1
|
Klink GV, Kalinina OV, Bazykin GA. Changing selection on amino acid substitutions in Gag protein between major HIV-1 subtypes. Virus Evol 2024; 10:veae036. [PMID: 38808036 PMCID: PMC11131029 DOI: 10.1093/ve/veae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 12/27/2023] [Accepted: 04/28/2024] [Indexed: 05/30/2024] Open
Abstract
Amino acid preferences at a protein site depend on the role of this site in protein function and structure as well as on external constraints. All these factors can change in the course of evolution, making amino acid propensities of a site time-dependent. When viral subtypes divergently evolve in different host subpopulations, such changes may depend on genetic, medical, and sociocultural differences between these subpopulations. Here, using our previously developed phylogenetic approach, we describe sixty-nine amino acid sites of the Gag protein of human immunodeficiency virus type 1 (HIV-1) where amino acids have different impact on viral fitness in six major subtypes of the type M. These changes in preferences trigger adaptive evolution; indeed, 32 (46 per cent) of these sites experienced strong positive selection at least in one of the subtypes. At some of the sites, changes in amino acid preferences may be associated with differences in immune escape between subtypes. The prevalence of an amino acid in a protein site within a subtype is only a poor predictor for whether this amino acid is preferred in this subtype according to the phylogenetic analysis. Therefore, attempts to identify the factors of viral evolution from comparative genomics data should integrate across multiple sources of information.
Collapse
Affiliation(s)
- Galya V Klink
- Laboratory of Molecular Evolution, Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences, Bolshoy Karetny per. 19, build.1, Moscow 127051, Russia
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, p.1, Skolkovo 121205, Russia
| | - Olga V Kalinina
- Drug Bioinformatics, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)/Helmholtz Centre for Infection Research (HZI), Campus E8.1, Saarbrücken 66123, Germany
- Center for Bioinformatics, Saarland University, Campus E2.1, Saarbrücken 66123, Germany
- Medical Faculty, Saarland University, Kirrberger Str. 100, Homburg 66421, Germany
| | - Georgii A Bazykin
- Laboratory of Molecular Evolution, Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences, Bolshoy Karetny per. 19, build.1, Moscow 127051, Russia
| |
Collapse
|
2
|
Warger J, Gaudieri S. On the Evolutionary Trajectory of SARS-CoV-2: Host Immunity as a Driver of Adaptation in RNA Viruses. Viruses 2022; 15:70. [PMID: 36680110 PMCID: PMC9866609 DOI: 10.3390/v15010070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Host immunity can exert a complex array of selective pressures on a pathogen, which can drive highly mutable RNA viruses towards viral escape. The plasticity of a virus depends on its rate of mutation, as well as the balance of fitness cost and benefit of mutations, including viral adaptations to the host's immune response. Since its emergence, SARS-CoV-2 has diversified into genetically distinct variants, which are characterised often by clusters of mutations that bolster its capacity to escape human innate and adaptive immunity. Such viral escape is well documented in the context of other pandemic RNA viruses such as the human immunodeficiency virus (HIV) and influenza virus. This review describes the selection pressures the host's antiviral immunity exerts on SARS-CoV-2 and other RNA viruses, resulting in divergence of viral strains into more adapted forms. As RNA viruses obscure themselves from host immunity, they uncover weak points in their own armoury that can inform more comprehensive, long-lasting, and potentially cross-protective vaccine coverage.
Collapse
Affiliation(s)
- Jacob Warger
- School of Medicine and Pharmacology, University of Western Australia, Crawley, WA 6009, Australia
| | - Silvana Gaudieri
- School of Human Sciences, University of Western Australia, Crawley, WA 6009, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Mandurah, WA 6150, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
3
|
Alam ASMRU, Islam OK, Hasan MS, Islam MR, Mahmud S, Al‐Emran HM, Jahid IK, Crandall KA, Hossain MA. Dominant clade-featured SARS-CoV-2 co-occurring mutations reveal plausible epistasis: An in silico based hypothetical model. J Med Virol 2022; 94:1035-1049. [PMID: 34676891 PMCID: PMC8661685 DOI: 10.1002/jmv.27416] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 01/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved into eight fundamental clades with four of these clades (G, GH, GR, and GV) globally prevalent in 2020. To explain plausible epistatic effects of the signature co-occurring mutations of these circulating clades on viral replication and transmission fitness, we proposed a hypothetical model using in silico approach. Molecular docking and dynamics analyses showed the higher infectiousness of a spike mutant through more favorable binding of G614 with the elastase-2. RdRp mutation p.P323L significantly increased genome-wide mutations (p < 0.0001), allowing for more flexible RdRp (mutated)-NSP8 interaction that may accelerate replication. Superior RNA stability and structural variation at NSP3:C241T might impact protein, RNA interactions, or both. Another silent 5'-UTR:C241T mutation might affect translational efficiency and viral packaging. These four G-clade-featured co-occurring mutations might increase viral replication. Sentinel GH-clade ORF3a:p.Q57H variants constricted the ion-channel through intertransmembrane-domain interaction of cysteine(C81)-histidine(H57). The GR-clade N:p.RG203-204KR would stabilize RNA interaction by a more flexible and hypo-phosphorylated SR-rich region. GV-clade viruses seemingly gained the evolutionary advantage of the confounding factors; nevertheless, N:p.A220V might modulate RNA binding with no phenotypic effect. Our hypothetical model needs further retrospective and prospective studies to understand detailed molecular events and their relationship to the fitness of SARS-CoV-2.
Collapse
Affiliation(s)
| | - Ovinu Kibria Islam
- Department of MicrobiologyJashore University of Science and TechnologyJashoreBangladesh
| | - Md. Shazid Hasan
- Department of MicrobiologyJashore University of Science and TechnologyJashoreBangladesh
| | - Mir Raihanul Islam
- Division of Poverty, Health, and NutritionInternational Food Policy Research InstituteBangladesh
| | - Shafi Mahmud
- Department Genetic Engineering and BiotechnologyUniversity of RajshahiRajshahiBangladesh
| | - Hassan M. Al‐Emran
- Department of Biomedical EngineeringJashore University of Science and TechnologyJashoreBangladesh
| | - Iqbal Kabir Jahid
- Department of MicrobiologyJashore University of Science and TechnologyJashoreBangladesh
| | - Keith A. Crandall
- Department of Biostatistics and Bioinformatics, Computational Biology Institute, Milken Institute School of Public HealthThe George Washington UniversityWashington DCUSA
| | - M. Anwar Hossain
- Office of the Vice ChancellorJashore University of Science and TechnologyJashoreBangladesh
- Department of MicrobiologyUniversity of DhakaDhakaBangladesh
| |
Collapse
|
4
|
Zhao S, Lou J, Cao L, Zheng H, Chong MKC, Chen Z, Chan RWY, Zee BCY, Chan PKS, Wang MH. Real-time quantification of the transmission advantage associated with a single mutation in pathogen genomes: a case study on the D614G substitution of SARS-CoV-2. BMC Infect Dis 2021; 21:1039. [PMID: 34620109 PMCID: PMC8495436 DOI: 10.1186/s12879-021-06729-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The COVID-19 pandemic poses serious threats to global health, and the emerging mutation in SARS-CoV-2 genomes, e.g., the D614G substitution, is one of the major challenges of disease control. Characterizing the role of the mutation activities is of importance to understand how the evolution of pathogen shapes the epidemiological outcomes at population scale. METHODS We developed a statistical framework to reconstruct variant-specific reproduction numbers and estimate transmission advantage associated with the mutation activities marked by single substitution empirically. Using likelihood-based approach, the model is exemplified with the COVID-19 surveillance data from January 1 to June 30, 2020 in California, USA. We explore the potential of this framework to generate early warning signals for detecting transmission advantage on a real-time basis. RESULTS The modelling framework in this study links together the mutation activity at molecular scale and COVID-19 transmissibility at population scale. We find a significant transmission advantage of COVID-19 associated with the D614G substitution, which increases the infectivity by 54% (95%CI: 36, 72). For the early alarming potentials, the analytical framework is demonstrated to detect this transmission advantage, before the mutation reaches dominance, on a real-time basis. CONCLUSIONS We reported an evidence of transmission advantage associated with D614G substitution, and highlighted the real-time estimating potentials of modelling framework.
Collapse
Affiliation(s)
- Shi Zhao
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Jingzhi Lou
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
| | - Lirong Cao
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
| | - Hong Zheng
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
| | - Marc K. C. Chong
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Zigui Chen
- Department of Microbiology, Chinese University of Hong Kong, Hong Kong, China
| | - Renee W. Y. Chan
- Department of Paediatrics, Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Hub of Pediatric Excellence, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
- CUHK-UMCU Joint Research Laboratory of Respiratory Virus & Immunobiology, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Benny C. Y. Zee
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Paul K. S. Chan
- Department of Microbiology, Chinese University of Hong Kong, Hong Kong, China
| | - Maggie H. Wang
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
5
|
Zhao S, Ran J, Han L. Exploring the Interaction between E484K and N501Y Substitutions of SARS-CoV-2 in Shaping the Transmission Advantage of COVID-19 in Brazil: A Modeling Study. Am J Trop Med Hyg 2021; 105:1247-1254. [PMID: 34583340 PMCID: PMC8592180 DOI: 10.4269/ajtmh.21-0412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic poses serious threats to global health, and the emerging mutation in SARS-CoV-2 genomes is one of the major challenges of disease control. Considering the growth of epidemic curve and the circulating SARS-CoV-2 variants in Brazil, the role of locally prevalent E484K and N501Y substitutions in contributing to the epidemiological outcomes is of public health interest for investigation. We developed a likelihood-based statistical framework to reconstruct reproduction numbers, estimate transmission advantage associated with different SARS-CoV-2 variants regarding the marking (identifying) 484K and 501Y substitutions (including Alpha, Zeta, and Gamma variants) in Brazil, and explored the interactive effects of genetic activities on transmission advantage marked by these two mutations. We found a significant transmission advantage associated with the 484K/501Y variants (including P.1 or Gamma variants), which increased the infectivity significantly by 23%. In contrast and by comparison to Gamma variants, E484K or N501Y (including Alpha or Zeta variants) substitution alone appeared less likely to secure a concrete transmission advantage in Brazil. Our finding indicates that the combined impact of genetic activities on transmission advantage marked by 484K/501Y outperforms their independent contributions in Brazil, which implies an interactive effect in shaping the increase in the infectivity of COVID-19. Future studies are needed to investigate the mechanisms of how E484K and N501Y mutations and the complex genetic mutation activities marked by them in SARS-CoV-2 affect the transmissibility of COVID-19.
Collapse
Affiliation(s)
- Shi Zhao
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China.,CUHK Shenzhen Research Institute, Shenzhen, China
| | - Jinjun Ran
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lefei Han
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Grifoni A, Sidney J, Vita R, Peters B, Crotty S, Weiskopf D, Sette A. SARS-CoV-2 human T cell epitopes: Adaptive immune response against COVID-19. Cell Host Microbe 2021; 29:1076-1092. [PMID: 34237248 PMCID: PMC8139264 DOI: 10.1016/j.chom.2021.05.010] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/23/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023]
Abstract
Over the past year, numerous studies in the peer reviewed and preprint literature have reported on the virological, epidemiological and clinical characteristics of the coronavirus, SARS-CoV-2. To date, 25 studies have investigated and identified SARS-CoV-2-derived T cell epitopes in humans. Here, we review these recent studies, how they were performed, and their findings. We review how epitopes identified throughout the SARS-CoV2 proteome reveal significant correlation between number of epitopes defined and size of the antigen provenance. We also report additional analysis of SARS-CoV-2 human CD4 and CD8 T cell epitope data compiled from these studies, identifying 1,400 different reported SARS-CoV-2 epitopes and revealing discrete immunodominant regions of the virus and epitopes that are more prevalently recognized. This remarkable breadth of epitope repertoire has implications for vaccine design, cross-reactivity, and immune escape by SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Randi Vita
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA.
| |
Collapse
|
7
|
Zhao S, Lou J, Chong MKC, Cao L, Zheng H, Chen Z, Chan RWY, Zee BCY, Chan PKS, Wang MH. Inferring the Association between the Risk of COVID-19 Case Fatality and N501Y Substitution in SARS-CoV-2. Viruses 2021; 13:638. [PMID: 33918060 PMCID: PMC8070306 DOI: 10.3390/v13040638] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
As COVID-19 is posing a serious threat to global health, the emerging mutation in SARS-CoV-2 genomes, for example, N501Y substitution, is one of the major challenges against control of the pandemic. Characterizing the relationship between mutation activities and the risk of severe clinical outcomes is of public health importance for informing the healthcare decision-making process. Using a likelihood-based approach, we developed a statistical framework to reconstruct a time-varying and variant-specific case fatality ratio (CFR), and to estimate changes in CFR associated with a single mutation empirically. For illustration, the statistical framework is implemented to the COVID-19 surveillance data in the United Kingdom (UK). The reconstructed instantaneous CFR gradually increased from 1.0% in September to 2.2% in November 2020 and stabilized at this level thereafter, which monitors the mortality risk of COVID-19 on a real-time basis. We identified a link between the SARS-CoV-2 mutation activity at molecular scale and COVID-19 mortality risk at population scale, and found that the 501Y variants may slightly but not significantly increase 18% of fatality risk than the preceding 501N variants. We found no statistically significant evidence of change in COVID-19 mortality risk associated with 501Y variants, and highlighted the real-time estimating potentials of the modelling framework.
Collapse
Affiliation(s)
- Shi Zhao
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China; (J.L.); (M.K.C.C.); (L.C.); (H.Z.); (B.C.Y.Z.)
- CUHK Shenzhen Research Institute, Shenzhen 518000, China
| | - Jingzhi Lou
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China; (J.L.); (M.K.C.C.); (L.C.); (H.Z.); (B.C.Y.Z.)
| | - Marc K. C. Chong
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China; (J.L.); (M.K.C.C.); (L.C.); (H.Z.); (B.C.Y.Z.)
- CUHK Shenzhen Research Institute, Shenzhen 518000, China
| | - Lirong Cao
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China; (J.L.); (M.K.C.C.); (L.C.); (H.Z.); (B.C.Y.Z.)
- CUHK Shenzhen Research Institute, Shenzhen 518000, China
| | - Hong Zheng
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China; (J.L.); (M.K.C.C.); (L.C.); (H.Z.); (B.C.Y.Z.)
| | - Zigui Chen
- Department of Microbiology, Chinese University of Hong Kong, Hong Kong, China; (Z.C.); (P.K.S.C.)
| | - Renee W. Y. Chan
- Department of Pediatrics, Chinese University of Hong Kong, Hong Kong, China;
- Hong Kong Hub of Pediatric Excellence, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
- CUHK-UMCU Joint Research Laboratory of Respiratory Virus & Immunobiology, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Benny C. Y. Zee
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China; (J.L.); (M.K.C.C.); (L.C.); (H.Z.); (B.C.Y.Z.)
- CUHK Shenzhen Research Institute, Shenzhen 518000, China
| | - Paul K. S. Chan
- Department of Microbiology, Chinese University of Hong Kong, Hong Kong, China; (Z.C.); (P.K.S.C.)
| | - Maggie H. Wang
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China; (J.L.); (M.K.C.C.); (L.C.); (H.Z.); (B.C.Y.Z.)
- CUHK Shenzhen Research Institute, Shenzhen 518000, China
| |
Collapse
|
8
|
Zhao S, Lou J, Cao L, Zheng H, Chong MKC, Chen Z, Zee BCY, Chan PKS, Wang MH. Modelling the association between COVID-19 transmissibility and D614G substitution in SARS-CoV-2 spike protein: using the surveillance data in California as an example. Theor Biol Med Model 2021; 18:10. [PMID: 33750399 PMCID: PMC7941367 DOI: 10.1186/s12976-021-00140-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/12/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The COVID-19 pandemic poses a serious threat to global health, and pathogenic mutations are a major challenge to disease control. We developed a statistical framework to explore the association between molecular-level mutation activity of SARS-CoV-2 and population-level disease transmissibility of COVID-19. METHODS We estimated the instantaneous transmissibility of COVID-19 by using the time-varying reproduction number (Rt). The mutation activity in SARS-CoV-2 is quantified empirically depending on (i) the prevalence of emerged amino acid substitutions and (ii) the frequency of these substitutions in the whole sequence. Using the likelihood-based approach, a statistical framework is developed to examine the association between mutation activity and Rt. We adopted the COVID-19 surveillance data in California as an example for demonstration. RESULTS We found a significant positive association between population-level COVID-19 transmissibility and the D614G substitution on the SARS-CoV-2 spike protein. We estimate that a per 0.01 increase in the prevalence of glycine (G) on codon 614 is positively associated with a 0.49% (95% CI: 0.39 to 0.59) increase in Rt, which explains 61% of the Rt variation after accounting for the control measures. We remark that the modeling framework can be extended to study other infectious pathogens. CONCLUSIONS Our findings show a link between the molecular-level mutation activity of SARS-CoV-2 and population-level transmission of COVID-19 to provide further evidence for a positive association between the D614G substitution and Rt. Future studies exploring the mechanism between SARS-CoV-2 mutations and COVID-19 infectivity are warranted.
Collapse
Affiliation(s)
- Shi Zhao
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Jingzhi Lou
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
| | - Lirong Cao
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
| | - Hong Zheng
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
| | - Marc K. C. Chong
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Zigui Chen
- Department of Microbiology, Chinese University of Hong Kong, Hong Kong, China
| | - Benny C. Y. Zee
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| | - Paul K. S. Chan
- Department of Microbiology, Chinese University of Hong Kong, Hong Kong, China
| | - Maggie H. Wang
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
9
|
Human Monoclonal Antibody Derived from Transchromosomic Cattle Neutralizes Multiple H1 Clades of Influenza A Virus by Recognizing a Novel Conformational Epitope in the Hemagglutinin Head Domain. J Virol 2020; 94:JVI.00945-20. [PMID: 32847862 DOI: 10.1128/jvi.00945-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/03/2020] [Indexed: 11/20/2022] Open
Abstract
Influenza remains a global health risk and challenge. Currently, neuraminidase (NA) inhibitors are extensively used to treat influenza, but their efficacy is compromised by the emergence of drug-resistant variants. Neutralizing antibodies targeting influenza A virus surface glycoproteins are critical components of influenza therapeutic agents and may provide alternative strategies to the existing countermeasures. However, the major hurdle for the extensive application of antibody therapies lies in the difficulty of generating nonimmunogenic antibodies in large quantities rapidly. Here, we report that one human monoclonal antibody (MAb), 53C10, isolated from transchromosomic (Tc) cattle exhibits potent neutralization and hemagglutination inhibition titers against different clades of H1N1 subtype influenza A viruses. In vitro selection of antibody escape mutants revealed that 53C10 recognizes a novel noncontinuous epitope in the hemagglutinin (HA) head domain involving three amino acid residues, glycine (G), serine (S), and glutamic acid (E) at positions 172, 207, and 212, respectively. The results of our experiments supported a critical role for substitution of arginine at position 207 (S207R) in mediating resistance to 53C10, while substitutions at either G172E or E212A did not alter antibody recognition and neutralization. The E212A mutation may provide structural stability for the epitope, while the substitution G172E probably compensates for loss of fitness introduced by S207R. Our results offer novel insights into the mechanism of action of MAb 53C10 and indicate its potential role in therapeutic treatment of H1 influenza virus infection in humans.IMPORTANCE Respiratory diseases caused by influenza viruses still pose a serious concern to global health, and neutralizing antibodies constitute a promising area of antiviral therapeutics. However, the potential application of antibodies is often hampered by the challenge in generating nonimmunogenic antibodies in large scale. In the present study, transchromosomic (Tc) cattle were used for the generation of nonimmunogenic monoclonal antibodies (MAbs), and characterization of such MAbs revealed one monoclonal antibody, 53C10, exhibiting a potent neutralization activity against H1N1 influenza viruses. Further characterization of the neutralization escape mutant generated using this MAb showed that three amino acid substitutions in the HA head domain contributed to the resistance. These findings emphasize the importance of Tc cattle in the production of nonimmunogenic MAbs and highlight the potential of MAb 53C10 in the therapeutic application against H1 influenza virus infection in humans.
Collapse
|
10
|
van Gennip RGP, Drolet BS, Rozo Lopez P, Roost AJC, Boonstra J, van Rijn PA. Vector competence is strongly affected by a small deletion or point mutations in bluetongue virus. Parasit Vectors 2019; 12:470. [PMID: 31604476 PMCID: PMC6790033 DOI: 10.1186/s13071-019-3722-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/16/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Transmission of vector-borne virus by insects is a complex mechanism consisting of many different processes; viremia in the host, uptake, infection and dissemination in the vector, and delivery of virus during blood-feeding leading to infection of the susceptible host. Bluetongue virus (BTV) is the prototype vector-borne orbivirus (family Reoviridae). BTV serotypes 1-24 (typical BTVs) are transmitted by competent biting Culicoides midges and replicate in mammalian (BSR) and midge (KC) cells. Previously, we showed that genome segment 10 (S10) encoding NS3/NS3a protein is required for virus propagation in midges. BTV serotypes 25-27 (atypical BTVs) do not replicate in KC cells. Several distinct BTV26 genome segments cause this so-called 'differential virus replication' in vitro. METHODS Virus strains were generated using reverse genetics and their growth was examined in vitro. The midge feeding model has been developed to study infection, replication and disseminations of virus in vivo. A laboratory colony of C. sonorensis, a known competent BTV vector, was fed or injected with BTV variants and propagation in the midge was examined using PCR testing. Crossing of the midgut infection barrier was examined by separate testing of midge heads and bodies. RESULTS A 100 nl blood meal containing ±105.3 TCID50/ml of BTV11 which corresponds to ±20 TCID50 infected 50% of fully engorged midges, and is named one Midge Alimentary Infective Dose (MAID50). BTV11 with a small in-frame deletion in S10 infected blood-fed midge midguts but virus release from the midgut into the haemolymph was blocked. BTV11 with S1[VP1] of BTV26 could be adapted to virus growth in KC cells, and contained mutations subdivided into 'corrections' of the chimeric genome constellation and mutations associated with adaptation to KC cells. In particular one amino acid mutation in outer shell protein VP2 overcomes differential virus replication in vitro and in vivo. CONCLUSION Small changes in NS3/NS3a or in the outer shell protein VP2 strongly affect virus propagation in midges and thus vector competence. Therefore, spread of disease by competent Culicoides midges can strongly differ for very closely related viruses.
Collapse
Affiliation(s)
- René G P van Gennip
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Barbara S Drolet
- Arthropod-Borne Animal Diseases Research Unit, Centre for Grain and Animal Health Research, USDA-ARS, Manhattan, KS, USA
| | - Paula Rozo Lopez
- Arthropod-Borne Animal Diseases Research Unit, Centre for Grain and Animal Health Research, USDA-ARS, Manhattan, KS, USA.,Kansas State University, Manhattan, KS, USA
| | - Ashley J C Roost
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Jan Boonstra
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands. .,Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
11
|
Jansen JM, Gerlach T, Elbahesh H, Rimmelzwaan GF, Saletti G. Influenza virus-specific CD4+ and CD8+ T cell-mediated immunity induced by infection and vaccination. J Clin Virol 2019; 119:44-52. [DOI: 10.1016/j.jcv.2019.08.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/13/2023]
|
12
|
Challenges, Opportunities and Theoretical Epidemiology. TEXTS IN APPLIED MATHEMATICS 2019. [PMCID: PMC7123038 DOI: 10.1007/978-1-4939-9828-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lessons learned from the HIV pandemic, SARS in 2003, the 2009 H1N1 influenza pandemic, the 2014 Ebola outbreak in West Africa, and the ongoing Zika outbreaks in the Americas can be framed under a public health policy model that responds after the fact. Responses often come through reallocation of resources from one disease control effort to a new pressing need. The operating models of preparedness and response are ill-equipped to prevent or ameliorate disease emergence or reemergence at global scales. Epidemiological challenges that are a threat to the economic stability of many regions of the world, particularly those depending on travel and trade, remain at the forefront of the Global Commons. Consequently, efforts to quantify the impact of mobility and trade on disease dynamics have dominated the interests of theoreticians for some time. Our experience includes an H1N1 influenza pandemic crisscrossing the world during 2009 and 2010, the 2014 Ebola outbreaks, limited to regions of West Africa lacking appropriate medical facilities, health infrastructure, and sufficient levels of preparedness and education, and the expanding Zika outbreaks, moving expeditiously across habitats suitable for Aedes aegypti. These provide opportunities to quantify the impact of disease emergence or reemergence on the decisions that individuals take in response to real or perceived disease risks. The case of SARS 2003 in 2003, the efforts to reduce the burden of H1N1 influenza cases in 2009, and the challenges faced in reducing the number of Ebola cases in 2014 are the three recent scenarios that required a timely global response. Studies addressing the impact of centralized sources of information, the impact of information along social connections, or the role of past disease outbreak experiences on the risk-aversion decisions that individuals undertake may help identify and quantify the role of human responses to disease dynamics while recognizing the importance of assessing the timing of disease emergence and reemergence. The co-evolving human responses to disease dynamics are prototypical of the feedbacks that define complex adaptive systems. In short, we live in a socioepisphere being reshaped by ecoepidemiology in the “Era of Information.”
Collapse
|
13
|
Tang JW, Blount J, Bradley C, Donaghy B, Shardlow C, Bandi S, Baxter C, Hunter A, Range S, Lam TT. Impact of a poorly performing point-of-care test during the 2017-2018 influenza season. J Infect 2018; 78:249-259. [PMID: 30408493 PMCID: PMC7172292 DOI: 10.1016/j.jinf.2018.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 10/13/2018] [Indexed: 11/03/2022]
Affiliation(s)
- Julian W Tang
- Clinical Microbiology and Virology, University Hospitals of Leicester NHS Trust, Level 5 Sandringham Building, Leicester Royal Infirmary, Infirmary Square, Leicester LE1 5WW, UK; Infection, Immunity, Inflammation, University of Leicester, Leicester, UK.
| | - Janice Blount
- Infection Prevention and Control, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Carina Bradley
- Clinical Microbiology and Virology, University Hospitals of Leicester NHS Trust, Level 5 Sandringham Building, Leicester Royal Infirmary, Infirmary Square, Leicester LE1 5WW, UK
| | - Bernadette Donaghy
- Adult Cystic Fibrosis Unit, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Carol Shardlow
- Haematology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Srini Bandi
- Children's Hospital, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Caroline Baxter
- Clinical Decisions Unit, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Ann Hunter
- Haematology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Simon Range
- Adult Cystic Fibrosis Unit, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Tommy Ty Lam
- School of Public Health, University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
14
|
Brauer F. Mathematical epidemiology: Past, present, and future. Infect Dis Model 2017; 2:113-127. [PMID: 29928732 PMCID: PMC6001967 DOI: 10.1016/j.idm.2017.02.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 12/18/2022] Open
Abstract
We give a brief outline of some of the important aspects of the development of mathematical epidemiology.
Collapse
|
15
|
Knipl D, Röst G, Moghadas SM. Population dynamics of epidemic and endemic states of drug-resistance emergence in infectious diseases. PeerJ 2017; 5:e2817. [PMID: 28097052 PMCID: PMC5228518 DOI: 10.7717/peerj.2817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022] Open
Abstract
The emergence and spread of drug-resistance during treatment of many infectious diseases continue to degrade our ability to control and mitigate infection outcomes using therapeutic measures. While the coverage and efficacy of treatment remain key factors in the population dynamics of resistance, the timing for the start of the treatment in infectious individuals can significantly influence such dynamics. We developed a between-host disease transmission model to investigate the short-term (epidemic) and long-term (endemic) states of infections caused by two competing pathogen subtypes, namely the wild-type and resistant-type, when the probability of developing resistance is a function of delay in start of the treatment. We characterize the behaviour of disease equilibria and obtain a condition to minimize the fraction of population infectious at the endemic state in terms of probability of developing resistance and its transmission fitness. For the short-term epidemic dynamics, we illustrate that depending on the likelihood of resistance development at the time of treatment initiation, the same epidemic size may be achieved with different delays in start of the treatment, which may correspond to significantly different treatment coverages. Our results demonstrate that early initiation of treatment may not necessarily be the optimal strategy for curtailing the incidence of resistance or the overall disease burden. The risk of developing drug-resistance in-host remains an important factor in the management of resistance in the population.
Collapse
Affiliation(s)
- Diána Knipl
- Department of Mathematics, University College London, London, United Kingdom; MTA-SZTE Analysis and Stochastic Research Group, University of Szeged, Szeged, Hungary
| | - Gergely Röst
- Bolyai Institute, University of Szeged , Szeged , Hungary
| | - Seyed M Moghadas
- Agent-Based Modelling Laboratory, York University , Toronto , Canada
| |
Collapse
|
16
|
Lawrence P, Danet N, Reynard O, Volchkova V, Volchkov V. Human transmission of Ebola virus. Curr Opin Virol 2016; 22:51-58. [PMID: 28012412 DOI: 10.1016/j.coviro.2016.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/25/2016] [Accepted: 11/29/2016] [Indexed: 12/11/2022]
Abstract
Ever since the first recognised outbreak of Ebolavirus in 1976, retrospective epidemiological analyses and extensive studies with animal models have given us insight into the nature of the pathology and transmission mechanisms of this virus. In this review focusing on Ebolavirus, we present an outline of our current understanding of filovirus human-to-human transmission and of our knowledge concerning the molecular basis of viral transmission and potential for adaptation, with particular focus on what we have learnt from the 2014 outbreak in West Africa. We identify knowledge gaps relating to transmission and pathogenicity mechanisms, molecular adaptation and filovirus ecology.
Collapse
Affiliation(s)
- Philip Lawrence
- Molecular Basis of Viral Pathogenicity, International Centre for Research in Infectiology (CIRI), INSERM U1111 - CNRS UMR5308, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon 69007, France; Université de Lyon, UMRS 449, Laboratoire de Biologie Générale, Université Catholique de Lyon - EPHE, Lyon 69288, France
| | - Nicolas Danet
- Molecular Basis of Viral Pathogenicity, International Centre for Research in Infectiology (CIRI), INSERM U1111 - CNRS UMR5308, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon 69007, France
| | - Olivier Reynard
- Molecular Basis of Viral Pathogenicity, International Centre for Research in Infectiology (CIRI), INSERM U1111 - CNRS UMR5308, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon 69007, France
| | - Valentina Volchkova
- Molecular Basis of Viral Pathogenicity, International Centre for Research in Infectiology (CIRI), INSERM U1111 - CNRS UMR5308, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon 69007, France
| | - Viktor Volchkov
- Molecular Basis of Viral Pathogenicity, International Centre for Research in Infectiology (CIRI), INSERM U1111 - CNRS UMR5308, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon 69007, France.
| |
Collapse
|
17
|
Komadina N, Quiñones-Parra SM, Kedzierska K, McCaw JM, Kelso A, Leder K, McVernon J. High conservation level of CD8(+) T cell immunogenic regions within an unusual H1N2 human influenza variant. J Med Virol 2016; 88:1725-32. [PMID: 26950895 DOI: 10.1002/jmv.24516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2016] [Indexed: 12/23/2022]
Abstract
Current seasonal influenza vaccines require regular updates due to antigenic drift causing loss of effectiveness and therefore providing little or no protection against novel influenza A subtypes. Next generation vaccines capable of eliciting CD8(+) T cell (CTL) mediated cross-protective immunity may offer a long-term alternative strategy. However, measuring pre- and existing levels of CTL cross-protection in humans is confounded by differences in infection histories across individuals. During 2000-2003, H1N2 viruses circulated persistently in the human population for the first time and we hypothesized that the viral nucleoprotein (NP) contained novel CTL epitopes that may have contributed to the survival of the viruses. This study describes the immunogenic NP peptides of H1N1, H2N2, and H3N2 influenza viruses isolated from humans over the past century, 1918-2003, by comparing this historical dataset to reference NP peptides from H1N2 that circulated in humans during 2000-2003. Observed peptides sequences ranged from highly conserved (15%) to highly variable (12%), with variation unrelated to reported immunodominance. No unique NP peptides which were exclusive to the H1N2 viruses were noted. However, the virus had inherited the NP from a recently emerged H3N2 variant containing novel peptides, which may have assisted its persistence. Any advantage due to this novelty was subsequently lost with emergence of a newer H3N2 variant in 2003. Our approach has potential to provide insight into the population context in which influenza viruses emerge, and may help to inform immunogenic peptide selection for CTL-inducing influenza vaccines. J. Med. Virol. 88:1725-1732, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Naomi Komadina
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Melbourne, Victoria, Australia.,Monash University, Melbourne, Victoria, Australia.,The Peter Doherty Institute of Infection and Immunity, Melbourne, Australia
| | - Sergio M Quiñones-Parra
- The Peter Doherty Institute of Infection and Immunity, Melbourne, Australia.,The University of Melbourne, Melbourne, Victoria, Australia
| | - Katherine Kedzierska
- The Peter Doherty Institute of Infection and Immunity, Melbourne, Australia.,The University of Melbourne, Melbourne, Victoria, Australia
| | - James M McCaw
- The University of Melbourne, Melbourne, Victoria, Australia.,Murdoch Children's Research Institute, Melbourne, Australia
| | - Anne Kelso
- World Health Organization Collaborating Centre for Reference and Research on Influenza, Melbourne, Victoria, Australia.,The Peter Doherty Institute of Infection and Immunity, Melbourne, Australia.,The University of Melbourne, Melbourne, Victoria, Australia
| | - Karin Leder
- Monash University, Melbourne, Victoria, Australia.,Victorian Infectious Diseases Services, Melbourne, Victoria, Australia
| | - Jodie McVernon
- The University of Melbourne, Melbourne, Victoria, Australia.,Murdoch Children's Research Institute, Melbourne, Australia
| |
Collapse
|
18
|
Xiao Y, Brauer F, Moghadas SM. Can treatment increase the epidemic size? J Math Biol 2016; 72:343-61. [PMID: 25925242 DOI: 10.1007/s00285-015-0887-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 02/17/2014] [Indexed: 01/22/2023]
Abstract
Antiviral treatment is one of the key pharmacological interventions against many infectious diseases. This is particularly important in the absence of preventive measures such as vaccination. However, the evolution of drug-resistance in treated patients and its subsequent spread to the population pose significant impediments to the containment of disease epidemics using treatment. Previous models of population dynamics of influenza infection have shown that in the presence of drug-resistance, the epidemic final size (i.e., the total number of infections throughout the epidemic) is affected by the treatment rate. These models, through simulation experiments, illustrate the existence of an optimal treatment rate, not necessarily the highest possible rate, for minimizing the epidemic final size. However, the conditions for the existence of such an optimal treatment rate have never been found. Here, we provide these conditions for a class of models covered in the literature previously, and investigate the combination effect of treatment and transmissibility of the drug-resistant pathogen strain on the epidemic final size. For the first time, we obtain the final size relations for an epidemic model with two strains of a pathogen (i.e., drug-sensitive and drug-resistant). We also discuss this model with specific functional forms of de novo resistance emergence, and illustrate the theoretical findings with numerical simulations.
Collapse
Affiliation(s)
- Yanyu Xiao
- Agent-Based Modelling Laboratory, York University, Toronto, M3J 1P3, Canada.
| | - Fred Brauer
- Department of Mathematics, University of British Columbia, Vancouver, V6T 1T2, Canada.
| | - Seyed M Moghadas
- Agent-Based Modelling Laboratory, York University, Toronto, M3J 1P3, Canada.
| |
Collapse
|
19
|
Quiñones-Parra S, Loh L, Brown LE, Kedzierska K, Valkenburg SA. Universal immunity to influenza must outwit immune evasion. Front Microbiol 2014; 5:285. [PMID: 24971078 PMCID: PMC4054793 DOI: 10.3389/fmicb.2014.00285] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/23/2014] [Indexed: 12/23/2022] Open
Abstract
Although an influenza vaccine has been available for 70 years, influenza virus still causes seasonal epidemics and worldwide pandemics. Currently available vaccines elicit strain-specific antibody (Ab) responses to the surface haemagglutinin (HA) and neuraminidase (NA) proteins, but these can be ineffective against serologically-distinct viral variants and novel subtypes. Thus, there is a great need for cross-protective or "universal" influenza vaccines to overcome the necessity for annual immunization against seasonal influenza and to provide immunity to reduce the severity of infection with pandemic or outbreak viruses. It is well established that natural influenza infection can provide cross-reactive immunity that can reduce the impact of infection with distinct influenza type A strains and subtypes, including H1N1, H3N2, H2N2, H5N1, and H7N9. The key to generating universal influenza immunity through vaccination is to target functionally-conserved regions of the virus, which include epitopes on the internal proteins for cross-reactive T cell immunity or on the HA stem for broadly reactive Ab responses. In the wake of the 2009 H1N1 pandemic, broadly neutralizing antibodies (bnAbs) have been characterized and isolated from convalescent and vaccinated individuals, inspiring development of new vaccination techniques to elicit such responses. Induction of influenza-specific T cell responses through vaccination has also been recently examined in clinical trials. Strong evidence is available from human and animal models of influenza to show that established influenza-specific T cell memory can reduce viral shedding and symptom severity. However, the published evidence also shows that CD8(+) T cells can efficiently select immune escape mutants early after influenza virus infection. Here, we discuss universal immunity to influenza viruses mediated by both cross-reactive T cells and Abs, the mechanisms of immune evasion in influenza, and propose how to counteract commonly occurring immune-escape variants.
Collapse
Affiliation(s)
- Sergio Quiñones-Parra
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville VIC, Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville VIC, Australia
| | - Lorena E Brown
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville VIC, Australia
| | - Sophie A Valkenburg
- Centre for Influenza Research and School of Public Health, The University of Hong Kong Hong Kong, China
| |
Collapse
|
20
|
Valkenburg SA, Quiñones-Parra S, Gras S, Komadina N, McVernon J, Wang Z, Halim H, Iannello P, Cole C, Laurie K, Kelso A, Rossjohn J, Doherty PC, Turner SJ, Kedzierska K. Acute emergence and reversion of influenza A virus quasispecies within CD8+ T cell antigenic peptides. Nat Commun 2014; 4:2663. [PMID: 24173108 DOI: 10.1038/ncomms3663] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 09/23/2013] [Indexed: 01/14/2023] Open
Abstract
Influenza A virus-specific CD8(+) cytotoxic T lymphocytes (CTLs) provide a degree of cross-strain protection that is potentially subverted by mutation. Here we describe the sequential emergence of such variants within CTL epitopes for a persistently infected, immunocompromised infant. Further analysis in immunodeficient and wild-type mice supports the view that CTL escape variants arise frequently in influenza, accumulate with time and revert in the absence of immune pressure under MHCI-mismatched conditions. Viral fitness, the abundance of endogenous CD8(+) T cell responses and T cell receptor repertoire diversity influence the nature of these de novo mutants. Structural characterization of dominant escape variants shows how the peptide-MHCI interaction is modified to affect variant-MHCI stability. The mechanism of influenza virus escape thus looks comparable to that recognized for chronic RNA viruses like HIV and HCV, suggesting that immunocompromised patients with prolonged viral infection could have an important part in the emergence of influenza quasispecies.
Collapse
Affiliation(s)
- Sophie A Valkenburg
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Neverov AD, Lezhnina KV, Kondrashov AS, Bazykin GA. Intrasubtype reassortments cause adaptive amino acid replacements in H3N2 influenza genes. PLoS Genet 2014; 10:e1004037. [PMID: 24415946 PMCID: PMC3886890 DOI: 10.1371/journal.pgen.1004037] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 11/01/2013] [Indexed: 01/15/2023] Open
Abstract
Reassortments and point mutations are two major contributors to diversity of Influenza A virus; however, the link between these two processes is unclear. It has been suggested that reassortments provoke a temporary increase in the rate of amino acid changes as the viral proteins adapt to new genetic environment, but this phenomenon has not been studied systematically. Here, we use a phylogenetic approach to infer the reassortment events between the 8 segments of influenza A H3N2 virus since its emergence in humans in 1968. We then study the amino acid replacements that occurred in genes encoded in each segment subsequent to reassortments. In five out of eight genes (NA, M1, HA, PB1 and NS1), the reassortment events led to a transient increase in the rate of amino acid replacements on the descendant phylogenetic branches. In NA and HA, the replacements following reassortments were enriched with parallel and/or reversing replacements; in contrast, the replacements at sites responsible for differences between antigenic clusters (in HA) and at sites under positive selection (in NA) were underrepresented among them. Post-reassortment adaptive walks contribute to adaptive evolution in Influenza A: in NA, an average reassortment event causes at least 2.1 amino acid replacements in a reassorted gene, with, on average, 0.43 amino acid replacements per evolving post-reassortment lineage; and at least ~9% of all amino acid replacements are provoked by reassortments.
Collapse
Affiliation(s)
- Alexey D. Neverov
- Federal Budget Institution of Science “Central Research Institute for Epidemiology”, Moscow, Russia
- Department of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Ksenia V. Lezhnina
- Department of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alexey S. Kondrashov
- Department of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia
- Life Sciences Institute and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Georgii A. Bazykin
- Department of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, Russia
- * E-mail:
| |
Collapse
|
22
|
Stephan BI, Lozano ME, Goñi SE. Watching every step of the way: junín virus attenuation markers in the vaccine lineage. Curr Genomics 2014; 14:415-24. [PMID: 24396274 PMCID: PMC3867718 DOI: 10.2174/138920291407131220153526] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/26/2013] [Accepted: 08/26/2013] [Indexed: 01/19/2023] Open
Abstract
The Arenaviridae family includes several hemorrhagic fever viruses which are important emerging pathogens. Junín virus, a member of this family, is the etiological agent of Argentine Hemorrhagic Fever (AHF). A collaboration between the Governments of Argentina and the USA rendered the attenuated Junín virus vaccine strain Candid#1. Arenaviruses are enveloped viruses with genomes consisting of two single-stranded RNA species (L and S), each carrying two coding regions separated by a stably structured, non-coding intergenic region. Molecular characterization of the vaccine strain and of its more virulent ancestors, XJ13 (prototype) and XJ#44, allows a systematic approach for the discovery of key elements in virulence attenuation. We show comparisons of sequence information for the S RNA of the strains XJ13, XJ#44 and Candid#1 of Junín virus, along with other strains from the vaccine lineage and a set of Junín virus field strains collected at the AHF endemic area. Comparisons of nucleotide and amino acid sequences revealed different point mutations which might be linked to the attenuated phenotype. The majority of changes are consistent with a progressive attenuation of virulence between XJ13, XJ#44 and Candid#1. We propose that changes found in genomic regions with low natural variation frequencies are more likely to be associated with the virulence attenuation process. We partially sequenced field strains to analyze the genomic variability naturally occurring for Junín virus. This information, together with the sequence analysis of strains with intermediate virulence, will serve as a starting point to study the molecular bases for viral attenuation.
Collapse
Affiliation(s)
- Betina Inés Stephan
- Área de Virosis Emergentes y Zoonóticas, Laboratorio de Biología Celular y Molecular, Universidad Nacional de Quilmes, Argentina
| | - Mario Enrique Lozano
- Área de Virosis Emergentes y Zoonóticas, Laboratorio de Biología Celular y Molecular, Universidad Nacional de Quilmes, Argentina
| | - Sandra Elizabeth Goñi
- Área de Virosis Emergentes y Zoonóticas, Laboratorio de Biología Celular y Molecular, Universidad Nacional de Quilmes, Argentina
| |
Collapse
|
23
|
Dankar SK, Miranda E, Forbes NE, Pelchat M, Tavassoli A, Selman M, Ping J, Jia J, Brown EG. Influenza A/Hong Kong/156/1997(H5N1) virus NS1 gene mutations F103L and M106I both increase IFN antagonism, virulence and cytoplasmic localization but differ in binding to RIG-I and CPSF30. Virol J 2013; 10:243. [PMID: 23886034 PMCID: PMC3733596 DOI: 10.1186/1743-422x-10-243] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/23/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genetic basis for avian to mammalian host switching in influenza A virus is largely unknown. The human A/HK/156/1997 (H5N1) virus that transmitted from poultry possesses NS1 gene mutations F103L + M106I that are virulence determinants in the mouse model of pneumonia; however their individual roles have not been determined. The emergent A/Shanghai/patient1/2013(H7N9)-like viruses also possess these mutations which may contribute to their virulence and ability to switch species. METHODS NS1 mutant viruses were constructed by reverse genetics and site directed mutagenesis on human and mouse-adapted backbones. Mouse infections assessed virulence, virus yield, tissue infection, and IFN induction. NS1 protein properties were assessed for subcellular distribution, IFN antagonism (mouse and human), CPSF30 and RIG-I domain binding, host transcription (microarray); and the natural prevalence of 103L and 106I mutants was assessed. RESULTS Each of the F103L and M106I mutations contributes additively to virulence to reduce the lethal dose by >800 and >3,200 fold respectively by mediating alveolar tissue infection with >100 fold increased infectious yields. The 106I NS1 mutant lost CPSF binding but the 103L mutant maintained binding that correlated with an increased general decrease in host gene expression in human but not mouse cells. Each mutation positively modulated the inhibition of IFN induction in mouse cells and activation of the IFN-β promoter in human cells but not in combination in human cells indicating negative epistasis. Each of the F103L and M106I mutations restored a defect in cytoplasmic localization of H5N1 NS1 in mouse cells. Human H1N1 and H3N2 NS1 proteins bound to the CARD, helicase and RD RIG-I domains, whereas the H5N1 NS1 with the same consensus 103F and 106M mutations did not bind these domains, which was totally or partially restored by the M106I or F103L mutations respectively. CONCLUSIONS The F103L and M106I mutations in the H5N1 NS1 protein each increased IFN antagonism and mediated interstitial pneumonia in mice that was associated with increased cytoplasmic localization and altered host factor binding. These mutations may contribute to the ability of previous HPAI H5N1 and recent LPAI H7N9 and H6N1 (NS1-103L+106M) viruses to switch hosts and cause disease in humans.
Collapse
Affiliation(s)
- Samar K Dankar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
van de Sandt CE, Kreijtz JHCM, Rimmelzwaan GF. Evasion of influenza A viruses from innate and adaptive immune responses. Viruses 2012; 4:1438-76. [PMID: 23170167 PMCID: PMC3499814 DOI: 10.3390/v4091438] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/10/2012] [Accepted: 08/22/2012] [Indexed: 12/16/2022] Open
Abstract
The influenza A virus is one of the leading causes of respiratory tract infections in humans. Upon infection with an influenza A virus, both innate and adaptive immune responses are induced. Here we discuss various strategies used by influenza A viruses to evade innate immune responses and recognition by components of the humoral and cellular immune response, which consequently may result in reduced clearing of the virus and virus-infected cells. Finally, we discuss how the current knowledge about immune evasion can be used to improve influenza A vaccination strategies.
Collapse
Affiliation(s)
- Carolien E van de Sandt
- Department of Virology, ErasmusMC, Dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
25
|
Abstract
The seasonal influenza A virus undergoes rapid evolution to escape human immune response. Adaptive changes occur primarily in antigenic epitopes, the antibody-binding domains of the viral hemagglutinin. This process involves recurrent selective sweeps, in which clusters of simultaneous nucleotide fixations in the hemagglutinin coding sequence are observed about every 4 years. Here, we show that influenza A (H3N2) evolves by strong clonal interference. This mode of evolution is a red queen race between viral strains with different beneficial mutations. Clonal interference explains and quantifies the observed sweep pattern: we find an average of at least one strongly beneficial amino acid substitution per year, and a given selective sweep has three to four driving mutations on average. The inference of selection and clonal interference is based on frequency time series of single-nucleotide polymorphisms, which are obtained from a sample of influenza genome sequences over 39 years. Our results imply that mode and speed of influenza evolution are governed not only by positive selection within, but also by background selection outside antigenic epitopes: immune adaptation and conservation of other viral functions interfere with each other. Hence, adapting viral proteins are predicted to be particularly brittle. We conclude that a quantitative understanding of influenza's evolutionary and epidemiological dynamics must be based on all genomic domains and functions coupled by clonal interference.
Collapse
|
26
|
Induction of virus-specific cytotoxic T lymphocytes as a basis for the development of broadly protective influenza vaccines. J Biomed Biotechnol 2011; 2011:939860. [PMID: 22007149 PMCID: PMC3189652 DOI: 10.1155/2011/939860] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/01/2011] [Accepted: 08/02/2011] [Indexed: 11/18/2022] Open
Abstract
There is considerable interest in the development of broadly protective influenza vaccines because of the continuous emergence of antigenic drift variants of seasonal influenza viruses and the threat posed by the emergence of antigenically distinct pandemic influenza viruses. It has been recognized more than three decades ago that influenza A virus-specific cytotoxic T lymphocytes recognize epitopes located in the relatively conserved proteins like the nucleoprotein and that they cross-react with various subtypes of influenza A viruses. This implies that these CD8+ T lymphocytes may contribute to protective heterosubtypic immunity induced by antecedent influenza A virus infections. In the present paper, we review the evidence for the role of virus-specific CD8+ T lymphocytes in protective immunity against influenza virus infections and discuss vaccination strategies that aim at the induction of cross-reactive virus-specific T-cell responses.
Collapse
|
27
|
Kreijtz JHCM, Fouchier RAM, Rimmelzwaan GF. Immune responses to influenza virus infection. Virus Res 2011; 162:19-30. [PMID: 21963677 DOI: 10.1016/j.virusres.2011.09.022] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 09/15/2011] [Accepted: 09/15/2011] [Indexed: 10/17/2022]
Abstract
Influenza viruses cause annual outbreaks of respiratory tract infection with attack rates of 5-10%. This means that humans are infected repeatedly with intervals of, on average, 10-20 years. Upon each infection subjects develop innate and adaptive immune responses which aim at clearing the infection. Strain-specific antibody responses are induced, which exert selective pressure on circulating influenza viruses and which drive antigenic drift of seasonal influenza viruses, especially in the hemagglutinin molecule. This antigenic drift necessitates updating of seasonal influenza vaccines regularly in order to match the circulating strains. Upon infection also virus-specific T cell responses are induced, including CD4+ T helper cells and CD8+ cytotoxic T cells. These cells are mainly directed to conserved proteins and therefore display cross-reactivity with a variety of influenza A viruses of different subtypes. T cell mediated immunity therefore may contribute to so-called heterosubtypic immunity and may afford protection against antigenically distinct, potentially pandemic influenza viruses. At present, novel viral targets are identified that may help to develop broad-protective vaccines. Here we review the various arms of the immune response to influenza virus infections and their viral targets and discuss the possibility of developing universal vaccines. The development of such novel vaccines would imply that also new immune correlates of protection need to be established in order to facilitate assessment of vaccine efficacy.
Collapse
Affiliation(s)
- J H C M Kreijtz
- Department of Virology, Erasmus MC, Rotterdam, The Netherlands
| | | | | |
Collapse
|
28
|
Agranovich A, Vider-Shalit T, Louzoun Y. Optimal viral immune surveillance evasion strategies. Theor Popul Biol 2011; 80:233-43. [PMID: 21925527 DOI: 10.1016/j.tpb.2011.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 08/23/2011] [Accepted: 08/24/2011] [Indexed: 12/12/2022]
Abstract
Following cell entry, viruses can be detected by cytotoxic T lymphocytes. These cytotoxic T lymphocytes can induce host cell apoptosis and prevent the propagation of the virus. Viruses with fewer epitopes have a higher survival probability, and are selected through evolution. However, mutations have a fitness cost and on evolutionary periods viruses maintain some epitopes. The number of epitopes in each viral protein is a balance between the selective advantage of having fewer epitopes and the reduced fitness following the epitope removing mutations. We discuss a bioinformatic analysis of the number of epitopes in various viral proteins and propose an optimization framework to explain these numbers. We show, using a genomic analysis and a theoretical optimization framework, that a critical factor affecting the number of presented epitopes is the expression stage in the viral life cycle of the gene coding for the protein. The early expression of epitopes can lead to the destruction of the host cell before budding can take place. We show that a lower number of epitopes is expected in early proteins even if late proteins have a much higher copy number.
Collapse
Affiliation(s)
- Alexandra Agranovich
- Department of Mathematics and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan 52900, Israel
| | | | | |
Collapse
|
29
|
Abstract
The swine, influenza, H1N1 outbreak in 2009 highlighted the inadequacy of the currently used antibody-based vaccine strategies as a preventive measure for combating influenza pandemics. The ultimate goal for successful control of newly arising influenza outbreaks is to design a single-shot vaccine that will provide long-lasting immunity against all strains of influenza A virus. A large amount of data from animal studies has indicated that the cross-reactive cytotoxic T (Tc) cell response against conserved influenza virus epitopes may be the key immune response needed for a universal influenza vaccine. However, decades of research have shown that the development of safe T-cell-based vaccines for influenza is not an easy task. Here, I discuss the overlooked but potentially highly advantageous inactivation method, namely, γ-ray irradiation, as a mean to reach the Holy Grail of influenza vaccinology.
Collapse
Affiliation(s)
- Yoichi Furuya
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208-3479, USA.
| |
Collapse
|
30
|
Abstract
Different influenza subtypes can evolve at very different rates, but the causes are not well understood. In this paper, we explore whether differences in transmissibility between subtypes can play a role if there are fitness constraints on antigenic evolution. We investigate the problem using a mathematical model that separates the interaction of strains through cross-immunity from the process of emergence for new antigenic variants. Evolutionary constraints are also included with antigenic mutation incurring a fitness cost. We show that the transmissibility of a strain can become disproportionately important in dictating the rate of antigenic drift: strains that spread only slightly more easily can have a much higher rate of emergence. Further, we see that the effect continues when vaccination is considered; a small increase in the rate of transmission can make it much harder to control the frequency at which new strains emerge. Our results not only highlight the importance of considering both transmission and fitness constraints when modelling influenza evolution, but may also help in understanding the differences between the emergence of H1N1 and H3N2 subtypes.
Collapse
Affiliation(s)
- Adam Kucharski
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK.
| | | |
Collapse
|
31
|
Foucault ML, Moules V, Rosa-Calatrava M, Riteau B. Role for proteases and HLA-G in the pathogenicity of influenza A viruses. J Clin Virol 2011; 51:155-9. [PMID: 21612979 DOI: 10.1016/j.jcv.2011.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 04/08/2011] [Accepted: 04/25/2011] [Indexed: 10/18/2022]
Abstract
Influenza is one of the most common infectious diseases in humans occurring as seasonal epidemic and sporadic pandemic outbreaks. The ongoing infections of humans with avian H5N1 influenza A viruses (IAV) and the past 2009 pandemic caused by the quadruple human/avian/swine reassortant (H1N1) virus highlights the permanent threat caused by these viruses. This review aims to describe the interaction between the virus and the host, with a particular focus on the role of proteases and HLA-G in the pathogenicity of influenza viruses.
Collapse
Affiliation(s)
- Marie-Laure Foucault
- CNRS FRE 3011 VirPath, Virologie et Pathologie Humaine, Faculté de médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, F-69008 Lyon, France
| | | | | | | |
Collapse
|
32
|
Kryazhimskiy S, Dushoff J, Bazykin GA, Plotkin JB. Prevalence of epistasis in the evolution of influenza A surface proteins. PLoS Genet 2011; 7:e1001301. [PMID: 21390205 PMCID: PMC3040651 DOI: 10.1371/journal.pgen.1001301] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 01/07/2011] [Indexed: 12/14/2022] Open
Abstract
The surface proteins of human influenza A viruses experience positive selection to escape both human immunity and, more recently, antiviral drug treatments. In bacteria and viruses, immune-escape and drug-resistant phenotypes often appear through a combination of several mutations that have epistatic effects on pathogen fitness. However, the extent and structure of epistasis in influenza viral proteins have not been systematically investigated. Here, we develop a novel statistical method to detect positive epistasis between pairs of sites in a protein, based on the observed temporal patterns of sequence evolution. The method rests on the simple idea that a substitution at one site should rapidly follow a substitution at another site if the sites are positively epistatic. We apply this method to the surface proteins hemagglutinin and neuraminidase of influenza A virus subtypes H3N2 and H1N1. Compared to a non-epistatic null distribution, we detect substantial amounts of epistasis and determine the identities of putatively epistatic pairs of sites. In particular, using sequence data alone, our method identifies epistatic interactions between specific sites in neuraminidase that have recently been demonstrated, in vitro, to confer resistance to the drug oseltamivir; these epistatic interactions are responsible for widespread drug resistance among H1N1 viruses circulating today. This experimental validation demonstrates the predictive power of our method to identify epistatic sites of importance for viral adaptation and public health. We conclude that epistasis plays a large role in shaping the molecular evolution of influenza viruses. In particular, sites with , which would normally not be identified as positively selected, can facilitate viral adaptation through epistatic interactions with their partner sites. The knowledge of specific interactions among sites in influenza proteins may help us to predict the course of antigenic evolution and, consequently, to select more appropriate vaccines and drugs. Epistasis describes non-additive interactions among genetic sites: the consequence of a mutation at one site may depend on the status of the genome at other sites. In an extreme case, a mutation may have no effect if it arises on one genetic background, but a strong effect on another background. Epistatic mutations in viruses and bacteria that live under severe conditions, such as antibiotic treatments or immune pressure, often allow pathogens to develop drug resistance or escape the immune system. In this paper we develop a new phylogenetic method for detecting epistasis, and we apply this method to the surface proteins of the influenza A virus, which are important targets of the immune system and drug treatments. The authors identify and characterize hundreds of epistatic mutations in these proteins. Among those identified, we find the specific epistatic mutations that were recently shown, experimentally, to confer resistance to the drug Tamiflu. The results of this study may help to predict the course of influenza's antigenic evolution and to select more appropriate vaccines and drugs.
Collapse
Affiliation(s)
- Sergey Kryazhimskiy
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | - Georgii A. Bazykin
- Institute for Information Transmission Problems (Kharkevich Institute) of the Russian Academy of Sciences, Moscow, Russia
| | - Joshua B. Plotkin
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Program in Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
33
|
Redundancy of the influenza A virus-specific cytotoxic T lymphocyte response in HLA-B*2705 transgenic mice limits the impact of a mutation in the immunodominant NP383–391 epitope on influenza pathogenesis. Virus Res 2011; 155:123-30. [DOI: 10.1016/j.virusres.2010.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 09/14/2010] [Accepted: 09/14/2010] [Indexed: 12/24/2022]
|
34
|
Pepin KM, Volkov I, Banavar JR, Wilke CO, Grenfell BT. Phenotypic differences in viral immune escape explained by linking within-host dynamics to host-population immunity. J Theor Biol 2010; 265:501-10. [PMID: 20570681 DOI: 10.1016/j.jtbi.2010.05.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 05/28/2010] [Accepted: 05/28/2010] [Indexed: 02/07/2023]
Abstract
Viruses that do not cause life-long immunity persist by evolving rapidly in response to prevailing host immunity. The immune-escape mutants emerge frequently, displacing or co-circulating with native strains even though mutations conferring immune evasion are often detrimental to viral replication. The epidemiological dynamics of immune-escape in acute-infection viruses with high transmissibility have been interpreted mainly through immunity dynamics at the host population level, despite the fact that immune-escape evolution involves dynamical processes that feedback across the within- and between-host scales. To address this gap, we use a nested model of within- and between-host infection dynamics to examine how the interaction of viral replication rate and cross-immunity imprint host population immunity, which in turn determines viral immune escape. Our explicit consideration of direct and immune-mediated competitive interactions between strains within-hosts revealed three insights pertaining to risk and control of viral immune-escape: (1) replication rate and immune-stimulation deficiencies (i.e., original antigenic sin) act synergistically to increase immune escape, (2) immune-escape mutants with replication deficiencies relative to their wildtype progenitor are most successful under moderate cross-immunity and frequent re-infections, and (3) the immunity profile along short host-transmission chains (local host-network structure) is a key determinant of immune escape.
Collapse
Affiliation(s)
- K M Pepin
- Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | |
Collapse
|
35
|
Rimmelzwaan GF, Kreijtz JHCM, Bodewes R, Fouchier RAM, Osterhaus ADME. Influenza virus CTL epitopes, remarkably conserved and remarkably variable. Vaccine 2009; 27:6363-5. [PMID: 19840674 DOI: 10.1016/j.vaccine.2009.01.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 01/06/2009] [Accepted: 01/08/2009] [Indexed: 01/05/2023]
Abstract
Virus-specific cytotoxic T lymphocytes (CTL) contribute to the control of virus infections including those caused by influenza viruses. Especially under circumstances when antibodies induced by previous infection or vaccination fail to recognize and neutralize the virus adequately, CTL are important and contribute to protective immunity. During epidemic outbreaks caused by antigenic drift variants and during pandemic outbreaks of influenza, humoral immunity against influenza viruses is inadequate. Under these circumstances, pre-existing CTL directed to the relatively conserved internal proteins of the virus may provide cross-protective immunity. Indeed, most of the known human influenza virus CTL epitopes are conserved. However, during the evolution of influenza A/H3N2 viruses, the most important cause of seasonal influenza outbreaks, variation in CTL epitopes has been observed. The observed amino acid substitutions affected recognition by virus-specific CTL and the human virus-specific CTL response in vitro. Examples of variable epitopes and their HLA restrictions are: NP(383-391)/HLA-B*2705, NP(380-388)/HLA-B*0801, NP(418-426)/HLA-B*3501, NP(251-259)/HLA-B*4002, NP(103-111)/HLA-B*1503. In some cases amino acid substitutions occurred at anchor residues and in other cases at T cell receptor contact residues. It is of special interest that the R384G substitution in the NP(383-391) epitope was detrimental to virus fitness and was only tolerated in the presence of multiple functionally compensating co-mutations. In contrast, other epitopes, like the HLA-A*0201 restricted epitope from the matrix protein, M1(58-66), are highly conserved despite their immunodominant nature and the high prevalence of HLA-A*0201 in the population. A mutational analysis of this epitope indicated that it is under functional constraints. Also in influenza A viruses of other subtypes, including H5N1, the M1(58-66) is highly conserved.
Collapse
Affiliation(s)
- Guus F Rimmelzwaan
- Department of Virology, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
36
|
Rimmelzwaan GF, McElhaney JE. Correlates of protection: novel generations of influenza vaccines. Vaccine 2009; 26 Suppl 4:D41-4. [PMID: 19230158 DOI: 10.1016/j.vaccine.2008.07.043] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The emergence of avian influenza A/H5N1 viruses that can cross the species barrier and that cause often-fatal infections of humans is of great concern and a pandemic outbreak with these viruses is feared. The availability of effective vaccines that can protect against morbidity and mortality caused by these viruses is highly desirable and great efforts are being made to prepare these vaccines. The circulation of variants of antigenically distinct influenza H5N1 viruses belonging to different clades complicates the development of new vaccines. Preferably, vaccines induce broad protective immunity against intra-subtypic variants and ideally, also hetero-subtypic immunity. A good understanding of the correlates of immune protection may aid in the development of such vaccines. Here we reviewed potential correlates of protection against influenza and discussed some of the vaccination strategies that could result in optimal protection against epidemic and pandemic influenza.
Collapse
Affiliation(s)
- Guus F Rimmelzwaan
- Department of Virology Erasmus Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands.
| | | |
Collapse
|
37
|
Moghadas SM. Management of drug resistance in the population: influenza as a case study. Proc Biol Sci 2008; 275:1163-9. [PMID: 18270154 DOI: 10.1098/rspb.2008.0016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The rise of drug resistance remains a major impediment to the treatment of some diseases caused by fast-evolving pathogens that undergo genetic mutations. Models describing the within-host infectious dynamics suggest that the resistance is unlikely to emerge if the pathogen-specific immune responses are maintained above a certain threshold during therapy. However, emergence of resistance in the population involves both within-host and between-host infection mechanisms. Here, we employ a mathematical model to identify an effective treatment strategy for the management of drug resistance in the population. We show that, in the absence of pre-existing immunity, the population-wide spread of drug-resistant pathogen strains can be averted if a sizable portion of susceptible hosts is depleted before drugs are used on a large scale. The findings, based on simulations for influenza infection as a case study, suggest that the initial prevalence of the drug-sensitive strain under low pressure of drugs, followed by a timely implementation of intensive treatment, can minimize the total number of infections while preventing outbreaks of drug-resistant infections.
Collapse
Affiliation(s)
- Seyed M Moghadas
- Department of Mathematics and Statistics, The University of Winnipeg, Winnipeg, Manitoba, Canada.
| |
Collapse
|
38
|
|
39
|
Rimmelzwaan GF, Fouchier RAM, Osterhaus ADME. Influenza virus-specific cytotoxic T lymphocytes: a correlate of protection and a basis for vaccine development. Curr Opin Biotechnol 2008; 18:529-36. [PMID: 18083548 DOI: 10.1016/j.copbio.2007.11.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 10/30/2007] [Accepted: 11/12/2007] [Indexed: 10/22/2022]
Abstract
Since influenza A viruses of the H5N1 subtype continue to circulate in wild and domestic birds and cause an ever increasing number of human cases, it is feared that H5N1 viruses may cause the next influenza pandemic. Therefore, there is considerable interest in the development of vaccines that confer protection against infections with these viruses or ideally, protection against influenza viruses of different subtypes. For the development of broad-protective vaccines the induction of virus-specific cytotoxic T lymphocytes (CTL) may be an important target, since it has been demonstrated that CTL contribute to protective immunity and are largely directed to epitopes shared by influenza viruses of various subtypes. In the present paper, the possibility to develop (cross-reactive) CTL-inducing vaccines is discussed.
Collapse
Affiliation(s)
- Guus F Rimmelzwaan
- Erasmus Medical Center, Department of Virology, Rotterdam, The Netherlands
| | | | | |
Collapse
|
40
|
Moghadas SM, Bowman CS, Röst G, Wu J. Population-wide emergence of antiviral resistance during pandemic influenza. PLoS One 2008; 3:e1839. [PMID: 18350174 PMCID: PMC2266801 DOI: 10.1371/journal.pone.0001839] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 02/19/2008] [Indexed: 11/26/2022] Open
Abstract
Background The emergence of neuraminidase inhibitor resistance has raised concerns about the prudent use of antiviral drugs in response to the next influenza pandemic. While resistant strains may initially emerge with compromised viral fitness, mutations that largely compensate for this impaired fitness can arise. Understanding the extent to which these mutations affect the spread of disease in the population can have important implications for developing pandemic plans. Methodology/Principal Findings By employing a deterministic mathematical model, we investigate possible scenarios for the emergence of population-wide resistance in the presence of antiviral drugs. The results show that if the treatment level (the fraction of clinical infections which receives treatment) is maintained constant during the course of the outbreak, there is an optimal level that minimizes the final size of the pandemic. However, aggressive treatment above the optimal level can substantially promote the spread of highly transmissible resistant mutants and increase the total number of infections. We demonstrate that resistant outbreaks can occur more readily when the spread of disease is further delayed by applying other curtailing measures, even if treatment levels are kept modest. However, by changing treatment levels over the course of the pandemic, it is possible to reduce the final size of the pandemic below the minimum achieved at the optimal constant level. This reduction can occur with low treatment levels during the early stages of the pandemic, followed by a sharp increase in drug-use before the virus becomes widely spread. Conclusions/Significance Our findings suggest that an adaptive antiviral strategy with conservative initial treatment levels, followed by a timely increase in the scale of drug-use, can minimize the final size of a pandemic while preventing large outbreaks of resistant infections.
Collapse
Affiliation(s)
- Seyed M Moghadas
- Institute for Biodiagnostics, National Research Council Canada, Winnipeg, Manitoba, Canada.
| | | | | | | |
Collapse
|
41
|
Du X, Wang Z, Wu A, Song L, Cao Y, Hang H, Jiang T. Networks of genomic co-occurrence capture characteristics of human influenza A (H3N2) evolution. Genome Res 2007; 18:178-87. [PMID: 18032723 DOI: 10.1101/gr.6969007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The recent availability of full genomic sequence data for a large number of human influenza A (H3N2) virus isolates over many years provides us an opportunity to analyze human influenza virus evolution by considering all gene segments simultaneously. However, such analysis requires development of new computational models that can capture the complex evolutionary features over the entire genome. By analyzing nucleotide co-occurrence over the entire genome of human H3N2 viruses, we have developed a network model to describe H3N2 virus evolutionary patterns and dynamics. The network model effectively captures the evolutionary antigenic features of H3N2 virus at the whole-genome level and accurately describes the complex evolutionary patterns between individual gene segments. Our analyses show that the co-occurring nucleotide modules apparently underpin the dynamics of human H3N2 evolution and that amino acid substitutions corresponding to nucleotide co-changes cluster preferentially in known antigenic regions of the viral HA. Therefore, our study demonstrates that nucleotide co-occurrence networks represent a powerful method for tracking influenza A virus evolution and that cooperative genomic interaction is a major force underlying influenza virus evolution.
Collapse
Affiliation(s)
- Xiangjun Du
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Wallace RG, HoDac H, Lathrop RH, Fitch WM. A statistical phylogeography of influenza A H5N1. Proc Natl Acad Sci U S A 2007; 104:4473-8. [PMID: 17360548 PMCID: PMC1838625 DOI: 10.1073/pnas.0700435104] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Indexed: 11/18/2022] Open
Abstract
The geographic diffusion of highly pathogenic influenza A H5N1 has largely been traced from the perspective of the virus's victims. Birds of a variety of avian orders have been sampled across localities, and their infection has been identified by a general genetic test. Another approach tracks the migration from the perspective of the virus alone, by way of a phylogeography of H5N1 genetic sequences. Although several phylogenies in the literature have labeled H5N1 clades by geographic region, none has analytically inferred the history of the virus's migration. With a statistical phylogeography of 192 hemagglutinin and neuraminidase isolates, we show that the Chinese province of Guangdong is the source of multiple H5N1 strains spreading at both regional and international scales. In contrast, Indochina appears to be a regional sink, at the same time demonstrating bidirectional dispersal among localities within the region. An evolutionary trace of HA(1) across the phylogeography suggests a mechanism by which H5N1 is able to infect repeated cycles of host species across localities, regardless of the host species first infected in each locale. The trace also hypothesizes amino acid replacements that preceded the first recorded outbreak of pathogenic H5N1 in Hong Kong, 1997.
Collapse
Affiliation(s)
- Robert G. Wallace
- Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA 92697; and
| | - HoangMinh HoDac
- Donald Bren School of Information and Computer Sciences, University of California, 444 Computer Science Building, Irvine, CA 92697
| | - Richard H. Lathrop
- Donald Bren School of Information and Computer Sciences, University of California, 444 Computer Science Building, Irvine, CA 92697
| | - Walter M. Fitch
- Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA 92697; and
| |
Collapse
|
43
|
Berkhoff EGM, Geelhoed-Mieras MM, Fouchier RAM, Osterhaus ADME, Rimmelzwaan GF. Assessment of the extent of variation in influenza A virus cytotoxic T-lymphocyte epitopes by using virus-specific CD8+ T-cell clones. J Gen Virol 2007; 88:530-535. [PMID: 17251571 DOI: 10.1099/vir.0.82120-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The influenza A virus nucleoprotein (NP) and matrix protein are major targets for human virus-specific cytotoxic T-lymphocyte (CTL) responses. Most of the CTL epitopes that have been identified so far are conserved. However, sequence variation in CTL epitopes of the NP has recently been demonstrated to be associated with escape from virus-specific CTLs. To assess the extent of variation in CTL epitopes during influenza A virus evolution, 304 CTL clones derived from six study subjects were obtained with specificity for an influenza A/H3N2 virus isolated in 1981. Subsequently, the frequency of the CTL clones that failed to recognize a more recent influenza virus strain isolated in 2003 was determined. In four of six study subjects, CTLs were found to be specific for variable epitopes, accounting for 2.6 % of all CTL clones. For some of these CTL clones, the minimal epitope and the residues responsible for abrogation of T-cell recognition were identified.
Collapse
Affiliation(s)
- E G M Berkhoff
- Department of Virology and Postgraduate School of Molecular Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - M M Geelhoed-Mieras
- Department of Virology and Postgraduate School of Molecular Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - R A M Fouchier
- Department of Virology and Postgraduate School of Molecular Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - A D M E Osterhaus
- Department of Virology and Postgraduate School of Molecular Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - G F Rimmelzwaan
- Department of Virology and Postgraduate School of Molecular Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
44
|
Boon ACM, de Mutsert G, Fouchier RAM, Osterhaus ADME, Rimmelzwaan GF. The hypervariable immunodominant NP418-426 epitope from the influenza A virus nucleoprotein is recognized by cytotoxic T lymphocytes with high functional avidity. J Virol 2006; 80:6024-32. [PMID: 16731941 PMCID: PMC1472604 DOI: 10.1128/jvi.00009-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recently it was shown that influenza A viruses can accumulate mutations in epitopes associated with escape from recognition by human virus-specific cytotoxic T lymphocytes (CTL). It is unclear what drives diversification of CTL epitopes and why certain epitopes are variable and others remain conserved. It has been shown that simian immunodeficiency virus-specific CTL that recognize their epitope with high functional avidity eliminate virus-infected cells efficiently and drive diversification of CTL epitopes. T-cell functional avidity is defined by the density of major histocompatibility complex class I peptide complexes required to activate specific CTL. We hypothesized that functional avidity of CTL contributes to epitope diversification and escape from CTL also for influenza viruses. To test this hypothesis, the functional avidity of polyclonal CTL populations specific for nine individual epitopes was determined. To this end, peripheral blood mononuclear cells from HLA-A- and -B-genotyped individuals were stimulated in vitro with influenza virus-infected cells to allow expansion of virus-specific CTL, which were used to determine the functional avidity of CTL specific for nine individual epitopes in enzyme-linked immunospot assays. We found that the functional avidity for the respective epitopes varied widely. Furthermore, the functional avidity of CTL specific for the hypervariable NP(418-426) epitope was significantly higher than that of CTL recognizing other epitopes (P < 0.01). It was speculated that the high functional avidity of NP(418-426)-specific CTL was responsible for the diversification of this influenza A virus CTL epitope.
Collapse
Affiliation(s)
- Adrianus C M Boon
- Department of Virology, Erasmus MC, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
45
|
Shapiro B, Rambaut A, Pybus OG, Holmes EC. A Phylogenetic Method for Detecting Positive Epistasis in Gene Sequences and Its Application to RNA Virus Evolution. Mol Biol Evol 2006; 23:1724-30. [PMID: 16774976 DOI: 10.1093/molbev/msl037] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RNA virus genomes are compact, often containing multiple overlapping reading frames and functional secondary structure. Consequently, it is thought that evolutionary interactions between nucleotide sites are commonplace in the genomes of these infectious agents. However, the role of epistasis in natural populations of RNA viruses remains unclear. To investigate the pervasiveness of epistasis in RNA viruses, we used a parsimony-based computational method to identify pairs of co-occurring mutations along phylogenies of 177 RNA virus genes. This analysis revealed widespread evidence for positive epistatic interactions at both synonymous and nonsynonymous nucleotide sites and in both clonal and recombining viruses, with the majority of these interactions spanning very short sequence regions. These findings have important implications for understanding the key aspects of RNA virus evolution, including the dynamics of adaptation. Additionally, many comparative analyses that utilize the phylogenetic relationships among gene sequences assume that mutations represent independent, uncorrelated events. Our results show that this assumption may often be invalid.
Collapse
Affiliation(s)
- Beth Shapiro
- Department of Zoology, Oxford University, Oxford, United Kingdom.
| | | | | | | |
Collapse
|
46
|
Berkhoff EGM, de Wit E, Geelhoed-Mieras MM, Boon ACM, Symons J, Fouchier RAM, Osterhaus ADME, Rimmelzwaan GF. Functional constraints of influenza A virus epitopes limit escape from cytotoxic T lymphocytes. J Virol 2005; 79:11239-46. [PMID: 16103176 PMCID: PMC1193597 DOI: 10.1128/jvi.79.17.11239-11246.2005] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Viruses can exploit a variety of strategies to evade immune surveillance by cytotoxic T lymphocytes (CTL), including the acquisition of mutations in CTL epitopes. Also for influenza A viruses a number of amino acid substitutions in the nucleoprotein (NP) have been associated with escape from CTL. However, other previously identified influenza A virus CTL epitopes are highly conserved, including the immunodominant HLA-A*0201-restricted epitope from the matrix protein, M1(58-66). We hypothesized that functional constraints were responsible for the conserved nature of influenza A virus CTL epitopes, limiting escape from CTL. To assess the impact of amino acid substitutions in conserved epitopes on viral fitness and recognition by specific CTL, we performed a mutational analysis of CTL epitopes. Both alanine replacements and more conservative substitutions were introduced at various positions of different influenza A virus CTL epitopes. Alanine replacements for each of the nine amino acids of the M1(58-66) epitope were tolerated to various extents, except for the anchor residue at the second position. Substitution of anchor residues in other influenza A virus CTL epitopes also affected viral fitness. Viable mutant viruses were used in CTL recognition experiments. The results are discussed in the light of the possibility of influenza viruses to escape from specific CTL. It was speculated that functional constraints limit variation in certain epitopes, especially at anchor residues, explaining the conserved nature of these epitopes.
Collapse
Affiliation(s)
- E G M Berkhoff
- Department of Virology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|