1
|
Bharti B, Li H, Ren Z, Zhu R, Zhu Z. Recent advances in sterilization and disinfection technology: A review. CHEMOSPHERE 2022; 308:136404. [PMID: 36165840 DOI: 10.1016/j.chemosphere.2022.136404] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/27/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Sterilization and disinfection of pollutants and microorganisms have been extensively studied in order to address the problem of environmental contamination, which is a crucial issue for public health and economics. Various form of hazardous materials/pollutants including microorganisms and harmful gases are released into the environment that enter into the human body either through inhalation, adsorption or ingestion. The human death rate rises due to various respiratory ailments, strokes, lung cancer, and heart disorders related with these pollutants. Hence, it is essential to control the environmental pollution by applying economical and effective sterilization and disinfections techniques to save life. In general, numerous forms of traditional physical and chemical sterilization and disinfection treatments, such as dry and moist heat, radiation, filtration, ethylene oxide, ozone, hydrogen peroxide, etc. are known along with advanced techniques. In this review we summarized both advanced and conventional techniques of sterilization and disinfection along with their uses and mode of action. This review gives the knowledge about the advantages, disadvantages of both the methods comparatively. Despite, the effective solution given by the advanced sterilization and disinfection technology, joint technologies of sterilization and disinfection has proven to be more effective innovation to protect the indoor and outdoor environments.
Collapse
Affiliation(s)
- Bandna Bharti
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Hanliang Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Zhaoyong Ren
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Rongshu Zhu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Zhenye Zhu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China.
| |
Collapse
|
2
|
Recent Advances in Prion Inactivation by Plasma Sterilizer. Int J Mol Sci 2022; 23:ijms231810241. [PMID: 36142166 PMCID: PMC9499420 DOI: 10.3390/ijms231810241] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/27/2022] [Accepted: 09/04/2022] [Indexed: 12/31/2022] Open
Abstract
Prions, which cause transmissible spongiform encephalopathies (TSEs), are a notorious group of infectious agents with possibly the highest resistance to complete inactivation. Although various gas plasma instruments have been developed, studies on prion inactivation using gas plasma instruments are limited. Among them, the hydrogen peroxide gas plasma instrument, STERRAD® (Advanced Sterilization Products; ASP, Johnson & Johnson, Irvine, CA, USA), is recommended for prion inactivation of heat-sensitive medical devices. However, STERRAD® is not a plasma sterilizer but a hydrogen peroxide gas sterilizer. In STERRAD®, plasma generated by radio frequency (RF) discharge removes excess hydrogen peroxide gas and does not contribute to sterilization. This is also supported by evidence that the instrument was not affected by the presence or absence of RF gas plasma. However, recent studies have shown that other gas plasma instruments derived from air, nitrogen, oxygen, Ar, and a mixture of gases using corona, dielectric barrier, microwave, and pulse discharges can inactivate scrapie prions. As inactivation studies on prions other than scrapie are limited, further accumulation of evidence on the effectiveness of gas plasma using human-derived prion samples is warranted for practical purposes.
Collapse
|
3
|
Katsigiannis AS, Bayliss DL, Walsh JL. Cold plasma for the disinfection of industrial food‐contact surfaces: An overview of current status and opportunities. Compr Rev Food Sci Food Saf 2022; 21:1086-1124. [DOI: 10.1111/1541-4337.12885] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Affiliation(s)
| | - Danny L. Bayliss
- Processing & Production Research Department Campden BRI Gloucestershire UK
| | - James L. Walsh
- Department of Electrical Engineering & Electronics University of Liverpool Liverpool UK
| |
Collapse
|
4
|
Sakudo A, Imanishi Y, Hirata A, Koga Y, Shintani H. Effect of Nitrogen Gas Plasma Generated by a Fast-Pulsed Power Supply Using a Static Induction Thyristor on Scrapie Prion. Pathogens 2020; 9:pathogens9100819. [PMID: 33036274 PMCID: PMC7599630 DOI: 10.3390/pathogens9100819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 11/16/2022] Open
Abstract
Previous studies show that nitrogen gas plasma generated by a fast-pulsed power supply using a static induction thyristor has both virucidal and bactericidal effects. In this study, nitrogen gas plasma was further evaluated for its potential effects on prions, which are well known to be the most resistant pathogen to both chemical and physical inactivation. Aliquots (10 μL) of mouse brain homogenate infected with Chandler scrapie prion were spotted onto cover glasses and subjected to nitrogen gas plasma. Treated samples were recovered and subjected to further analyses. Control prion samples were prepared in exactly the same way but without plasma treatment. Protein misfolding cyclic amplification (PMCA) showed that nitrogen gas plasma treatment at 1.5 kilo pulse per second for 15 or 30 min caused a reduction in the in vitro propagation level of PrPres (proteinase K-resistant prion protein), which was used as an index of abnormal prion protein (PrPSc). Moreover, mice injected with prion treated with plasma for 30 min showed longer survival than mice injected with control prion, indicating that nitrogen gas plasma treatment decreased prion infectivity. Altogether, these results suggest that nitrogen gas plasma treatment can inactivate scrapie prions by decreasing the propagation activity and infectivity of PrPSc.
Collapse
Affiliation(s)
- Akikazu Sakudo
- School of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan
- Laboratory of Biometabolic Chemistry, School of Health Sciences, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
- Correspondence:
| | - Yuichiro Imanishi
- NGK Insulators Ltd., Nagoya, Aichi 467-8530, Japan;
- Energy Support Corporation, Inuyama, Aichi 484-8505, Japan
| | - Azumi Hirata
- Department of Anatomy and Cell Biology, Faculty of Medicine, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan;
| | - Yuichi Koga
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan;
| | - Hideharu Shintani
- Department of Science and Engineering, Chuo University, Tokyo 112-8551, Japan;
| |
Collapse
|
5
|
Stevenson M, Uttley L, Oakley JE, Carroll C, Chick SE, Wong R. Interventions to reduce the risk of surgically transmitted Creutzfeldt-Jakob disease: a cost-effective modelling review. Health Technol Assess 2020; 24:1-150. [PMID: 32122460 PMCID: PMC7103914 DOI: 10.3310/hta24110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Creutzfeldt-Jakob disease is a fatal neurological disease caused by abnormal infectious proteins called prions. Prions that are present on surgical instruments cannot be completely deactivated; therefore, patients who are subsequently operated on using these instruments may become infected. This can result in surgically transmitted Creutzfeldt-Jakob disease. OBJECTIVE To update literature reviews, consultation with experts and economic modelling published in 2006, and to provide the cost-effectiveness of strategies to reduce the risk of surgically transmitted Creutzfeldt-Jakob disease. METHODS Eight systematic reviews were undertaken for clinical parameters. One review of cost-effectiveness was undertaken. Electronic databases including MEDLINE and EMBASE were searched from 2005 to 2017. Expert elicitation sessions were undertaken. An advisory committee, convened by the National Institute for Health and Care Excellence to produce guidance, provided an additional source of information. A mathematical model was updated focusing on brain and posterior eye surgery and neuroendoscopy. The model simulated both patients and instrument sets. Assuming that there were potentially 15 cases of surgically transmitted Creutzfeldt-Jakob disease between 2005 and 2018, approximate Bayesian computation was used to obtain samples from the posterior distribution of the model parameters to generate results. Heuristics were used to improve computational efficiency. The modelling conformed to the National Institute for Health and Care Excellence reference case. The strategies evaluated included neither keeping instruments moist nor prohibiting set migration; ensuring that instruments were kept moist; prohibiting instrument migration between sets; and employing single-use instruments. Threshold analyses were undertaken to establish prices at which single-use sets or completely effective decontamination solutions would be cost-effective. RESULTS A total of 169 papers were identified for the clinical review. The evidence from published literature was not deemed sufficiently strong to take precedence over the distributions obtained from expert elicitation. Forty-eight papers were identified in the review of cost-effectiveness. The previous modelling structure was revised to add the possibility of misclassifying surgically transmitted Creutzfeldt-Jakob disease as another neurodegenerative disease, and assuming that all patients were susceptible to infection. Keeping instruments moist was estimated to reduce the risk of surgically transmitted Creutzfeldt-Jakob disease cases and associated costs. Based on probabilistic sensitivity analyses, keeping instruments moist was estimated to on average result in 2.36 (range 0-47) surgically transmitted Creutzfeldt-Jakob disease cases (across England) caused by infection occurring between 2019 and 2023. Prohibiting set migration or employing single-use instruments reduced the estimated risk of surgically transmitted Creutzfeldt-Jakob disease cases further, but at considerable cost. The estimated costs per quality-adjusted life-year gained of these strategies in addition to keeping instruments moist were in excess of £1M. It was estimated that single-use instrument sets (currently £350-500) or completely effective cleaning solutions would need to cost approximately £12 per patient to be cost-effective using a £30,000 per quality-adjusted life-year gained value. LIMITATIONS As no direct published evidence to implicate surgery as a cause of Creutzfeldt-Jakob disease has been found since 2005, the estimations of potential cases from elicitation are still speculative. A particular source of uncertainty was in the number of potential surgically transmitted Creutzfeldt-Jakob disease cases that may have occurred between 2005 and 2018. CONCLUSIONS Keeping instruments moist is estimated to reduce the risk of surgically transmitted Creutzfeldt-Jakob disease cases and associated costs. Further surgical management strategies can reduce the risks of surgically transmitted Creutzfeldt-Jakob disease but have considerable associated costs. STUDY REGISTRATION This study is registered as PROSPERO CRD42017071807. FUNDING This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 24, No. 11. See the NIHR Journals Library website for further project information.
Collapse
Affiliation(s)
- Matt Stevenson
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | - Lesley Uttley
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | - Jeremy E Oakley
- School of Mathematics and Statistics, University of Sheffield, Sheffield, UK
| | - Christopher Carroll
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | | | - Ruth Wong
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| |
Collapse
|
6
|
Sakudo A, Yagyu Y, Onodera T. Disinfection and Sterilization Using Plasma Technology: Fundamentals and Future Perspectives for Biological Applications. Int J Mol Sci 2019; 20:ijms20205216. [PMID: 31640211 PMCID: PMC6834201 DOI: 10.3390/ijms20205216] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
Recent studies have shown that plasma can efficiently inactivate microbial pathogens such as bacteria, fungi, and viruses in addition to degrading toxins. Moreover, this technology is effective at inactivating pathogens on the surface of medical and dental devices, as well as agricultural products. The current practical applications of plasma technology range from sterilizing therapeutic medical devices to improving crop yields, as well as the area of food preservation. This review introduces recent advances and future perspectives in plasma technology, especially in applications related to disinfection and sterilization. We also introduce the latest studies, mainly focusing on the potential applications of plasma technology for the inactivation of microorganisms and the degradation of toxins.
Collapse
Affiliation(s)
- Akikazu Sakudo
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan.
| | - Yoshihito Yagyu
- Department of Electrical and Electric Engineering, National Institute of Technology Sasebo College, Nagasaki 857-1193, Japan.
| | - Takashi Onodera
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
7
|
Power density measurements to optimize AC plasma jet operation in blood coagulation. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2018; 41:621-632. [PMID: 29948969 DOI: 10.1007/s13246-018-0654-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 05/31/2018] [Indexed: 10/14/2022]
Abstract
In this paper, the plasma power density and corresponding plasma dose of a low-cost air non-thermal plasma jet (ANPJ) device are estimated at different axial distances from the nozzle. This estimation is achieved by measuring the voltage and current at the substrate using diagnostic techniques that can be easily made in laboratory; thin wire and dielectric probe, respectively. This device uses a compressed air as input gas instead of the relatively-expensive, large-sized and heavy weighed tanks of Ar or He gases. The calculated plasma dose is found to be very low and allows the presented device to be used in biomedical applications (especially blood coagulation). While plasma active species and charged-particles are found to be the most effective on blood coagulation formation, both air flow and UV, individually, do not have any effect. Moreover, optimal conditions for accelerating blood coagulation are studied. Results showed that, the power density at the substrate is shown to be decreased with increasing the distance from the nozzle. In addition, both distances from nozzle and air flow rate play an important role in accelerating blood coagulation process. Finally, this device is efficient, small-sized, safe enough, of low cost and, hence, has its chances to be wide spread as a first aid and in ambulance.
Collapse
|
8
|
Ward H, Molesworth A, Holmes S, Sinka K. Public health: surveillance, infection prevention, and control. HANDBOOK OF CLINICAL NEUROLOGY 2018; 153:473-484. [PMID: 29887154 DOI: 10.1016/b978-0-444-63945-5.00027-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Human prion diseases, though relatively rare, remain an ongoing public health problem. They are fatal diseases, with unconventional host responses and no early diagnostic tests or robust treatments. Public health measures were put in place to protect the food chain in the United Kingdom from the late 1980s, with similar measures following elsewhere. However, human prion diseases are transmissible through other routes, including through blood transfusion and surgery. As a result, the public health threat remains for all forms of human prion diseases and makes continued surveillance and infection prevention and control imperative.
Collapse
Affiliation(s)
- Hester Ward
- NHS National Services Scotland, Edinburgh, United Kingdom; Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, United Kingdom.
| | - Anna Molesworth
- National CJD Research and Surveillance Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Sulisti Holmes
- NHS National Services Scotland, Edinburgh, United Kingdom
| | - Katy Sinka
- Centre for Infectious Disease Surveillance and Control, National Infection Service, Public Health England, London, United Kingdom
| |
Collapse
|
9
|
Liu JR, Xu GM, Shi XM, Zhang GJ. Low temperature plasma promoting fibroblast proliferation by activating the NF-κB pathway and increasing cyclinD1 expression. Sci Rep 2017; 7:11698. [PMID: 28916796 PMCID: PMC5601921 DOI: 10.1038/s41598-017-12043-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/01/2017] [Indexed: 11/23/2022] Open
Abstract
The potential applications of low temperature plasma (LTP) in wound healing have aroused the concern of many researchers. In this study, an argon atmospheric pressure plasma jet was applied to generate LTP for treatment of murine fibroblast cell (L929) cultured in vitro to investigate the effect of NF-κB pathway on fibroblast proliferation. The results showed that, compared with the control, L929 cells treated with plasma for less than 20 s had significant increases of proliferation; the productions of intracellular ROS, O2− and NO increased with prolongation of LTP treatment time; NF-κB pathway was activated by LTP in a proper dose range, and the expression of cyclinD1 in LTP-treated cells increased with the same trend as cell proliferation. After RNA interference to block p65 expression, with the same treatment time, RNAi-treated cells proliferated more slowly and expressed less cyclinD1 than normal cells. Furthermore, pretreatment with N-acetyl-L-cysteine (NAC) markedly prevented the plasma-induced changes in cells. In conclusion, the proliferation of L929 cells induced by LTP was closely related to NF-κB signaling pathway, which might be activated by appropriate level of intracellular ROS. These novel findings can provide some theoretical reference of LTP inducing cell proliferation and promoting wound healing.
Collapse
Affiliation(s)
- Jin-Ren Liu
- Environment and Genes Related to Diseases Key Laboratory of Education Ministry, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Gui-Min Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xing-Min Shi
- Environment and Genes Related to Diseases Key Laboratory of Education Ministry, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Guan-Jun Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| |
Collapse
|
10
|
Riemer C, Bamme T, Mok SWF, Baier M. 3-Methyl-4-Chlorophenol for Prion Decontamination of Medical Devices. Infect Control Hosp Epidemiol 2016; 27:778-80. [PMID: 16807860 DOI: 10.1086/504450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Accepted: 11/21/2005] [Indexed: 11/03/2022]
Abstract
Disinfectants containing 3-methyl-4-chlorophenol were tested for their capacity to inactivate the infectious agent of scrapie. Coincubation of brain homogenates prepared from terminally ill scrapie-infected hamsters with the disinfectants rendered the prion protein PrPSc sensitive to proteinase K digestion. Inoculation of hamsters with disinfectant-treated samples indicated a reduction in infectivity levels to below the limit of detection.
Collapse
|
11
|
Arjunan KP, Sharma VK, Ptasinska S. Effects of atmospheric pressure plasmas on isolated and cellular DNA-a review. Int J Mol Sci 2015; 16:2971-3016. [PMID: 25642755 PMCID: PMC4346876 DOI: 10.3390/ijms16022971] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 01/02/2023] Open
Abstract
Atmospheric Pressure Plasma (APP) is being used widely in a variety of biomedical applications. Extensive research in the field of plasma medicine has shown the induction of DNA damage by APP in a dose-dependent manner in both prokaryotic and eukaryotic systems. Recent evidence suggests that APP-induced DNA damage shows potential benefits in many applications, such as sterilization and cancer therapy. However, in several other applications, such as wound healing and dentistry, DNA damage can be detrimental. This review reports on the extensive investigations devoted to APP interactions with DNA, with an emphasis on the critical role of reactive species in plasma-induced damage to DNA. The review consists of three main sections dedicated to fundamental knowledge of the interactions of reactive oxygen species (ROS)/reactive nitrogen species (RNS) with DNA and its components, as well as the effects of APP on isolated and cellular DNA in prokaryotes and eukaryotes.
Collapse
Affiliation(s)
| | - Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 1266 TAMU, College Station, TX 77843, USA.
| | - Sylwia Ptasinska
- Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
12
|
Scholtz V, Pazlarova J, Souskova H, Khun J, Julak J. Nonthermal plasma--A tool for decontamination and disinfection. Biotechnol Adv 2015; 33:1108-19. [PMID: 25595663 DOI: 10.1016/j.biotechadv.2015.01.002] [Citation(s) in RCA: 316] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/29/2014] [Accepted: 01/07/2015] [Indexed: 02/07/2023]
Abstract
By definition, the nonthermal plasma (NTP) is partially ionized gas where the energy is stored mostly in the free electrons and the overall temperature remains low. NTP is widely used for many years in various applications such as low-temperature plasma chemistry, removal of gaseous pollutants, in gas-discharge lamps or surface modification. However, during the last ten years, NTP usage expanded to new biological areas of application like plasma microorganisms' inactivation, ready-to-eat food preparation, biofilm degradation or in healthcare, where it seems to be important for the treatment of cancer cells and in the initiation of apoptosis, prion inactivation, prevention of nosocomial infections or in the therapy of infected wounds. These areas are presented and documented in this paper as a review of representative publications.
Collapse
Affiliation(s)
- Vladimir Scholtz
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czech Republic.
| | - Jarmila Pazlarova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Hana Souskova
- Department of Computing and Control Engineering, University of Chemistry and Technology, Prague, Czech Republic
| | - Josef Khun
- Department of Physics and Measurements, University of Chemistry and Technology, Prague, Czech Republic
| | - Jaroslav Julak
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University in Prague, Czech Republic
| |
Collapse
|
13
|
Martusevich AK, Peretyagin SP, Solov’eva AG, Vanin AF. Estimation of some molecular effects of gaseous nitrogen oxide on human blood in vitro. Biophysics (Nagoya-shi) 2014. [DOI: 10.1134/s0006350913050072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Berberidou C, Xanthopoulos K, Paspaltsis I, Lourbopoulos A, Polyzoidou E, Sklaviadis T, Poulios I. Homogenous photocatalytic decontamination of prion infected stainless steel and titanium surfaces. Prion 2013; 7:488-95. [PMID: 24247293 DOI: 10.4161/pri.27180] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prions are notorious for their extraordinary resistance to traditional methods of decontamination, rendering their transmission a public health risk. Iatrogenic Creutzfeldt-Jakob disease (iCJD) via contaminated surgical instruments and medical devices has been verified both experimentally and clinically. Standard methods for prion inactivation by sodium hydroxide or sodium hypochlorite have failed, in some cases, to fully remove prion infectivity, while they are often impractical for routine applications. Prion accumulation in peripheral tissues and indications of human-to-human bloodborne prion transmission, highlight the need for novel, efficient, yet user-friendly methods of prion inactivation. Here we show both in vitro and in vivo that homogenous photocatalytic oxidation, mediated by the photo-Fenton reagent, has the potential to inactivate the pathological prion isoform adsorbed on metal substrates. Photocatalytic oxidation with 224 μg mL(-1) Fe (3+), 500 μg mL(-1) h(-1) H 2O 2, UV-A for 480 min lead to 100% survival in golden Syrian hamsters after intracranial implantation of stainless steel wires infected with the 263K prion strain. Interestingly, photocatalytic treatment of 263K infected titanium wires, under the same experimental conditions, prolonged the survival interval significantly, but failed to eliminate infectivity, a result that we correlate with the increased adsorption of PrP(Sc) on titanium, in comparison to stainless steel. Our findings strongly indicate that our, user--and environmentally--friendly protocol can be safely applied to the decontamination of prion infected stainless steel surfaces.
Collapse
Affiliation(s)
- Chrysanthi Berberidou
- Laboratory of Physical Chemistry; Department of Chemistry; Aristotle University of Thessaloniki; Thessaloniki, Greece; Prion Disease Research Group; Laboratory of Pharmacology; School of Pharmacy; Aristotle University of Thessaloniki; Thessaloniki, Greece
| | | | | | | | | | | | | |
Collapse
|
15
|
Köritzer J, Boxhammer V, Schäfer A, Shimizu T, Klämpfl TG, Li YF, Welz C, Schwenk-Zieger S, Morfill GE, Zimmermann JL, Schlegel J. Restoration of sensitivity in chemo-resistant glioma cells by cold atmospheric plasma. PLoS One 2013; 8:e64498. [PMID: 23704990 PMCID: PMC3660344 DOI: 10.1371/journal.pone.0064498] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 04/15/2013] [Indexed: 11/30/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive brain tumor in adults. Despite multimodal treatments including surgery, chemotherapy and radiotherapy the prognosis remains poor and relapse occurs regularly. The alkylating agent temozolomide (TMZ) has been shown to improve the overall survival in patients with malignant gliomas, especially in tumors with methylated promoter of the O6-methylguanine-DNA-methyltransferase (MGMT) gene. However, intrinsic and acquired resistance towards TMZ makes it crucial to find new therapeutic strategies aimed at improving the prognosis of patients suffering from malignant gliomas. Cold atmospheric plasma is a new auspicious candidate in cancer treatment. In the present study we demonstrate the anti-cancer properties of different dosages of cold atmospheric plasma (CAP) both in TMZ-sensitive and TMZ-resistant cells by proliferation assay, immunoblotting, cell cycle analysis, and clonogenicity assay. Importantly, CAP treatment restored the responsiveness of resistant glioma cells towards TMZ therapy. Concomitant treatment with CAP and TMZ led to inhibition of cell growth and cell cycle arrest, thus CAP might be a promising candidate for combination therapy especially for patients suffering from GBMs showing an unfavorable MGMT status and TMZ resistance.
Collapse
Affiliation(s)
- Julia Köritzer
- Max Planck Institute for Extraterrestrial Physics, Garching, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Fricke K, Koban I, Tresp H, Jablonowski L, Schröder K, Kramer A, Weltmann KD, von Woedtke T, Kocher T. Atmospheric pressure plasma: a high-performance tool for the efficient removal of biofilms. PLoS One 2012; 7:e42539. [PMID: 22880025 PMCID: PMC3412829 DOI: 10.1371/journal.pone.0042539] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 07/09/2012] [Indexed: 11/24/2022] Open
Abstract
Introduction The medical use of non-thermal physical plasmas is intensively investigated for sterilization and surface modification of biomedical materials. A further promising application is the removal or etching of organic substances, e.g., biofilms, from surfaces, because remnants of biofilms after conventional cleaning procedures are capable to entertain inflammatory processes in the adjacent tissues. In general, contamination of surfaces by micro-organisms is a major source of problems in health care. Especially biofilms are the most common type of microbial growth in the human body and therefore, the complete removal of pathogens is mandatory for the prevention of inflammatory infiltrate. Physical plasmas offer a huge potential to inactivate micro-organisms and to remove organic materials through plasma-generated highly reactive agents. Method In this study a Candida albicans biofilm, formed on polystyrene (PS) wafers, as a prototypic biofilm was used to verify the etching capability of the atmospheric pressure plasma jet operating with two different process gases (argon and argon/oxygen mixture). The capability of plasma-assisted biofilm removal was assessed by microscopic imaging. Results The Candida albicans biofilm, with a thickness of 10 to 20 µm, was removed within 300 s plasma treatment when oxygen was added to the argon gas discharge, whereas argon plasma alone was practically not sufficient in biofilm removal. The impact of plasma etching on biofilms is localized due to the limited presence of reactive plasma species validated by optical emission spectroscopy.
Collapse
Affiliation(s)
- Katja Fricke
- Leibniz Institute for Plasma Science and Technology eV, INP Greifswald, Greifswald, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Plasma decontamination of surfaces. PLASMA MEDICINE 2012. [DOI: 10.1017/cbo9780511902598.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Electrolysis-assisted sonication for removal of proteinaceous contamination from surgical grade stainless steel. J Hosp Infect 2012; 81:41-9. [PMID: 22440405 DOI: 10.1016/j.jhin.2012.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 01/31/2012] [Indexed: 11/20/2022]
Abstract
BACKGROUND Current methods used for the detection of residual proteinaceous contamination vary in sensitivity and specificity. This is of concern because it increases the risk for transmission of neurodegenerative diseases such as spongiform encephalopathies. AIM To determine the effectiveness of electrolysis-assisted sonication (EAS) for removing residual proteinaceous contamination from surgical grade stainless steel. METHODS EAS was used to clean surgical grade 316L stainless steel that had been contaminated with the protein bovine serum albumin. Using nitrogen, an abundant element in proteins, as a marker for the presence of protein, X-ray photoelectron spectroscopy (XPS) was used to quantify the amount of protein remaining on the substrate surface. Cathodic, anodic and dual polarization modes of EAS were investigated using 0.1% NaCl solution (w/v, in deionized water) as the electrolyte medium and 13 V as the polarization voltage. FINDING EAS under dual polarization was found to be the most effective method for removing the residual protein layer down to an estimated XPS detection limit of 10 ng/cm(2). Surface roughness and hardness of the stainless steel remained unchanged following EAS treatment, indicating that the procedure does not compromise the material's properties. CONCLUSION This relatively inexpensive and quick method of cleaning medical devices using an easily accessible salt-based electrolyte solution may offer a cost-effective strategy for cleaning medical and dental devices made of stainless steel in the future.
Collapse
|
19
|
|
20
|
Molecular-level removal of proteinaceous contamination from model surfaces and biomedical device materials by air plasma treatment. J Hosp Infect 2010; 76:234-42. [DOI: 10.1016/j.jhin.2010.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 07/02/2010] [Indexed: 11/17/2022]
|
21
|
Walker JT. Decontamination in dentistry - the times they are a changing. J Infect Prev 2010. [DOI: 10.1177/1757177410386513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- JT Walker
- Biosafety Unit, HPA Porton Down, Salisbury, UK,
| |
Collapse
|
22
|
Augmented survival of Neisseria gonorrhoeae within biofilms: exposure to atmospheric pressure non-thermal plasmas. Eur J Clin Microbiol Infect Dis 2010; 30:25-31. [DOI: 10.1007/s10096-010-1047-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 08/12/2010] [Indexed: 10/19/2022]
|
23
|
Schmitt A, Westner I, Reznicek L, Michels W, Mitteregger G, Kretzschmar H. Automated decontamination of surface-adherent prions. J Hosp Infect 2010; 76:74-9. [DOI: 10.1016/j.jhin.2010.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 03/26/2010] [Indexed: 10/19/2022]
|
24
|
Rutala WA, Weber DJ. Guideline for disinfection and sterilization of prion-contaminated medical instruments. Infect Control Hosp Epidemiol 2010; 31:107-17. [PMID: 20055640 DOI: 10.1086/650197] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- William A Rutala
- Hospital Epidemiology, University of North Carolina School of Medicine, Chapel Hill, 27599-7030, USA.
| | | | | |
Collapse
|
25
|
Rogez-Kreuz C, Yousfi R, Soufflet C, Quadrio I, Yan ZX, Huyot V, Aubenque C, Destrez P, Roth K, Roberts C, Favero M, Clayette P. Inactivation of animal and human prions by hydrogen peroxide gas plasma sterilization. Infect Control Hosp Epidemiol 2009; 30:769-77. [PMID: 19563265 DOI: 10.1086/598342] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Prions cause various transmissible spongiform encephalopathies. They are highly resistant to the chemical and physical decontamination and sterilization procedures routinely used in healthcare facilities. The decontamination procedures recommended for the inactivation of prions are often incompatible with the materials used in medical devices. In this study, we evaluated the use of low-temperature hydrogen peroxide gas plasma sterilization systems and other instrument-processing procedures for inactivating human and animal prions. We provide new data concerning the efficacy of hydrogen peroxide against prions from in vitro or in vivo tests, focusing on the following: the efficiency of hydrogen peroxide sterilization and possible interactions with enzymatic or alkaline detergents, differences in the efficiency of this treatment against different prion strains, and the influence of contaminating lipids. We found that gaseous hydrogen peroxide decreased the infectivity of prions and/or the level of the protease-resistant form of the prion protein on different surface materials. However, the efficiency of this treatment depended strongly on the concentration of hydrogen peroxide and the delivery system used in medical devices, because these effects were more pronounced for the new generation of Sterrad technology. The Sterrad NX sterilizer is 100% efficient (0% transmission and no protease-resistant form of the prion protein signal detected on the surface of the material for the mouse-adapted bovine spongiform encephalopathy 6PB1 strain and a variant Creutzfeldt-Jakob disease strain). Thus, gaseous or vaporized hydrogen peroxide efficiently inactivates prions on the surfaces of medical devices.
Collapse
|
26
|
Dickinson J, Murdoch H, Dennis M, Hall G, Bott R, Crabb W, Penet C, Sutton J, Raven N. Decontamination of prion protein (BSE301V) using a genetically engineered protease. J Hosp Infect 2009; 72:65-70. [DOI: 10.1016/j.jhin.2008.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 12/15/2008] [Indexed: 01/09/2023]
|
27
|
Salamitou S, Kirkpatric M, Ly H, Leblon G, Odic E, DuBow M. Augmented Survival of Bacteria Within Biofilms to Exposure to an Atmospheric Pressure Non-Thermal Plasma Source. ACTA ACUST UNITED AC 2009. [DOI: 10.3923/biotech.2009.228.234] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
McDonnell G. Prion disease transmission: can we apply standard precautions to prevent or reduce risks? J Perioper Pract 2008; 18:298-304. [PMID: 18710129 DOI: 10.1177/175045890801800706] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prion diseases present unique challenges to healthcare facilities, both in the care and treatment of patients. A significant cause for concern is in the routine reprocessing of medical devices used on patients and how disease transmission can be prevented on the reuse of devices. Investigations have shown that prion disease can be transmitted on medical devices, which can be a concern given the long incubation times associated with these diseases and that guidelines to control transmission only really apply in a small number of known or at risk cases. It is only recently that medical device-associated cleaning, disinfection and sterilization technologies have been investigated and the results of these studies are summarized in this report. The evidence would suggest that many simple decontamination steps can be applied to dramatically reduce the risks to patients, but the research has also given some surprises. Overall, it is reasonable to expect that standard precautions will be able to be applied both today as well as in the future to reduce the risk of prion disease transmission as well as the many other human pathogen concerns, although this may mean changes in some of our practices.
Collapse
Affiliation(s)
- Gerald McDonnell
- STERIS Limited, Jay's Close, Viables, Basingstoke, Hampshire, UK.
| |
Collapse
|
29
|
|
30
|
Walker J, Dickinson J, Sutton J, Marsh P, Raven N. Implications for Creutzfeldt-Jakob Disease (CJD) in Dentistry: a Review of Current Knowledge. J Dent Res 2008; 87:511-9. [DOI: 10.1177/154405910808700613] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This review explores our current understanding of the risks of (variant) Creutzfeldt-Jakob disease transmission via dental practice, and whether they merit the rigorous enforcement of improved standards of instrument cleaning and decontamination. The recognition of prions as novel infectious agents in humans has caused significant concern among the public and medical professionals alike. Creutzfeldt-Jakob disease (CJD) in humans has been shown to be transmissible via several routes, including transplantation, contaminated medical products, and via neurosurgery. While the likelihood of transmission via dentistry is undoubtedly very low, this may be amplified considerably by unknown risk factors, such as disease prevalence (particularly in the UK), altered tissue distribution of vCJD, and the failure of decontamination processes to address the inactivation of prions adequately. Since current diagnostic techniques are unable to detect PrPSc in human dental tissues, there is limited evidence for the presence of infectivity. Given these uncertainties, the control of risk by reinforced and improved decontamination practices seems the most appropriate response.
Collapse
Affiliation(s)
- J.T. Walker
- TSE Research Group, Centre for Emergency Preparedness and Response, HPA, Porton Down, Salisbury SP4 0JG, UK; and
- Leeds Dental Institute, Leeds, LS2 9LU, UK
| | - J. Dickinson
- TSE Research Group, Centre for Emergency Preparedness and Response, HPA, Porton Down, Salisbury SP4 0JG, UK; and
- Leeds Dental Institute, Leeds, LS2 9LU, UK
| | - J.M. Sutton
- TSE Research Group, Centre for Emergency Preparedness and Response, HPA, Porton Down, Salisbury SP4 0JG, UK; and
- Leeds Dental Institute, Leeds, LS2 9LU, UK
| | - P.D. Marsh
- TSE Research Group, Centre for Emergency Preparedness and Response, HPA, Porton Down, Salisbury SP4 0JG, UK; and
- Leeds Dental Institute, Leeds, LS2 9LU, UK
| | - N.D.H. Raven
- TSE Research Group, Centre for Emergency Preparedness and Response, HPA, Porton Down, Salisbury SP4 0JG, UK; and
- Leeds Dental Institute, Leeds, LS2 9LU, UK
| |
Collapse
|
31
|
Hasiwa M, Kylián O, Hartung T, Rossi F. Removal of immune-stimulatory components from surfaces by plasma discharges. Innate Immun 2008; 14:89-97. [DOI: 10.1177/1753425907088243] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Immune-stimulating microbiological components like lipopolysaccharide (LPS), lipoteichoic acid (LTA) and zymosan bound onto surfaces lead to severe problems when brought in contact with the organism via surgical instruments or implants. We have shown, in recent studies, that it is possible to detect different immune-stimulating components directly on the surface, via an indirect detection method, using human whole-blood and the monocyte reaction to measure the inflammatory mediator release (IL-1β) by ELISA. With regard to the inactivation of pyrogenic substances, we present a method based on the application of a low-pressure microwave plasma discharge working at low temperatures. We found a fast (10 s to a few minutes) removal rate of the immune-stimulating competence for LPS, LTA and zymosan. To mimic the bacterial cell-wall, LPS in combination with muramyl dipeptide was employed and the decreasing rate of the inflammatory signal did not differ from pure LPS.
Collapse
Affiliation(s)
- Marina Hasiwa
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy
| | - Ondřej Kylián
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy
| | - Thomas Hartung
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy
| | - Francois Rossi
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy,
| |
Collapse
|
32
|
Kylián O, Rauscher H, Sirghi L, Rossi F. Protein film removal by means of low-pressure microwave plasma – an imaging ellipsometry study. ACTA ACUST UNITED AC 2008. [DOI: 10.1088/1742-6596/100/6/062017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Lemmer K, Mielke M, Kratzel C, Joncic M, Oezel M, Pauli G, Beekes M. Decontamination of surgical instruments from prions. II. In vivo findings with a model system for testing the removal of scrapie infectivity from steel surfaces. J Gen Virol 2008; 89:348-358. [PMID: 18089760 DOI: 10.1099/vir.0.83396-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The unusual resistance of agents causing transmissible spongiform encephalopathies (TSEs) to chemical or thermal inactivation requires special decontamination procedures in order to prevent accidental transmission of these pathogens by surgical instruments. In the search for effective, instrument-compatible and routinely applicable decontamination procedures, a previous study [Lemmer, K., Mielke, M., Pauli, G. & Beekes, M. (2004). J Gen Virol 85, 3805-3816] identified promising reagents in an in vitro carrier assay using steel wires contaminated with the disease-associated prion protein, PrP(Sc). In the follow-up study presented here, these reagents were validated for their decontamination potential in vivo. Steel wires initially loaded with >or=3 x 10(5) LD(50) of 263K scrapie infectivity were implanted into the brains of hamsters after treatment for decontamination and subsequently monitored for their potential to trigger clinical disease or subclinical cerebral PrP(Sc) deposition within an observation period of 500 days. It was found that routinely usable reagents such as a commercially available alkaline cleaner (pH 12.2) applied for 1 h at 23 degrees C or for 10 min at 55 degrees C and a mixture of 0.2 % SDS and 0.3 % NaOH (pH 12.8) applied for 5 or 10 min at 23 degrees C achieved removal of 263K scrapie infectivity below the threshold of detection (titre reduction of >or=5.5 log(10) units). The increasing use during the past few years of similar model systems by different research groups will facilitate comparison and integration of findings on the decontamination of steel surfaces from prions. Methods identified as highly effective in the 263K steel wire model need to be validated for human TSE agents on different types of instrument surfaces.
Collapse
Affiliation(s)
- Karin Lemmer
- P24, Transmissible Spongiform Encephalopathies, Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| | - Martin Mielke
- FG 14, Applied Infection Control and Hospital Hygiene, Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| | - Christine Kratzel
- P24, Transmissible Spongiform Encephalopathies, Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| | - Marion Joncic
- P24, Transmissible Spongiform Encephalopathies, Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| | - Muhsin Oezel
- ZBS4, Centre for Biological Safety - Imaging Techniques for Rapid Morphology-Based Diagnostics of Infectious Organisms, Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| | - Georg Pauli
- ZBS1, Centre for Biological Safety - Highly Pathogenic Viruses, Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| | - Michael Beekes
- P24, Transmissible Spongiform Encephalopathies, Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany
| |
Collapse
|
34
|
Peden AH, Head MW, Jones M, MacGregor I, Turner M, Ironside J. Advances in the development of a screening test for variant Creutzfeldt–Jakob disease. ACTA ACUST UNITED AC 2008; 2:207-19. [DOI: 10.1517/17530059.2.2.207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
Abstract
The unconventional nature of the infectious agent of prion diseases poses a challenge to conventional infection control methodologies. The extra neural tissue distribution of variant and sporadic Creutzfeldt-Jakob disease has increased concern regarding the risk of prion disease transmission via general surgical procedures and highlighted the need for decontamination procedures that can be incorporated into routine processing. This chapter describe a quantitative method for assessing the prionocidal activity of chemical and physical decontamination methods against surface-bound prion infectivity.
Collapse
Affiliation(s)
- Victoria A Lawson
- Department of Pathology and Mental Health Research Institute of Victoria, University of Melbourne, Melbourne, Australia
| |
Collapse
|
36
|
Use of a low-pressure plasma discharge for the decontamination and sterilization of medical devices. PURE APPL CHEM 2008. [DOI: 10.1351/pac200880091939] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nonequilibrium low-pressure plasma discharges are extensively studied for their applications in the field of decontamination and sterilization of medical devices. The aim of this contribution is to discuss and demonstrate feasibility of oxygen low-pressure inductively coupled plasma (ICP) discharges for removal of various kinds of biological contamination. We demonstrate the ability of ICP discharges for the sterilization of bacterial spores and the removal of biological contamination from proteins and pyrogens.
Collapse
|
37
|
Kamgang JO, Briandet R, Herry JM, Brisset JL, Naïtali M. Destruction of planktonic, adherent and biofilm cells of Staphylococcus epidermidis using a gliding discharge in humid air. J Appl Microbiol 2007; 103:621-8. [PMID: 17714395 DOI: 10.1111/j.1365-2672.2007.03286.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To determine the efficiency of an electric discharge of the gliding arc type for the destruction of Staphylococcus epidermidis planktonic, adherent and biofilm cells. METHODS AND RESULTS Bacterial cells were treated in humid air and at atmospheric pressure by a nonthermal quenched plasma of the glidarc type. The kinetics of destruction (followed by plating) were modelled by an Add-inn for Microsoft Excel, GInaFiT. For planktonic cells, log-linear destruction was obtained, whereas biphasic kinetics were observed for sessile cells. An increased resistance of biofilm cells was observed: the reduction of 6 logarithm units of the population was obtained in 15, 30 and 70 min for planktonic, adherent and biofilm cells, respectively. The experiments also show that the cells destruction did not depend on the adhesion surface but was governed by the gap between the target and the plasma source. CONCLUSION The complete destruction of planktonic, adherent and more resistant biofilm cells of Staph. epidermidis is achieved by a glidarc air plasma at atmospheric pressure. SIGNIFICANCE AND IMPACT OF THE STUDY The glidarc plasma technology is a promising candidate among the emerging nonthermal techniques for decontamination, as it can destroy even biofilms that are known as particularly resistant to various antimicrobials.
Collapse
Affiliation(s)
- J O Kamgang
- Laboratoire d'Electrochimie Interfaciale et de Chimie Analytique, Université de Rouen, Rouen, France
| | | | | | | | | |
Collapse
|
38
|
Cleanability of dental instruments – implications of residual protein and risks from Creutzfeldt-Jakob disease. Br Dent J 2007; 203:395-401. [DOI: 10.1038/bdj.2007.893] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2007] [Indexed: 11/08/2022]
|
39
|
Fichet G, Comoy E, Dehen C, Challier L, Antloga K, Deslys JP, McDonnell G. Investigations of a prion infectivity assay to evaluate methods of decontamination. J Microbiol Methods 2007; 70:511-8. [PMID: 17640752 DOI: 10.1016/j.mimet.2007.06.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 06/14/2007] [Indexed: 11/29/2022]
Abstract
Prions are unique infectious agents which have been shown to be transmitted iatrogenically through contaminated surfaces. Surface contamination is a concern on reusable medical devices and various industrial surfaces, but there is currently no standard, accepted model to evaluate surface prion decontamination. In this report, a set of both in vitro and in vivo methods were investigated based on the contamination of surface through artificial exposure to infected brain. An in vitro surface contamination protocol was developed with subsequent biochemical detection of the prion protein (PrPres). In parallel, the in vivo investigations included the contamination of different types of surface materials (stainless steel or plastic wires) with different prion strains (scrapie strain adapted to hamsters 263K or bovine spongiform encephalopathy strain adapted to mouse 6PB1). The in vivo models with various prion strains and brain homogenate dilutions reproducibly transmitted the disease and a relationship was established between the infectivity titre, the transmission rate and the incubation period. Moreover, the in vivo models were studied for their ability to demonstrate the efficacy of heat and chemical-based decontamination methods, with similar results. The in vivo scrapie method described is proposed as a standard to evaluate existing and developing prion decontamination technologies.
Collapse
Affiliation(s)
- Guillaume Fichet
- STERIS Laboratory, CEA/DSV/IMETI/SEPIA, Fontenay-aux-Roses, France.
| | | | | | | | | | | | | |
Collapse
|
40
|
Stephenson J. Halting the spread of human prion disease – exceptional measures for an exceptional problem. J Hosp Infect 2007; 65 Suppl 2:14-8. [PMID: 17540234 DOI: 10.1016/s0195-6701(07)60007-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- J Stephenson
- Department of Health, 133 155, Waterloo Road, London, UK
| |
Collapse
|
41
|
Abstract
Professor Don Jeffries, Chair of the Advisory Committee on Dangerous Pathogens Working Group on Transmissible Spongiform Encephalopathies (ACDP TSE), Deputy Chair of the Creutzfeldt-Jakob Disease (CJD) Incidents Panel, and Chair of the Department of Health Decontamination Research Group discusses the latest guidance on the prevention of transmissible spongiform encephalopathies (TSEs). This article is based on the presentation he gave at AfPP's Annual Congress in October 2005.
Collapse
Affiliation(s)
- Don Jeffries
- Microbiology and Virology Services, St Bartholomew's and the Royal London Hospital
| |
Collapse
|
42
|
Ceccone G, Gilliland D, Kylián O, Rossi F. Experimental study of effect of low-pressure O2:H2 microwave discharge on protein films. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/s10582-006-0269-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Sutton JM, Dickinson J, Walker JT, Raven NDH. Methods to Minimize the Risks of Creutzfeldt-Jakob Disease Transmission by Surgical Procedures: Where to Set the Standard? Clin Infect Dis 2006; 43:757-64. [PMID: 16912952 DOI: 10.1086/507030] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 05/23/2006] [Indexed: 11/03/2022] Open
Abstract
New prion-related disorders have emerged over the past 20 years, of which the most notable in the human context is variant Creutzfeldt-Jakob disease (CJD). This disorder is a challenge to medical and public health professionals seeking early detection and diagnosis, provision of therapy, and support for persons affected and a better understanding of transmission risks. The risk of iatrogenic transmission of the disease remains a significant threat, given the well documented cases of CJD transmission via surgery, organ transplantation, and blood transfusion. This review discusses our current understanding of the prevalence of variant CJD, the distribution of tissue infectivity, and new methods for the decontamination of surgical instruments. A comparison of emerging technologies is provided on the basis of our current perception of surgical risk to identify methods that are likely to provide sufficient safety margins and to stimulate debate about the standards needed to protect against variant CJD and CJD transmission.
Collapse
Affiliation(s)
- J Mark Sutton
- Health Protection Agency, Centre for Emergency Preparedness and Response, Porton Down, Salisbury, United Kingdom
| | | | | | | |
Collapse
|
44
|
Baxter RL, Baxter HC, Campbell GA, Grant K, Jones A, Richardson P, Whittaker G. Quantitative analysis of residual protein contamination on reprocessed surgical instruments. J Hosp Infect 2006; 63:439-44. [PMID: 16772103 DOI: 10.1016/j.jhin.2006.03.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 03/10/2006] [Indexed: 11/20/2022]
Abstract
'Ready-for-use' instruments from surgical instrument trays were examined after routine cleaning and sterilization in a blinded study. These reprocessed instruments originated from five National Health Service hospital trust sterile service departments in England and Wales. Determination of residual protein and peptide contamination was carried out by acid stripping of the instrument surfaces, hydrolysis of the constituent amino acids and quantitative total amino acid analysis. One hundred and twenty instruments were analysed, and the median levels of residual protein contamination per instrument for the individual trays were 267, 260, 163, 456 and 756 microg. Scanning electron microscopy and energy dispersive X-ray spectroscopic analyses of the instruments showed that tissue deposits were localized on surfaces, but there was no significant correlation between overall protein soiling and instrument complexity. The highest levels of residual contamination were found on instruments used for tonsillectomy and adenoid surgery.
Collapse
Affiliation(s)
- R L Baxter
- School of Chemistry, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | | | | | |
Collapse
|