1
|
Mantlo EK, Huang YJS. Knowledge-based mitigation of the environmental risk of Orthoflavivirus live-attenuated vaccines by targeting viral encoded determinants for the mosquito attenuated phenotype. Vaccine 2025; 54:127114. [PMID: 40252364 DOI: 10.1016/j.vaccine.2025.127114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 04/21/2025]
Abstract
Many mosquito-borne orthoflaviviruses are important public health problems. Vaccination is critical for disease control because there is no licensed antiviral therapy for any orthoflavivirus. Live-attenuated vaccines (LAVs) that elicit protective immunity with one single immunization are the most effective tool for disease control, as shown by the success of implementing yellow fever (YF) 17D and Japanese encephalitis (JE) SA14-14-2 vaccines in routine immunization programs within endemic regions. Importantly, neither the YFV 17D strain nor the JEV SA14-14-2 LAV strain are mosquito-competent, meaning that neither vaccine strain can effectively infect and disseminate in mosquito tissues following engorgement of viremic blood. The mosquito-attenuated phenotype also ensures the safety of the licensed LAVs IMOJEV, Dengvaxia and QDENGA. In the 21st century, regulators expect the attenuated phenotype of candidate orthoflavivirus LAVs to also include a demonstration of reduced replication and dissemination in arthropod vectors under laboratory conditions in order to support environmental risk assessments of the impacts of these LAVs in nature. Achieving a safe level of attenuation of orthoflaviviruses in mosquitoes requires multigenic mutations to prevent reversion to the wild-type phenotype. This review discusses knowledge of orthoflaviviral encoded determinants for infection and dissemination in mosquito tissues which have potential utility for the rational design of candidate LAVs. Several attenuating mutations discovered to date are located within genomic regions that are conserved among orthoflaviviruses and can potentially support the establishment of a broadly effective attenuating strategy.
Collapse
Affiliation(s)
- Emily K Mantlo
- Department of Microbiology and Immunology and SUNY Center for Vector-borne Diseases, Global Health Institute, Upstate Medical University, Syracuse, NY 13210, United States of America
| | - Yan-Jang S Huang
- Department of Microbiology and Immunology and SUNY Center for Vector-borne Diseases, Global Health Institute, Upstate Medical University, Syracuse, NY 13210, United States of America.
| |
Collapse
|
2
|
Ayers VB, Huang YJS, Dunlop JI, Kohl A, Brennan B, Higgs S, Vanlandingham DL. Replication Kinetics of a Candidate Live-Attenuated Vaccine for Cache Valley Virus in Aedes albopictus. Vector Borne Zoonotic Dis 2022; 22:553-558. [PMID: 36354965 PMCID: PMC9700352 DOI: 10.1089/vbz.2022.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Background: The emergence or re-emergence of several orthobunyaviruses (order: Bunyavirales; family: Peribunyaviridae), including Cache Valley virus (CVV) and Oropouche virus, warrants the development and evaluation of candidate live-attenuated vaccines (LAVs). Ideally, these vaccines would elicit long-lasting immunity with one single immunization. Materials and Methods: Since the deletion of two virulence factors, NSs and NSm, has been shown to attenuate the virulence phenotype of orthobunyaviruses, phleboviruses, and nairoviruses, genetic manipulation of the viral genome is considered an effective strategy for the rational design of candidate LAVs for bunyaviruses across multiple families. In addition, the deletion of Rift Valley fever virus NSs and NSm genes has been shown to reduce transmission by mosquitoes. Results: In this study, the ability of a CVV mutant lacking the NSs and NSm genes (2delCVV) to replicate in intrathoracically injected Aedes albopictus was compared with the parental wild-type CVV (wtCVV) 6V633 strain. In contrast to the robust replication of wtCVV in injected mosquitoes, the multiplication kinetics of the 2delCVV mutant was reduced by more than a 100-fold. Conclusion: These results suggest that the deletion of NSm and NSs genes is a feasible approach to rationally design candidate orthobunyavirus LAVs that are highly attenuated in mosquitoes and, therefore, pose little risk of reversion to virulence and transmission.
Collapse
Affiliation(s)
- Victoria B. Ayers
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - Yan-Jang S. Huang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - James I. Dunlop
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Benjamin Brennan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Stephen Higgs
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - Dana L. Vanlandingham
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
3
|
Davis EH, Wang B, White M, Huang YJS, Sarathy VV, Wang T, Bourne N, Higgs S, Barrett ADT. Impact of yellow fever virus envelope protein on wild-type and vaccine epitopes and tissue tropism. NPJ Vaccines 2022; 7:39. [PMID: 35322047 PMCID: PMC8942996 DOI: 10.1038/s41541-022-00460-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 02/16/2022] [Indexed: 12/04/2022] Open
Abstract
The envelope (E) protein of flaviviruses is functionally associated with viral tissue tropism and pathogenicity. For yellow fever virus (YFV), viscerotropic disease primarily involving the liver is pathognomonic for wild-type (WT) infection. In contrast, the live-attenuated vaccine (LAV) strain 17D does not cause viscerotropic disease and reversion to virulence is associated with neurotropic disease. The relationship between structure-function of the E protein for WT strain Asibi and its LAV derivative 17D strain is poorly understood; however, changes to WT and vaccine epitopes have been associated with changes in virulence. Here, a panel of Asibi and 17D infectious clone mutants were generated with single-site mutations at the one membrane residue and each of the eight E protein amino acid substitutions that distinguish the two strains. The mutants were characterized with respect to WT-specific and vaccine-specific monoclonal antibodies (mAbs) binding to virus plus binding of virus to brain, liver, and lung membrane receptor preparations (MRPs) generated from AG129 mice. This approach shows that amino acids in the YFV E protein domains (ED) I and II contain the WT E protein epitope, which overlap with those that mediate YFV binding to mouse liver. Furthermore, amino acids in EDIII associated with the vaccine epitope overlap with those that facilitate YFV binding mouse brain MRPs. Taken together, these data suggest that the YFV E protein is a key determinant in the phenotype of WT and 17D vaccine strains of YFV.
Collapse
Affiliation(s)
- Emily H Davis
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
- Sealy Institute for Vaccine Sciences, UTMB, Galveston, TX, USA
| | - Binbin Wang
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | | | - Yan-Jang S Huang
- Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
- Center on Emerging and Zoonotic Infectious Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Vanessa V Sarathy
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
- Sealy Institute for Vaccine Sciences, UTMB, Galveston, TX, USA
| | - Tian Wang
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
- Sealy Institute for Vaccine Sciences, UTMB, Galveston, TX, USA
| | - Nigel Bourne
- Sealy Institute for Vaccine Sciences, UTMB, Galveston, TX, USA
- Department of Pediatrics, UTMB, Galveston, TX, USA
| | - Stephen Higgs
- Biosecurity Research Institute, Kansas State University, Manhattan, KS, USA
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
- Center on Emerging and Zoonotic Infectious Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Alan D T Barrett
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, TX, USA.
- Sealy Institute for Vaccine Sciences, UTMB, Galveston, TX, USA.
| |
Collapse
|
4
|
Genome Characterization of Yellow Fever Virus Wild-Type Strain Asibi, Parent to Live-Attenuated 17D Vaccine, from Three Different Sources. Viruses 2021; 13:v13071383. [PMID: 34372589 PMCID: PMC8310116 DOI: 10.3390/v13071383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022] Open
Abstract
The yellow fever virus vaccine, 17D, was derived through the serial passage of the wild-type (WT) strain Asibi virus in mouse and chicken tissue. Since its derivation, the mechanism of attenuation of 17D virus has been investigated using three 17D substrains and WT Asibi virus. Although all three substrains of 17D have been sequenced, only one isolate of Asibi has been examined genetically and all interpretation of attenuation is based on this one isolate. Here, we sequenced the genome of Asibi virus from three different laboratories and show that the WT strain is genetically homogenous at the amino acids that distinguish Asibi from 17D vaccine virus.
Collapse
|
5
|
Attenuation of Live-Attenuated Yellow Fever 17D Vaccine Virus Is Localized to a High-Fidelity Replication Complex. mBio 2019; 10:mBio.02294-19. [PMID: 31641088 PMCID: PMC6805994 DOI: 10.1128/mbio.02294-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Live-attenuated viral vaccines are highly safe and efficacious but represent complex and often multigenic attenuation mechanisms. Most of these vaccines have been generated empirically by serial passaging of a wild-type (WT) virus in cell culture. One of the safest and most effective live-attenuated vaccines is yellow fever (YF) virus strain 17D, which has been used for over 80 years to control YF disease. The availability of the WT parental strain of 17D, Asibi virus, and large quantities of clinical data showing the effectiveness of the 17D vaccine make this WT parent/vaccine pair an excellent model for investigating RNA virus attenuation. Here, we investigate a mechanism of 17D attenuation and show that the vaccine virus is resistant to the antiviral compound ribavirin. The findings suggest that attenuation is in part due to a low probability of reversion or mutation of the vaccine virus genome to WT, thus maintaining a stable genotype despite external pressures. The molecular basis of attenuation for live-attenuated vaccines is poorly understood. The yellow fever (YF) 17D vaccine virus was derived from the wild-type, parental strain Asibi virus by serial passage in chicken tissue and has proven to be a very safe and efficacious vaccine. We have previously shown that wild-type Asibi is a typical RNA virus with high genetic diversity, while the 17D vaccine virus has very little genetic diversity. To investigate this further, we treated Asibi and 17D viruses with ribavirin, a GTP analog with strong antiviral activity that increases levels of mutations in the viral genome. As expected, ribavirin treatment introduced mutations into the Asibi virus genome at a very high frequency and decreased viral infectivity while, in contrast, the 17D vaccine virus was resistant to ribavirin, as treatment with the antiviral introduced very few mutations into the genome, and viral infectivity was not lost. The results were confirmed for another YF wild-type parental and vaccine pair, a wild-type French viscerotropic virus and French neurotropic vaccine. Using recombinant Asibi and 17D viruses, ribavirin sensitivity was located to viral nonstructural genes. Thus, two live-attenuated YF vaccine viruses are genetically stable even under intense mutagenic pressure, suggesting that attenuation of live-attenuated YF vaccines is due, at least in part, to fidelity of the replication complex resulting in high genetic stability.
Collapse
|
6
|
Yellow Fever: Integrating Current Knowledge with Technological Innovations to Identify Strategies for Controlling a Re-Emerging Virus. Viruses 2019; 11:v11100960. [PMID: 31627415 PMCID: PMC6832525 DOI: 10.3390/v11100960] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/30/2019] [Accepted: 10/11/2019] [Indexed: 01/17/2023] Open
Abstract
Yellow fever virus (YFV) represents a re-emerging zoonotic pathogen, transmitted by mosquito vectors to humans from primate reservoirs. Sporadic outbreaks of YFV occur in endemic tropical regions, causing a viral hemorrhagic fever (VHF) associated with high mortality rates. Despite a highly effective vaccine, no antiviral treatments currently exist. Therefore, YFV represents a neglected tropical disease and is chronically understudied, with many aspects of YFV biology incompletely defined including host range, host–virus interactions and correlates of host immunity and pathogenicity. In this article, we review the current state of YFV research, focusing on the viral lifecycle, host responses to infection, species tropism and the success and associated limitations of the YFV-17D vaccine. In addition, we highlight the current lack of available treatments and use publicly available sequence and structural data to assess global patterns of YFV sequence diversity and identify potential drug targets. Finally, we discuss how technological advances, including real-time epidemiological monitoring of outbreaks using next-generation sequencing and CRISPR/Cas9 modification of vector species, could be utilized in future battles against this re-emerging pathogen which continues to cause devastating disease.
Collapse
|
7
|
Danet L, Beauclair G, Berthet M, Moratorio G, Gracias S, Tangy F, Choumet V, Jouvenet N. Midgut barriers prevent the replication and dissemination of the yellow fever vaccine in Aedes aegypti. PLoS Negl Trop Dis 2019; 13:e0007299. [PMID: 31412040 PMCID: PMC6709925 DOI: 10.1371/journal.pntd.0007299] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/26/2019] [Accepted: 07/26/2019] [Indexed: 02/02/2023] Open
Abstract
Background To be transmitted to vertebrate hosts via the saliva of their vectors, arthropod-borne viruses have to cross several barriers in the mosquito body, including the midgut infection and escape barriers. Yellow fever virus (YFV) belongs to the genus Flavivirus, which includes human viruses transmitted by Aedes mosquitoes, such as dengue and Zika viruses. The live-attenuated YFV-17D vaccine has been used safely and efficiently on a large scale since the end of World War II. Early studies have shown, using viral titration from salivary glands of infected mosquitoes, that YFV-17D can infect Aedes aegypti midgut, but does not disseminate to other tissues. Methodology/Principal findings Here, we re-visited this issue using a panel of techniques, such as RT-qPCR, Western blot, immunofluorescence and titration assays. We showed that YFV-17D replication was not efficient in Aedes aegypti midgut, as compared to the clinical isolate YFV-Dakar. Viruses that replicated in the midgut failed to disseminate to secondary organs. When injected into the thorax of mosquitoes, viruses succeeded in replicating into midgut-associated tissues, suggesting that, during natural infection, the block for YFV-17D replication occurs at the basal membrane of the midgut. Conclusions/Significance The two barriers associated with Ae. aegypti midgut prevent YFV-17D replication. Our study contributes to our basic understanding of vector–pathogen interactions and may also aid in the development of non-transmissible live virus vaccines. Most flaviviruses, including yellow fever virus (YFV), are transmitted between hosts by mosquito bites. The yellow fever vaccine (YFV-17D) is one of the safest and most effective live virus vaccine ever developed. It is also used as a platform for engineering vaccines against other health-threatening flaviviruses, such as Japanese encephalitis, West Nile, dengue and Zika viruses. We studied here the replication and dissemination of YFV-17D in mosquitoes. Our data showing that YFV-17D is unable to disseminate to secondary organs, as compared to a YFV clinical isolate, agree with previous studies. We have expanded on this knowledge by quantifying viral RNA production, viral protein expression, viral distribution and infectivity of YFV-17D in the vector midguts. We show that the midgut is a powerful barrier that inhibits YFV-17D dissemination in mosquitoes. Our study contributes to our basic understanding of the interactions between viruses and their vectors, which is key for conceiving new approaches in inhibiting virus transmission and designing non-transmissible live virus vaccines.
Collapse
Affiliation(s)
- Lucie Danet
- Viral Genomics and Vaccination Unit, Institut Pasteur, UMR3569 CNRS, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Guillaume Beauclair
- Viral Genomics and Vaccination Unit, Institut Pasteur, UMR3569 CNRS, Paris, France
| | - Michèle Berthet
- Environment and Infectious Risks Unit, Institut Pasteur, Paris, France
| | - Gonzalo Moratorio
- Viral Populations and Pathogenesis Unit, Institut Pasteur, UMR3569 CNRS, Paris, France
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ségolène Gracias
- Viral Genomics and Vaccination Unit, Institut Pasteur, UMR3569 CNRS, Paris, France
| | - Frédéric Tangy
- Viral Genomics and Vaccination Unit, Institut Pasteur, UMR3569 CNRS, Paris, France
| | - Valérie Choumet
- Environment and Infectious Risks Unit, Institut Pasteur, Paris, France
| | - Nolwenn Jouvenet
- Viral Genomics and Vaccination Unit, Institut Pasteur, UMR3569 CNRS, Paris, France
- * E-mail:
| |
Collapse
|
8
|
Huang YJS, Higgs S, Vanlandingham DL. Arbovirus-Mosquito Vector-Host Interactions and the Impact on Transmission and Disease Pathogenesis of Arboviruses. Front Microbiol 2019; 10:22. [PMID: 30728812 PMCID: PMC6351451 DOI: 10.3389/fmicb.2019.00022] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/09/2019] [Indexed: 12/11/2022] Open
Abstract
Hundreds of viruses, designated as arboviruses, are transmitted by arthropod vectors in complex transmission cycles between the virus, vertebrate host, and the vector. With millions of human and animal infections per year, it is critical to improve our understanding of the interactions between the biological and environmental factors that play a critical role in pathogenesis, disease outcomes, and transmission of arboviruses. This review focuses on mosquito-borne arboviruses and discusses current knowledge of the factors and underlying mechanisms that influence infection and transmission of arboviruses and discusses critical factors and pathways that can potentially become targets for intervention and therapeutics.
Collapse
Affiliation(s)
- Yan-Jang S Huang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States.,Biosecurity Research Institute, Kansas State University, Manhattan, KS, United States
| | - Stephen Higgs
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States.,Biosecurity Research Institute, Kansas State University, Manhattan, KS, United States
| | - Dana L Vanlandingham
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States.,Biosecurity Research Institute, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
9
|
Beck AS, Wood TG, Widen SG, Thompson JK, Barrett ADT. Analysis By Deep Sequencing of Discontinued Neurotropic Yellow Fever Vaccine Strains. Sci Rep 2018; 8:13408. [PMID: 30194325 PMCID: PMC6128858 DOI: 10.1038/s41598-018-31085-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/31/2018] [Indexed: 11/08/2022] Open
Abstract
Deep sequencing of live-attenuated viral vaccines has focused on vaccines in current use. Here we report characterization of a discontinued live yellow fever (YF) vaccine associated with severe adverse events. The French neurotropic vaccine (FNV) strain of YF virus was derived empirically in 1930 by 260 passages of wild-type French viscerotropic virus (FVV) in mouse brain. The vaccine was administered extensively in French-speaking Africa until discontinuation in 1982, due to high rates of post-vaccination encephalitis in children. Using rare archive strains of FNV, viral RNAs were sequenced and analyzed by massively parallel, in silico methods. Diversity and specific population structures were compared in reference to the wild-type parental strain FVV, and between the vaccine strains themselves. Lower abundance of polymorphism content was observed for FNV strains relative to FVV. Although the vaccines were of lower diversity than FVV, heterogeneity between the vaccines was observed. Reversion to wild-type identity was variably observed in the FNV strains. Specific population structures were recovered from vaccines with neurotropic properties; loss of neurotropism in mice was associated with abundance of wild-type RNA populations. The analysis provides novel sequence evidence that FNV is genetically unstable, and that adaptation of FNV contributed to the neurotropic adverse phenotype.
Collapse
Affiliation(s)
- Andrew S Beck
- Department of Pathology, Galveston, TX, 77555, USA
- University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Thomas G Wood
- Molecular Genomics Core Facility, Galveston, TX, 77555, USA
- University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Steven G Widen
- Molecular Genomics Core Facility, Galveston, TX, 77555, USA
- University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jill K Thompson
- Molecular Genomics Core Facility, Galveston, TX, 77555, USA
- University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Alan D T Barrett
- Department of Pathology, Galveston, TX, 77555, USA.
- Sealy Institute for Vaccine Sciences, and World Health Organization Collaborating Center for Vaccine Research, Evaluation and Training on Emerging Infectious Diseases, Galveston, TX, 77555, USA.
- University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
10
|
Scheel TKH, Luna JM, Liniger M, Nishiuchi E, Rozen-Gagnon K, Shlomai A, Auray G, Gerber M, Fak J, Keller I, Bruggmann R, Darnell RB, Ruggli N, Rice CM. A Broad RNA Virus Survey Reveals Both miRNA Dependence and Functional Sequestration. Cell Host Microbe 2016; 19:409-23. [PMID: 26962949 DOI: 10.1016/j.chom.2016.02.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/25/2016] [Accepted: 02/18/2016] [Indexed: 12/19/2022]
Abstract
Small non-coding RNAs have emerged as key modulators of viral infection. However, with the exception of hepatitis C virus, which requires the liver-specific microRNA (miRNA)-122, the interactions of RNA viruses with host miRNAs remain poorly characterized. Here, we used crosslinking immunoprecipitation (CLIP) of the Argonaute (AGO) proteins to characterize strengths and specificities of miRNA interactions in the context of 15 different RNA virus infections, including several clinically relevant pathogens. Notably, replication of pestiviruses, a major threat to milk and meat industries, critically depended on the interaction of cellular miR-17 and let-7 with the viral 3' UTR. Unlike canonical miRNA interactions, miR-17 and let-7 binding enhanced pestivirus translation and RNA stability. miR-17 sequestration by pestiviruses conferred reduced AGO binding and functional de-repression of cellular miR-17 targets, thereby altering the host transcriptome. These findings generalize the concept of RNA virus dependence on cellular miRNAs and connect virus-induced miRNA sequestration to host transcriptome regulation.
Collapse
Affiliation(s)
- Troels K H Scheel
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA; Copenhagen Hepatitis C Program, Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, 2650 Hvidovre, Denmark; Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Joseph M Luna
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA; Laboratory of Molecular Neuro-Oncology, and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Matthias Liniger
- Department of Virology, Institute of Virology and Immunology IVI, 3147 Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, 3012 Bern, Switzerland
| | - Eiko Nishiuchi
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | - Kathryn Rozen-Gagnon
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | - Amir Shlomai
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA
| | - Gaël Auray
- Department of Virology, Institute of Virology and Immunology IVI, 3147 Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, 3012 Bern, Switzerland
| | - Markus Gerber
- Department of Virology, Institute of Virology and Immunology IVI, 3147 Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, 3012 Bern, Switzerland
| | - John Fak
- Laboratory of Molecular Neuro-Oncology, and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Irene Keller
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, 3012 Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, 3012 Bern, Switzerland
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology, and Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA; New York Genome Center, New York, NY 10013, USA
| | - Nicolas Ruggli
- Department of Virology, Institute of Virology and Immunology IVI, 3147 Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, 3012 Bern, Switzerland
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
11
|
Wu X, Shi Y, Yan D, Li X, Yan P, Gao X, Zhang Y, Yu L, Ren C, Li G, Yan L, Teng Q, Li Z. Development of a PCR-Based Reverse Genetics System for an Attenuated Duck Tembusu Virus Strain. PLoS One 2016; 11:e0156579. [PMID: 27248497 PMCID: PMC4889061 DOI: 10.1371/journal.pone.0156579] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 05/17/2016] [Indexed: 01/08/2023] Open
Abstract
The infectious disease caused by the duck Tembusu virus (DTMUV) has resulted in massive economic losses to the Chinese duck industry in China since 2010. Research on the molecular basis of DTMUV pathogenicity has been hampered by the lack of a reliable reverse genetics system for this virus. Here we developed a PCR-based reverse genetics system with high fidelity for the attenuated DTMUV strain FX2010-180P. The rescued virus was characterized by using both indirect immunofluorescence assays (IFA) and whole genome sequencing. The rescued virus (rFX2010-180P) grew to similar titers as compared with the wild-type virus in DF-1 cells, and had similar replication and immunogenicity properties in ducks. To determine whether exogenous proteins could be expressed from DTMUV, both an internal ribosomal entry site (IRES) and the enhanced green fluorescent protein (eGFP) gene were introduced between the NS5 gene and the 3' non-coding sequence of FX2010-180P. A recombinant DTMUV expressing eGFP was rescued, but eGFP expression was unstable after 4 passages in DF-1 cells due to a deletion of 1,294 nucleotides. The establishment of a reliable reverse genetics system for FX2010-180P provides a foundation for future studies of DTMUV.
Collapse
Affiliation(s)
- Xiaogang Wu
- Department of Avian Infectious Disease, and Innovation Team for Pathogen Ecology Research on Animal Influenza Virus, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Ying Shi
- Department of Avian Infectious Disease, and Innovation Team for Pathogen Ecology Research on Animal Influenza Virus, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Dawei Yan
- Department of Avian Infectious Disease, and Innovation Team for Pathogen Ecology Research on Animal Influenza Virus, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Xuesong Li
- Department of Avian Infectious Disease, and Innovation Team for Pathogen Ecology Research on Animal Influenza Virus, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Pixi Yan
- Department of Avian Infectious Disease, and Innovation Team for Pathogen Ecology Research on Animal Influenza Virus, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Xuyuan Gao
- Department of Avian Infectious Disease, and Innovation Team for Pathogen Ecology Research on Animal Influenza Virus, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Yuee Zhang
- Department of Avian Infectious Disease, and Innovation Team for Pathogen Ecology Research on Animal Influenza Virus, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Lei Yu
- Department of Avian Infectious Disease, and Innovation Team for Pathogen Ecology Research on Animal Influenza Virus, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Chaochao Ren
- Department of Avian Infectious Disease, and Innovation Team for Pathogen Ecology Research on Animal Influenza Virus, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Guoxin Li
- Department of Avian Infectious Disease, and Innovation Team for Pathogen Ecology Research on Animal Influenza Virus, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Liping Yan
- Department of Avian Infectious Disease, and Innovation Team for Pathogen Ecology Research on Animal Influenza Virus, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Qiaoyang Teng
- Department of Avian Infectious Disease, and Innovation Team for Pathogen Ecology Research on Animal Influenza Virus, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
| | - Zejun Li
- Department of Avian Infectious Disease, and Innovation Team for Pathogen Ecology Research on Animal Influenza Virus, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, China
- * E-mail:
| |
Collapse
|
12
|
Huang YJS, Higgs S, Horne KM, Vanlandingham DL. Flavivirus-mosquito interactions. Viruses 2014; 6:4703-30. [PMID: 25421894 PMCID: PMC4246245 DOI: 10.3390/v6114703] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/17/2014] [Accepted: 11/20/2014] [Indexed: 12/20/2022] Open
Abstract
The Flavivirus genus is in the family Flaviviridae and is comprised of more than 70 viruses. These viruses have a broad geographic range, circulating on every continent except Antarctica. Mosquito-borne flaviviruses, such as yellow fever virus, dengue virus serotypes 1-4, Japanese encephalitis virus, and West Nile virus are responsible for significant human morbidity and mortality in affected regions. This review focuses on what is known about flavivirus-mosquito interactions and presents key data collected from the field and laboratory-based molecular and ultrastructural evaluations.
Collapse
Affiliation(s)
- Yan-Jang S Huang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Stephen Higgs
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| | - Kate McElroy Horne
- Biosecurity Research Institute, Kansas State University, Manhattan, KS 66506, USA.
| | - Dana L Vanlandingham
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
13
|
Mutagenesis analysis of T380R mutation in the envelope protein of yellow fever virus. Virol J 2014; 11:60. [PMID: 24678844 PMCID: PMC3974419 DOI: 10.1186/1743-422x-11-60] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/27/2014] [Indexed: 11/23/2022] Open
Abstract
Background The RGD motif in the mosquito-borne flaviviruses envelope protein domain III (EDIII) FG loop was shown to bind negatively charged cellular molecules and mediate virus entry in mammals. However, its importance in virus entry in the mosquito has not yet been defined. The sequences of RGD motifs are conserved in JEV-serocomplex members primarily transmitted by Culex mosquitoes but absent from members of the DENV serocomplex, which utilize Aedes mosquitoes as vectors. Interestingly, the RGD sequence is present in the attenuated 17D strain of yellow fever virus as a result of the T380R mutation in the EDIII of Asibi strain following extensive in vitro passage in mice and chicken embryos and was found to contribute to the more rapid clearance in mice challenged with 17D. However, viral infectivity and dissemination in mosquitoes had not been evaluated for this mutant. Findings The study utilized the reverse genetics system of YFV and Ae. aegypti RexD WE mosquitoes to assess the impact of a T380R mutation in YFV Asibi and 17D/Asibi M-E chimera. The T380R mutation led to higher infection rates but similar dissemination rates when introduced into the YFV Asibi strain and 17D/Asibi M-E chimera. Conclusions While the increase of the positive charge in EDIII may reduce the virulence of YFV in mice, this mutation favored the establishment of the viral infection in Ae. aegypti. However, such gain in viral infectivity did not increase dissemination in infected mosquitoes.
Collapse
|
14
|
|
15
|
van den Hurk AF, Hall-Mendelin S, Pyke AT, Frentiu FD, McElroy K, Day A, Higgs S, O'Neill SL. Impact of Wolbachia on infection with chikungunya and yellow fever viruses in the mosquito vector Aedes aegypti. PLoS Negl Trop Dis 2012; 6:e1892. [PMID: 23133693 PMCID: PMC3486898 DOI: 10.1371/journal.pntd.0001892] [Citation(s) in RCA: 292] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 09/21/2012] [Indexed: 12/15/2022] Open
Abstract
Incidence of disease due to dengue (DENV), chikungunya (CHIKV) and yellow fever (YFV) viruses is increasing in many parts of the world. The viruses are primarily transmitted by Aedes aegypti, a highly domesticated mosquito species that is notoriously difficult to control. When transinfected into Ae. aegypti, the intracellular bacterium Wolbachia has recently been shown to inhibit replication of DENVs, CHIKV, malaria parasites and filarial nematodes, providing a potentially powerful biocontrol strategy for human pathogens. Because the extent of pathogen reduction can be influenced by the strain of bacterium, we examined whether the wMel strain of Wolbachia influenced CHIKV and YFV infection in Ae. aegypti. Following exposure to viremic blood meals, CHIKV infection and dissemination rates were significantly reduced in mosquitoes with the wMel strain of Wolbachia compared to Wolbachia-uninfected controls. However, similar rates of infection and dissemination were observed in wMel infected and non-infected Ae. aegypti when intrathoracic inoculation was used to deliver virus. YFV infection, dissemination and replication were similar in wMel-infected and control mosquitoes following intrathoracic inoculations. In contrast, mosquitoes with the wMelPop strain of Wolbachia showed at least a 104 times reduction in YFV RNA copies compared to controls. The extent of reduction in virus infection depended on Wolbachia strain, titer and strain of the virus, and mode of exposure. Although originally proposed for dengue biocontrol, our results indicate a Wolbachia-based strategy also holds considerable promise for YFV and CHIKV suppression. Mosquito-transmitted viruses such as dengue, yellow fever and chikungunya, are responsible for significant morbidity and mortality throughout tropical and sub-tropical regions of the world. These viruses are primarily transmitted by Aedes aegypti, a mosquito that due to its close association with humans has historically been difficult to control. An innovative control strategy involving the release of mosquitoes infected with the intracellular bacterium Wolbachia is currently being developed. This approach is based on the recent discovery that Wolbachia reduces infection of mosquitoes with dengue virus, malaria parasites and filarial nematodes. In the current study, we demonstrated that Wolbachia also blocks infection of chikungunya and yellow fever viruses in Ae. aegypti. The degree of virus inhibition depended on the strain of Wolbachia, the route of virus exposure, the virus strain and the titer of virus that the mosquitoes were exposed to. The implementation of Wolbachia-based control strategies has the capacity to transform the way that mosquitotransmitted diseases are controlled in the future.
Collapse
Affiliation(s)
- Andrew F van den Hurk
- Public Health Virology, Communicable Diseases Unit, Queensland Health Forensic and Scientific Services, Coopers Plains, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
An infectious full-length cDNA clone of duck Tembusu virus, a newly emerging flavivirus causing duck egg drop syndrome in China. Virus Res 2012; 171:238-41. [PMID: 23116594 DOI: 10.1016/j.virusres.2012.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/19/2012] [Accepted: 10/19/2012] [Indexed: 11/24/2022]
Abstract
Duck Tembusu virus (TMUV) is a recently identified pathogenic flavivirus that causes severe egg drop and encephalitis in Chinese ducks and geese. It has been found to be most closely related to the mosquito-origin Tembusu virus and chicken Sitiawan virus reported in Malaysia. However, the ecological characteristics and the pathogenesis of duck TMUV are largely unknown. We report the construction of full-length cDNA clone of duck TMUV strain JXSP. The virus genome was reverse transcribed, amplified as seven overlapping fragments and successively ligated into the low copy number vector pWSK29 under the control of a T7 promoter. Transfection of BHK-21 cells with the transcribed RNA from the full-length cDNA clone resulted in production of highly infectious progeny virus. In vitro growth characteristics in BHK-21 cells and virulence in ducklings and BALB/c mice were similar for the rescued and parental viruses. This stable infectious cDNA clone will be a valuable tool for studying the genetic determinants of duck TMUV.
Collapse
|
17
|
Genomic and phylogenetic characterization of Brazilian yellow fever virus strains. J Virol 2012; 86:13263-71. [PMID: 23015713 DOI: 10.1128/jvi.00565-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Globally, yellow fever virus infects nearly 200,000 people, leading to 30,000 deaths annually. Although the virus is endemic to Latin America, only a single genome from this region has been sequenced. Here, we report 12 Brazilian yellow fever virus complete genomes, their genetic traits, phylogenetic characterization, and phylogeographic dynamics. Variable 3' noncoding region (3'NCR) patterns and specific mutations throughout the open reading frame altered predicted secondary structures. Our findings suggest that whereas the introduction of yellow fever virus in Brazil led to genotype I-predominant dispersal throughout South and Central Americas, genotype II remained confined to Bolivia, Peru, and the western Brazilian Amazon.
Collapse
|
18
|
Ellis BR, Sang RC, Horne KM, Higgs S, Wesson DM. Yellow fever virus susceptibility of two mosquito vectors from Kenya, East Africa. Trans R Soc Trop Med Hyg 2012; 106:387-9. [PMID: 22521217 DOI: 10.1016/j.trstmh.2012.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 01/25/2012] [Accepted: 02/29/2012] [Indexed: 11/19/2022] Open
Abstract
Yellow fever is an unpredictable disease of increasing epidemic threat in East Africa. Aedes (Stegomyia) aegypti has never been implicated as a vector in this region and recent outbreaks have involved a newly emerging virus genotype (East African). To better understand the increasing epidemic risk of yellow fever in East Africa, this study is the first to investigate the vector competence for an emerging East African virus genotype in Kenyan A. aegypti sensu latu (s.l) and A. (Stegomyia) simpsoni s.l. mosquito species. Using first filial generation mosquitoes and a low passage yellow fever virus, this study demonstrated that although A. aegypti s.l. is a competent vector, A. simpsoni s.l. is likely a more efficient vector.
Collapse
Affiliation(s)
- Brett R Ellis
- Department of Tropical Medicine, Tulane University, 1440 Canal Street Suite 2210-SL17, New Orleans, Louisiana 70112, USA.
| | | | | | | | | |
Collapse
|
19
|
van den Hurk AF, McElroy K, Pyke AT, McGee CE, Hall-Mendelin S, Day A, Ryan PA, Ritchie SA, Vanlandingham DL, Higgs S. Vector competence of Australian mosquitoes for yellow fever virus. Am J Trop Med Hyg 2011; 85:446-51. [PMID: 21896802 DOI: 10.4269/ajtmh.2011.11-0061] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The vector competence of Australian mosquitoes for yellow fever virus (YFV) was evaluated. Infection and transmission rates in Cairns and Townsville populations of Aedes aegypti and a Brisbane strain of Ae. notoscriptus were not significantly different from a well-characterized YFV-susceptible strain of Ae. aegypti. After exposure to 10⁷·² tissue culture infectious dose (TCID₅₀)/mL of an African strain of YFV, > 70% of Ae. aegypti and Ae. notoscriptus became infected, and > 50% transmitted the virus. When exposed to 10⁶·⁷) TCID₅₀/mL of a South American strain of YFV, the highest infection (64%) and transmission (56%) rates were observed in Ae. notoscriptus. The infection and transmission rates in the Cairns Ae. aegypti were both 24%, and they were 36% and 28%, respectively, for the Townsville population. Because competent vectors are present, the limited number of travelers from endemic areas and strict vaccination requirements will influence whether YFV transmission occurs in Australia.
Collapse
Affiliation(s)
- Andrew F van den Hurk
- Public Health Virology, Communicable Diseases Unit, Forensic and Scientific Services, Queensland Health, Coopers Plains, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
McGee CE, Tsetsarkin KA, Guy B, Lang J, Plante K, Vanlandingham DL, Higgs S. Stability of yellow fever virus under recombinatory pressure as compared with chikungunya virus. PLoS One 2011; 6:e23247. [PMID: 21826243 PMCID: PMC3149644 DOI: 10.1371/journal.pone.0023247] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/11/2011] [Indexed: 02/08/2023] Open
Abstract
Recombination is a mechanism whereby positive sense single stranded RNA viruses exchange segments of genetic information. Recent phylogenetic analyses of naturally occurring recombinant flaviviruses have raised concerns regarding the potential for the emergence of virulent recombinants either post-vaccination or following co-infection with two distinct wild-type viruses. To characterize the conditions and sequences that favor RNA arthropod-borne virus recombination we constructed yellow fever virus (YFV) 17D recombinant crosses containing complementary deletions in the envelope protein coding sequence. These constructs were designed to strongly favor recombination, and the detection conditions were optimized to achieve high sensitivity recovery of putative recombinants. Full length recombinant YFV 17D virus was never detected under any of the experimental conditions examined, despite achieving estimated YFV replicon co-infection levels of ∼2.4×106 in BHK-21 (vertebrate) cells and ∼1.05×105 in C710 (arthropod) cells. Additionally YFV 17D superinfection resistance was observed in vertebrate and arthropod cells harboring a primary infection with wild-type YFV Asibi strain. Furthermore recombination potential was also evaluated using similarly designed chikungunya virus (CHIKV) replicons towards validation of this strategy for recombination detection. Non-homologus recombination was observed for CHIKV within the structural gene coding sequence resulting in an in-frame duplication of capsid and E3 gene. Based on these data, it is concluded that even in the unlikely event of a high level acute co-infection of two distinct YFV genomes in an arthropod or vertebrate host, the generation of viable flavivirus recombinants is extremely unlikely.
Collapse
Affiliation(s)
- Charles E McGee
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America.
| | | | | | | | | | | | | |
Collapse
|
21
|
Yoshii K, Igarashi M, Ito K, Kariwa H, Holbrook MR, Takashima I. Construction of an infectious cDNA clone for Omsk hemorrhagic fever virus, and characterization of mutations in NS2A and NS5. Virus Res 2011; 155:61-8. [DOI: 10.1016/j.virusres.2010.08.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 08/26/2010] [Accepted: 08/26/2010] [Indexed: 10/19/2022]
|
22
|
Guy B, Guirakhoo F, Barban V, Higgs S, Monath TP, Lang J. Preclinical and clinical development of YFV 17D-based chimeric vaccines against dengue, West Nile and Japanese encephalitis viruses. Vaccine 2009; 28:632-49. [PMID: 19808029 DOI: 10.1016/j.vaccine.2009.09.098] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/28/2009] [Accepted: 09/23/2009] [Indexed: 11/18/2022]
Abstract
Dengue viruses (DENV), West Nile virus (WNV) and Japanese encephalitis virus (JEV) are major global health and growing medical problems. While a live-attenuated vaccine exists since decades against the prototype flavivirus, yellow fever virus (YFV), there is an urgent need for vaccines against dengue or West Nile diseases, and for improved vaccines against Japanese encephalitis. Live-attenuated chimeric viruses were constructed by replacing the genes coding for Premembrane (prM) and Envelope (E) proteins from YFV 17D vaccine strain with those of heterologous flaviviruses (ChimeriVax technology). This technology has been used to produce vaccine candidates for humans, for construction of a horse vaccine for West Nile fever, and as diagnostic reagents for dengue, Japanese encephalitis, West Nile and St. Louis encephalitis infections. This review focuses on human vaccines and their characterization from the early stages of research through to clinical development. Phenotypic and genetic properties and stability were examined, preclinical evaluation through in vitro or animal models, and clinical testing were carried out. Theoretical environmental concerns linked to the live and genetically modified nature of these vaccines have been carefully addressed. Results of the extensive characterizations are in accordance with the immunogenicity and excellent safety profile of the ChimeriVax-based vaccine candidates, and support their development towards large-scale efficacy trials and registration.
Collapse
Affiliation(s)
- Bruno Guy
- Sanofi Pasteur, Research and Development, 1541 Av Marcel Merieux, 69280 Marcy l'Etoile, France.
| | | | | | | | | | | |
Collapse
|
23
|
Maeda A, Murata R, Akiyama M, Takashima I, Kariwa H, Watanabe T, Kurane I, Maeda J. A PCR-based protocol for the generation of a recombinant West Nile virus. Virus Res 2009; 144:35-43. [PMID: 19467726 DOI: 10.1016/j.virusres.2009.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 03/27/2009] [Accepted: 03/31/2009] [Indexed: 11/24/2022]
Abstract
Viral reverse genetics, particularly infectious cloning, is a valuable tool with applications to many areas of viral research including the generation of vaccine candidates. However, this technology is sometimes insufficient for the construction cDNA clones as the genome sequences and/or encoding proteins of some viral agents may be toxic to the host cells used for cloning. To circumvent this problem, we developed a polymerase chain reaction (PCR)-based protocol for generating a complete West Nile virus (WNV) cDNA. The fragmented cDNAs were synthesized from WNV RNA by reverse transcription-PCR, and subsequently cloned into plasmids for use as templates for WNV cDNA synthesis. The fragmented cDNAs were amplified and assembled by PCR to generate a full-length WNV cDNA. Using this cDNA as a template, WNV RNA was synthesized in vitro and transfected into mammalian cells. We also examined the generation of a mutant recombinant WNV containing a site-directed mutation within the viral genome sequence. Here, we discuss the possibility of developing a method for the generation of recombinant WNVs.
Collapse
Affiliation(s)
- Akihiko Maeda
- Department of Prion Diseases, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
McElroy KL, Girard YA, McGee CE, Tsetsarkin KA, Vanlandingham DL, Higgs S. Characterization of the antigen distribution and tissue tropisms of three phenotypically distinct yellow fever virus variants in orally infected Aedes aegypti mosquitoes. Vector Borne Zoonotic Dis 2008; 8:675-87. [PMID: 18494601 DOI: 10.1089/vbz.2007.0269] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Arbovirus dissemination from the midgut of a vector mosquito is a critical step in facilitating virus transmission to a susceptible host. We previously characterized the genetic determinants of yellow fever virus (YFV) dissemination from the Aedes aegypti mosquito midgut using 2 genetically and phenotypically distinct strains of YFV: the wild-type, disseminating YFV Asibi strain and the attenuated, midgut-restricted YFV 17D vaccine strain. We examined the process of viral dissemination in YFV-infected Ae. aegypti by characterizing the tissue tropisms of 3 YF viruses in Ae. aegypti: Asibi, 17D, and a chimeric virus (17D/Asibi M-E) containing the Asibi membrane (M) and envelope (E) structural protein genes and 17D nonstructural genes. Ae. aegypti were infected orally, and whole, sectioned mosquitoes were evaluated for antigen distribution at 3, 7, 10, 14, and 21 days postinfection by immunohistochemical staining. Virus antigen was consistently observed in the posterior and anterior midgut, cardial epithelium, salivary glands, fat body, and nervous tissues in Asibi- and 17D/Asibi M-E-infected Ae. aegypti following 10 or 14-day extrinsic incubation, respectively. Amplification of virus in the abdominal and thoracic fat body is hypothesized to facilitate YFV infection of the Ae. aegypti salivary glands. As expected, 17D infection was generally limited to the midgut following oral infection. However, there did not appear to be a direct correlation between distribution of infection in the midgut and dissemination to the secondary tissues.
Collapse
Affiliation(s)
- Kate L McElroy
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0609, USA
| | | | | | | | | | | |
Collapse
|
25
|
McGee CE, Lewis MG, Claire MS, Wagner W, Lang J, Guy B, Tsetsarkin K, Higgs S, Decelle T. Recombinant chimeric virus with wild-type dengue 4 virus premembrane and envelope and virulent yellow fever virus Asibi backbone sequences is dramatically attenuated in nonhuman primates. J Infect Dis 2008; 197:693-7. [PMID: 18266603 DOI: 10.1086/527329] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Candidate vaccine ChimeriVax viruses are attenuated, efficacious, safe, and highly unlikely to be transmitted by arthropod vectors. Nevertheless, concerns have been raised about the use of these vaccines because of the potential for recombination between vaccine and wild-type (WT) strains. To evaluate the vertebrate pathogenicity of such a worst-case recombinant, ChimeriVax-dengue (DEN) 4 virus was chimerized with the WT Asibi yellow fever virus. In this worst-case scenario, chimeric viruses remained fully attenuated in nonhuman primates. We therefore conclude that, even in the highly unlikely event of "virulent" backbone reversion, the safety of ChimeriVax-DEN vaccines would not be compromised.
Collapse
Affiliation(s)
- Charles E McGee
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
E protein domain III determinants of yellow fever virus 17D vaccine strain enhance binding to glycosaminoglycans, impede virus spread, and attenuate virulence. J Virol 2008; 82:6024-33. [PMID: 18400851 DOI: 10.1128/jvi.02509-07] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The yellow fever virus (YFV) 17D strain is one of the most effective live vaccines for human use, but the in vivo mechanisms for virulence attenuation of the vaccine and the corresponding molecular determinants remain elusive. The vaccine differs phenotypically from wild-type YFV by the loss of viscerotropism, despite replicative fitness in cell culture, and genetically by 20 amino acid changes predominantly located in the envelope (E) protein. We show that three residues in E protein domain III inhibit spread of 17D in extraneural tissues and attenuate virulence in type I/II interferon-deficient mice. One of these residues (Arg380) is a dominant glycosaminoglycan-binding determinant, which mainly accounts for more rapid in vivo clearance of 17D from the bloodstream in comparison to 17D-derived variants with wild-type-like E protein. While other mutations will account for loss of neurotropism and phenotypic stability, the described impact of E protein domain III changes on virus dissemination and virulence is the first rational explanation for the safety of the 17D vaccine in humans.
Collapse
|
27
|
McGee CE, Tsetsarkin K, Vanlandingham DL, McElroy KL, Lang J, Guy B, Decelle T, Higgs S. Substitution of wild-type yellow fever Asibi sequences for 17D vaccine sequences in ChimeriVax-dengue 4 does not enhance infection of Aedes aegypti mosquitoes. J Infect Dis 2008; 197:686-92. [PMID: 18266608 PMCID: PMC2597369 DOI: 10.1086/527328] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
To address concerns that a flavivirus vaccine/wild-type recombinant virus might have a high mosquito infectivity phenotype, the yellow fever virus (YFV) 17D backbone of the ChimeriVax-dengue 4 virus was replaced with the corresponding gene sequences of the virulent YFV Asibi strain. Field-collected and laboratory-colonized Aedes aegypti mosquitoes were fed on blood containing each of the viruses under investigation and held for 14 days after infection. Infection and dissemination rates were based on antigen detection in titrated body or head triturates. Our data indicate that, even in the highly unlikely event of recombination or substantial backbone reversion, virulent sequences do not enhance the transmissibility of ChimeriVax viruses. In light of the low-level viremias that have been observed after vaccination in human volunteers coupled with low mosquito infectivity, it is predicted that the risk of mosquito infection and transmission of ChimeriVax vaccine recombinant/revertant viruses in nature is minimal.
Collapse
Affiliation(s)
- Charles E. McGee
- Department of Pathology, University of Texas Medical Branch, Galveston
| | | | | | - Kate L. McElroy
- Department of Pathology, University of Texas Medical Branch, Galveston
| | - Jean Lang
- Sanofi Pasteur, Global Research and Development, Campus Mérieux, Marcy-L’Etoile, France
| | - Bruno Guy
- Sanofi Pasteur, Global Research and Development, Campus Mérieux, Marcy-L’Etoile, France
| | - Thierry Decelle
- Sanofi Pasteur, Global Research and Development, Campus Mérieux, Marcy-L’Etoile, France
| | - Stephen Higgs
- Department of Pathology, University of Texas Medical Branch, Galveston
| |
Collapse
|
28
|
Maeda J, Takagi H, Hashimoto S, Kurane I, Maeda A. A PCR-based protocol for generating West Nile virus replicons. J Virol Methods 2008; 148:244-52. [PMID: 18242719 DOI: 10.1016/j.jviromet.2007.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 12/03/2007] [Accepted: 12/13/2007] [Indexed: 11/26/2022]
Abstract
A new protocol for the generation of West Nile virus (WNV) replicons was developed. Fragmented cDNAs that covered the entire WNV RNA sequence, except the sequence corresponding to nucleotides 190-2379, were amplified separately by polymerase chain reactions (PCRs) using primer set franking with overlapping sequences of 40-50 bp at the 5'- and the 3'-ends of each fragment. All amplified fragments were mixed together and annealed to each other at the overlapping sequences. The annealed-DNA fragments were elongated by DNA polymerase and amplified by short-cycle PCRs to generate full-sized WNV replicon cDNAs. The WNV replicons were transcribed in vitro using the replicon cDNAs as templates. When the in vitro-transcribed replicon was introduced into mammalian cells, the viral envelope protein and viral positive- and negative-strand RNAs were detected in the replicon-transfected cells. It is noteworthy that the synthesis of the replicon cDNAs and the replicons took just 1 week, and that the use of a high-fidelity DNA polymerase afforded stability to the sequence of the synthetic replicon.
Collapse
Affiliation(s)
- Junko Maeda
- Department of Prion Diseases, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | |
Collapse
|
29
|
|
30
|
Abstract
Yellow fever virus (YFV) is the prototype member of the genus Flavivirus, a group of viruses that are transmitted between vertebrates by arthropod vectors. The virus is found in tropical regions of Africa and South America and is transmitted to primates by mosquitoes: Aedes spp. in Africa and Haemagogus and Sabethes spp. in South America. Despite the availability of an effective vaccine, yellow fever (YF) is considered a reemerging disease owing to its increased incidence in the past 25 years. Molecular epidemiologic data suggest there are seven genotypes of YFV that are geographically separated, and outbreaks of disease are more associated with particular genotypes. In addition, the risk of urban YF, owing to transmission of the virus by Aedes aegypti, is increasing in Africa, as is the potential of urban YF returning to South America. Both present serious potential public health problems to large population centers.
Collapse
Affiliation(s)
- Alan D T Barrett
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas 77555-0609, USA.
| | | |
Collapse
|
31
|
McElroy KL, Tsetsarkin KA, Vanlandingham DL, Higgs S. Role of the yellow fever virus structural protein genes in viral dissemination from the Aedes aegypti mosquito midgut. J Gen Virol 2006; 87:2993-3001. [PMID: 16963758 DOI: 10.1099/vir.0.82023-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Live-attenuated virus vaccines are key components in controlling arboviral diseases, but they must not disseminate in or be transmitted by mosquito vectors. Although the cycles in which many mosquito-borne viruses are transmitted are well understood, the role of viral genetics in these processes has not been fully elucidated. Yellow fever virus (YFV) is an important arbovirus and the prototype member of the family Flaviviridae. Here, YFV was used in Aedes aegypti mosquitoes as a model to investigate the genetic basis of infection and dissemination in mosquitoes. Viruses derived from infectious clones and chimeric viruses with defined sequential manipulations were used to investigate the influence of specific sequences within the membrane and envelope structural protein genes on dissemination of virus from the mosquito midgut. Substitution of domain III of the envelope protein from a midgut-restricted YFV into a wild-type YFV resulted in a marked decrease in virus dissemination, suggesting an important role for domain III in this process. However, synergism between elements within the flavivirus structural and non-structural protein genes may be necessary for efficient virus escape from the mosquito midgut.
Collapse
Affiliation(s)
- Kate L McElroy
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0609, USA
| | - Konstantin A Tsetsarkin
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0609, USA
| | - Dana L Vanlandingham
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0609, USA
| | - Stephen Higgs
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0609, USA
| |
Collapse
|