1
|
Shipley R, Wright E, Selden D, Wu G, Aegerter J, Fooks AR, Banyard AC. Bats and Viruses: Emergence of Novel Lyssaviruses and Association of Bats with Viral Zoonoses in the EU. Trop Med Infect Dis 2019; 4:tropicalmed4010031. [PMID: 30736432 PMCID: PMC6473451 DOI: 10.3390/tropicalmed4010031] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/25/2022] Open
Abstract
Bats in the EU have been associated with several zoonotic viral pathogens of significance to both human and animal health. Virus discovery continues to expand the existing understating of virus classification, and the increased interest in bats globally as reservoirs or carriers of zoonotic agents has fuelled the continued detection and characterisation of new lyssaviruses and other viral zoonoses. Although the transmission of lyssaviruses from bat species to humans or terrestrial species appears rare, interest in these viruses remains, through their ability to cause the invariably fatal encephalitis—rabies. The association of bats with other viral zoonoses is also of great interest. Much of the EU is free of terrestrial rabies, but several bat species harbor lyssaviruses that remain a risk to human and animal health. Whilst the rabies virus is the main cause of rabies globally, novel related viruses continue to be discovered, predominantly in bat populations, that are of interest purely through their classification within the lyssavirus genus alongside the rabies virus. Although the rabies virus is principally transmitted from the bite of infected dogs, these related lyssaviruses are primarily transmitted to humans and terrestrial carnivores by bats. Even though reports of zoonotic viruses from bats within the EU are rare, to protect human and animal health, it is important characterise novel bat viruses for several reasons, namely: (i) to investigate the mechanisms for the maintenance, potential routes of transmission, and resulting clinical signs, if any, in their natural hosts; (ii) to investigate the ability of existing vaccines, where available, to protect against these viruses; (iii) to evaluate the potential for spill over and onward transmission of viral pathogens in novel terrestrial hosts. This review is an update on the current situation regarding zoonotic virus discovery within bats in the EU, and provides details of potential future mechanisms to control the threat from these deadly pathogens.
Collapse
Affiliation(s)
- Rebecca Shipley
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), KT15 3NB Weybridge-London, UK.
- School of Life Sciences, University of Sussex, Falmer, BN1 9QG Brighton, UK.
| | - Edward Wright
- School of Life Sciences, University of Sussex, Falmer, BN1 9QG Brighton, UK.
| | - David Selden
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), KT15 3NB Weybridge-London, UK.
| | - Guanghui Wu
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), KT15 3NB Weybridge-London, UK.
| | - James Aegerter
- APHA - National Wildlife Management Centre, Wildlife Epidemiology and Modelling, Sand Hutton, YO41 1LZ York, UK.
| | - Anthony R Fooks
- Institute for Infection and Immunity, St. George's Hospital Medical School, University of London, London, SW17 0RE, UK.
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK.
| | - Ashley C Banyard
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency (APHA), KT15 3NB Weybridge-London, UK.
- School of Life Sciences, University of Sussex, Falmer, BN1 9QG Brighton, UK.
- Institute for Infection and Immunity, St. George's Hospital Medical School, University of London, London, SW17 0RE, UK.
| |
Collapse
|
2
|
Fisher CR, Streicker DG, Schnell MJ. The spread and evolution of rabies virus: conquering new frontiers. Nat Rev Microbiol 2018; 16:241-255. [PMID: 29479072 PMCID: PMC6899062 DOI: 10.1038/nrmicro.2018.11] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rabies is a lethal zoonotic disease that is caused by lyssaviruses, most often rabies virus. Despite control efforts, sporadic outbreaks in wildlife populations are largely unpredictable, underscoring our incomplete knowledge of what governs viral transmission and spread in reservoir hosts. Furthermore, the evolutionary history of rabies virus and related lyssaviruses remains largely unclear. Robust surveillance efforts combined with diagnostics and disease modelling are now providing insights into the epidemiology and evolution of rabies virus. The immune status of the host, the nature of exposure and strain differences all clearly influence infection and transmission dynamics. In this Review, we focus on rabies virus infections in the wildlife and synthesize current knowledge in the rapidly advancing fields of rabies virus epidemiology and evolution, and advocate for multidisciplinary approaches to advance our understanding of this disease.
Collapse
Affiliation(s)
- Christine R. Fisher
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Daniel G. Streicker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, UK
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, UK
| | - Matthias J. Schnell
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Vaccine Center at Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
3
|
Velasco-Villa A, Mauldin MR, Shi M, Escobar LE, Gallardo-Romero NF, Damon I, Olson VA, Streicker DG, Emerson G. The history of rabies in the Western Hemisphere. Antiviral Res 2017. [PMID: 28365457 DOI: 10.1016/j.anti-viral.2017.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Before the introduction of control programs in the 20th century, rabies in domestic dogs occurred throughout the Western Hemisphere. However, historical records and phylogenetic analysis of multiple virus isolates indicate that, before the arrival of the first European colonizers, rabies virus was likely present only in bats and skunks. Canine rabies was either rare or absent among domestic dogs of Native Americans, and first arrived when many new dog breeds were imported during the period of European colonization. The introduction of the cosmopolitan dog rabies lyssavirus variant and the marked expansion of the dog population provided ideal conditions for the flourishing of enzootic canine rabies. The shift of dog-maintained viruses into gray foxes, coyotes, skunks and other wild mesocarnivores throughout the Americas and to mongooses in the Caribbean has augmented the risk of human rabies exposures and has complicated control efforts. At the same time, the continued presence of bat rabies poses novel challenges in the absolute elimination of canine and human rabies. This article compiles existing historical and phylogenetic evidence of the origins and subsequent dynamics of rabies in the Western Hemisphere, from the era preceding the arrival of the first European colonizers through the present day. A companion article reviews the current status of canine rabies control throughout the Western Hemisphere and steps that will be required to achieve and maintain its complete elimination (Velasco-Villa et al., 2017).
Collapse
Affiliation(s)
- Andres Velasco-Villa
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, Atlanta, 30329, GA, USA.
| | - Matthew R Mauldin
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, Atlanta, 30329, GA, USA; Oak Ridge Institute for Science and Education (ORISE), CDC Fellowship Program, Oak Ridge, TN, USA
| | - Mang Shi
- Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Luis E Escobar
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, Saint Paul, 55108, MN, USA
| | - Nadia F Gallardo-Romero
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, Atlanta, 30329, GA, USA
| | - Inger Damon
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, Atlanta, 30329, GA, USA
| | - Victoria A Olson
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, Atlanta, 30329, GA, USA
| | - Daniel G Streicker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, Scotland, UK; MRC-University of Glasgow Centre for Virus Research, Sir Henry Wellcome Building, Glasgow, G61 1QH, Scotland, UK
| | - Ginny Emerson
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, Atlanta, 30329, GA, USA
| |
Collapse
|
4
|
Molecular characterization of atypical antigenic variants of canine rabies virus reveals its reintroduction by wildlife vectors in southeastern Mexico. Arch Virol 2017; 162:3629-3637. [PMID: 28819692 DOI: 10.1007/s00705-017-3529-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/25/2017] [Indexed: 01/29/2023]
Abstract
Rabies is an infectious viral disease that is practically always fatal following the onset of clinical signs. In Mexico, the last case of human rabies transmitted by dogs was reported in 2006 and canine rabies has declined significantly due to vaccination campaigns implemented in the country. Here we report on the molecular characterization of six rabies virus strains found in Yucatan and Chiapas, remarkably, four of them showed an atypical reaction pattern when antigenic characterization with a reduced panel of eight monoclonal antibodies was performed. Phylogenetic analyses on the RNA sequences unveiled that the three atypical strains from Yucatan are associated with skunks. Analysis using the virus entire genome showed that they belong to a different lineage distinct from the variants described for this animal species in Mexico. The Chiapas atypical strain was grouped in a lineage that was considered extinct, while the others are clustered within classic dog variants.
Collapse
|
5
|
Zhang Y, Vrancken B, Feng Y, Dellicour S, Yang Q, Yang W, Zhang Y, Dong L, Pybus OG, Zhang H, Tian H. Cross-border spread, lineage displacement and evolutionary rate estimation of rabies virus in Yunnan Province, China. Virol J 2017; 14:102. [PMID: 28578663 PMCID: PMC5457581 DOI: 10.1186/s12985-017-0769-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/25/2017] [Indexed: 12/12/2022] Open
Abstract
Background Rabies is an important but underestimated threat to public health, with most cases reported in Asia. Since 2000, a new epidemic wave of rabies has emerged in Yunnan Province, southwestern China, which borders three countries in Southeast Asia. Method We estimated gene-specific evolutionary rates for rabies virus using available data in GenBank, then used this information to calibrate the timescale of rabies virus (RABV) spread in Asia. We used 452 publicly available geo-referenced complete nucleoprotein (N) gene sequences, including 52 RABV sequences that were recently generated from samples collected in Yunnan between 2008 and 2012. Results The RABV N gene evolutionary rate was estimated to be 1.88 × 10−4 (1.37–2.41 × 10−4, 95% Bayesian credible interval, BCI) substitutions per site per year. Phylogenetic reconstructions show that the currently circulating RABV lineages in Yunnan result from at least seven independent introductions (95% BCI: 6–9 introductions) and represent each of the three main Asian RABV lineages, SEA-1, -2 and -3. We find that Yunnan is a sink location for the domestic spread of RABV and connects RABV epidemics in North China, South China, and Southeast Asia. Cross-border spread from southeast Asia (SEA) into South China, and intermixing of the North and South China epidemics is also well supported. The influx of RABV into Yunnan from SEA was not well-supported, likely due to the poor sampling of SEA RABV diversity. We found evidence for a lineage displacement of the Yunnan SEA-2 and -3 lineages by Yunnan SEA-1 strains, and considered whether this could be attributed to fitness differences. Conclusion Overall, our study contributes to a better understanding of the spread of RABV that could facilitate future rabies virus control and prevention efforts. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0769-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuzhen Zhang
- Yunnan Institute of Endemic Diseases Control and Prevention, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali, China
| | - Bram Vrancken
- Department of Microbiology and Immunology, Division of Clinical and Epidemiological Virology, Rega Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Yun Feng
- Yunnan Institute of Endemic Diseases Control and Prevention, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali, China
| | - Simon Dellicour
- Department of Microbiology and Immunology, Division of Clinical and Epidemiological Virology, Rega Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Qiqi Yang
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Weihong Yang
- Yunnan Institute of Endemic Diseases Control and Prevention, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali, China
| | - Yunzhi Zhang
- Yunnan Institute of Endemic Diseases Control and Prevention, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali, China
| | - Lu Dong
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | | | - Hailin Zhang
- Yunnan Institute of Endemic Diseases Control and Prevention, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali, China.
| | - Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China.
| |
Collapse
|
6
|
The phylogeography of Myotis bat-associated rabies viruses across Canada. PLoS Negl Trop Dis 2017; 11:e0005541. [PMID: 28542160 PMCID: PMC5453604 DOI: 10.1371/journal.pntd.0005541] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 06/01/2017] [Accepted: 03/30/2017] [Indexed: 01/12/2023] Open
Abstract
As rabies in carnivores is increasingly controlled throughout much of the Americas, bats are emerging as a significant source of rabies virus infection of humans and domestic animals. Knowledge of the bat species that maintain rabies is a crucial first step in reducing this public health problem. In North America, several bat species are known to be rabies virus reservoirs but the role of bats of the Myotis genus has been unclear due to the scarcity of laboratory confirmed cases and the challenges encountered in species identification of poorly preserved diagnostic submissions by morphological traits alone. This study has employed a collection of rabid bat specimens collected across Canada over a 25 year period to clearly define the role of particular Myotis species as rabies virus reservoirs. The virus was characterised by partial genome sequencing and host genetic barcoding, used to confirm species assignment of specimens, proved crucial to the identification of certain bat species as disease reservoirs. Several variants were associated with Myotis species limited in their Canadian range to the westernmost province of British Columbia while others were harboured by Myotis species that circulate across much of eastern and central Canada. All of these Myotis-associated viral variants, except for one, clustered as a monophyletic MYCAN clade, which has emerged from a lineage more broadly distributed across North America; in contrast one distinct variant, associated with the long-legged bat in Canada, represents a relatively recent host jump from a big brown bat reservoir. Together with evidence from South America, these findings demonstrate that rabies virus has emerged in the Myotis genus independently on multiple occasions and highlights the potential for emergence of new viral-host associations within this genus. Reducing the public health burden of rabies is most effectively achieved by elimination of the disease from its hosts. While the role of dogs and many wild carnivore species in maintaining and transmitting rabies virus is well established, our understanding of the role of many bat species in this regard is still incomplete. Several North American bat species are known to be rabies virus reservoirs, but the role of bats of the Myotis genus has been unclear due to the very limited number of laboratory confirmed rabies cases detected in these bats and the challenge in assigning species to poorly preserved bat carcasses. Our study utilised a collection of rabid bats collected across Canada over 25 years to address this issue. Genetic barcoding was used to identify the specimens to species and the virus was characterised by partial genome sequencing. Host barcoding proved to be crucial for correct species assignment to many specimens and allowed the identification of certain Myotis species as reservoirs for several genetically distinct variants of the rabies virus. The geographical distribution of these viral variants, and its correlation with the ecological and taxonomic properties of the hosts, are described. While most of these variants belong to a single rabies virus lineage, one variant associated with the long-legged bat appears to have emerged relatively recently following transmission from a big brown bat reservoir. Consistent with this observation, comparison of the rabies viruses associated with Myotis bats in North and South America clearly shows that rabies has emerged in members of this genus on several separate occasions.
Collapse
|
7
|
Velasco-Villa A, Mauldin MR, Shi M, Escobar LE, Gallardo-Romero NF, Damon I, Olson VA, Streicker DG, Emerson G. The history of rabies in the Western Hemisphere. Antiviral Res 2017; 146:221-232. [PMID: 28365457 PMCID: PMC5620125 DOI: 10.1016/j.antiviral.2017.03.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/07/2017] [Accepted: 03/20/2017] [Indexed: 12/13/2022]
Abstract
Before the introduction of control programs in the 20th century, rabies in domestic dogs occurred throughout the Western Hemisphere. However, historical records and phylogenetic analysis of multiple virus isolates indicate that, before the arrival of the first European colonizers, rabies virus was likely present only in bats and skunks. Canine rabies was either rare or absent among domestic dogs of Native Americans, and first arrived when many new dog breeds were imported during the period of European colonization. The introduction of the cosmopolitan dog rabies lyssavirus variant and the marked expansion of the dog population provided ideal conditions for the flourishing of enzootic canine rabies. The shift of dog-maintained viruses into gray foxes, coyotes, skunks and other wild mesocarnivores throughout the Americas and to mongooses in the Caribbean has augmented the risk of human rabies exposures and has complicated control efforts. At the same time, the continued presence of bat rabies poses novel challenges in the absolute elimination of canine and human rabies. This article compiles existing historical and phylogenetic evidence of the origins and subsequent dynamics of rabies in the Western Hemisphere, from the era preceding the arrival of the first European colonizers through the present day. A companion article reviews the current status of canine rabies control throughout the Western Hemisphere and steps that will be required to achieve and maintain its complete elimination (Velasco-Villa et al., 2017).
Collapse
Affiliation(s)
- Andres Velasco-Villa
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, Atlanta, 30329, GA, USA.
| | - Matthew R Mauldin
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, Atlanta, 30329, GA, USA; Oak Ridge Institute for Science and Education (ORISE), CDC Fellowship Program, Oak Ridge, TN, USA
| | - Mang Shi
- Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Luis E Escobar
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, Saint Paul, 55108, MN, USA
| | - Nadia F Gallardo-Romero
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, Atlanta, 30329, GA, USA
| | - Inger Damon
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, Atlanta, 30329, GA, USA
| | - Victoria A Olson
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, Atlanta, 30329, GA, USA
| | - Daniel G Streicker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, Scotland, UK; MRC-University of Glasgow Centre for Virus Research, Sir Henry Wellcome Building, Glasgow, G61 1QH, Scotland, UK
| | - Ginny Emerson
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, NE, Atlanta, 30329, GA, USA
| |
Collapse
|
8
|
Ding NZ, Xu DS, Sun YY, He HB, He CQ. A permanent host shift of rabies virus from Chiroptera to Carnivora associated with recombination. Sci Rep 2017; 7:289. [PMID: 28325933 PMCID: PMC5428239 DOI: 10.1038/s41598-017-00395-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/22/2017] [Indexed: 12/25/2022] Open
Abstract
Bat virus host shifts can result in the spread of diseases with significant effects. The rabies virus (RABV) is able to infect almost all mammals and is therefore a useful model for the study of host shift mechanisms. Carnivore RABVs originated from two historical host shifts from bat viruses. To reveal the genetic pathways by which bat RABVs changed their host tropism from bats to carnivores, we investigated the second permanent bat-to-carnivore shift resulting in two carnivore variants, known as raccoon RABV (RRV) and south-central skunk RABV (SCSKV). We found that their glycoprotein (G) genes are the result of recombination between an American bat virus and a carnivore virus. This recombination allowed the bat RABV to acquire the head of the G-protein ectodomain of the carnivore virus. This region is involved in receptor recognition and binding, response to changes in the pH microenvironment, trimerization of G proteins, and cell-to-cell transmission during the viral infection. Therefore, this recombination event may have significantly improved the variant's adaptability to carnivores, altering its host tropism and thus leading to large-scale epidemics in striped skunk and raccoon.
Collapse
Affiliation(s)
- Nai-Zheng Ding
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Dong-Shuai Xu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Yuan-Yuan Sun
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, 250014, China
| | - Hong-Bin He
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, 250014, China.
| | - Cheng-Qiang He
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
9
|
Rupprecht C, Kuzmin I, Meslin F. Lyssaviruses and rabies: current conundrums, concerns, contradictions and controversies. F1000Res 2017; 6:184. [PMID: 28299201 PMCID: PMC5325067 DOI: 10.12688/f1000research.10416.1] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2017] [Indexed: 12/20/2022] Open
Abstract
Lyssaviruses are bullet-shaped, single-stranded, negative-sense RNA viruses and the causative agents of the ancient zoonosis rabies. Africa is the likely home to the ancestors of taxa residing within the Genus Lyssavirus, Family Rhabdoviridae. Diverse lyssaviruses are envisioned as co-evolving with bats, as the ultimate reservoirs, over seemingly millions of years. In terms of relative distribution, overt abundance, and resulting progeny, rabies virus is the most successful lyssavirus species today, but for unknown reasons. All mammals are believed to be susceptible to rabies virus infection. Besides reservoirs among the Chiroptera, meso-carnivores also serve as major historical hosts and are represented among the canids, raccoons, skunks, mongooses, and ferret badgers. Perpetuating as a disease of nature with the mammalian central nervous system as niche, host breadth alone precludes any candidacy for true eradication. Despite having the highest case fatality of any infectious disease and a burden in excess of or comparative to other major zoonoses, rabies remains neglected. Once illness appears, no treatment is proven to prevent death. Paradoxically, vaccines were developed more than a century ago, but the clear majority of human cases are unvaccinated. Tens of millions of people are exposed to suspect rabid animals and tens of thousands succumb annually, primarily children in developing countries, where canine rabies is enzootic. Rather than culling animal populations, one of the most cost-effective strategies to curbing human fatalities is the mass vaccination of dogs. Building on considerable progress to date, several complementary actions are needed in the near future, including a more harmonized approach to viral taxonomy, enhanced de-centralized laboratory-based surveillance, focal pathogen discovery and characterization, applied pathobiological research for therapeutics, improved estimates of canine populations at risk, actual production of required vaccines and related biologics, strategies to maximize prevention but minimize unnecessary human prophylaxis, and a long-term, realistic plan for sustained global program support to achieve success in disease control, prevention, and elimination.
Collapse
Affiliation(s)
| | - Ivan Kuzmin
- University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - Francois Meslin
- DVM, former Team Leader, Neglected Zoonotic Diseases, WHO Headquarters, Geneva, Switzerland
| |
Collapse
|
10
|
Eggerbauer E, Troupin C, Passior K, Pfaff F, Höper D, Neubauer-Juric A, Haberl S, Bouchier C, Mettenleiter TC, Bourhy H, Müller T, Dacheux L, Freuling CM. The Recently Discovered Bokeloh Bat Lyssavirus: Insights Into Its Genetic Heterogeneity and Spatial Distribution in Europe and the Population Genetics of Its Primary Host. Adv Virus Res 2017; 99:199-232. [PMID: 29029727 DOI: 10.1016/bs.aivir.2017.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In 2010, a novel lyssavirus named Bokeloh bat lyssavirus (BBLV) was isolated from a Natterer's bat (Myotis nattereri) in Germany. Two further viruses were isolated in the same country and in France in recent years, all from the same bat species and all found in moribund or dead bats. Here we report the description and the full-length genome sequence of five additional BBLV isolates from Germany (n=4) and France (n=1). Interestingly, all of them were isolated from the Natterer's bat, except one from Germany, which was found in a common Pipistrelle bat (Pipistrellus pipistrellus), a widespread and abundant bat species in Europe. The latter represents the first case of transmission of BBLV to another bat species. Phylogenetic analysis clearly demonstrated the presence of two different lineages among this lyssavirus species: lineages A and B. The spatial distribution of these two lineages remains puzzling, as both of them comprised isolates from France and Germany; although clustering of isolates was observed on a regional scale, especially in Germany. Phylogenetic analysis based on the mitochondrial cytochrome b (CYTB) gene from positive Natterer's bat did not suggest a circulation of the respective BBLV sublineages in specific Natterer's bat subspecies, as all of them were shown to belong to the M. nattereri sensu stricto clade/subspecies and were closely related (German and French positive bats). At the bat host level, we demonstrated that the distribution of BBLV at the late stage of the disease seems large and massive, as viral RNA was detected in many different organs.
Collapse
|
11
|
Lin YC, Chu PY, Chang MY, Hsiao KL, Lin JH, Liu HF. Spatial Temporal Dynamics and Molecular Evolution of Re-Emerging Rabies Virus in Taiwan. Int J Mol Sci 2016; 17:392. [PMID: 26999115 PMCID: PMC4813248 DOI: 10.3390/ijms17030392] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/04/2016] [Accepted: 03/09/2016] [Indexed: 11/26/2022] Open
Abstract
Taiwan has been recognized by the World Organization for Animal Health as rabies-free since 1961. Surprisingly, rabies virus (RABV) was identified in a dead Formosan ferret badger in July 2013. Later, more infected ferret badgers were reported from different geographic regions of Taiwan. In order to know its evolutionary history and spatial temporal dynamics of this virus, phylogeny was reconstructed by maximum likelihood and Bayesian methods based on the full-length of glycoprotein (G), matrix protein (M), and nucleoprotein (N) genes. The evolutionary rates and phylogeographic were determined using Beast and SPREAD software. Phylogenetic trees showed a monophyletic group containing all of RABV isolates from Taiwan and it further separated into three sub-groups. The estimated nucleotide substitution rates of G, M, and N genes were between 2.49 × 10−4–4.75 × 10−4 substitutions/site/year, and the mean ratio of dN/dS was significantly low. The time of the most recent common ancestor was estimated around 75, 89, and 170 years, respectively. Phylogeographic analysis suggested the origin of the epidemic could be in Eastern Taiwan, then the Formosan ferret badger moved across the Central Range of Taiwan to western regions and separated into two branches. In this study, we illustrated the evolution history and phylogeographic of RABV in Formosan ferret badgers.
Collapse
Affiliation(s)
- Yung-Cheng Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan.
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan.
| | - Pei-Yu Chu
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Mei-Yin Chang
- Department of Medical Laboratory Science and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan.
| | - Kuang-Liang Hsiao
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Jih-Hui Lin
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei 11561, Taiwan.
| | - Hsin-Fu Liu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan.
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan.
- Department of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan.
| |
Collapse
|
12
|
Abstract
Recent studies have clearly shown that bats are the reservoir hosts of a wide diversity of novel viruses with representatives from most of the known animal virus families. In many respects bats make ideal reservoir hosts for viruses: they are the only mammals that fly, thus assisting in virus dispersal; they roost in large numbers, thus aiding transmission cycles; some bats hibernate over winter, thus providing a mechanism for viruses to persist between seasons; and genetic factors may play a role in the ability of bats to host viruses without resulting in clinical disease. Within the broad diversity of viruses found in bats are some important neurological pathogens, including rabies and other lyssaviruses, and Hendra and Nipah viruses, two recently described viruses that have been placed in a new genus, Henipaviruses in the family Paramyxoviridae. In addition, bats can also act as alternative hosts for the flaviviruses Japanese encephalitis and St Louis encephalitis viruses, two important mosquito-borne encephalitogenic viruses, and bats can assist in the dispersal and over-wintering of these viruses. Bats are also the reservoir hosts of progenitors of SARS and MERS coronaviruses, although other animals act as spillover hosts. This chapter presents the physiological and ecological factors affecting the ability of bats to act as reservoirs of neurotropic viruses, and describes the major transmission cycles leading to human infection.
Collapse
Affiliation(s)
- Carol Shoshkes Reiss
- Departments of Biology and Neural Science, New York University, New York, New York USA
| |
Collapse
|
13
|
Voloch CM, Capellão RT, Mello B, Schrago CG. Analysis of adaptive evolution in Lyssavirus genomes reveals pervasive diversifying selection during species diversification. Viruses 2014; 6:4465-78. [PMID: 25415197 PMCID: PMC4246234 DOI: 10.3390/v6114465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/24/2014] [Accepted: 11/11/2014] [Indexed: 12/25/2022] Open
Abstract
Lyssavirus is a diverse genus of viruses that infect a variety of mammalian hosts, typically causing encephalitis. The evolution of this lineage, particularly the rabies virus, has been a focus of research because of the extensive occurrence of cross-species transmission, and the distinctive geographical patterns present throughout the diversification of these viruses. Although numerous studies have examined pattern-related questions concerning Lyssavirus evolution, analyses of the evolutionary processes acting on Lyssavirus diversification are scarce. To clarify the relevance of positive natural selection in Lyssavirus diversification, we conducted a comprehensive scan for episodic diversifying selection across all lineages and codon sites of the five coding regions in lyssavirus genomes. Although the genomes of these viruses are generally conserved, the glycoprotein (G), RNA-dependent RNA polymerase (L) and polymerase (P) genes were frequently targets of adaptive evolution during the diversification of the genus. Adaptive evolution is particularly manifest in the glycoprotein gene, which was inferred to have experienced the highest density of positively selected codon sites along branches. Substitutions in the L gene were found to be associated with the early diversification of phylogroups. A comparison between the number of positively selected sites inferred along the branches of RABV population branches and Lyssavirus intespecies branches suggested that the occurrence of positive selection was similar on the five coding regions of the genome in both groups.
Collapse
Affiliation(s)
- Carolina M Voloch
- Department of Genetics, Federal University of Rio de Janeiro, CEP: 21941-617, Brazil.
| | - Renata T Capellão
- Department of Genetics, Federal University of Rio de Janeiro, CEP: 21941-617, Brazil.
| | - Beatriz Mello
- Department of Genetics, Federal University of Rio de Janeiro, CEP: 21941-617, Brazil.
| | - Carlos G Schrago
- Department of Genetics, Federal University of Rio de Janeiro, CEP: 21941-617, Brazil.
| |
Collapse
|
14
|
Mollentze N, Biek R, Streicker DG. The role of viral evolution in rabies host shifts and emergence. Curr Opin Virol 2014; 8:68-72. [PMID: 25064563 PMCID: PMC4199325 DOI: 10.1016/j.coviro.2014.07.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 06/30/2014] [Accepted: 07/03/2014] [Indexed: 12/25/2022]
Abstract
Despite its ability to infect all mammals, Rabies virus persists in numerous species-specific cycles that rarely sustain transmission in alternative species. The determinants of these species-associations and the adaptive significance of genetic divergence between host-associated viruses are poorly understood. One explanation is that epidemiological separation between reservoirs causes neutral genetic differentiation. Indeed, recent studies attributed host shifts to ecological factors and selection of 'preadapted' viral variants from the existing viral community. However, phenotypic differences between isolates and broad scale comparative and molecular evolutionary analyses indicate multiple barriers that Rabies virus must overcome through adaptation. This review assesses various lines of evidence and proposes a synthetic hypothesis for the respective roles of ecology and evolution in Rabies virus host shifts.
Collapse
Affiliation(s)
- Nardus Mollentze
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Daniel G Streicker
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK; Medical Research Council, University of Glasgow, Centre for Virus Research, Glasgow G61 1QH, UK.
| |
Collapse
|
15
|
Cell tropism predicts long-term nucleotide substitution rates of mammalian RNA viruses. PLoS Pathog 2014; 10:e1003838. [PMID: 24415935 PMCID: PMC3887100 DOI: 10.1371/journal.ppat.1003838] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 11/04/2013] [Indexed: 02/05/2023] Open
Abstract
The high rates of RNA virus evolution are generally attributed to replication with error-prone RNA-dependent RNA polymerases. However, these long-term nucleotide substitution rates span three orders of magnitude and do not correlate well with mutation rates or selection pressures. This substitution rate variation may be explained by differences in virus ecology or intrinsic genomic properties. We generated nucleotide substitution rate estimates for mammalian RNA viruses and compiled comparable published rates, yielding a dataset of 118 substitution rates of structural genes from 51 different species, as well as 40 rates of non-structural genes from 28 species. Through ANCOVA analyses, we evaluated the relationships between these rates and four ecological factors: target cell, transmission route, host range, infection duration; and three genomic properties: genome length, genome sense, genome segmentation. Of these seven factors, we found target cells to be the only significant predictors of viral substitution rates, with tropisms for epithelial cells or neurons (P<0.0001) as the most significant predictors. Further, one-tailed t-tests showed that viruses primarily infecting epithelial cells evolve significantly faster than neurotropic viruses (P<0.0001 and P<0.001 for the structural genes and non-structural genes, respectively). These results provide strong evidence that the fastest evolving mammalian RNA viruses infect cells with the highest turnover rates: the highly proliferative epithelial cells. Estimated viral generation times suggest that epithelial-infecting viruses replicate more quickly than viruses with different cell tropisms. Our results indicate that cell tropism is a key factor in viral evolvability. RNA viruses are the fastest evolving human pathogens, making their treatment and control difficult. Compared to DNA viruses, RNA viruses replicate with much lower fidelity, which can explain why RNA viruses evolve significantly faster than most DNA viruses. However, there is tremendous variation among the evolutionary rates of different RNA viruses, which is not explained by variation in mutation rates. Here we present a survey of mammalian RNA virus rates of evolution, and a comprehensive comparison of these rates to different properties of virus genomic architecture and ecology. We found that cell tropism is the most significant predictor of long-term rates of mammalian RNA virus evolution. For instance, viruses targeting epithelial cells evolve significantly faster than viruses that target neurons. Our results provide mechanistic insight into why viruses that infect respiratory and gastrointestinal epithelia have been difficult to control.
Collapse
|
16
|
Comparison of complete genome sequences of dog rabies viruses isolated from China and Mexico reveals key amino acid changes that may be associated with virus replication and virulence. Arch Virol 2014; 159:1593-601. [PMID: 24395077 DOI: 10.1007/s00705-013-1966-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
Abstract
Rabies is a global problem, but its impact and prevalence vary across different regions. In some areas, such as parts of Africa and Asia, the virus is prevalent in the domestic dog population, leading to epidemic waves and large numbers of human fatalities. In other regions, such as the Americas, the virus predominates in wildlife and bat populations, with sporadic spillover into domestic animals. In this work, we attempted to investigate whether these distinct environments led to selective pressures that result in measurable changes within the genome at the amino acid level. To this end, we collected and sequenced the full genome of two isolates from divergent environments. The first isolate (DRV-AH08) was from China, where the virus is present in the dog population and the country is experiencing a serious epidemic. The second isolate (DRV-Mexico) was taken from Mexico, where the virus is present in both wildlife and domestic dog populations, but at low levels as a consequence of an effective vaccination program. We then combined and compared these with other full genome sequences to identify distinct amino acid changes that might be associated with environment. Phylogenetic analysis identified strain DRV-AH08 as belonging to the China-I lineage, which has emerged to become the dominant lineage in the current epidemic. The Mexico strain was placed in the D11 Mexico lineage, associated with the West USA-Mexico border clade. Amino acid sequence analysis identified only 17 amino acid differences in the N, G and L proteins. These differences may be associated with virus replication and virulence-for example, the short incubation period observed in the current epidemic in China.
Collapse
|
17
|
Ultra-deep sequencing of intra-host rabies virus populations during cross-species transmission. PLoS Negl Trop Dis 2013; 7:e2555. [PMID: 24278493 PMCID: PMC3836733 DOI: 10.1371/journal.pntd.0002555] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/10/2013] [Indexed: 12/25/2022] Open
Abstract
One of the hurdles to understanding the role of viral quasispecies in RNA virus cross-species transmission (CST) events is the need to analyze a densely sampled outbreak using deep sequencing in order to measure the amount of mutation occurring on a small time scale. In 2009, the California Department of Public Health reported a dramatic increase (350) in the number of gray foxes infected with a rabies virus variant for which striped skunks serve as a reservoir host in Humboldt County. To better understand the evolution of rabies, deep-sequencing was applied to 40 unpassaged rabies virus samples from the Humboldt outbreak. For each sample, approximately 11 kb of the 12 kb genome was amplified and sequenced using the Illumina platform. Average coverage was 17,448 and this allowed characterization of the rabies virus population present in each sample at unprecedented depths. Phylogenetic analysis of the consensus sequence data demonstrated that samples clustered according to date (1995 vs. 2009) and geographic location (northern vs. southern). A single amino acid change in the G protein distinguished a subset of northern foxes from a haplotype present in both foxes and skunks, suggesting this mutation may have played a role in the observed increased transmission among foxes in this region. Deep-sequencing data indicated that many genetic changes associated with the CST event occurred prior to 2009 since several nonsynonymous mutations that were present in the consensus sequences of skunk and fox rabies samples obtained from 20032010 were present at the sub-consensus level (as rare variants in the viral population) in skunk and fox samples from 1995. These results suggest that analysis of rare variants within a viral population may yield clues to ancestral genomes and identify rare variants that have the potential to be selected for if environment conditions change. Understanding the role of genetic variants within a viral population is a necessary step toward predicting and treating emerging infectious diseases. The high mutation rate of RNA viruses increases the ability of these viruses to adapt to diverse hosts and cause new human and zoonotic diseases. The genetic diversity of a viral population within a host may allow the virus to adapt to a diverse array of selective pressures and enable cross-species transmission events. In 2009 a large outbreak of rabies in Northern California involved a skunk rabies virus variant that efficiently transmitted within a population of gray foxes, suggesting possible adaptation to a novel host species. To better understand the evolution of rabies virus that enabled this host jump, we applied deep-sequencing analysis to rabies virus samples from the outbreak. Deep-sequencing data indicated that many of the genetic changes associated with host jump occurred prior to 2009, and these mutations were present at very low frequencies in viral populations from samples dating back to 1995. These results suggest deep sequencing is useful for characterization of viral populations, and may provide insight to ancestral genomes and role of rare variants in viral emergence.
Collapse
|
18
|
Kgaladi J, Wright N, Coertse J, Markotter W, Marston D, Fooks AR, Freuling CM, Müller TF, Sabeta CT, Nel LH. Diversity and epidemiology of Mokola virus. PLoS Negl Trop Dis 2013; 7:e2511. [PMID: 24205423 PMCID: PMC3812115 DOI: 10.1371/journal.pntd.0002511] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/18/2013] [Indexed: 12/13/2022] Open
Abstract
Mokola virus (MOKV) appears to be exclusive to Africa. Although the first isolates were from Nigeria and other Congo basin countries, all reports over the past 20 years have been from southern Africa. Previous phylogenetic studies analyzed few isolates or used partial gene sequence for analysis since limited sequence information is available for MOKV and the isolates were distributed among various laboratories. The complete nucleoprotein, phosphoprotein, matrix and glycoprotein genes of 18 MOKV isolates in various laboratories were sequenced either using partial or full genome sequencing using pyrosequencing and a phylogenetic analysis was undertaken. The results indicated that MOKV isolates from the Republic of South Africa, Zimbabwe, Central African Republic and Nigeria clustered according to geographic origin irrespective of the genes used for phylogenetic analysis, similar to that observed with Lagos bat virus. A Bayesian Markov-Chain-Monte-Carlo- (MCMC) analysis revealed the age of the most recent common ancestor (MRCA) of MOKV to be between 279 and 2034 years depending on the genes used. Generally, all MOKV isolates showed a similar pattern at the amino acid sites considered influential for viral properties.
Collapse
Affiliation(s)
- Joe Kgaladi
- Department of Microbiology and Plant Pathology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Nicolette Wright
- Department of Microbiology and Plant Pathology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Jessica Coertse
- Department of Microbiology and Plant Pathology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Wanda Markotter
- Department of Microbiology and Plant Pathology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Denise Marston
- Wildlife Zoonoses and Vector-borne Diseases Research Group, OIE Rabies Reference Laboratory/WHO Collaborating Centre for the Characterization of Rabies and Rabies-related Viruses), Department of Virology, Animal Health Veterinary Laboratories Agency (Weybridge), Addlestone, Surrey, United Kingdom
| | - Anthony R. Fooks
- Wildlife Zoonoses and Vector-borne Diseases Research Group, OIE Rabies Reference Laboratory/WHO Collaborating Centre for the Characterization of Rabies and Rabies-related Viruses), Department of Virology, Animal Health Veterinary Laboratories Agency (Weybridge), Addlestone, Surrey, United Kingdom
- University of Liverpool, Department of Clinical Infection, Microbiology and Immunology, Liverpool, United Kingdom
| | - Conrad M. Freuling
- OIE Rabies Reference Laboratory/WHO Collaborating Centre for Rabies Surveillance and Research, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Biology, Greifswald-Insel Riems, Germany
| | - Thomas F. Müller
- OIE Rabies Reference Laboratory/WHO Collaborating Centre for Rabies Surveillance and Research, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Biology, Greifswald-Insel Riems, Germany
| | - Claude T. Sabeta
- OIE Rabies Reference Laboratory, Agricultural Research Council, Onderstepoort Veterinary Institute, Pretoria, South Africa
| | - Louis H. Nel
- Department of Microbiology and Plant Pathology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
19
|
Kuzmina NA, Kuzmin IV, Ellison JA, Taylor ST, Bergman DL, Dew B, Rupprecht CE. A reassessment of the evolutionary timescale of bat rabies viruses based upon glycoprotein gene sequences. Virus Genes 2013; 47:305-10. [PMID: 23839669 PMCID: PMC7088765 DOI: 10.1007/s11262-013-0952-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 06/29/2013] [Indexed: 12/25/2022]
Abstract
Rabies, an acute progressive encephalomyelitis caused by viruses in the genus Lyssavirus, is one of the oldest known infectious diseases. Although dogs and other carnivores represent the greatest threat to public health as rabies reservoirs, it is commonly accepted that bats are the primary evolutionary hosts of lyssaviruses. Despite early historical documentation of rabies, molecular clock analyses indicate a quite young age of lyssaviruses, which is confusing. For example, the results obtained for partial and complete nucleoprotein gene sequences of rabies viruses (RABV), or for a limited number of glycoprotein gene sequences, indicated that the time of the most recent common ancestor (TMRCA) for current bat RABV diversity in the Americas lies in the seventeenth to eighteenth centuries and might be directly or indirectly associated with the European colonization. Conversely, several other reports demonstrated high genetic similarity between lyssavirus isolates, including RABV, obtained within a time interval of 25–50 years. In the present study, we attempted to re-estimate the age of several North American bat RABV lineages based on the largest set of complete and partial glycoprotein gene sequences compiled to date (n = 201) employing a codon substitution model. Although our results overlap with previous estimates in marginal areas of the 95 % high probability density (HPD), they suggest a longer evolutionary history of American bat RABV lineages (TMRCA at least 732 years, with a 95 % HPD 436–1107 years).
Collapse
Affiliation(s)
- Natalia A Kuzmina
- Centers for Disease Control and Prevention, 1600 Clifton Rd., Bldg. 17, MS G-33, Atlanta, GA, 30333, USA,
| | | | | | | | | | | | | |
Collapse
|
20
|
Carnieli P, Ruthner Batista HBC, de Novaes Oliveira R, Castilho JG, Vieira LFP. Phylogeographic dispersion and diversification of rabies virus lineages associated with dogs and crab-eating foxes (Cerdocyon thous) in Brazil. Arch Virol 2013; 158:2307-13. [PMID: 23749047 DOI: 10.1007/s00705-013-1755-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/02/2013] [Indexed: 11/27/2022]
Abstract
Genetic lineages of dog-associated RABV still circulate in some areas of the North and Northeast of Brazil. In parallel, another RABV lineage circulates among wild canids in the Northeast, particularly the crab-eating fox (Cerdocyon thous). Although previous studies and phylogenetic analyses have been carried out, the way in which these lineages are dispersed temporally and spatially remained to be elucidated. In this study, RABV N gene sequences isolated from canids in North and Northeast Brazil were analyzed by the Bayesian Markov Chain Monte Carlo Method, and the results were then used in a phylogeographic study. It was inferred from the findings that the most recent common ancestor became established at the end of the nineteenth century on the border of the Brazilian states of Paraíba and Pernambuco and diversified into the lineages associated with dogs and C. thous. Around 1910, the original C. thous lineage diversified into two main sublineages in the same area, one of which migrated to the south and the other to the north. The dog-associated lineage diversified around 1945 and moved toward the north and south. From the phylogeographic analysis it was possible to infer not only the movement of the virus lineages but also the probable location where dispersion and diversification occurred. The methodology used here enabled the phylogeographic history of RABV in the region to be reconstructed, and the dispersion pattern of the virus can be used to predict its movements, making it easier to stop the advance of a rabies epidemic.
Collapse
|
21
|
Susceptibility and pathogenesis of little brown bats (Myotis lucifugus) to heterologous and homologous rabies viruses. J Virol 2013; 87:9008-15. [PMID: 23741002 DOI: 10.1128/jvi.03554-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rabies virus (RABV) maintenance in bats is not well understood. Big brown bats (Eptesicus fuscus), little brown bats (Myotis lucifugus), and Mexican free-tailed bats (Tadarida brasiliensis) are the most common bats species in the United States. These colonial bat species also have the most frequent contact with humans and domestic animals. However, the silver-haired bat (Lasionycteris noctivagans) RABV is associated with the majority of human rabies virus infections in the United States and Canada. This is of interest because silver-haired bats are more solitary bats with infrequent human interaction. Our goal was to determine the likelihood of a colonial bat species becoming infected with and transmitting a heterologous RABV. To ascertain the potential of heterologous RABV infection in colonial bat species, little brown bats were inoculated with a homologous RABV or one of two heterologous RABVs. Additionally, to determine if the route of exposure influenced the disease process, bats were inoculated either intramuscularly (i.m.) or subcutaneously (s.c.) with a homologous or heterologous RABV. Our results demonstrate that intramuscular inoculation results in a more rapid progression of disease onset, whereas the incubation time in bats inoculated s.c. is significantly longer. Additionally, cross protection was not consistently achieved in bats previously inoculated with a heterologous RABV following a challenge with a homologous RABV 6 months later. Finally, bats that developed rabies following s.c. inoculation were significantly more likely to shed virus in their saliva and demonstrated increased viral dissemination. In summary, bats inoculated via the s.c. route are more likely to shed virus, thus increasing the likelihood of transmission.
Collapse
|
22
|
Silva SR, Katz ISS, Mori E, Carnieli P, Vieira LFP, Batista HBCR, Chaves LB, Scheffer KC. Biotechnology advances: a perspective on the diagnosis and research of Rabies Virus. Biologicals 2013; 41:217-23. [PMID: 23683880 DOI: 10.1016/j.biologicals.2013.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/05/2013] [Accepted: 04/06/2013] [Indexed: 11/15/2022] Open
Abstract
Rabies is a widespread zoonotic disease responsible for approximately 55,000 human deaths/year. The direct fluorescent antibody test (DFAT) and the mouse inoculation test (MIT) used for rabies diagnosis, have high sensitivity and specificity, but are expensive and time-consuming. These disadvantages and the identification of new strains of the virus encourage the use of new techniques that are rapid, sensitive, specific and economical for the detection and research of the Rabies Virus (RABV). Real-time RT-PCR, phylogeographic analysis, proteomic assays and DNA recombinant technology have been used in research laboratories. Together, these techniques are effective on samples with low virus titers in the study of molecular epidemiology or in the identification of new disease markers, thus improving the performance of biological assays. In this context, modern advances in molecular technology are now beginning to complement more traditional approaches and promise to revolutionize the diagnosis of rabies. This brief review presents some of the recent molecular tools used for RABV analysis, with emphasis on rabies diagnosis and research.
Collapse
Affiliation(s)
- S R Silva
- Pasteur Institute, São Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Faria NR, Suchard MA, Rambaut A, Streicker DG, Lemey P. Simultaneously reconstructing viral cross-species transmission history and identifying the underlying constraints. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120196. [PMID: 23382420 DOI: 10.1098/rstb.2012.0196] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The factors that determine the origin and fate of cross-species transmission events remain unclear for the majority of human pathogens, despite being central for the development of predictive models and assessing the efficacy of prevention strategies. Here, we describe a flexible Bayesian statistical framework to reconstruct virus transmission between different host species based on viral gene sequences, while simultaneously testing and estimating the contribution of several potential predictors of cross-species transmission. Specifically, we use a generalized linear model extension of phylogenetic diffusion to perform Bayesian model averaging over candidate predictors. By further extending this model with branch partitioning, we allow for distinct host transition processes on external and internal branches, thus discriminating between recent cross-species transmissions, many of which are likely to result in dead-end infections, and host shifts that reflect successful onwards transmission in the new host species. Our approach corroborates genetic distance between hosts as a key determinant of both host shifts and cross-species transmissions of rabies virus in North American bats. Furthermore, our results indicate that geographical range overlap is a modest predictor for cross-species transmission, but not for host shifts. Although our evolutionary framework focused on the multi-host reservoir dynamics of bat rabies virus, it is applicable to other pathogens and to other discrete state transition processes.
Collapse
Affiliation(s)
- Nuno Rodrigues Faria
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium.
| | | | | | | | | |
Collapse
|
24
|
Abstract
The lyssaviruses are a diverse group of viruses capable of causing rabies, which is an invariably fatal encephalitic disease in both humans and animals. Currently, the lyssavirus genus consists of 12 species with 11 of these distinct species having been isolated from bats. The basis for the apparent geographical segregation of bat lyssavirus infection between the Old and New World is poorly understood. In the New World species of insectivorous, frugivorous, and hematophagous bats, all represent important reservoirs of rabies virus. In contrast, rabies virus has never been detected in Old World bat populations, despite being endemic in terrestrial mammals. Instead, both insectivorous and frugivorous bat species across the Old World appear to act as reservoirs for the non-rabies lyssaviruses. In this chapter, we describe the association of the different lyssaviruses with different bat species across the world, classifying bat species by their feeding behavior.
Collapse
Affiliation(s)
- Ashley C. Banyard
- Wildlife Zoonoses and Vector Borne Diseases Research Group, Department of Virology, Animal Health and Veterinary Laboratories Agency, Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - David T.S. Hayman
- Wildlife Zoonoses and Vector Borne Diseases Research Group, Department of Virology, Animal Health and Veterinary Laboratories Agency, Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, UK,Cambridge Infectious Diseases Consortium, Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 0ES, UK,Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Conrad M. Freuling
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, D-17493 Greifswald - Insel Riems, Germany
| | - Thomas Müller
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, D-17493 Greifswald - Insel Riems, Germany
| | - Anthony R. Fooks
- Wildlife Zoonoses and Vector Borne Diseases Research Group, Department of Virology, Animal Health and Veterinary Laboratories Agency, Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, UK,National Consortium for Zoonosis Research, University of Liverpool, Leahurst, Chester High Road, Neston, Wirral, CH64 7TE, UK
| | - Nicholas Johnson
- Wildlife Zoonoses and Vector Borne Diseases Research Group, Department of Virology, Animal Health and Veterinary Laboratories Agency, Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, UK
| |
Collapse
|
25
|
Abstract
This chapter provides an overview of the global epidemiology of rabies, focusing on major changes over the past half-century and highlighting recent discoveries. This chapter also describes the natural and iatrogenic routes of transmission, as well as the risk and necessary actions for the prevention of rabies following an exposure. It reviews the methods for rabies diagnosis and the biologics for prevention, in addition to differences in rabies prophylaxis recommendations among advisory committees. The chapter also considers epidemiology and trends in global human rabies and the dynamics of the corresponding mammalian reservoir hosts for each area. Furthermore, it considers the phylogenetics of rabies virus, other lyssaviruses, and specific rabies virus variants in the context of regional rabies and the potential for novel emergences. Special attention is paid to developed countries, where existing surveillance and diagnostic infrastructure have provided detailed insights into the nature changing patterns in rabies epidemiology-patterns expected to be increasingly relevant to other less-developed nations based on current trends. Special attention is afforded to canine rabies, as dogs remain responsible for over 99% of all human exposures to the virus, including the methods and problems associated with intentional and unintentional movement of dogs at national and international levels. Finally, the chapter discusses the economic burden of rabies in terms of human and infrastructure support.
Collapse
Affiliation(s)
- Cathleen A. Hanlon
- Kansas State University Rabies Laboratory, 2005 Research Park Circle, Manhattan, KS 66506, USA
| | - James E. Childs
- Department of Epidemiology and Public Health Yale University School of Medicine, 60 College Street, P.O. Box 208034, New Haven, CT 06520, USA
| |
Collapse
|
26
|
|
27
|
Davis AD, Gordy PA, Bowen RA. Unique characteristics of bat rabies viruses in big brown bats (Eptesicus fuscus). Arch Virol 2012. [PMID: 23208279 DOI: 10.1007/s00705-012-1551-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rabies virus infection has been documented in several North American bat species, including Eptesicus fuscus. The virus-host relationship between bats and rabies virus (RV) is not well understood. The incidence of non-lethal RV exposure, based on the presence of viral neutralizing antibodies, demonstrates that exposure to RV does not always lead to clinical infection in bats. It is unknown how the route of exposure, rabies virus variant, or health of the bat affects the outcome following exposure. This paper describes the pathogenesis of two big brown bat RV variants in homologous host species. Our study demonstrates that RV variants obtained from the same species of bat from similar geographical areas may result in a diverse clinical progression of disease.
Collapse
Affiliation(s)
- April D Davis
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80524, USA.
| | | | | |
Collapse
|
28
|
Yung V, Favi M, Fernandez J. Typing of the rabies virus in Chile, 2002-2008. Epidemiol Infect 2012; 140:2157-62. [PMID: 22458941 PMCID: PMC9152333 DOI: 10.1017/s0950268812000520] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 02/23/2012] [Accepted: 03/04/2012] [Indexed: 11/05/2022] Open
Abstract
In Chile, dog rabies has been controlled and insectivorous bats have been identified as the main rabies reservoir. This study aimed to determine the rabies virus (RABV) variants circulating in the country between 2002 and 2008. A total of 612 RABV isolates were tested using a panel with eight monoclonal antibodies against the viral nucleoprotein (N-mAbs) for antigenic typing, and a product of 320-bp of the nucleoprotein gene was sequenced from 99 isolates. Typing of the isolates revealed six different antigenic variants but phylogenetic analysis identified four clusters associated with four different bat species. Tadarida brasiliensis bats were confirmed as the main reservoir. This methodology identified several independent rabies enzootics maintained by different species of insectivorous bats in Chile.
Collapse
Affiliation(s)
- V Yung
- Sección Rabia, Subdepartamento Virología, Instituto de Salud Pública de Chile, Santiago, Chile.
| | | | | |
Collapse
|
29
|
Ellison JA, Johnson SR, Kuzmina N, Gilbert A, Carson WC, VerCauteren KC, Rupprecht CE. Multidisciplinary Approach to Epizootiology and Pathogenesis of Bat Rabies Viruses in the United States. Zoonoses Public Health 2012; 60:46-57. [DOI: 10.1111/zph.12019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Streicker DG, Lemey P, Velasco-Villa A, Rupprecht CE. Rates of viral evolution are linked to host geography in bat rabies. PLoS Pathog 2012; 8:e1002720. [PMID: 22615575 PMCID: PMC3355098 DOI: 10.1371/journal.ppat.1002720] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/10/2012] [Indexed: 02/03/2023] Open
Abstract
Rates of evolution span orders of magnitude among RNA viruses with important implications for viral transmission and emergence. Although the tempo of viral evolution is often ascribed to viral features such as mutation rates and transmission mode, these factors alone cannot explain variation among closely related viruses, where host biology might operate more strongly on viral evolution. Here, we analyzed sequence data from hundreds of rabies viruses collected from bats throughout the Americas to describe dramatic variation in the speed of rabies virus evolution when circulating in ecologically distinct reservoir species. Integration of ecological and genetic data through a comparative bayesian analysis revealed that viral evolutionary rates were labile following historical jumps between bat species and nearly four times faster in tropical and subtropical bats compared to temperate species. The association between geography and viral evolution could not be explained by host metabolism, phylogeny or variable selection pressures, and instead appeared to be a consequence of reduced seasonality in bat activity and virus transmission associated with climate. Our results demonstrate a key role for host ecology in shaping the tempo of evolution in multi-host viruses and highlight the power of comparative phylogenetic methods to identify the host and environmental features that influence transmission dynamics.
Collapse
Affiliation(s)
- Daniel G Streicker
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America.
| | | | | | | |
Collapse
|
31
|
Evolution and biogeography of an emerging quasispecies: diversity patterns of the fish Viral Hemorrhagic Septicemia virus (VHSv). Mol Phylogenet Evol 2012; 63:327-41. [PMID: 22266219 DOI: 10.1016/j.ympev.2011.12.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 12/20/2011] [Accepted: 12/29/2011] [Indexed: 02/05/2023]
Abstract
Viral Hemorrhagic Septicemia virus (VHSv) is an RNA rhabdovirus that causes one of the most important finfish diseases, affecting over 70 marine and freshwater species. It was discovered in European cultured fish in 1938 and since has been described across the Northern Hemisphere. Four strains and several substrains have been hypothesized, whose phylogenetic relationships and evolutionary radiation are evaluated here in light of a quasispecies model, including an in-depth analysis of the novel and especially virulent new substrain (IVb) that first appeared in the North American Laurentian Great Lakes in 2003. We analyze the evolutionary patterns, genetic diversity, and biogeography of VHSv using all available RNA sequences from the glycoprotein (G), nucleoprotein (N), and non-virion (Nv) genes, with Maximum Likelihood and bayesian approaches. Results indicate that the G gene evolves at an estimated rate of μ=2.58×10(-4) nucleotide substitutions per site per year, the N gene at μ=4.26×10(-4), and Nv fastest at μ=1.25×10(-3). Phylogenetic trees from the three genes largely are congruent, distinguishing strains I-IV as reciprocally monophyletic with high bootstrap and posterior probability support. VHSv appears to have originated from a marine ancestor in the North Atlantic Ocean, diverging into two primary clades: strain IV in North America (the Northwestern Atlantic Ocean), and strains I-III in the Northeastern Atlantic region (Europe). Strain II may comprise the basal group of the latter clade and diverged in Baltic Sea estuarine waters; strains I and III appear to be sister groups (according to the G and Nv genes), with the former mostly in European freshwaters and the latter in North Sea marine/estuarine waters. Strain IV is differentiated into three monophyletic substrains, with IVa infecting Northeastern Pacific salmonids and many marine fishes (with 44 unique G gene haplotypes), IVb endemic to the freshwater Great Lakes (11 haplotypes), and a newly-designated IVc in marine/estuarine North Atlantic waters (five haplotypes). Two separate substrains independently appeared in the Northwestern Pacific region (Asia) in 1996, with Ib originating from the west and IVa from the east. Our results depict an evolutionary history of relatively rapid population diversifications in star-like patterns, following a quasispecies model. This study provides a baseline for future tracking of VHSv spread and interpreting its evolutionary diversification pathways.
Collapse
|
32
|
Rupprecht CE, Turmelle A, Kuzmin IV. A perspective on lyssavirus emergence and perpetuation. Curr Opin Virol 2011; 1:662-70. [PMID: 22440925 DOI: 10.1016/j.coviro.2011.10.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/14/2011] [Accepted: 10/17/2011] [Indexed: 10/15/2022]
Abstract
Rabies is propagated globally by viruses in the Family Rhabdoviridae, Genus Lyssavirus. These RNA viruses utilize the mammalian central nervous system as their ultimate niche, and exploit routine social mechanisms, as well as host behavioral alterations, to facilitate transmission by neural transport and innervations of the salivary glands, and ultimately excretion via the saliva, towards circulation thereafter in host populations. All mammals are susceptible to infection, but lyssavirus reservoirs are represented by several species of Carnivora, with viral global diversity and distribution in toto driven by a wide variety of the Chiroptera. Pathogen diversity is maintained by multiple faunas, and facilitated by pronounced host vagility, as exemplified by the ease of routine daily and seasonal movements by bats. Viral 'ensembles', or subpopulations associated with productive transmission events, emerge locally in vivo through a combination of naive host infections in some individuals versus acquired immunity by others, using complex metapopulation dynamics. Enhanced surveillance, improved diagnostics, increased pathogen detection, and an integrated One Health approach, targeting human, domestic animal and wildlife interfaces, provide modern insights to the ecology of bat lyssaviruses to augment future prevention and control.
Collapse
|
33
|
Davis A, Gordy P, Rudd R, Jarvis JA, Bowen RA. Naturally acquired rabies virus infections in wild-caught bats. Vector Borne Zoonotic Dis 2011; 12:55-60. [PMID: 21923271 DOI: 10.1089/vbz.2011.0674] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The study of a zoonotic disease requires an understanding of the disease incidence in animal reservoirs. Rabies incidence in bats submitted to diagnostic laboratories does not accurately reflect the true incidence in wild bat populations as a bias exists for testing bats that have been in contact with humans or pets. This article details the rabies incidence in two species of bats collected from natural settings without such bias. In this study, brain smears from 0.6% and 2.5% of wild-caught and apparently healthy Tadarida brasiliensis and Eptesicus fuscus, respectively, were positive for rabies virus (RV) antigen. Conversely, 92% of the grounded T. brasiliensis were positive for RV. Serology performed on captive colony and sick bats reveal an immune response to rabies. This work illustrates the complex interplay between immunity, disease state, and the conundrum of RV maintenance in bats.
Collapse
Affiliation(s)
- April Davis
- Department of Infectious Diseases, Wadsworth Center, Slingerlands, New York 12159, USA.
| | | | | | | | | |
Collapse
|
34
|
Nadin-Davis SA, Real LA. Molecular phylogenetics of the lyssaviruses--insights from a coalescent approach. Adv Virus Res 2011; 79:203-38. [PMID: 21601049 DOI: 10.1016/b978-0-12-387040-7.00011-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Technical improvements over the past 2 decades have enormously facilitated the generation of nucleotide sequence data for lyssavirus collections. These databases are amenable to methods of phylogenetic analysis, which attempt to define the taxonomic structure of this genus and predict the evolutionary relationships of current circulating strains. Coupled with a range of mathematical tools to explore the appropriateness of nucleotide substitution models and test for positive selection, the evolutionary process is being explored in detail. Despite the potential for high viral mutation levels, the operation of purifying selection appears to effectively constrain lyssavirus evolution. The recent development of coalescent theory has provided additional approaches to data analysis whereby the time frame of emergence of viral lineages can be most reliably estimated. Such studies suggest that all currently circulating rabies viruses have emerged within the past 1500 years. Moreover, through the capability of analyzing viral population dynamics and determining patterns of population size variation, coalescent approaches can provide insight into the demographics of viral outbreaks. Whereas human-assisted movement of reservoir host species has clearly facilitated transfer of rabies between continents, topographical landscape features significantly influence the rate and extent of contiguous disease spread. Together with empirical studies on virus diversity, the application of coalescent approaches will help to better understand lyssavirus emergence, evolution, and spread. In particular, such methods are presently facilitating exploration of the factors operating to limit the ability of lyssaviruses to establish new persistent virus-host associations and ultimately control the emergence of new species of this genus.
Collapse
Affiliation(s)
- Susan A Nadin-Davis
- Centre of Expertise for Rabies, Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | | |
Collapse
|
35
|
Abstract
Numerous bat species have been identified as important reservoirs of zoonotic viral pathogens. Rabies and rabies-related viruses constitute one of the most important viral zoonoses and pose a significant threat to public health across the globe. Whereas rabies virus (RABV) appears to be restricted to bats of the New World, related lyssavirus species have not been detected in the Americas and have only been detected in bat populations across Africa, Eurasia, and Australia. Currently, 11 distinct species of lyssavirus have been identified, 10 of which have been isolated from bat species and all of which appear to be able to cause encephalitis consistent with that seen with RABV infection of humans. In contrast, whereas lyssaviruses are apparently able to cause clinical disease in bats, it appears that these lyssaviruses may also be able to circulate within bat populations in the absence of clinical disease. This feature of these highly encephalitic viruses, alongside many other aspects of lyssavirus infection in bats, is poorly understood. Here, we review what is known of the complex relationship between bats and lyssaviruses, detailing both natural and experimental infections of these viruses in both chiropteran and nonchiropteran models. We also discuss potential mechanisms of virus excretion, transmission both to conspecifics and spill-over of virus into nonvolant species, and mechanisms of maintenance within bat populations. Importantly, we review the significance of neutralizing antibodies reported within bat populations and discuss the potential mechanisms by which highly neurovirulent viruses such as the lyssaviruses are able to infect bat species in the absence of clinical disease.
Collapse
Affiliation(s)
- Ashley C Banyard
- Rabies and Wildlife Zoonoses Group, Department of Virology, Veterinary Laboratories Agency, Weybridge, New Haw, Addlestone, Surrey, United Kingdom
| | | | | | | | | |
Collapse
|
36
|
McElhinney LM, Marston DA, Freuling CM, Cragg W, Stankov S, Lalosević D, Lalosević V, Müller T, Fooks AR. Molecular diversity and evolutionary history of rabies virus strains circulating in the Balkans. J Gen Virol 2011; 92:2171-2180. [PMID: 21632560 DOI: 10.1099/vir.0.032748-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Molecular studies of European classical rabies viruses (RABV) have revealed a number of geographically clustered lineages. To study the diversity of Balkan RABV, partial nucleoprotein (N) gene sequences were analysed from a unique panel of isolates (n = 210), collected from various hosts between 1972 and 2006. All of the Balkan isolates grouped within the European/Middle East Lineage, with the majority most closely related to East European strains. A number of RABV from Bosnia & Herzegovina and Montenegro, collected between 1986 and 2006, grouped with the West European strains, believed to be responsible for the rabies epizootic that spread throughout Europe in the latter half of the 20th Century. In contrast, no Serbian RABV belonged to this sublineage. However, a distinct group of Serbian fox RABV provided further evidence for the southwards wildlife-mediated movement of rabies from Hungary, Romania and Serbia into Bulgaria. To determine the optimal region for evolutionary analysis, partial, full and concatenated N-gene and glycoprotein (G) gene sequences were compared. Whilst both the divergence times and evolutionary rates were similar irrespective of genomic region, the 95 % highest probability density (HPD) limits were significantly reduced for full N-gene and concatenated NG-gene sequences compared with partial gene sequences. Bayesian coalescent analysis estimated the date of the most common recent ancestor of the Balkan RABV to be 1885 (95 % HPD, 1852-1913), and skyline plots suggested an expansion of the local viral population in 1980-1990, which coincides with the observed emergence of fox rabies in the region.
Collapse
Affiliation(s)
- L M McElhinney
- National Centre for Zoonosis Research, University of Liverpool, Leahurst, Neston, South Wirral CH64 7TE, UK.,Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal Health and Veterinary Laboratories Agency (AHVLA), New Haw, Addlestone, Surrey KT15 3NB, UK
| | - D A Marston
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal Health and Veterinary Laboratories Agency (AHVLA), New Haw, Addlestone, Surrey KT15 3NB, UK
| | - C M Freuling
- Institute for Epidemiology, WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Seestrasse 55, D-16868 Wusterhausen, Germany
| | - W Cragg
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal Health and Veterinary Laboratories Agency (AHVLA), New Haw, Addlestone, Surrey KT15 3NB, UK
| | - S Stankov
- Department for Microbiology, Pasteur Institute Novi Sad, Hajduk Veljkova 1, 21000 Novi Sad, Serbia
| | - D Lalosević
- Department for Microbiology, Pasteur Institute Novi Sad, Hajduk Veljkova 1, 21000 Novi Sad, Serbia
| | - V Lalosević
- Department for Microbiology, Pasteur Institute Novi Sad, Hajduk Veljkova 1, 21000 Novi Sad, Serbia
| | - T Müller
- Institute for Epidemiology, WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Seestrasse 55, D-16868 Wusterhausen, Germany
| | - A R Fooks
- National Centre for Zoonosis Research, University of Liverpool, Leahurst, Neston, South Wirral CH64 7TE, UK.,Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal Health and Veterinary Laboratories Agency (AHVLA), New Haw, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
37
|
Vázquez-Morón S, Juste J, Ibáñez C, Berciano JM, Echevarría JE. Phylogeny of European Bat Lyssavirus 1 inEptesicus isabellinusBats, Spain. Emerg Infect Dis 2011; 17:520-3. [DOI: 10.3201/eid1703.100894] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
38
|
Rabies virus in insectivorous bats: Implications of the diversity of the nucleoprotein and glycoprotein genes for molecular epidemiology. Virology 2010; 405:352-60. [DOI: 10.1016/j.virol.2010.05.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/13/2010] [Accepted: 05/24/2010] [Indexed: 11/19/2022]
|
39
|
Streicker DG, Turmelle AS, Vonhof MJ, Kuzmin IV, McCracken GF, Rupprecht CE. Host phylogeny constrains cross-species emergence and establishment of rabies virus in bats. Science 2010; 329:676-9. [PMID: 20689015 DOI: 10.1126/science.1188836] [Citation(s) in RCA: 330] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
For RNA viruses, rapid viral evolution and the biological similarity of closely related host species have been proposed as key determinants of the occurrence and long-term outcome of cross-species transmission. Using a data set of hundreds of rabies viruses sampled from 23 North American bat species, we present a general framework to quantify per capita rates of cross-species transmission and reconstruct historical patterns of viral establishment in new host species using molecular sequence data. These estimates demonstrate diminishing frequencies of both cross-species transmission and host shifts with increasing phylogenetic distance between bat species. Evolutionary constraints on viral host range indicate that host species barriers may trump the intrinsic mutability of RNA viruses in determining the fate of emerging host-virus interactions.
Collapse
Affiliation(s)
- Daniel G Streicker
- Rabies Team, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Turmelle AS, Allen LC, Jackson FR, Kunz TH, Rupprecht CE, McCracken GF. Ecology of rabies virus exposure in colonies of Brazilian free-tailed bats (Tadarida brasiliensis) at natural and man-made roosts in Texas. Vector Borne Zoonotic Dis 2010; 10:165-75. [PMID: 19492942 DOI: 10.1089/vbz.2008.0163] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Previous studies have investigated rabies virus (RABV) epizootiology in Brazilian free-tailed bats (Tadarida brasiliensis) in natural cave roosts. However, little is known about geographic variation in RABV exposure, or if the use of man-made roosts by this species affects enzootic RABV infection dynamics within colonies. We sampled rabies viral neutralizing antibodies in bats at three bridge and three cave roosts at multiple time points during the reproductive season to investigate temporal and roost variation in RABV exposure. We report seropositive bats in all age and sex classes with minimal geographic variation in RABV seroprevalence among Brazilian free-tailed bat colonies in south-central Texas. While roost type was not a significant predictor of RABV seroprevalence, it was significantly associated with seasonal fluctuations, suggesting patterns of exposure that differ between roosts. Temporal patterns suggest increased RABV seroprevalence after parturition in cave colonies, potentially related to an influx of susceptible young, in contrast to more uniform seroprevalence in bridge colonies. This study highlights the importance of life history and roost ecology in understanding patterns of RABV seroprevalence in colonies of the Brazilian free-tailed bat.
Collapse
Affiliation(s)
- Amy S Turmelle
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | | | |
Collapse
|
41
|
Gong W, Jiang Y, Za Y, Zeng Z, Shao M, Fan J, Sun Y, Xiong Z, Yu X, Tu C. Temporal and spatial dynamics of rabies viruses in China and Southeast Asia. Virus Res 2010; 150:111-8. [DOI: 10.1016/j.virusres.2010.02.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Revised: 02/26/2010] [Accepted: 02/27/2010] [Indexed: 12/28/2022]
|
42
|
NADIN-DAVIS SUSANA, FENG YUQIN, MOUSSE DELPHINE, WANDELER ALEXANDERI, ARIS-BROSOU STÉPHANE. Spatial and temporal dynamics of rabies virus variants in big brown bat populations across Canada: footprints of an emerging zoonosis. Mol Ecol 2010; 19:2120-36. [DOI: 10.1111/j.1365-294x.2010.04630.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Turmelle AS, Olival KJ. Correlates of viral richness in bats (order Chiroptera). ECOHEALTH 2009; 6:522-39. [PMID: 20049506 PMCID: PMC7088156 DOI: 10.1007/s10393-009-0263-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 11/13/2009] [Accepted: 11/13/2009] [Indexed: 05/21/2023]
Abstract
Historic and contemporary host ecology and evolutionary dynamics have profound impacts on viral diversity, virulence, and associated disease emergence. Bats have been recognized as reservoirs for several emerging viral pathogens, and are unique among mammals in their vagility, potential for long-distance dispersal, and often very large, colonial populations. We investigate the relative influences of host ecology and population genetic structure for predictions of viral richness in relevant reservoir species. We test the hypothesis that host geographic range area, distribution, population genetic structure, migratory behavior, International Union for Conservation of Nature and Natural Resources (IUCN) threat status, body mass, and colony size, are associated with known viral richness in bats. We analyze host traits and viral richness in a generalized linear regression model framework, and include a correction for sampling effort and phylogeny. We find evidence that sampling effort, IUCN status, and population genetic structure correlate with observed viral species richness in bats, and that these associations are independent of phylogeny. This study is an important first step in understanding the mechanisms that promote viral richness in reservoir species, and may aid in predicting the emergence of viral zoonoses from bats.
Collapse
Affiliation(s)
- Amy S Turmelle
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA.
| | | |
Collapse
|
44
|
Ming P, Yan J, Rayner S, Meng S, Xu G, Tang Q, Wu J, Luo J, Yang X. A history estimate and evolutionary analysis of rabies virus variants in China. J Gen Virol 2009; 91:759-64. [PMID: 19889927 DOI: 10.1099/vir.0.016436-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To investigate the evolutionary dynamics of rabies virus (RABV) in China, we collected and sequenced 55 isolates sampled from 14 Chinese provinces over the last 40 years and performed a coalescent-based analysis of the G gene. This revealed that the RABV currently circulating in China is composed of three main groups. Bayesian coalescent analysis estimated the date of the most recent common ancestor for the current RABV Chinese strains to be 1412 (with a 95 % confidence interval of 1006-1736). The estimated mean substitution rate for the G gene sequences (3.961x10(-4) substitutions per site per year) was in accordance with previous reports for RABV.
Collapse
Affiliation(s)
- Pinggang Ming
- Department of Genetic Engineering, Wuhan Institute of Biological Product, Wu Chang District, Wuhan 430060, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bourhy H, Reynes JM, Dunham EJ, Dacheux L, Larrous F, Huong VTQ, Xu G, Yan J, Miranda MEG, Holmes EC. The origin and phylogeography of dog rabies virus. J Gen Virol 2009; 89:2673-2681. [PMID: 18931062 DOI: 10.1099/vir.0.2008/003913-0] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rabies is a progressively fatal and incurable viral encephalitis caused by a lyssavirus infection. Almost all of the 55 000 annual rabies deaths in humans result from infection with dog rabies viruses (RABV). Despite the importance of rabies for human health, little is known about the spread of RABV in dog populations, and patterns of biodiversity have only been studied in limited geographical space. To address these questions on a global scale, we sequenced 62 new isolates and performed an extensive comparative analysis of RABV gene sequence data, representing 192 isolates sampled from 55 countries. From this, we identified six clades of RABV in non-flying mammals, each of which has a distinct geographical distribution, most likely reflecting major physical barriers to gene flow. Indeed, a detailed analysis of phylogeographic structure revealed only limited viral movement among geographical localities. Using Bayesian coalescent methods we also reveal that the sampled lineages of canid RABV derive from a common ancestor that originated within the past 1500 years. Additionally, we found no evidence for either positive selection or widespread population bottlenecks during the global expansion of canid RABV. Overall, our study reveals that the stochastic processes of genetic drift and population subdivision are the most important factors shaping the global phylogeography of canid RABV.
Collapse
Affiliation(s)
- Hervé Bourhy
- Institut Pasteur, UPRE Lyssavirus Dynamics and Host Adaptation, World Health Organization Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | - Eleca J Dunham
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, Mueller Laboratory, University Park, PA 16802, USA
| | - Laurent Dacheux
- Institut Pasteur, UPRE Lyssavirus Dynamics and Host Adaptation, World Health Organization Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Florence Larrous
- Institut Pasteur, UPRE Lyssavirus Dynamics and Host Adaptation, World Health Organization Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | - Gelin Xu
- Wuhan Institute of Biological Products, Wuhan, Hubei Province 430060, PR China
| | - Jiaxin Yan
- Wuhan Institute of Biological Products, Wuhan, Hubei Province 430060, PR China
| | - Mary Elizabeth G Miranda
- Veterinary Research Department, Research Institute for Tropical Medicine, Ficc Alabang, Muntinlupa City 1781, Metro Manila, Philippines
| | - Edward C Holmes
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, Mueller Laboratory, University Park, PA 16802, USA
| |
Collapse
|
46
|
Vázquez-Morón S, Juste J, Ibáñez C, Ruiz-Villamor E, Avellón A, Vera M, Echevarría JE. Endemic circulation of European bat lyssavirus type 1 in serotine bats, Spain. Emerg Infect Dis 2008. [PMID: 18680651 PMCID: PMC2600403 DOI: 10.3201/1408.080068] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To determine the presence of European bat lyssavirus type 1 in southern Spain, we studied 19 colonies of serotine bats (Eptesicus isabellinus), its main reservoir, during 1998–2003. Viral genome and antibodies were detected in healthy bats, which suggests subclinical infection. The different temporal patterns of circulation found in each colony indicate independent endemic circulation.
Collapse
Affiliation(s)
- Sonia Vázquez-Morón
- Diagnostic Microbiology Service, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
47
|
Vázquez-Morón S, Juste J, Ibáñez C, Ruiz-Villamor E, Avellón A, Vera M, Echevarría JE. Endemic circulation of European bat lyssavirus type 1 in serotine bats, Spain. Emerg Infect Dis 2008; 14:1263-6. [PMID: 18680677 PMCID: PMC2600405 DOI: 10.3201/eid1408.080068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To determine the presence of European bat lyssavirus type 1 in southern Spain, we studied 19 colonies of serotine bats (Eptesicus isabellinus), its main reservoir, during 1998-2003. Viral genome and antibodies were detected in healthy bats, which suggests subclinical infection. The different temporal patterns of circulation found in each colony indicate independent endemic circulation.
Collapse
Affiliation(s)
- Sonia Vázquez-Morón
- Diagnostic Microbiology Service, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
48
|
A reassessment of the emergence time of European bat lyssavirus type 1. INFECTION GENETICS AND EVOLUTION 2008; 8:820-4. [PMID: 18773973 DOI: 10.1016/j.meegid.2008.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 08/05/2008] [Accepted: 08/06/2008] [Indexed: 11/21/2022]
Abstract
The previous study of the evolutionary rates of European bat lyssavirus type 1 (EBLV-1) used a strict molecular clock to estimate substitution rates of the nucleoprotein gene and in turn times of the most recent common ancestor (tMRCA) of the entire genotype and the two major EBLV-1 lineages (EBLV-1A and EBLV-1B). The results of that study suggested that the evolutionary rate of EBLV-1 was one of the lowest recorded for RNA viruses and that genetic diversity of EBLV-1 arose 500-750 years ago. Here I have shown that the use of a relaxed molecular clock (allowing branch rates to vary within a phylogeny) shows that these previous estimates should be revised. The relaxed clock provides a significantly better fit to all datasets. The substitution rate of EBLV-1B is compatible to that expected given previous estimates for the N gene of rabies virus whilst rate estimations for EBLV-1A appear to be confounded by substantial rate variation within the phylogeny. The relaxed clock substitution rate for EBLV-1 (1.1 x 10(-4)) is higher than had been estimated previously, and closer to that expected for the N gene. Moreover, tMRCA estimates for EBLV-1 are substantially reduced using the relaxed molecular clock (70-300 years) although the differing dynamics of EBLV-1A and EBLV-1B confound the confidence in this estimate. Current diversity of both EBLV-1A and EBLV-1B appears to have emerged within the last 100 years. Reconstruction of the population histories suggests that EBLV-1B may be emerging whilst the signal derived from the EBLV-1A phylogeny may be dampened by clade-specific dynamics.
Collapse
|
49
|
Neubaum MA, Shankar V, Douglas MR, Douglas ME, O’Shea TJ, Rupprecht CE. An analysis of correspondence between unique rabies virus variants and divergent big brown bat (Eptesicus fuscus) mitochondrial DNA lineages. Arch Virol 2008; 153:1139-42. [DOI: 10.1007/s00705-008-0081-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 02/27/2008] [Indexed: 11/24/2022]
|
50
|
Rabies vaccines. Vaccines (Basel) 2008. [DOI: 10.1016/b978-1-4160-3611-1.50031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
|