1
|
Rubbenstroth D. Avian Bornavirus Research—A Comprehensive Review. Viruses 2022; 14:v14071513. [PMID: 35891493 PMCID: PMC9321243 DOI: 10.3390/v14071513] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Avian bornaviruses constitute a genetically diverse group of at least 15 viruses belonging to the genus Orthobornavirus within the family Bornaviridae. After the discovery of the first avian bornaviruses in diseased psittacines in 2008, further viruses have been detected in passerines and aquatic birds. Parrot bornaviruses (PaBVs) possess the highest veterinary relevance amongst the avian bornaviruses as the causative agents of proventricular dilatation disease (PDD). PDD is a chronic and often fatal disease that may engulf a broad range of clinical presentations, typically including neurologic signs as well as impaired gastrointestinal motility, leading to proventricular dilatation. It occurs worldwide in captive psittacine populations and threatens private bird collections, zoological gardens and rehabilitation projects of endangered species. In contrast, only little is known about the pathogenic roles of passerine and waterbird bornaviruses. This comprehensive review summarizes the current knowledge on avian bornavirus infections, including their taxonomy, pathogenesis of associated diseases, epidemiology, diagnostic strategies and recent developments on prophylactic and therapeutic countermeasures.
Collapse
Affiliation(s)
- Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald, Insel Riems, Germany
| |
Collapse
|
2
|
Nobach D, Müller J, Tappe D, Herden C. Update on immunopathology of bornavirus infections in humans and animals. Adv Virus Res 2020; 107:159-222. [PMID: 32711729 DOI: 10.1016/bs.aivir.2020.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Knowledge on bornaviruses has expanded tremendously during the last decade through detection of novel bornaviruses and endogenous bornavirus-like elements in many eukaryote genomes, as well as by confirmation of insectivores as reservoir species for classical Borna disease virus 1 (BoDV-1). The most intriguing finding was the demonstration of the zoonotic potential of lethal human bornavirus infections caused by a novel bornavirus of different squirrel species (variegated squirrel 1 bornavirus, VSBV-1) and by BoDV-1 known as the causative agent for the classical Borna disease in horses and sheep. Whereas a T cell-mediated immunopathology has already been confirmed as key disease mechanism for infection with BoDV-1 by experimental studies in rodents, the underlying pathomechanisms remain less clear for human bornavirus infections, infection with other bornaviruses or infection of reservoir species. Thus, an overview of current knowledge on the pathogenesis of bornavirus infections focusing on immunopathology is given.
Collapse
Affiliation(s)
- Daniel Nobach
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jana Müller
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Dennis Tappe
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany; Center for Brain, Mind and Behavior, Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
3
|
Horie M, Kobayashi Y, Suzuki Y, Tomonaga K. Comprehensive analysis of endogenous bornavirus-like elements in eukaryote genomes. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120499. [PMID: 23938751 DOI: 10.1098/rstb.2012.0499] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bornaviruses are the only animal RNA viruses that establish a persistent infection in their host cell nucleus. Studies of bornaviruses have provided unique information about viral replication strategies and virus-host interactions. Although bornaviruses do not integrate into the host genome during their replication cycle, we and others have recently reported that there are DNA sequences derived from the mRNAs of ancient bornaviruses in the genomes of vertebrates, including humans, and these have been designated endogenous borna-like (EBL) elements. Therefore, bornaviruses have been interacting with their hosts as driving forces in the evolution of host genomes in a previously unexpected way. Studies of EBL elements have provided new models for virology, evolutionary biology and general cell biology. In this review, we summarize the data on EBL elements including what we have newly identified in eukaryotes genomes, and discuss the biological significance of EBL elements, with a focus on EBL nucleoprotein elements in mammalian genomes. Surprisingly, EBL elements were detected in the genomes of invertebrates, suggesting that the host range of bornaviruses may be much wider than previously thought. We also review our new data on non-retroviral integration of Borna disease virus.
Collapse
Affiliation(s)
- Masayuki Horie
- Department of Virology, Institute for Medical Microbiology and Hygiene, University of Freiburg, , 79104 Freiburg, Germany
| | | | | | | |
Collapse
|
4
|
Evolutionarily conserved interaction between the phosphoproteins and X proteins of bornaviruses from different vertebrate species. PLoS One 2012; 7:e51161. [PMID: 23236446 PMCID: PMC3517445 DOI: 10.1371/journal.pone.0051161] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 10/30/2012] [Indexed: 11/23/2022] Open
Abstract
Bornavirus, a non-segmented, negative-strand RNA viruses, is currently classified into several genetically distinct genotypes, such as Borna disease virus (BDV) and avian bornaviruses (ABVs). Recent studies revealed that bornavirus genotypes show unique sequence variability in the putative 5′ untranslated region (5′ UTR) of X/P mRNA, a bicistronic mRNA for the X protein and phosphoprotein (P). In this study, to understand the evolutionary relationship among the bornavirus genotypes, we investigated the functional interaction between the X and P proteins of four bornavirus genotypes, BDV, ABV genotype 4 and 5 and reptile bornavirus (RBV), the putative 5′ UTRs of which exhibit variation in the length. Immunofluorescence and immunoprecipitation analyses using mammalian and avian cell lines revealed that the X proteins of bornaviruses conserve the ability to facilitate the export of P from the nucleus to the cytoplasm via interaction with P. Furthermore, we showed that inter-genotypic interactions may occur between X and P among the genotypes, except for X of RBV. In addition, a BDV minireplicon assay demonstrated that the X and P proteins of ABVs, but not RBV, can affect the polymerase activity of BDV. This study demonstrates that bornaviruses may have conserved the fundamental function of a regulatory protein during their evolution, whereas RBV has evolved distinctly from the other bornavirus genotypes.
Collapse
|
5
|
Horie M, Ueda K, Ueda A, Honda T, Tomonaga K. Detection of Avian bornavirus 5 RNA in Eclectus roratus
with feather picking disorder. Microbiol Immunol 2012; 56:346-9. [DOI: 10.1111/j.1348-0421.2012.00436.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Lipkin WI, Briese T, Hornig M. Borna disease virus - fact and fantasy. Virus Res 2011; 162:162-72. [PMID: 21968299 DOI: 10.1016/j.virusres.2011.09.036] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/25/2011] [Accepted: 09/25/2011] [Indexed: 11/26/2022]
Abstract
The occasion of Brian Mahy's retirement as editor of Virus Research provides an opportunity to reflect on the work that led one of the authors (Lipkin) to meet him shortly after the molecular discovery and characterization of Borna disease virus in the late 1980s, and work with authors Briese and Hornig to investigate mechanisms of pathogenesis and its potential role in human disease. This article reviews the history, molecular biology, epidemiology, and pathobiology of bornaviruses.
Collapse
Affiliation(s)
- W Ian Lipkin
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, 722 W 168th St., 17th Floor, New York, NY 10032, United States.
| | | | | |
Collapse
|
7
|
Abstract
Thanks to new technologies which enable rapid and unbiased screening for viral nucleic acids in clinical specimens, an impressive number of previously unknown viruses have recently been discovered. Two research groups independently identified a novel negative-strand RNA virus, now designated avian bornavirus (ABV), in parrots with proventricular dilatation disease (PDD), a severe lymphoplasmacytic ganglioneuritis of the gastrointestinal tract of psittacine birds that is frequently accompanied by encephalomyelitis. Since its discovery, ABV has been detected worldwide in many captive parrots and in one canary with PDD. ABV induced a PDD-like disease in experimentally infected cockatiels, strongly suggesting that ABV is highly pathogenic in psittacine birds. Until the discovery of ABV, the Bornaviridae family consisted of a single species, classical Borna disease virus (BDV), which is the causative agent of a progressive neurological disorder that affects primarily horses, sheep, and some other farm animals in central Europe. Although ABV and BDV share many biological features, there exist several interesting differences, which are discussed in this review.
Collapse
|
8
|
Hock M, Kraus I, Schoehn G, Jamin M, Andrei-Selmer C, Garten W, Weissenhorn W. RNA induced polymerization of the Borna disease virus nucleoprotein. Virology 2010; 397:64-72. [DOI: 10.1016/j.virol.2009.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 10/29/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
|
9
|
Watanabe Y, Ohtaki N, Hayashi Y, Ikuta K, Tomonaga K. Autogenous translational regulation of the Borna disease virus negative control factor X from polycistronic mRNA using host RNA helicases. PLoS Pathog 2009; 5:e1000654. [PMID: 19893625 PMCID: PMC2766071 DOI: 10.1371/journal.ppat.1000654] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 10/13/2009] [Indexed: 11/24/2022] Open
Abstract
Borna disease virus (BDV) is a nonsegmented, negative-strand RNA virus that employs several unique strategies for gene expression. The shortest transcript of BDV, X/P mRNA, encodes at least three open reading frames (ORFs): upstream ORF (uORF), X, and P in the 5′ to 3′ direction. The X is a negative regulator of viral polymerase activity, while the P phosphoprotein is a necessary cofactor of the polymerase complex, suggesting that the translation of X is controlled rigorously, depending on viral replication. However, the translation mechanism used by the X/P polycistronic mRNA has not been determined in detail. Here we demonstrate that the X/P mRNA autogenously regulates the translation of X via interaction with host factors. Transient transfection of cDNA clones corresponding to the X/P mRNA revealed that the X ORF is translated predominantly by uORF-termination-coupled reinitiation, the efficiency of which is upregulated by expression of P. We found that P may enhance ribosomal reinitiation at the X ORF by inhibition of the interaction of the DEAD-box RNA helicase DDX21 with the 5′ untranslated region of X/P mRNA, via interference with its phosphorylation. Our results not only demonstrate a unique translational control of viral regulatory protein, but also elucidate a previously unknown mechanism of regulation of polycistronic mRNA translation using RNA helicases. All viruses rely on host cell factors to complete their life cycles. Therefore, the replication strategies of viruses may provide not only the understanding of virus pathogenesis but also useful models to disentangle the complex machinery of host cells. Translation regulation of viral mRNA is a good example of this. Borna disease virus (BDV) is a highly neurotropic RNA virus which is characterized by persistent infection. BDV expresses mRNAs as polycistronic coding transcripts. Among them, the 0.8 kb X/P mRNA encodes at least three open reading frames (ORFs), upstream ORF, X, and P. Although BDV X and P have opposing effects in terms of viral polymerase activity, the translational regulation of X/P polycistronic mRNA has not been elucidated. In this study, we show an ingenious strategy of translational control of viral regulatory protein using host factors. We demonstrate that host RNA helicases, mainly DDX21, can affect ribosomal reinitiation of X via interaction with the 5′ untranslated region (UTR) of X/P mRNA and that the downstream P protein autogenously controls the translation of X by interfering with the binding of DDX21 to the 5′ UTR. Our findings uncover not only a unique translational control of viral regulatory protein but also a previously unknown mechanism of translational regulation of polycistronic mRNA using RNA helicases.
Collapse
Affiliation(s)
- Yohei Watanabe
- Department of Virology, Research Institute for Microbial Diseases (BIKEN), Osaka University, Suita, Osaka, Japan
| | - Naohiro Ohtaki
- Department of Virology, Research Institute for Microbial Diseases (BIKEN), Osaka University, Suita, Osaka, Japan
| | - Yohei Hayashi
- Department of Virology, Research Institute for Microbial Diseases (BIKEN), Osaka University, Suita, Osaka, Japan
| | - Kazuyoshi Ikuta
- Department of Virology, Research Institute for Microbial Diseases (BIKEN), Osaka University, Suita, Osaka, Japan
- Section of Viral Infections, Thailand–Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Nonthaburi, Thailand
| | - Keizo Tomonaga
- Department of Virology, Research Institute for Microbial Diseases (BIKEN), Osaka University, Suita, Osaka, Japan
- PRESTO, Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
10
|
Poenisch M, Wille S, Schneider U, Staeheli P. Second-site mutations in Borna disease virus overexpressing viral accessory protein X. J Gen Virol 2009; 90:1932-1936. [DOI: 10.1099/vir.0.011841-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The X protein of Borna disease virus (BDV) is an essential factor that regulates viral polymerase activity and inhibits apoptosis of persistently infected cells. We observed that a BDV mutant which carries an additional X gene replicated well in cell culture only after acquiring second-site mutations that selectively reduced expression of the endogenous X gene. In rat brains, the virus acquired additional mutations which inactivated the ectopic X gene or altered the sequence of X. These results demonstrate that BDV readily acquires mutations if strong selection pressure is applied. They further indicate that fine-tuning of X expression determines viral fitness.
Collapse
Affiliation(s)
- Marion Poenisch
- Department of Virology, University of Freiburg, D-79104 Freiburg, Germany
| | - Sandra Wille
- Department of Virology, University of Freiburg, D-79104 Freiburg, Germany
| | - Urs Schneider
- Department of Virology, University of Freiburg, D-79104 Freiburg, Germany
| | - Peter Staeheli
- Department of Virology, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
11
|
Broad tissue and cell tropism of avian bornavirus in parrots with proventricular dilatation disease. J Virol 2009; 83:5401-7. [PMID: 19297496 DOI: 10.1128/jvi.00133-09] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Avian bornaviruses (ABV), representing a new genus within the family Bornaviridae, were recently discovered in parrots from North America and Israel with proventricular dilatation disease (PDD). We show here that closely related viruses are also present in captive European parrots of various species with PDD. The six ABV strains that we identified in clinically diseased birds are new members of the previously defined ABV genotypes 2 and 4. Viruses of both genotypes readily established persistent, noncytolytic infections in quail and chicken cell lines but did not grow in cultured mammalian cells in which classical Borna disease virus strains replicate very efficiently. ABV antigens were present in both the cytoplasm and nucleus of infected cells, suggesting nuclear replication of ABV. The genome organization of avian and mammalian bornaviruses is highly conserved except that ABV lacks a distinct control element in the 5' noncoding region of the bicistronic mRNA encoding the viral proteins X and P. Reverse transcription-PCR analysis demonstrated the presence of virus in many, if not all, organs of birds with PDD. Viral nucleic acid was also found in feces of diseased birds, suggesting virus transmission by the fecal-oronasal route. Immunohistochemical analysis of organs from birds with PDD revealed that infection with ABV is not restricted to cells of the nervous system. Thus, ABV exhibits a broad tissue and cell tropism that is strikingly different from classical Borna disease virus.
Collapse
|
12
|
Protein X of Borna disease virus inhibits apoptosis and promotes viral persistence in the central nervous systems of newborn-infected rats. J Virol 2009; 83:4297-307. [PMID: 19211764 DOI: 10.1128/jvi.02321-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Borna disease virus (BDV) is a neurotropic member of the order Mononegavirales with noncytolytic replication and obligatory persistence in cultured cells and animals. Here we show that the accessory protein X of BDV represents the first mitochondrion-localized protein of an RNA virus that inhibits rather than promotes apoptosis induction. Rat C6 astroglioma cells persistently infected with wild-type BDV were significantly more resistant to death receptor-dependent and -independent apoptotic stimuli than uninfected cells or cells infected with a BDV mutant expressing reduced amounts of X. Confocal microscopy demonstrated that X colocalizes with mitochondria and expression of X from plasmid DNA rendered human 293T and mouse L929 cells resistant to apoptosis induction. A recombinant virus encoding a mutant X protein unable to associate with mitochondria (BDV-X(A6A7)) failed to block apoptosis in C6 cells. Furthermore, Lewis rats neonatally infected with BDV-X(A6A7) developed severe neurological symptoms and died around day 30 postinfection, whereas all animals infected with wild-type BDV remained healthy and became persistently infected. TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) staining revealed a significant increase in the number of apoptotic cells in the brain of BDV-X(A6A7)-infected animals, whereas the numbers of CD3(+) T lymphocytes were comparable to those detected in animals infected with wild-type BDV. Our data thus indicate that inhibition of apoptosis by X promotes noncytolytic viral persistence and is required for the survival of cells in the central nervous system of BDV-infected animals.
Collapse
|
13
|
Hayashi Y, Horie M, Daito T, Honda T, Ikuta K, Tomonaga K. Heat shock cognate protein 70 controls Borna disease virus replication via interaction with the viral non-structural protein X. Microbes Infect 2009; 11:394-402. [PMID: 19397879 DOI: 10.1016/j.micinf.2009.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Revised: 01/13/2009] [Accepted: 01/17/2009] [Indexed: 11/18/2022]
Abstract
Borna disease virus (BDV) is a non-segmented, negative-sense RNA virus and has the property of persistently infecting the cell nucleus. BDV encodes a 10-kDa non-structural protein, X, which is a negative regulator of viral polymerase activity but is essential for virus propagation. Recently, we have demonstrated that interaction of X with the viral polymerase cofactor, phosphoprotein (P), facilitates translocation of P from the nucleus to the cytoplasm. However, the mechanism by which the intracellular localization of X is controlled remains unclear. In this report, we demonstrate that BDV X interacts with the 71kDa molecular chaperon protein, Hsc70. Immunoprecipitation assays revealed that Hsc70 associates with the same region of X as P and, interestingly, that expression of P interferes competitively with the interaction between X and Hsc70. A heat shock experiment revealed that BDV X translocates into the nucleus, dependent upon the nuclear accumulation of Hsc70. Furthermore, we show that knockdown of Hsc70 by short interfering RNA decreases the nuclear localization of both X and P and markedly reduces the expression of viral genomic RNA in persistently infected cells. These data indicate that Hsc70 may be involved in viral replication by regulating the intracellular distribution of X.
Collapse
Affiliation(s)
- Yohei Hayashi
- Department of Virology, Research Institute for Microbial Diseases (BIKEN), Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Polymerase read-through at the first transcription termination site contributes to regulation of borna disease virus gene expression. J Virol 2008; 82:9537-45. [PMID: 18653450 DOI: 10.1128/jvi.00639-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An unusually long noncoding sequence is located between the N gene of Borna disease virus (BDV) and the genes for regulatory factor X and polymerase cofactor P. Most of these nucleotides are transcribed and seem to control translation of the bicistronic X/P mRNA. We report here that Vero cells persistently infected with mutant viruses containing minor alterations in this control region showed almost normal levels of N, X, and P proteins but exhibited greatly reduced levels of mRNAs coding for these viral gene products. Surprisingly, cells infected with these BDV mutants accumulated a viral transcript 1.9 kb in length that represents a capped and polyadenylated mRNA containing the coding regions of the N, X, and P genes. Cells infected with wild-type BDV also contained substantial amounts of this read-through mRNA, which yielded both N and P protein when translated in vitro. Viruses carrying mutations that promoted read-through transcription at the first gene junction failed to replicate in the brain of adult rats. In the brains of newborn rats, these mutant viruses were able to replicate after acquiring second-site mutations in or near the termination signal located downstream of the N gene. Thus, sequence elements adjacent to the core termination signal seem to regulate the frequency by which the polymerase terminates transcription after the N gene. We conclude from these observations that BDV uses read-through transcription for fine-tuning the expression of the N, X, and P genes which, in turn, influence viral polymerase activity.
Collapse
|