TBEV remain largely unknown. To identify the virulence factors, we constructed chimeric viruses between two TBEV strains of the Far-Eastern subtype, Sofjin-HO (highly pathogenic) and Oshima 5-10 (low pathogenic). The replacement of the coding region for the structural and non-structural proteins from Sofjin into Oshima showed a partial increase of the viral pathogenicity in a mouse model. Oshima-based chimeric viruses with the variable region of the 3' UTR of Sofjin, which had a deletion of 207 nt, killed 100 % of mice and showed almost the same virulence as Sofjin. Replacement of the variable region of the 3' UTR from Sofjin into Oshima did not increase viral multiplication in cultured cells and a mouse model at the early phase of viral entry into the brain. At the terminal phase of viral infection in mice, the virus titre of the Oshima-based chimeric virus with the variable region of the 3' UTR of Sofjin reached a level identical to that of Sofjin and showed a similar histopathological change in the brain tissue. This is the first report to show that the variable region of the 3' UTR is a critical virulence factor in mice. These findings encourage further study to understand the mechanisms of the pathogenicity of TBEV, and to develop preventative and therapeutic strategies for tick-borne encephalitis.
Collapse
Affiliation(s)
- Mizuki Sakai
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Kentaro Yoshii
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Yuji Sunden
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Kana Yokozawa
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Minato Hirano
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Hiroaki Kariwa
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
22
|
Takamatsu Y, Uchida L, Nga PT, Okamoto K, Nabeshima T, Thao DTT, Hai DT, Tuyet NT, Duc HM, Luat LX, Hasebe F, Morita K. An approach for differentiating echovirus 30 and Japanese encephalitis virus infections in acute meningitis/encephalitis: a retrospective study of 103 cases in Vietnam. Virol J 2013; 10:280. [PMID: 24025733 PMCID: PMC3847169 DOI: 10.1186/1743-422x-10-280] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/09/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In recent decades, Echovirus 30 (E30) and Japanese encephalitis virus (JEV) have been reported to be the common causative agents of acute meningitis among patients in South East Asia. An E30 outbreak in Vietnam in 2001-2002 gained our interest because the initial clinical diagnosis of infected patients was due to JEV infection. There are few clinical insights regarding E30 cases, and there are no reports comparing E30 and JEV acute meningitis/encephalitis cases based on clinical symptoms and case histories. We therefore aimed to identify reliable clinical methods to differentiate E30 and JEV acute meningitis/encephalitis. METHODS A retrospective, cross-sectional study was conducted to compare E30 and JEV acute meningitis/encephalitis cases. We collected and analyzed the clinical records of 43 E30 confirmed cases (E30 group) and 60 JEV confirmed cases (JEV group). Clinical data were compared between the E30 and the JEV groups. Differences of clinical parameters were analyzed by certain statistical tests. RESULTS Fever, headache, and vomiting were the most common symptoms in both the E30 and the JEV groups. Combined symptoms of headache and vomiting and the triad of symptoms of fever, headache, and vomiting were observed in more patients in the E30 group (E30 vs. JEV: 19% vs. 0%, p < 0.001; 74% vs. 27%, p < 0.001, respectively). On the other hand, strong neurological symptoms such as seizure (5% vs. 73%, p < 0.001) and altered consciousness (12% vs. 97%, p < 0.001) were manifested primarily in the JEV group. CSF leukocytosis was observed predominantly in the E30 group (80 vs. 18 cells/μL, p = 0.003), whereas decreasing CSF sugar level was observed predominantly in the JEV group (58.7 vs. 46.9 mg/dL, p < 0.001). CONCLUSION Fever, headache, vomiting, absence of neurological symptoms (seizure, altered consciousness), and presence of CSF leukocytosis are important parameters to consider in differentiating E30 from JEV cases during early infection. Then, proper measures can be adopted immediately to prevent the spread of the disease in the affected areas.
Collapse
Affiliation(s)
- Yuki Takamatsu
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, 1-12-4, Sakamoto, 852-8523 Nagasaki, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yoshii K, Yanagihara N, Ishizuka M, Sakai M, Kariwa H. N-linked glycan in tick-borne encephalitis virus envelope protein affects viral secretion in mammalian cells, but not in tick cells. J Gen Virol 2013; 94:2249-2258. [PMID: 23824303 DOI: 10.1099/vir.0.055269-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a zoonotic disease agent that causes severe encephalitis in humans. The envelope protein E of TBEV has one N-linked glycosylation consensus sequence, but little is known about the biological function of the N-linked glycan. In this study, the function of protein E glycosylation was investigated using recombinant TBEV with or without the protein E N-linked glycan. Virion infectivity was not affected after removing the N-linked glycans using N-glycosidase F. In mammalian cells, loss of glycosylation affected the conformation of protein E during secretion, reducing the infectivity of secreted virions. Mice subcutaneously infected with TBEV lacking protein E glycosylation showed no signs of disease, and viral multiplication in peripheral organs was reduced relative to that with the parental virus. In contrast, loss of glycosylation did not affect the secretory process of infectious virions in tick cells. Furthermore, inhibition of transport to the Golgi apparatus affected TBEV secretion in mammalian cells, but not in tick cells, indicating that TBEV was secreted through an unidentified pathway after synthesis in endoplasmic reticulum in tick cells. These results increase our understanding of the molecular mechanisms of TBEV maturation.
Collapse
Affiliation(s)
- Kentaro Yoshii
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Natsumi Yanagihara
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Mariko Ishizuka
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Mizuki Sakai
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Hiroaki Kariwa
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
24
|
Hayasaka D, Aoki K, Morita K. Development of simple and rapid assay to detect viral RNA of tick-borne encephalitis virus by reverse transcription-loop-mediated isothermal amplification. Virol J 2013; 10:68. [PMID: 23452322 PMCID: PMC3599137 DOI: 10.1186/1743-422x-10-68] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 03/01/2013] [Indexed: 12/30/2022] Open
Abstract
Background Tick-borne encephalitis virus (TBEV) is a causative agent of acute central nervous system disease in humans. It has three subtypes, far eastern (FE), Siberian (Sib) and European (Eu) subtypes, which are distributed over a wide area of Europe and Asia. The objective of this study was to develop a simple and rapid assay for the detection of TBEV RNA by using reverse-transcriptase loop-mediated isothermal amplification (RT-LAMP) method that can differentiate the three subtypes of TBEV and can be used for clinical diagnosis and epidemiological study. Methods Primers for TBEV-specific and subtype-specific RT-LAMP assay were designed to target the consensus sequence in NS1 of all subtypes and the consensus sequence in the E gene of each subtype, respectiveluy. In vitro transcribed RNA of Oshima strain that belongs to FE subtype was serially diluted and used to examine the sensitivity of the assay. Cross-reactivity of subtype-specific RT-LAMP assay was tested by using the RNA of Oshima and Sofjin (FE), IR-99 (Sib) and Hochosterwitz (Eu) strains. RNA extracted from the mixtures of TBEV and ticks, and of TBEV and human blood, and the mouse tissues infected with TBEV, were evaluated in the assay. Positive amplification was observed by real-time monitoring of turbidity and by visual detection of color change. Results The sensitivity of TBEV-specific RT-LAMP assay was 102 copies of target RNA per reaction volume. FE-specific RT-LAMP assay amplified viral genes of Oshima and Sofjin strains but not of IR-99 and Hochosterwitz strains, and of Japanese encephalitis virus. RT-LAMP assay for Sib and for Eu specifically amplified viral genes of IR-99 and Hochosterwitz strains, respectively. We also showed that tick or human blood extract did not inhibit the amplification of viral gene during the assay. Furthermore, we confirmed that the TBEV RT-LAMP could detect virus RNA from peripheral and central nervous system tissues of laboratory mice infected with TBEV. Conclusion TBEV RT-LAMP assay offers a sensitive, specific, rapid and easy-to-handle method for the detection of TBEV RNA in tick samples and this may be applied in the clinical samples collected from TBE-suspected patients.
Collapse
Affiliation(s)
- Daisuke Hayasaka
- Department of Virology, Institute of Tropical Medicine, Global COE Program, Leading Graduate School Program, Nagasaki University, Nagasaki, Japan.
| | | | | |
Collapse
|
25
|
Clusteron structure of tick-borne encephalitis virus populations. INFECTION GENETICS AND EVOLUTION 2013. [DOI: 10.1016/j.meegid.2012.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Frey S, Mossbrugger I, Altantuul D, Battsetseg J, Davaadorj R, Tserennorov D, Buyanjargal T, Otgonbaatar D, Zöller L, Speck S, Wölfel R, Dobler G, Essbauer S. Isolation, preliminary characterization, and full-genome analyses of tick-borne encephalitis virus from Mongolia. Virus Genes 2012; 45:413-25. [PMID: 22847274 DOI: 10.1007/s11262-012-0795-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
Abstract
Tick-borne encephalitis virus (TBEV) causes one of the most important inflammatory diseases of the central nervous system, namely severe encephalitis in Europe and Asia. Since the 1980s tick-borne encephalitis is known in Mongolia with increasing numbers of human cases reported during the last years. So far, however, data on TBEV strains are still sparse. We herein report the isolation of a TBEV strain from Ixodes persulcatus ticks collected in Mongolia in 2010. Phylogenetic analysis of the E-gene classified this isolate as Siberian subtype of TBEV. The Mongolian TBEV strain showed differences in virus titers, plaque sizes, and growth properties in two human neuronal cell-lines. In addition, the 10,242 nucleotide long open-reading frame and the corresponding polyprotein sequence were revealed. The isolate grouped in the genetic subclade of the Siberian subtype. The strain Zausaev (AF527415) and Vasilchenko (AF069066) had 97 and 94 % identity on the nucleotide level. In summary, we herein describe first detailed data regarding TBEV from Mongolia. Further investigations of TBEV in Mongolia and adjacent areas are needed to understand the intricate dispersal of this virus.
Collapse
Affiliation(s)
- Stefan Frey
- Department of Virology & Rickettsiology, Bundeswehr Institute of Microbiology, Neuherbergstraße 11, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yoshii K, Igarashi M, Ichii O, Yokozawa K, Ito K, Kariwa H, Takashima I. A conserved region in the prM protein is a critical determinant in the assembly of flavivirus particles. J Gen Virol 2011; 93:27-38. [PMID: 21957123 DOI: 10.1099/vir.0.035964-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Flaviviruses are assembled to bud into the lumen of the endoplasmic reticulum (ER) and are secreted through the vesicle transport pathway, but the details of the molecular mechanism of virion assembly remain largely unknown. In this study, a highly conserved region in the prM protein was identified among flaviviruses. In the subviral particle (SP) system of tick-borne encephalitis virus (TBEV) and Japanese encephalitis virus, secretion of SPs was impaired by a mutation in the conserved region in the prM protein. Viral proteins were sparse in the Golgi complex and accumulated in the ER. Ultrastructural analysis revealed that long filamentous structures, rather than spherical SPs, were observed in the lumen of the ER as a result of the mutation. The production of infectious virions derived from infectious cDNA of TBEV was also reduced by mutations in the conserved region. Molecular modelling analysis suggested that the conserved region is important for the association of prM-envelope protein heterodimers in the formation of a spike of immature virion. These results are the first demonstration that the conserved region in the prM protein is a molecular determinant for the flavivirus assembly process.
Collapse
Affiliation(s)
- Kentaro Yoshii
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Manabu Igarashi
- Department of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, Kita-18 Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Osamu Ichii
- Laboratory of Anatomy, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Kana Yokozawa
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Kimihito Ito
- Department of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, Kita-18 Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Hiroaki Kariwa
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Ikuo Takashima
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
28
|
T-Cell Clones Expressing Different T-Cell Receptors Accumulate in the Brains of Dying and Surviving Mice After Peripheral Infection with Far Eastern Strain of Tick-Borne Encephalitis Virus. Viral Immunol 2011; 24:291-302. [DOI: 10.1089/vim.2011.0017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
29
|
Takano A, Yoshii K, Omori-Urabe Y, Yokozawa K, Kariwa H, Takashima I. Construction of a replicon and an infectious cDNA clone of the Sofjin strain of the Far-Eastern subtype of tick-borne encephalitis virus. Arch Virol 2011; 156:1931-41. [PMID: 21785855 DOI: 10.1007/s00705-011-1066-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 07/01/2011] [Indexed: 11/27/2022]
Abstract
Tick-borne encephalitis virus (TBEV) causes severe encephalitis in humans. The Sofjin-HO strain is the prototype strain of the TBEV Far-Eastern subtype and is highly pathogenic in a mouse model. In this study, we constructed replicons and infectious cDNA clones of the Sofjin-HO strain. The replication of the replicon RNA was confirmed, and infectious viruses were recovered from the infectious cDNA clone. The recombinant viruses showed similar virulence characteristics to those of the parental virus. While characterizing the replicon and infectious cDNA, several amino acid differences derived from cell culture adaptations were analysed. The amino acids differences at E position 496 and NS4A position 58 were found to affect viral replication. The Gly- or Ala-to-Glu substitution at E position 122 was shown to increase neuroinvasiveness in mice. These replicons and infectious cDNA clones are useful in revealing the viral molecular determinants involved in the replication and pathogenicity of TBEV.
Collapse
MESH Headings
- Animals
- Cell Line
- Cricetinae
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Encephalitis Viruses, Tick-Borne/classification
- Encephalitis Viruses, Tick-Borne/genetics
- Encephalitis Viruses, Tick-Borne/pathogenicity
- Encephalitis Viruses, Tick-Borne/physiology
- Encephalitis, Tick-Borne/virology
- Female
- Humans
- Mice
- Mice, Inbred C57BL
- Replicon
- Virulence
- Virus Replication
Collapse
Affiliation(s)
- Ayako Takano
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Yoshii K, Igarashi M, Ito K, Kariwa H, Holbrook MR, Takashima I. Construction of an infectious cDNA clone for Omsk hemorrhagic fever virus, and characterization of mutations in NS2A and NS5. Virus Res 2011; 155:61-8. [DOI: 10.1016/j.virusres.2010.08.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 08/26/2010] [Accepted: 08/26/2010] [Indexed: 10/19/2022]
|
31
|
Hayasaka D, Nagata N, Fujii Y, Hasegawa H, Sata T, Suzuki R, Gould EA, Takashima I, Koike S. Mortality following peripheral infection with Tick-borne encephalitis virus results from a combination of central nervous system pathology, systemic inflammatory and stress responses. Virology 2009; 390:139-50. [DOI: 10.1016/j.virol.2009.04.026] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Revised: 04/10/2009] [Accepted: 04/29/2009] [Indexed: 12/26/2022]
|
32
|
Changing the protease specificity for activation of a flavivirus, tick-borne encephalitis virus. J Virol 2008; 82:8272-82. [PMID: 18562534 DOI: 10.1128/jvi.00587-08] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The infectivity of flavivirus particles depends on a maturation process that is triggered by the proteolytic cleavage of the precursor of the M protein (prM). This activation cleavage is naturally performed by ubiquitous cellular proteases of the furin family, which typically recognize the multibasic sequence motif R-X-R/K-R. Previously, we demonstrated that a tick-borne encephalitis virus (TBEV) mutant with an altered cleavage motif, R-X-R, produced immature, noninfectious particles that could be activated by exogenous trypsin, which cleaves after single basic residues. Here, we report the adaptation of this mutant to chymotrypsin, a protease specific for large, hydrophobic amino acid residues. Using selection pressure in cell culture, two different mutations conferring a chymotrypsin-dependent phenotype were identified. Surprisingly, one of these mutations (Ser85Phe) occurred three positions upstream of the natural cleavage site. The other mutation (Arg89His) arose at the natural cleavage position but involved a His residue, which is not a typical chymotrypsin cleavage site. Efficient cleavage of protein prM and activation by the heterologous protease were confirmed using various recombinant TBEV mutants. Mutants with only the originally selected mutations exhibited unimpaired export kinetics and were genotypically stable during at least six cell culture passages. However, in contrast to the wild-type virus or trypsin-dependent mutants, chymotrypsin-dependent mutants were not neurovirulent in suckling mice. Our results demonstrate that flaviviruses with altered protease specificities can be generated and suggest that this approach can be used for the construction of viral mutants or vectors that can be activated on demand and have restricted tissue tropism and virulence.
Collapse
|
33
|
Maeda J, Takagi H, Hashimoto S, Kurane I, Maeda A. A PCR-based protocol for generating West Nile virus replicons. J Virol Methods 2008; 148:244-52. [PMID: 18242719 DOI: 10.1016/j.jviromet.2007.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 12/03/2007] [Accepted: 12/13/2007] [Indexed: 11/26/2022]
Abstract
A new protocol for the generation of West Nile virus (WNV) replicons was developed. Fragmented cDNAs that covered the entire WNV RNA sequence, except the sequence corresponding to nucleotides 190-2379, were amplified separately by polymerase chain reactions (PCRs) using primer set franking with overlapping sequences of 40-50 bp at the 5'- and the 3'-ends of each fragment. All amplified fragments were mixed together and annealed to each other at the overlapping sequences. The annealed-DNA fragments were elongated by DNA polymerase and amplified by short-cycle PCRs to generate full-sized WNV replicon cDNAs. The WNV replicons were transcribed in vitro using the replicon cDNAs as templates. When the in vitro-transcribed replicon was introduced into mammalian cells, the viral envelope protein and viral positive- and negative-strand RNAs were detected in the replicon-transfected cells. It is noteworthy that the synthesis of the replicon cDNAs and the replicons took just 1 week, and that the use of a high-fidelity DNA polymerase afforded stability to the sequence of the synthetic replicon.
Collapse
Affiliation(s)
- Junko Maeda
- Department of Prion Diseases, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | |
Collapse
|
34
|
Sauder CJ, Vandenburgh KM, Iskow RC, Malik T, Carbone KM, Rubin SA. Changes in mumps virus neurovirulence phenotype associated with quasispecies heterogeneity. Virology 2006; 350:48-57. [PMID: 16494912 DOI: 10.1016/j.virol.2006.01.035] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 01/04/2006] [Accepted: 01/25/2006] [Indexed: 11/23/2022]
Abstract
Mumps virus is a highly neurotropic virus with evidence of central nervous system invasion (CNS) in approximately half of all cases of infection. In countries where live attenuated mumps virus vaccines were introduced, the number of mumps cases declined dramatically; however, recently, the safety of some vaccine strains has been questioned. For example, one of the most widely used vaccines, the Urabe AM9 strain, was causally associated with meningitis, leading to the withdrawal of this product from the market in several countries. This highlights the need for a better understanding of the attenuation process and the identification of markers of attenuation. To this end, we further attenuated the Urabe AM9 strain by serial passage in cell culture and compared the complete nucleotide sequences of the parental and passaged viruses. Interestingly, despite a dramatic decrease in virus virulence (as assayed in rats), the only genomic changes were in the form of changes in the level of genetic heterogeneity at specific genome sites, i.e., either selection of one nucleotide variant at positions where the starting material exhibited nucleotide heterogeneity or the evolution of an additional nucleotide to create a heterogenic site. This finding suggests that changes in the level of genetic heterogeneity at specific genome sites can have profound neurovirulence phenotypic consequences and, therefore, caution should be exercised when evaluating genetic markers of virulence or attenuation based only on a consensus sequence.
Collapse
Affiliation(s)
- Christian J Sauder
- DVP/Office of Vaccines Research and Review, Center for Biologics, Evaluation and Research, Food and Drug Administration, Building 29A, Room 1A-21, 8800 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
35
|
Takashima I, Hayasaka D, Goto A, Yoshii K, Kariwa H. [Phylogenetic analysis and pathogenicity of tick-borne encephalitis virus from Japan and far-east Russia]. Uirusu 2005; 55:35-44. [PMID: 16308528 DOI: 10.2222/jsv.55.35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Phylogenetic analysis of tick-borne encephalitis (TBE) virus revealed that Hokkaido strain of TBE virus evolved several hundreds years ago in far-east Russia. TBE virus strains in Irkutsk area were identified as Siberian subtype of TBE virus. BHK-cell adapted mutant of TBE virus showed lower neuro-invasive virulence in mice than parent virus. The mutant carried one amino acid substitution in envelope protein which resulted in increase of positive charge of the protein. The mutant-infected mice showed lower virus titers in bloods and spleens than the parent-infected mice. Infectious c-DNA clone of TBE virus Hokkaido strain was successfully generated and was applied to examine the neurovirulence in mice. One amino acid change in envelope protein and 2 amino acid changes in Ns5 protein showed a synergistic effect on reduced neurovirulence in mice.
Collapse
Affiliation(s)
- Ikuo Takashima
- Laboratory of Public Health, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
36
|
Zhao Z, Date T, Li Y, Kato T, Miyamoto M, Yasui K, Wakita T. Characterization of the E-138 (Glu/Lys) mutation in Japanese encephalitis virus by using a stable, full-length, infectious cDNA clone. J Gen Virol 2005; 86:2209-2220. [PMID: 16033968 DOI: 10.1099/vir.0.80638-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A stable plasmid DNA, pMWJEAT, was constructed by using full-length Japanese encephalitis virus (JEV) cDNA isolated from the wild-type strain JEV AT31. Recombinant JEV was obtained by synthetic RNA transfection into Vero cells and designated rAT virus. JEV rAT exhibited similar large-plaque morphology and antigenicity to the parental AT31 strain. Mutant clone pMWJEAT-E138K, containing a single Glu-to-Lys mutation at aa 138 of the envelope (E) protein, was also constructed to analyse the mechanisms of viral attenuation arising from this mutation. Recombinant JEV rAT-E138K was also recovered and displayed a smaller-plaque morphology and lower neurovirulence and neuroinvasiveness than either AT31 virus or rAT virus. JEV rAT-E138K exhibited greater plaque formation than rAT virus in virus-cell interactions under acidic conditions. Heparin or heparinase III treatment inhibited binding to Vero cells more efficiently for JEV rAT-E138K than for rAT virus. Inhibition of virus-cell interactions by using wheatgerm agglutinin was more effective for JEV rAT than for rAT-E138K on Vero cells. About 20 % of macropinoendocytosis of JEV rAT for Vero cells was inhibited by cytochalasin D treatment, but no such inhibition occurred for rAT-E138K virus. Furthermore, JEV rAT was predominantly secreted from infected cells, whereas rAT-E138K was more likely to be retained in infected cells. This study demonstrates clearly that a single Glu-to-Lys mutation at aa 138 of the envelope protein affects multiple steps of the viral life cycle. These multiple changes may induce substantial attenuation of JEV.
Collapse
Affiliation(s)
- Zijiang Zhao
- Department of Microbiology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu-shi, Tokyo 183-8526, Japan
| | - Tomoko Date
- Department of Microbiology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu-shi, Tokyo 183-8526, Japan
| | - Yuhua Li
- Chengdu Institute of Biological Products, Chengdu 610063, Sichuan Province, PR China
| | - Takanobu Kato
- Department of Microbiology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu-shi, Tokyo 183-8526, Japan
| | - Michiko Miyamoto
- Department of Microbiology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu-shi, Tokyo 183-8526, Japan
| | - Kotaro Yasui
- Department of Microbiology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu-shi, Tokyo 183-8526, Japan
| | - Takaji Wakita
- Department of Microbiology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu-shi, Tokyo 183-8526, Japan
| |
Collapse
|
37
|
Abstract
Tick-borne encephalitis virus (TBEV) is an important human pathogen that causes severe neurological illness in large areas of Europe and Asia. The neuropathogenesis of this disease agent is determined by its capacity to enter the central nervous system (CNS) after peripheral inoculation ("neuroinvasiveness") and its ability to replicate and cause damage within the CNS ("neurovirulence"). TBEV is a small, enveloped flavivirus with an unsegmented, positive-stranded RNA genome. Mutations affecting various steps of its natural replication cycle were shown to influence its neuropathogenic properties. This review describes experimental approaches and summarizes results on molecular determinants of neurovirulence and neuroinvasiveness that have been identified for this virus. It focuses on molecular mechanisms of three particular steps of the viral life cycle that have been studied in some detail for TBEV and two closely related tick-borne flaviviruses (Louping ill virus (LIV) and Langat virus (LGTV)), namely (i) the envelope protein E and its role in viral attachment to the cell surface, (ii) the 3'-noncoding region of the genome and its importance for viral RNA replication, and (iii) the capsid protein C and its role in the assembly process of infectious virus particles. Mutations affecting each of these three molecular targets significantly influence neuropathogenesis of TBEV, particularly its neuroinvasiveness. The understanding of molecular determinants of TBEV neuropathogenesis is relevant for vaccine development, also against other flaviviruses.
Collapse
Affiliation(s)
- Christian W Mandl
- Institute of Virology, Medical University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria.
| |
Collapse
|
38
|
McElroy KL, Tsetsarkin KA, Vanlandingham DL, Higgs S. Characterization of an infectious clone of the wild-type yellow fever virus Asibi strain that is able to infect and disseminate in mosquitoes. J Gen Virol 2005; 86:1747-1751. [PMID: 15914853 DOI: 10.1099/vir.0.80746-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infectious clone technology provides an opportunity to study the molecular basis of arthropod-virus interactions in detail. This study describes the development of an infectious clone of the prototype yellow fever virus Asibi strain (YFV-As) with the purpose of identifying sequences or domains that influence infection dynamics in the mosquito vector. The full-length cDNA of YFV-As virus was produced from RT-PCR products of parental viral RNA. These were cloned into a low-copy-number plasmid previously used to develop the YFV-17D infectious clone (pACNR/FLYF-17D). Virus recovered from the infectious clone exhibited biological characteristics similar to those of the parental YFV-As, including replication kinetics, reactivity to flavivirus cross-reactive and YFV-specific antibodies and infection and dissemination rates in Aedes aegypti, the principal mosquito vector of YFV. These data provide the basis for future studies with chimeric Asibi/17D viruses to identify the determinants of vaccine attenuation in the vector.
Collapse
Affiliation(s)
- Kate L McElroy
- Department of Pathology, University of Texas Medical Branch, Keiller 2.104, 301 University Boulevard, Galveston, TX 77555-0609, USA
| | - Konstantin A Tsetsarkin
- Department of Pathology, University of Texas Medical Branch, Keiller 2.104, 301 University Boulevard, Galveston, TX 77555-0609, USA
| | - Dana L Vanlandingham
- Department of Pathology, University of Texas Medical Branch, Keiller 2.104, 301 University Boulevard, Galveston, TX 77555-0609, USA
| | - Stephen Higgs
- Department of Pathology, University of Texas Medical Branch, Keiller 2.104, 301 University Boulevard, Galveston, TX 77555-0609, USA
| |
Collapse
|
39
|
Yoshii K, Hayasaka D, Goto A, Kawakami K, Kariwa H, Takashima I. Packaging the replicon RNA of the Far-Eastern subtype of tick-borne encephalitis virus into single-round infectious particles: development of a heterologous gene delivery system. Vaccine 2005; 23:3946-56. [PMID: 15917116 DOI: 10.1016/j.vaccine.2005.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 01/31/2005] [Accepted: 03/02/2005] [Indexed: 10/25/2022]
Abstract
The sub-genomic replicon of tick-borne encephalitis (TBE) virus (Far-Eastern subtype) was packaged into infectious particles by providing the viral structural proteins in trans. Sequential transfection of TBE replicon RNA and a plasmid that expressed the structural proteins led to the secretion of infectious particles that contained TBE replicon RNA. The secreted particles had single-round infectivity, which was inhibited by TBE virus-neutralizing antibody. The physical structure of the particles was almost identical to that of infectious virions, and the packaged replicon RNA showed no recombination with the mRNAs of the viral structural proteins. Furthermore, heterologous genes were successfully delivered and expressed by packaging TBE replicon RNA with inserted GFP and Neo genes. This replicon packaging system may be a useful tool for the molecular study of the TBE virus genome packaging mechanism, and for the development of vaccine delivery systems.
Collapse
Affiliation(s)
- Kentarou Yoshii
- Laboratory of Public Health, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Yoshii K, Konno A, Goto A, Nio J, Obara M, Ueki T, Hayasaka D, Mizutani T, Kariwa H, Takashima I. Single point mutation in tick-borne encephalitis virus prM protein induces a reduction of virus particle secretion. J Gen Virol 2004; 85:3049-3058. [PMID: 15448368 DOI: 10.1099/vir.0.80169-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Flaviviruses are assembled to bud into the lumen of the endoplasmic reticulum (ER) and are secreted through the vesicle transport pathway. Virus envelope proteins play important roles in this process. In this study, the effect of mutations in the envelope proteins of tick-borne encephalitis (TBE) virus on secretion of virus-like particles (VLPs), using a recombinant plasmid expression system was analysed. It was found that a single point mutation at position 63 in prM induces a reduction in secretion of VLPs. The mutation in prM did not affect the folding of the envelope proteins, and chaperone-like activity of prM was maintained. As observed by immunofluorescence microscopy, viral envelope proteins with the mutation in prM were scarce in the Golgi complex, and accumulated in the ER. Electron microscopic analysis of cells expressing the mutated prM revealed that many tubular structures were present in the lumen. The insertion of the prM mutation at aa 63 into the viral genome reduced the production of infectious virus particles. This data suggest that prM plays a crucial role in the virus budding process.
Collapse
Affiliation(s)
- Kentarou Yoshii
- Laboratory of Public Health, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Akihiro Konno
- Laboratory of Anatomy, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Akiko Goto
- Laboratory of Public Health, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Junko Nio
- Laboratory of Anatomy, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Mayumi Obara
- Laboratory of Public Health, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Tomotaka Ueki
- Laboratory of Public Health, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Daisuke Hayasaka
- Department of Pathology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Tetsuya Mizutani
- Laboratory of Public Health, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Hiroaki Kariwa
- Laboratory of Public Health, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Ikuo Takashima
- Laboratory of Public Health, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| |
Collapse
|