1
|
Sadic M, Schneider WM, Katsara O, Medina GN, Fisher A, Mogulothu A, Yu Y, Gu M, de los Santos T, Schneider RJ, Dittmann M. DDX60 selectively reduces translation off viral type II internal ribosome entry sites. EMBO Rep 2022; 23:e55218. [PMID: 36256515 PMCID: PMC9724679 DOI: 10.15252/embr.202255218] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 11/05/2022] Open
Abstract
Co-opting host cell protein synthesis is a hallmark of many virus infections. In response, certain host defense proteins limit mRNA translation globally, albeit at the cost of the host cell's own protein synthesis. Here, we describe an interferon-stimulated helicase, DDX60, that decreases translation from viral internal ribosome entry sites (IRESs). DDX60 acts selectively on type II IRESs of encephalomyocarditis virus (EMCV) and foot and mouth disease virus (FMDV), but not by other IRES types or by 5' cap. Correspondingly, DDX60 reduces EMCV and FMDV (type II IRES) replication, but not that of poliovirus or bovine enterovirus 1 (BEV-1; type I IRES). Furthermore, replacing the IRES of poliovirus with a type II IRES is sufficient for DDX60 to inhibit viral replication. Finally, DDX60 selectively modulates the amount of translating ribosomes on viral and in vitro transcribed type II IRES mRNAs, but not 5' capped mRNA. Our study identifies a novel facet in the repertoire of interferon-stimulated effector genes, the selective downregulation of translation from viral type II IRES elements.
Collapse
Affiliation(s)
| | | | | | - Gisselle N Medina
- Plum Island Animal Disease Center, ARSUSDAGreenportNYUSA,National Bio and Agro‐Defense Facility (NBAF), ARSUSDAManhattanKSUSA
| | | | - Aishwarya Mogulothu
- Plum Island Animal Disease Center, ARSUSDAGreenportNYUSA,Department of Pathobiology and Veterinary ScienceUniversity of ConnecticutStorrsCTUSA
| | - Yingpu Yu
- The Rockefeller UniversityNew YorkNYUSA
| | | | | | | | | |
Collapse
|
2
|
RNA-Binding Proteins as Regulators of Internal Initiation of Viral mRNA Translation. Viruses 2022; 14:v14020188. [PMID: 35215780 PMCID: PMC8879377 DOI: 10.3390/v14020188] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022] Open
Abstract
Viruses are obligate intracellular parasites that depend on the host’s protein synthesis machinery for translating their mRNAs. The viral mRNA (vRNA) competes with the host mRNA to recruit the translational machinery, including ribosomes, tRNAs, and the limited eukaryotic translation initiation factor (eIFs) pool. Many viruses utilize non-canonical strategies such as targeting host eIFs and RNA elements known as internal ribosome entry sites (IRESs) to reprogram cellular gene expression, ensuring preferential translation of vRNAs. In this review, we discuss vRNA IRES-mediated translation initiation, highlighting the role of RNA-binding proteins (RBPs), other than the canonical translation initiation factors, in regulating their activity.
Collapse
|
3
|
Grose C, Putman Z, Esposito D. A review of alternative promoters for optimal recombinant protein expression in baculovirus-infected insect cells. Protein Expr Purif 2021; 186:105924. [PMID: 34087362 PMCID: PMC8266756 DOI: 10.1016/j.pep.2021.105924] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022]
Abstract
Generating recombinant proteins in insect cells has been made possible via the use of the Baculovirus Expression Vector System (BEVS). Despite the success of many proteins via this platform, some targets remain a challenge due to issues such as cytopathic effects, the unpredictable nature of co-infection and co-expressions, and baculovirus genome instability. Many promoters have been assayed for the purpose of expressing diverse proteins in insect cells, and yet there remains a lack of implementation of those results when reviewing the landscape of commercially available baculovirus vectors. In advancing the platform to produce a greater variety of proteins and complexes, the development of such constructs cannot be avoided. A better understanding of viral gene regulation and promoter options including viral, synthetic, and insect-derived promoters will be beneficial to researchers looking to utilize BEVS by recruiting these intricate mechanisms of gene regulation for heterologous gene expression. Here we summarize some of the developments that could be utilized to improve the expression of recombinant proteins and multi-protein complexes in insect cells.
Collapse
Affiliation(s)
- Carissa Grose
- Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| | - Zoe Putman
- Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Dominic Esposito
- Protein Expression Laboratory, NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| |
Collapse
|
4
|
The internal ribosome entry site of the Dengue virus mRNA is active when cap-dependent translation initiation is inhibited. J Virol 2021; 95:JVI.01998-20. [PMID: 33298544 PMCID: PMC8092825 DOI: 10.1128/jvi.01998-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dengue virus (DENV) is an enveloped, positive-sense, single-stranded RNA virus belonging to the Flaviviridae family. Translation initiation of the DENV mRNA can occur following a cap-dependent or a cap-independent mechanism. Two non-mutually exclusive cap-independent mechanisms of translation initiation have been described for the DENV mRNA. The first corresponds to a 5'end-dependent internal ribosome entry site (IRES)-independent mechanism, while the second relies on IRES-dependent initiation. In this report, we study the recently discovered DENV IRES. Results show that the DENV IRES is functional in the rabbit reticulocyte (RRL) in vitro translation system. In accordance, the activity of DENV IRES was resistant to the cleavage of eIF4G by the Foot-and-mouth disease virus leader protease in RRL. In cells, the DENV IRES exhibited only a marginal activity under standard culture conditions. The DENV IRES showed weak activity in HEK 293T cells; however, the DENV IRES activity was significantly enhanced in HEK 293T cells expressing the Human rhinovirus 2A protease. These findings suggest that the DENV IRES enables viral protein synthesis under conditions that suppress canonical translation initiation.IMPORTANCE Dengue virus (DENV), the etiological agent of Dengue, a febrile and hemorrhagic disease, infects millions of people per year in tropical and subtropical countries. When infecting cells, DENV induces stress conditions known to inhibit canonical protein synthesis. Under these conditions, DENV mRNA thrives using non-canonical modes of translation initiation. In this study, we characterize the mechanism dependent upon an internal ribosome entry site (IRES). Herein, we describe the activity of the DENV IRES in vitro and cells. We show that in cells, DENV IRES enables the viral mRNA to translate under conditions that suppress canonical translation initiation.
Collapse
|
5
|
Abstract
Members of the genus Flavivirus of Flaviviridae are important human pathogens of great concern because they cause serious diseases, sometimes death, in human populations living in tropical, subtropical (dengue virus [DENV], Zika virus [ZIKV], and yellow fever virus), or moderate climates (West Nile virus). Flaviviruses are known to control their translation by a cap-dependent mechanism. We have observed, however, that the uncapped genomes of DENV or ZIKV can initiate infection of mammalian and insect cells. We provide evidence that the short 5′ untranslated region (5′-UTR) of DENV or ZIKV genomes can fulfill the function of an internal ribosomal entry site (IRES). This strategy frees these organisms from the cap-dependent mechanism of gene expression at an as yet unknown stage of proliferation. The data raise new questions about the biology and evolution of flaviviruses, possibly leading to new controls of flavivirus disease. The Flavivirus genus of the Flaviviridae family encompasses numerous enveloped plus-strand RNA viruses. Dengue virus (DENV), a flavivirus, is the leading cause of serious arthropod-borne disease globally. The genomes of DENV, like the genomes of yellow fever virus (YFV), West Nile fever virus (WNV), or Zika virus (ZIKV), control their translation by a 5′-terminal capping group. Three other genera of Flaviviridae are remarkable because their viruses use internal ribosomal entry sites (IRESs) to control translation, and they are not arthropod transmitted. In 2006, E. Harris’ group published work suggesting that DENV RNA does not stringently need a cap for translation. They proposed that instead DENV translation is controlled by an interplay between 5′ and 3′ termini. Here we present evidence that the DENV or ZIKV 5′ untranslated regions (5′-UTRs) alone have IRES competence. This conclusion is based, first, on the observation that uncapped monocistronic mRNAs 5′ terminated with the DENV or ZIKV 5′-UTRs can efficiently direct translation of a reporter gene in BHK and C6/36 cells and second, that either 5′-UTR placed between two reporter genes can efficiently induce expression of the downstream gene in BHK cells but not in C6/36 cells. These experiments followed observations that uncapped DENV/ZIKV genomic transcripts, 5′ terminated with pppAN… or GpppAN…, can initiate infections of mammalian (BHK) or mosquito (C6/36) cells. IRES competence of the 5′-UTRs of DENV/ZIKV raises many open questions regarding the biology and control, as well as the evolution, of insect-borne flaviviruses.
Collapse
|
6
|
Reid W, Pilitt K, Alford R, Cervantes-Medina A, Yu H, Aluvihare C, Harrell R, O'Brochta DA. An Anopheles stephensi Promoter-Trap: Augmenting Genome Annotation and Functional Genomics. G3 (BETHESDA, MD.) 2018; 8:3119-3130. [PMID: 30135106 PMCID: PMC6169391 DOI: 10.1534/g3.118.200347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/15/2018] [Indexed: 12/20/2022]
Abstract
The piggyBac transposon was modified to generate gene trap constructs, which were then incorporated into the genome of the Asian malaria vector, Anopheles stephensi and remobilized through genetic crosses using a piggyBac transposase expressing line. A total of 620 remobilization events were documented, and 73 were further characterized at the DNA level to identify patterns in insertion site preferences, remobilization frequencies, and remobilization patterns. Overall, the use of the tetameric AmCyan reporter as the fusion peptide displayed a preference for insertion into the 5'-end of transcripts. Notably 183 - 44882 bp upstream of the An. stephensi v1.0 ab initio gene models, which demonstrated that the promoter regions for the genes of An. stephensi are further upstream of the 5'-proximal regions of the genes in the ab inito models than may be otherwise predicted. RNA-Seq transcript coverage supported the insertion of the splice acceptor gene trap element into 5'-UTR introns for nearly half of all insertions identified. The use of a gene trap element that prefers insertion into the 5'-end of genes supports the use of this technology for the random generation of knock-out mutants, as well as the experimental confirmation of 5'-UTR introns in An. stephensi.
Collapse
Affiliation(s)
- William Reid
- Institute for Bioscience and Biotechnology Research, University of Maryland College Park, 9600 Gudelsky Drive, Rockville, MD 20850-3467
| | - Kristina Pilitt
- Institute for Bioscience and Biotechnology Research, University of Maryland College Park, 9600 Gudelsky Drive, Rockville, MD 20850-3467
| | - Robert Alford
- Institute for Bioscience and Biotechnology Research, University of Maryland College Park, 9600 Gudelsky Drive, Rockville, MD 20850-3467
- Insect Transformation Facility, Institute for Bioscience and Biotechnology Research, University of Maryland College Park, 9600 Gudelsky Drive, Rockville, MD 20850-3467
| | - Adriana Cervantes-Medina
- Institute for Bioscience and Biotechnology Research, University of Maryland College Park, 9600 Gudelsky Drive, Rockville, MD 20850-3467
| | - Hao Yu
- Department of Plant Protection, Henan Institute of Science and Technology, East Street Huan-Lan, Xinxiang City, Henan Province 453003, CHINA
| | - Channa Aluvihare
- Insect Transformation Facility, Institute for Bioscience and Biotechnology Research, University of Maryland College Park, 9600 Gudelsky Drive, Rockville, MD 20850-3467
| | - Rob Harrell
- Insect Transformation Facility, Institute for Bioscience and Biotechnology Research, University of Maryland College Park, 9600 Gudelsky Drive, Rockville, MD 20850-3467
| | - David A O'Brochta
- Institute for Bioscience and Biotechnology Research, University of Maryland College Park, 9600 Gudelsky Drive, Rockville, MD 20850-3467
- Department of Entomology, University of Maryland College Park, 4112 Plant Sciences Building, College Park, MD 20742-4454
| |
Collapse
|
7
|
Temporal Regulation of Distinct Internal Ribosome Entry Sites of the Dicistroviridae Cricket Paralysis Virus. Viruses 2016; 8:v8010025. [PMID: 26797630 PMCID: PMC4728584 DOI: 10.3390/v8010025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 01/04/2023] Open
Abstract
Internal ribosome entry is a key mechanism for viral protein synthesis in a subset of RNA viruses. Cricket paralysis virus (CrPV), a member of Dicistroviridae, has a positive-sense single strand RNA genome that contains two internal ribosome entry sites (IRES), a 5′untranslated region (5′UTR) and intergenic region (IGR) IRES, that direct translation of open reading frames (ORF) encoding the viral non-structural and structural proteins, respectively. The regulation of and the significance of the CrPV IRESs during infection are not fully understood. In this study, using a series of biochemical assays including radioactive-pulse labelling, reporter RNA assays and ribosome profiling, we demonstrate that while 5′UTR IRES translational activity is constant throughout infection, IGR IRES translation is delayed and then stimulated two to three hours post infection. The delay in IGR IRES translation is not affected by inhibiting global translation prematurely via treatment with Pateamine A. Using a CrPV replicon that uncouples viral translation and replication, we show that the increase in IGR IRES translation is dependent on expression of non-structural proteins and is greatly stimulated when replication is active. Temporal regulation by distinct IRESs within the CrPV genome is an effective viral strategy to ensure optimal timing and expression of viral proteins to facilitate infection.
Collapse
|
8
|
Eckermann KN, Dippel S, KaramiNejadRanjbar M, Ahmed HM, Curril IM, Wimmer EA. Perspective on the combined use of an independent transgenic sexing and a multifactorial reproductive sterility system to avoid resistance development against transgenic Sterile Insect Technique approaches. BMC Genet 2014; 15 Suppl 2:S17. [PMID: 25471733 PMCID: PMC4255789 DOI: 10.1186/1471-2156-15-s2-s17] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background The Sterile Insect Technique (SIT) is an accepted species-specific genetic control approach that acts as an insect birth control measure, which can be improved by biotechnological engineering to facilitate its use and widen its applicability. First transgenic insects carrying a single killing system have already been released in small scale trials. However, to evade resistance development to such transgenic approaches, completely independent ways of transgenic killing should be established and combined. Perspective Most established transgenic sexing and reproductive sterility systems are based on the binary tTA expression system that can be suppressed by adding tetracycline to the food. However, to create 'redundant killing' an additional independent conditional expression system is required. Here we present a perspective on the use of a second food-controllable binary expression system - the inducible Q system - that could be used in combination with site-specific recombinases to generate independent transgenic killing systems. We propose the combination of an already established transgenic embryonic sexing system to meet the SIT requirement of male-only releases based on the repressible tTA system together with a redundant male-specific reproductive sterility system, which is activated by Q-system controlled site-specific recombination and is based on a spermatogenesis-specifically expressed endonuclease acting on several species-specific target sites leading to chromosome shredding. Conclusion A combination of a completely independent transgenic sexing and a redundant reproductive male sterility system, which do not share any active components and mediate the induced lethality by completely independent processes, would meet the 'redundant killing' criteria for suppression of resistance development and could therefore be employed in large scale long-term suppression programs using biotechnologically enhanced SIT.
Collapse
|
9
|
Wang QS, Jan E. Switch from cap- to factorless IRES-dependent 0 and +1 frame translation during cellular stress and dicistrovirus infection. PLoS One 2014; 9:e103601. [PMID: 25089704 PMCID: PMC4121135 DOI: 10.1371/journal.pone.0103601] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 07/03/2014] [Indexed: 11/18/2022] Open
Abstract
Internal ribosome entry sites (IRES) are utilized by a subset of cellular and viral mRNAs to initiate translation during cellular stress and virus infection when canonical cap-dependent translation is compromised. The intergenic region (IGR) IRES of the Dicistroviridae uses a streamlined mechanism in which it can directly recruit the ribosome in the absence of initiation factors and initiates translation using a non-AUG codon. A subset of IGR IRESs including that from the honey bee viruses can also direct translation of an overlapping +1 frame gene. In this study, we systematically examined cellular conditions that lead to IGR IRES-mediated 0 and +1 frame translation in Drosophila S2 cells. Towards this, a novel bicistronic reporter that exploits the 2A “stop-go” peptide was developed to allow the detection of IRES-mediated translation in vivo. Both 0 and +1 frame translation by the IGR IRES are stimulated under a number of cellular stresses and in S2 cells infected by cricket paralysis virus, demonstrating a switch from cap-dependent to IRES-dependent translation. The regulation of the IGR IRES mechanism ensures that both 0 frame viral structural proteins and +1 frame ORFx protein are optimally expressed during virus infection.
Collapse
Affiliation(s)
- Qing S. Wang
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
10
|
Carter JR, Keith JH, Fraser TS, Dawson JL, Kucharski CA, Horne KM, Higgs S, Fraser MJ. Effective suppression of dengue virus using a novel group-I intron that induces apoptotic cell death upon infection through conditional expression of the Bax C-terminal domain. Virol J 2014; 11:111. [PMID: 24927852 PMCID: PMC4104402 DOI: 10.1186/1743-422x-11-111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/20/2014] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Approximately 100 million confirmed infections and 20,000 deaths are caused by Dengue virus (DENV) outbreaks annually. Global warming and rapid dispersal have resulted in DENV epidemics in formally non-endemic regions. Currently no consistently effective preventive measures for DENV exist, prompting development of transgenic and paratransgenic vector control approaches. Production of transgenic mosquitoes refractory for virus infection and/or transmission is contingent upon defining antiviral genes that have low probability for allowing escape mutations, and are equally effective against multiple serotypes. Previously we demonstrated the effectiveness of an anti-viral group I intron targeting U143 of the DENV genome in mediating trans-splicing and expression of a marker gene with the capsid coding domain. In this report we examine the effectiveness of coupling expression of ΔN Bax to trans-splicing U143 intron activity as a means of suppressing DENV infection of mosquito cells. RESULTS Targeting the conserved DENV circularization sequence (CS) by U143 intron trans-splicing activity appends a 3' exon RNA encoding ΔN Bax to the capsid coding region of the genomic RNA, resulting in a chimeric protein that induces premature cell death upon infection. TCID50-IFA analyses demonstrate an enhancement of DENV suppression for all DENV serotypes tested over the identical group I intron coupled with the non-apoptotic inducing firefly luciferase as the 3' exon. These cumulative results confirm the increased effectiveness of this αDENV-U143-ΔN Bax group I intron as a sequence specific antiviral that should be useful for suppression of DENV in transgenic mosquitoes. Annexin V staining, caspase 3 assays, and DNA ladder observations confirm DCA-ΔN Bax fusion protein expression induces apoptotic cell death. CONCLUSION This report confirms the relative effectiveness of an anti-DENV group I intron coupled to an apoptosis-inducing ΔN Bax 3' exon that trans-splices conserved sequences of the 5' CS region of all DENV serotypes and induces apoptotic cell death upon infection. Our results confirm coupling the targeted ribozyme capabilities of the group I intron with the generation of an apoptosis-inducing transcript increases the effectiveness of infection suppression, improving the prospects of this unique approach as a means of inducing transgenic refractoriness in mosquitoes for all serotypes of this important disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Malcolm J Fraser
- Department of Biological Sciences, Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| |
Collapse
|
11
|
González M, Martín-Ruíz I, Jiménez S, Pirone L, Barrio R, Sutherland JD. Generation of stable Drosophila cell lines using multicistronic vectors. Sci Rep 2011; 1:75. [PMID: 22355594 PMCID: PMC3216562 DOI: 10.1038/srep00075] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/09/2011] [Indexed: 12/18/2022] Open
Abstract
Insect cell culture is becoming increasingly important for applications including recombinant protein production and cell-based screening with chemical or RNAi libraries. While stable mammalian cell lines expressing a protein of interest can be efficiently prepared using IRES-based vectors or viral-based approaches, options for stable insect cell lines are more limited. Here, we describe pAc5-STABLEs, new vectors for use in Drosophila cell culture to facilitate stable transformation. We show that viral-derived 2A-like (or "CHYSEL") peptides function in Drosophila cells and can mediate the multicistronic expression of two or three proteins of interest under control of the Actin5C constitutive promoter. The current vectors allow mCherry and/or GFP fusions to be generated for positive selection by G418 resistance in cells and should serve as a flexible platform for future applications.
Collapse
Affiliation(s)
- Monika González
- Gene Silencing Platform, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Hertz MI, Thompson SR. In vivo functional analysis of the Dicistroviridae intergenic region internal ribosome entry sites. Nucleic Acids Res 2011; 39:7276-88. [PMID: 21646337 PMCID: PMC3167618 DOI: 10.1093/nar/gkr427] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Some viral and cellular messages use an alternative mechanism to initiate protein synthesis that involves internal recruitment of the ribosome to an internal ribosome entry site (IRES). The Dicistroviridae intergenic regions (IGR) have been studied as model IRESs to understand the mechanism of IRES-mediated translation. In this study, the in vivo activity of IGR IRESs were compared. Our analysis demonstrates that Class I and II IGR IRESs have comparable translation efficiency in yeast and that Class II is significantly more active in mammalian cells. Furthermore, while Class II IGR IRES activity was enhanced in yeast grown at a higher temperature, temperature did not affect IGR IRES activity in mammalian cells. This suggests that Class II IRESs may not function optimally with yeast ribosomes. Examination of chimeric IGR IRESs, established that the IRES strength and temperature sensitivity are mediated by the ribosome binding domain. In addition, the sequence of the first translated codon is also an important determinant of IRES activity. Our findings provide us with a comprehensive overview of IGR IRES activities and allow us to begin to understand the differences between Classes I and II IGR IRESs.
Collapse
Affiliation(s)
- Marla I Hertz
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
13
|
Carter JR, Keith JH, Barde PV, Fraser TS, Fraser MJ. Targeting of highly conserved Dengue virus sequences with anti-Dengue virus trans-splicing group I introns. BMC Mol Biol 2010; 11:84. [PMID: 21078188 PMCID: PMC3000392 DOI: 10.1186/1471-2199-11-84] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 11/15/2010] [Indexed: 11/11/2022] Open
Abstract
Background Dengue viruses (DENV) are one of the most important viral diseases in the world with approximately 100 million infections and 200,000 deaths each year. The current lack of an approved tetravalent vaccine and ineffective insecticide control measures warrant a search for alternatives to effectively combat DENV. The trans-splicing variant of the Tetrahymena thermophila group I intron catalytic RNA, or ribozyme, is a powerful tool for post-transcriptional RNA modification. The nature of the ribozyme and the predictability with which it can be directed makes it a powerful tool for modifying RNA in nearly any cell type without the need for genome-altering gene therapy techniques or dependence on native cofactors. Results Several anti-DENV Group I trans-splicing introns (αDENV-GrpIs) were designed and tested for their ability to target DENV-2 NGC genomes in situ. We have successfully targeted two different uracil bases on the positive sense genomic strand within the highly conserved 5'-3' cyclization sequence (CS) region common to all serotypes of DENV with our αDENV-GrpIs. Our ribozymes have demonstrated ability to specifically trans-splice a new RNA sequence downstream of the targeted site in vitro and in transfected insect cells as analyzed by firefly luciferase and RT-PCR assays. The effectiveness of these αDENV-GrpIs to target infecting DENV genomes is also validated in transfected or transformed Aedes mosquito cell lines upon infection with unattenuated DENV-2 NGC. Conclusions Analysis shows that our αDENV-GrpIs have the ability to effectively trans-splice the DENV genome in situ. Notably, these results show that the αDENV-GrpI 9v1, designed to be active against all forms of Dengue virus, effectively targeted the DENV-2 NGC genome in a sequence specific manner. These novel αDENV-GrpI introns provide a striking alternative to other RNA based approaches for the transgenic suppression of DENV in transformed mosquito cells and tissues.
Collapse
Affiliation(s)
- James R Carter
- Eck Institute for Global Health, Department of Biology, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | |
Collapse
|
14
|
Lee JM, Chung HY, Kim KI, Yoo KH, Hwang-Bo J, Chung IS, Park JH. Synthesis of double-layered rotavirus-like particles using internal ribosome entry site vector system in stably-transformed Drosophila melanogaster. Biotechnol Lett 2010; 33:41-6. [DOI: 10.1007/s10529-010-0390-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 08/24/2010] [Indexed: 11/29/2022]
|