1
|
The C-Terminal Domain of Salmonid Alphavirus Nonstructural Protein 2 (nsP2) Is Essential and Sufficient To Block RIG-I Pathway Induction and Interferon-Mediated Antiviral Response. J Virol 2021; 95:e0115521. [PMID: 34523969 DOI: 10.1128/jvi.01155-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonid alphavirus (SAV) is an atypical alphavirus that has a considerable impact on salmon and trout farms. Unlike other alphaviruses, such as the chikungunya virus, SAV is transmitted without an arthropod vector, and it does not cause cell shutoff during infection. The mechanisms by which SAV escapes the host immune system remain unknown. By studying the role of SAV proteins on the RIG-I signaling cascade, the first line of defense of the immune system during infection, we demonstrated that nonstructural protein 2 (nsP2) effectively blocks the induction of type I interferon (IFN). This inhibition, independent of the protease activity carried by nsP2, occurs downstream of IRF3, which is the transcription factor allowing the activation of the IFN promoter and its expression. The inhibitory effect of nsP2 on the RIG-I pathway depends on the localization of nsP2 in the host cell nucleus, which is linked to two nuclear localization sequences (NLS) located in its C-terminal part. The C-terminal domain of nsP2 by itself is sufficient and necessary to block IFN induction. Mutation of the NLS of nsP2 is deleterious to the virus. Finally, nsP2 does not interact with IRF3, indicating that its action is possible through a targeted interaction within discrete areas of chromatin, as suggested by its punctate distribution observed in the nucleus. These results therefore demonstrate a major role for nsP2 in the control by SAV of the host cell's innate immune response. IMPORTANCE The global consumption of fish continues to rise, and the future demand cannot be met by capture fisheries alone due to limited stocks of wild fish. Aquaculture is currently the world's fastest-growing food production sector, with an annual growth rate of 6 to 8%. Recurrent outbreaks of SAV result in significant economic losses with serious environmental consequences for wild stocks. While the clinical and pathological signs of SAV infection are fairly well known, the molecular mechanisms involved are poorly described. In the present study, we focus on the nonstructural protein nsP2 and characterize a specific domain containing nuclear localization sequences that are critical for the inhibition of the host innate immune response mediated by the RIG-I pathway.
Collapse
|
2
|
Establishment and Characterization of a Novel Gill Cell Line, LG-1, from Atlantic Lumpfish ( Cyclopterus lumpus L.). Cells 2021; 10:cells10092442. [PMID: 34572091 PMCID: PMC8467979 DOI: 10.3390/cells10092442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/19/2021] [Accepted: 09/04/2021] [Indexed: 11/17/2022] Open
Abstract
The use of lumpfish (Cyclopterus lumpus) as a cleaner fish to fight sea lice infestation in farmed Atlantic salmon has become increasingly common. Still, tools to increase our knowledge about lumpfish biology are lacking. Here, we successfully established and characterized the first Lumpfish Gill cell line (LG-1). LG-1 are adherent, homogenous and have a flat, stretched-out and almost transparent appearance. Transmission electron microscopy revealed cellular protrusions and desmosome-like structures that, together with their ability to generate a transcellular epithelial/endothelial resistance, suggest an epithelial or endothelial cell type. Furthermore, the cells exert Cytochrome P450 1A activity. LG-1 supported the propagation of several viruses that may lead to severe infectious diseases with high mortalities in fish farming, including viral hemorrhagic septicemia virus (VHSV) and infectious hematopoietic necrosis virus (IHNV). Altogether, our data indicate that the LG-1 cell line originates from an epithelial or endothelial cell type and will be a valuable in vitro research tool to study gill cell function as well as host-pathogen interactions in lumpfish.
Collapse
|
3
|
Non-Lethal Sequential Individual Monitoring of Viremia in Relation to DNA Vaccination in Fish-Example Using a Salmon Alphavirus DNA Vaccine in Atlantic Salmon Salmo salar. Vaccines (Basel) 2021; 9:vaccines9020163. [PMID: 33671162 PMCID: PMC7922653 DOI: 10.3390/vaccines9020163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 11/26/2022] Open
Abstract
Traditionally, commercial testing for vaccine efficacy has relied on the mass infection of vaccinated and unvaccinated animals and the comparison of mortality prevalence and incidence. For some infection models where disease does not cause mortality this approach to testing vaccine efficacy is not useful. Additionally, in fish experimental studies on vaccine efficacy and immune response the norm is that several individuals are lethally sampled at sequential timepoints, and results are extrapolated to represent the kinetics of immune and disease parameters of an individual fish over the entire experimental infection period. In the present study we developed a new approach to vaccine testing for viremic viruses in fish by following the same individuals over the course of a DNA vaccination and experimental infection through repeated blood collection and analyses. Injectable DNA vaccines are particularly efficient against viral disease in fish. To date, two DNA vaccines have been authorised for use in fish farming, one in Canada against Infectious Haemorrhagic Necrotic virus and more recently one in Europe against Salmon Pancreatic Disease virus (SPDv) subtype 3. In the current study we engineered and used an experimental DNA vaccine against SPDv subtype 1. We measured viremia using a reporter cell line system and demonstrated that the viremia phase was completely extinguished following DNA vaccination. Differences in viremia infection kinetics between fish in the placebo group could be related to subsequent antibody levels in the individual fish, with higher antibody levels at terminal sampling in fish showing earlier viremia peaks. The results indicate that sequential non-lethal sampling can highlight associations between infection traits and immune responses measured at asynchronous timepoints and, can provide biological explanations for variation in data. Similar to results observed for the SPDv subtype 3 DNA vaccine, the SPDv subtype 1 DNA vaccine also induced an interferon type 1 response after vaccination and provided high protection against SPDv under laboratory conditions when fish were challenged at 7 weeks post-vaccination.
Collapse
|
4
|
Dahle MK, Jørgensen JB. Antiviral defense in salmonids - Mission made possible? FISH & SHELLFISH IMMUNOLOGY 2019; 87:421-437. [PMID: 30708056 DOI: 10.1016/j.fsi.2019.01.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
Viral diseases represent one of the major threats for salmonid aquaculture. Survival from viral infections are highly dependent on host innate antiviral immune defense, where interferons are of crucial importance. Neutralizing antibodies and T cell effector mechanisms mediate long-term antiviral protection. Despite an immune cell repertoire comparable to higher vertebrates, farmed fish often fail to mount optimal antiviral protection. In the quest to multiply and spread, viruses utilize a variety of strategies to evade or escape the host immune system. Understanding the specific interplay between viruses and host immunity at depth is crucial for developing successful vaccination and treatment strategies in mammals. However, this knowledge base is still limited for pathogenic fish viruses. Here, we have focused on five RNA viruses with major impact on salmonid aquaculture: Salmonid alphavirus, Infectious salmon anemia virus, Infectious pancreatic necrosis virus, Piscine orthoreovirus and Piscine myocarditis virus. This review explore the protective immune responses that salmonids mount to these viruses and the existing knowledge on how the viruses counteract and/or bypass the immune response, including their IFN antagonizing effects and their mechanisms to establish persisting infections.
Collapse
Affiliation(s)
- Maria K Dahle
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø, The Arctic University of Norway, Norway; Department of Fish Health, Norwegian Veterinary Institute, Oslo, Norway
| | - Jorunn B Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø, The Arctic University of Norway, Norway.
| |
Collapse
|
5
|
Shi W, Wang Y, Ren X, Gao S, Hua X, Guo M, Tang L, Xu Y, Ren T, Li Y, Liu M. EvaGreen-based real-time PCR assay for sensitive detection of salmonid alphavirus. Mol Cell Probes 2018; 39:7-13. [DOI: 10.1016/j.mcp.2018.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/10/2018] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
|
6
|
Sobhkhez M, Joensen LL, Tollersrud LG, Strandskog G, Thim HL, Jørgensen JB. A conserved inhibitory role of suppressor of cytokine signaling 1 (SOCS1) in salmon antiviral immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:66-76. [PMID: 27818171 DOI: 10.1016/j.dci.2016.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/02/2016] [Accepted: 11/02/2016] [Indexed: 06/06/2023]
Abstract
The SOCS proteins are regulators of JAK/STAT signaling. A number of viral infections has been associated with SOCS upregulation. Here we report that SOCS1 mRNA expression is up-regulated in salmon alphavirus (SAV3) infected TO cells, while infectious pancreatic necrosis virus infection has a negligible effect. SAV3 infected salmon showed increased SOCS1 mRNA levels in heart correlating with increased viral transcripts. Together, the in vitro and in vivo data suggests that SAV3-induced SOCS1 expression may affect the outcome of the virus infection. Using CHSE-214 cells overexpressing SOCS1 we revealed increased SAV3 replication compared to control, suggesting that SOCS1 suppress the antiviral capacity of the cells. In IFNa1-treated cells, the suppression of viral replication was partially rescued by SOCS1 overexpression. The increased viral replication in SOCS1 transgene cells was likely a result of impaired IFN-signaling and the reduced expression of interferon-stimulated genes in the transgene cells underscores this.
Collapse
Affiliation(s)
- Mehrdad Sobhkhez
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Lisbeth L Joensen
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Linn Greiner Tollersrud
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Guro Strandskog
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Hanna L Thim
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Jorunn B Jørgensen
- The Norwegian College of Fishery Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
| |
Collapse
|
7
|
Lund M, Røsæg MV, Krasnov A, Timmerhaus G, Nyman IB, Aspehaug V, Rimstad E, Dahle MK. Experimental Piscine orthoreovirus infection mediates protection against pancreas disease in Atlantic salmon (Salmo salar). Vet Res 2016; 47:107. [PMID: 27769313 PMCID: PMC5075195 DOI: 10.1186/s13567-016-0389-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/04/2016] [Indexed: 11/10/2022] Open
Abstract
Viral diseases are among the main challenges in farming of Atlantic salmon (Salmo salar). The most prevalent viral diseases in Norwegian salmon aquaculture are heart and skeletal muscle inflammation (HSMI) caused by Piscine orthoreovirus (PRV), and pancreas disease (PD) caused by Salmonid alphavirus (SAV). Both PRV and SAV target heart and skeletal muscles, but SAV additionally targets exocrine pancreas. PRV and SAV are often present in the same locations and co-infections occur, but the effect of this crosstalk on disease development has not been investigated. In the present experiment, the effect of a primary PRV infection on subsequent SAV infection was studied. Atlantic salmon were infected with PRV by cohabitation, followed by addition of SAV shedder fish 4 or 10 weeks after the initial PRV infection. Histopathological evaluation, monitoring of viral RNA levels and host gene expression analysis were used to assess disease development. Significant reduction of SAV RNA levels and of PD specific histopathological changes were observed in the co-infected groups compared to fish infected by SAV only. A strong correlation was found between histopathological development and expression of disease related genes in heart. In conclusion, experimentally PRV infected salmon are less susceptible to secondary SAV infection and development of PD.
Collapse
Affiliation(s)
- Morten Lund
- Section of Immunology, Norwegian Veterinary Institute, Oslo, Norway
| | - Magnus Vikan Røsæg
- SalMar ASA, Kverva, Norway
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - Aleksei Krasnov
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Gerrit Timmerhaus
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Ingvild Berg Nyman
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Espen Rimstad
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | | |
Collapse
|
8
|
Stene A, Hellebø A, Viljugrein H, Solevåg SE, Devold M, Aspehaug V. Liquid fat, a potential abiotic vector for horizontal transmission of salmonid alphavirus? JOURNAL OF FISH DISEASES 2016; 39:531-537. [PMID: 25952607 DOI: 10.1111/jfd.12382] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/29/2015] [Accepted: 03/29/2015] [Indexed: 06/04/2023]
Abstract
Viral diseases represent serious challenge in marine farming of Atlantic salmon (Salmo salar L). Pancreas disease (PD) caused by a salmonid alphavirus (SAV) is by far the most serious in northern Europe. To control PD, it is necessary to identify virus transmission routes. One aspect to consider is whether the virus is transported as free particles or associated with potential vectors. Farmed salmonids have high lipid content in their tissue which may be released into the environment from decomposing dead fish. At the seawater surface, the effects of wind and ocean currents are most prominent. The aim of this study was primarily to identify whether the lipid fraction leaking from dead infected salmon contains SAV. Adipose tissue from dead SAV-infected fish from three farming sites was submerged in beakers with sea water in the laboratory and stored at different temperature and time conditions. SAV was identified by real-time RT-PCR in the lipid fractions accumulating at the water surface in the beakers. SAV-RNA was also present in the sea water. Lipid fractions were transferred to cell culture, and viable SAV was identified. Due to its hydrophobic nature, fat with infective pathogenic virus at the surface may contribute to long-distance transmission of SAV.
Collapse
Affiliation(s)
- A Stene
- Ålesund University College, Ålesund, Norway
| | - A Hellebø
- Marine Department, Møreforsking AS, Ålesund, Norway
| | | | | | - M Devold
- PatoGen Analyse AS, Ålesund, Norway
| | | |
Collapse
|
9
|
Mérour E, Lamoureux A, Biacchesi S, Brémont M. Fine mapping of a salmonid E2 alphavirus neutralizing epitope. J Gen Virol 2016; 97:893-900. [PMID: 26801972 DOI: 10.1099/jgv.0.000411] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, we aimed to characterize the epitope recognized by the neutralizing 17H23 mAb directed against the E2 glycoprotein of most of salmonid alphavirus (SAV) subtypes and widely used in several laboratories to routinely diagnose SAV. We hypothesized that the 17H23 epitope was located in the major domain B, previously identified in the E2 of mammalian alphaviruses as the domain recognized by most of the E2 neutralizing mAbs. Indeed, the SAV E2 domain B counterpart is contained in the protein domain previously characterized as being recognized by mAb 17H23. Thus, to precisely characterize the 17H23 epitope, we developed an alanine scanning mutagenesis approach coupled with the generation of the respective recombinant SAV (rSAV) by using the available infectious cDNA. Ten mutant rSAVs termed A-J from E2 aa 223-236 were produced and characterized in vitro using indirect immunofluorescence assays on virus-infected cells with mAbs 17H23, 51B8 (another non-neutralizing anti-E2 mAb) and 19F3 directed against the non-structural protein nsp1. Two of the mutant rSAVs (G and H) escaped neutralization by mAb 17H23. In addition, we showed that when juvenile trout were infected by bath immersion with the rSAV mutants, some of them were either totally (D, E and G) or partially (H) attenuated. Together, the data from the in vitro and in vivo experiments indicated that the putative 17H23 amino acid sequence epitope comprised the short amino acid sequence (227)FTSDS(231).
Collapse
Affiliation(s)
- Emilie Mérour
- VIM, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Annie Lamoureux
- VIM, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | | | - Michel Brémont
- VIM, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
10
|
Biacchesi S, Jouvion G, Mérour E, Boukadiri A, Desdouits M, Ozden S, Huerre M, Ceccaldi PE, Brémont M. Rainbow trout (Oncorhynchus mykiss) muscle satellite cells are targets of salmonid alphavirus infection. Vet Res 2016; 47:9. [PMID: 26743565 PMCID: PMC4705810 DOI: 10.1186/s13567-015-0301-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/24/2015] [Indexed: 11/21/2022] Open
Abstract
Sleeping disease in rainbow trout is characterized by an abnormal swimming behaviour of the fish which stay on their side at the bottom of the tanks. This sign is due to extensive necrosis and atrophy of red skeletal muscle induced by the sleeping disease virus (SDV), also called salmonid alphavirus 2. Infections of humans with arthritogenic alphaviruses, such as Chikungunya virus (CHIKV), are global causes of debilitating musculoskeletal diseases. The mechanisms by which the virus causes these pathologies are poorly understood due to the restrictive availability of animal models capable of reproducing the full spectrum of the disease. Nevertheless, it has been shown that CHIKV exhibits a particular tropism for muscle stem cells also known as satellite cells. Thus, SDV and its host constitute a relevant model to study in details the virus-induced muscle atrophy, the pathophysiological consequences of the infection of a particular cell-type in the skeletal muscle, and the regeneration of the muscle tissue in survivors together with the possible virus persistence. To study a putative SDV tropism for that particular cell type, we established an in vivo and ex vivo rainbow trout model of SDV-induced atrophy of the skeletal muscle. This experimental model allows reproducing the full panel of clinical signs observed during a natural infection since the transmission of the virus is arthropod-borne independent. The virus tropism in the muscle tissue was studied by immunohistochemistry together with the kinetics of the muscle atrophy, and the muscle regeneration post-infection was observed. In parallel, an ex vivo model of SDV infection of rainbow trout satellite cells was developed and virus replication and persistence in that particular cell type was followed up to 73 days post-infection. These results constitute the first observation of a specific SDV tropism for the muscle satellite cells.
Collapse
Affiliation(s)
- Stéphane Biacchesi
- INRA, Unité de Virologie et d'Immunologie Moléculaires, Jouy-en-Josas, France.
| | - Grégory Jouvion
- Institut Pasteur, Unité Histopathologie Humaine et Modèles Animaux, Paris, France.
| | - Emilie Mérour
- INRA, Unité de Virologie et d'Immunologie Moléculaires, Jouy-en-Josas, France.
| | - Abdelhak Boukadiri
- UMR INRA, Génétique Animale et Biologie Intégrative, Equipe Génétique Immunité et Santé, Jouy-en-Josas, France.
| | - Marion Desdouits
- Institut Pasteur, Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Paris, France. .,CNRS UMR 3569, Paris, France. .,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France.
| | - Simona Ozden
- Institut Pasteur, Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Paris, France. .,CNRS UMR 3569, Paris, France.
| | - Michel Huerre
- Institut Pasteur, Unité Recherche et Expertise Histotechnologie et Pathologie, Paris, France.
| | - Pierre-Emmanuel Ceccaldi
- Institut Pasteur, Unité Épidémiologie et Physiopathologie des Virus Oncogènes, Paris, France. .,CNRS UMR 3569, Paris, France. .,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France.
| | - Michel Brémont
- INRA, Unité de Virologie et d'Immunologie Moléculaires, Jouy-en-Josas, France.
| |
Collapse
|
11
|
Hikke MC, Geertsema C, Wu V, Metz SW, van Lent JW, Vlak JM, Pijlman GP. Alphavirus capsid proteins self-assemble into core-like particles in insect cells: A promising platform for nanoparticle vaccine development. Biotechnol J 2015; 11:266-73. [PMID: 26287127 DOI: 10.1002/biot.201500147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/18/2015] [Accepted: 08/13/2015] [Indexed: 11/07/2022]
Abstract
The mosquito-borne chikungunya virus (CHIKV) causes arthritic diseases in humans, whereas the aquatic salmonid alphavirus (SAV) is associated with high mortality in aquaculture of salmon and trout. Using modern biotechnological approaches, promising vaccine candidates based upon highly immunogenic, enveloped virus-like particles (eVLPs) have been developed. However, the eVLP structure (core, lipid membrane, surface glycoproteins) is more complex than that of non-enveloped, protein-only VLPs, which are structurally and morphologically 'simple'. In order to develop an alternative to alphavirus eVLPs, in this paper we engineered recombinant baculovirus vectors to produce high levels of alphavirus core-like particles (CLPs) in insect cells by expression of the CHIKV and SAV capsid proteins. The CLPs localize in dense nuclear bodies within the infected cell nucleus and are purified through a rapid and scalable protocol involving cell lysis, sonication and low-speed centrifugation steps. Furthermore, an immunogenic epitope from the alphavirus E2 glycoprotein can be successfully fused to the N-terminus of the capsid protein without disrupting the CLP self-assembling properties. We propose that immunogenic epitope-tagged alphavirus CLPs produced in insect cells present a simple and perhaps more stable alternative to alphavirus eVLPs.
Collapse
Affiliation(s)
- Mia C Hikke
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Corinne Geertsema
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Vincen Wu
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Stefan W Metz
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Jan W van Lent
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Just M Vlak
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
12
|
Bjørgen H, Wessel Ø, Fjelldal PG, Hansen T, Sveier H, Sæbø HR, Enger KB, Monsen E, Kvellestad A, Rimstad E, Koppang EO. Piscine orthoreovirus (PRV) in red and melanised foci in white muscle of Atlantic salmon (Salmo salar). Vet Res 2015; 46:89. [PMID: 26346256 PMCID: PMC4562189 DOI: 10.1186/s13567-015-0244-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/17/2015] [Indexed: 11/10/2022] Open
Abstract
Melanised focal changes (black spots) are common findings in the white skeletal muscle of seawater-farmed Atlantic salmon (Salmo salar). Fillets with melanised focal changes are considered as lower quality and cause large economic losses. It has been suggested that red focal changes (red spots) precede the melanised focal changes. In the present work, we examined different populations of captive and wild salmon for the occurrence of both types of changes, which were investigated for the presence of different viruses by immunohistochemistry and RT-qPCR. The occurrence of red or melanised foci varied significantly between the populations, from none in wild fish control group, low prevalence of small foci in fish kept in in-house tanks, to high prevalence of large foci in farm-raised salmon. Large amounts of Piscine orthoreovirus (PRV) antigen were detected in all foci. No other viruses were detected. Red focal changes contained significantly higher levels of PRV RNA than apparently non-affected areas in white muscle of the same individuals. Some changes displayed a transient form between a red and melanised pathotype, indicating a progression from an acute to a chronic manifestation. We conclude that PRV is associated with the focal pathological changes in the white muscle of farmed Atlantic salmon and is a premise for the development of focal melanised changes.
Collapse
Affiliation(s)
- Håvard Bjørgen
- Institute of Basic Science and Aquatic Medicine, School of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway.
| | - Øystein Wessel
- Institute of Food Safety and Infection Biology, School of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway.
| | | | - Tom Hansen
- Matre Research Station, Institute of Marine Research, Matre, Norway.
| | | | - Håkon Rydland Sæbø
- Department Brandasund and Rex Star, Lerøy Sjøtroll AS, Skjervøy, Norway.
| | | | | | - Agnar Kvellestad
- Institute of Basic Science and Aquatic Medicine, School of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway.
| | - Espen Rimstad
- Institute of Food Safety and Infection Biology, School of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway.
| | - Erling Olaf Koppang
- Institute of Basic Science and Aquatic Medicine, School of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway.
| |
Collapse
|
13
|
Karlsen M, Andersen L, Blindheim SH, Rimstad E, Nylund A. A naturally occurring substitution in the E2 protein of Salmonid alphavirus subtype 3 changes viral fitness. Virus Res 2014; 196:79-86. [PMID: 25445347 DOI: 10.1016/j.virusres.2014.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 11/09/2014] [Accepted: 11/12/2014] [Indexed: 10/24/2022]
Abstract
Phylogenetic analyses of the Salmonid alphavirus subtype 3 (SAV3) epizootic have suggested that a substitution from proline to serine in the receptor binding protein E2 position 206 has occurred after the introduction of virus from a wild reservoir to farmed salmonid fish in Norway. We modelled the 3D structure of P62, the uncleaved E3-E2 precursor, of SAVH20/03 based on its sequence homology to the Chikungunya virus (CHIKV), and studied in vitro and in vivo effects of the mutation using reverse genetics. E2(206) is located on the surface of the B-domain of E2, which is associated with receptor attachment in alphaviruses. Recombinant virus expressing the E2(206S) codon replicated slower and produced significantly less genomic copies than virus expressing the ancestral E2(206P) codon in vitro in Bluegill Fry (BF2) cells. The E2(206S) mutant was out-competed by the E2(206P) mutant after 5 passages in an in vitro competition assay, confirming that the substitution negatively affects the efficacy of virus multiplication in cell culture. Both mutants were highly infectious to Atlantic salmon (Salmo salar), produced similar viral RNA loads in gills, heart, kidney and brain, and induced similar histopathologic changes in these organs. The E2(206S) mutant produced a less persistent infection in salmon and was shed more rapidly to water than the E2(206P) mutant. Reduced generation time through more rapid shedding could therefore explain why a serine in this position became dominant in the viral population after SAV3 was introduced to farmed salmon from the wild reservoir.
Collapse
Affiliation(s)
- Marius Karlsen
- Department of Biology, University of Bergen, Thor Møhlens gt 55, 5020 Bergen, Norway.
| | - Linda Andersen
- Department of Biology, University of Bergen, Thor Møhlens gt 55, 5020 Bergen, Norway
| | - Steffen H Blindheim
- Department of Biology, University of Bergen, Thor Møhlens gt 55, 5020 Bergen, Norway
| | - Espen Rimstad
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, P.O. 8146 Dep, 0033 Oslo, Norway
| | - Are Nylund
- Department of Biology, University of Bergen, Thor Møhlens gt 55, 5020 Bergen, Norway
| |
Collapse
|
14
|
Hikke MC, Braaen S, Villoing S, Hodneland K, Geertsema C, Verhagen L, Frost P, Vlak JM, Rimstad E, Pijlman GP. Salmonid alphavirus glycoprotein E2 requires low temperature and E1 for virion formation and induction of protective immunity. Vaccine 2014; 32:6206-12. [DOI: 10.1016/j.vaccine.2014.09.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 10/24/2022]
|
15
|
Graham DA, Rowley HR, Frost P. Cross-neutralization studies with salmonid alphavirus subtype 1-6 strains: results with sera from experimental studies and natural infections. JOURNAL OF FISH DISEASES 2014; 37:683-91. [PMID: 23957811 DOI: 10.1111/jfd.12167] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 05/13/2023]
Abstract
The serological reactivity between strains of each of the six currently genetically defined subtypes of salmonid alphavirus (SAV) was examined by comparison of homologous and heterologous virus neutralization titres on sera from experimentally infected fish. With the exception of the level of SAV subtype 6 neutralization by heterologous sera, good cross-neutralization was detected between all subtypes, albeit with variation in geometric mean titres when each subtype-specific serum set was tested against the panel of virus subtypes. A similar pattern was evident with field sera, except that heterologous neutralization of the SAV6 strain was more evident. In only 23% of available pairwise comparisons was the homologous titre recorded with an experimentally derived serum fourfold or greater than the heterologous titre, and in only two instances was this difference demonstrated in both directions. No virus strains consistently met the old serology-based criteria (Sub-committee on Inter-relationships Among Catalogued Alphaviruses) to be considered separate subtypes within an alphavirus species. Only when testing with an SAV subtype-2-specific monoclonal antibody was a major difference between homologous and heterologous neutralization capacity evident. These results provide new direct or indirect information in terms of SAV classification, vaccine efficacy and the selection and validation of reagents for serological and immunological diagnostic purposes.
Collapse
Affiliation(s)
- D A Graham
- Fish Diseases Unit, Agrifood and Biosciences Institute, Stormont, UK
| | | | | |
Collapse
|
16
|
Guo TC, Johansson DX, Haugland Ø, Liljeström P, Evensen Ø. A 6K-deletion variant of salmonid alphavirus is non-viable but can be rescued through RNA recombination. PLoS One 2014; 9:e100184. [PMID: 25009976 PMCID: PMC4091863 DOI: 10.1371/journal.pone.0100184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 05/23/2014] [Indexed: 01/13/2023] Open
Abstract
Pancreas disease (PD) of Atlantic salmon is an emerging disease caused by Salmonid alphavirus (SAV) which mainly affects salmonid aquaculture in Western Europe. Although genome structure of SAV has been characterized and each individual viral protein has been identified, the role of 6K protein in viral replication and infectivity remains undefined. The 6K protein of alphaviruses is a small and hydrophobic protein which is involved in membrane permeabilization, protein processing and virus budding. Because these common features are shared across many viral species, they have been named viroporins. In the present study, we applied reverse genetics to generate SAV3 6K-deleted (Δ6K) variant and investigate the role of 6K protein. Our findings show that the 6K-deletion variant of salmonid alphavirus is non-viable. Despite viral proteins of Δ6K variant are detected in the cytoplasm by immunostaining, they are not found on the cell surface. Further, analysis of viral proteins produced in Δ6K cDNA clone transfected cells using radioimmunoprecipitation (RIPA) and western blot showed a protein band of larger size than E2 of wild-type SAV3. When Δ6K cDNA was co-transfected with SAV3 helper cDNA encoding the whole structural genes including 6K, the infectivity was rescued. The development of CPE after co-transfection and resolved genome sequence of rescued virus confirmed full-length viral genome being generated through RNA recombination. The discovery of the important role of the 6K protein in virus production provides a new possibility for the development of antiviral intervention which is highly needed to control SAV infection in salmonids.
Collapse
Affiliation(s)
- Tz-Chun Guo
- Norwegian University of Life Sciences, Department of Basic Sciences and Aquatic Medicine, Oslo, Norway
| | - Daniel X. Johansson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Øyvind Haugland
- Norwegian University of Life Sciences, Department of Basic Sciences and Aquatic Medicine, Oslo, Norway
| | - Peter Liljeström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Øystein Evensen
- Norwegian University of Life Sciences, Department of Basic Sciences and Aquatic Medicine, Oslo, Norway
- * E-mail:
| |
Collapse
|
17
|
Hikke MC, Verest M, Vlak JM, Pijlman GP. Salmonid alphavirus replication in mosquito cells: towards a novel vaccine production system. Microb Biotechnol 2014; 7:480-4. [PMID: 24418177 PMCID: PMC4229328 DOI: 10.1111/1751-7915.12100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/14/2013] [Accepted: 10/21/2013] [Indexed: 11/28/2022] Open
Abstract
Salmonid alphavirus (SAV) causes pancreas disease and sleeping disease in Atlantic salmon (Salmosalar) and rainbow trout (Oncorhynchus mykiss) and confers a major burden to the aquaculture industry. A commercial inactivated whole virus vaccine propagated in a salmon cell line at low temperature provides effective protection against SAV infections. Alphaviruses (family Togaviridae) are generally transmitted between vertebrate hosts via blood-sucking arthropod vectors, typically mosquitoes. SAV is unique in this respect because it can be transmitted directly from fish to fish and has no known invertebrate vector. Here, we show for the first time that SAV is able to complete a full infectious cycle within arthropod cells derived from the Asian tiger mosquito Aedes albopictus. Progeny virus is produced in C6/36 and U4.4. cells in a temperature-dependent manner (at 15°C but not at 18°C), can be serially passaged and remains infectious to salmonid Chinook salmon embryo cells. This suggests that SAV is not a vertebrate-restricted alphavirus after all and may have the potential to replicate in invertebrates. The current study also shows the ability of SAV to be propagated in mosquito cells, thereby possibly providing an alternative SAV production system for vaccine applications.
Collapse
Affiliation(s)
- Mia C Hikke
- Wageningen University, Laboratory of Virology, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
18
|
High production of recombinant Norwegian salmonid alphavirus E1 and E2 proteins in Escherichia coli by fusion to secretion signal sequences and removal of hydrophobic domains. BIOTECHNOL BIOPROC E 2013. [DOI: 10.1007/s12257-013-0085-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Thim HL, Iliev DB, Christie KE, Villoing S, McLoughlin MF, Strandskog G, Jørgensen JB. Immunoprotective activity of a Salmonid Alphavirus Vaccine: comparison of the immune responses induced by inactivated whole virus antigen formulations based on CpG class B oligonucleotides and poly I:C alone or combined with an oil adjuvant. Vaccine 2012; 30:4828-34. [PMID: 22634299 DOI: 10.1016/j.vaccine.2012.05.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 04/13/2012] [Accepted: 05/07/2012] [Indexed: 12/25/2022]
Abstract
CpG oligonucleotides and polyinosinic:polycytidylic acid (poly I:C) are toll-like receptor (TLR) agonists that mimic the immunostimulatory properties of bacterial DNA and double-stranded viral RNA respectively, and which have exhibited potential to serve as vaccine adjuvants in previous experiments. Here, a combination of CpGs and poly I:C together with water- or oil-formulated Salmonid Alphavirus (SAV) antigen preparations has been used for a vaccine in Atlantic salmon and tested for protection in SAV challenge trial. The results demonstrate that vaccination with a high dose of the SAV antigen induced protection against challenge with SAV which correlated with production of neutralizing antibodies (NAbs). As the high antigen dose alone induced full protection, no beneficial effect from the addition of CpG and poly I:C could be observed. Nevertheless, these TLR ligands significantly enhanced the levels of NAbs in serum of vaccinated fish. Interestingly, gene expression analysis demonstrated that while addition of oil suppressed the CpG/poly I:C-induced expression of IFN-γ, the upregulation of IFNa1 was substantially enhanced. A low dose of the SAV antigen combined with oil did not induce any detectable levels of NAbs either with or without TLR ligands present, however the addition of CpG and poly I:C to the low SAV antigen dose formulation significantly enhanced the protection against SAV suggesting that CpG/poly I:C may have enhanced a cytotoxic response - a process which is dependent on the up-regulation of type I IFN. These results highlight the immunostimulatory properties of the tested TLR ligands and will serve as a ground for further, more detailed studies aimed to investigate their capacity to serve as adjuvants in vaccine formulations for Atlantic salmon.
Collapse
Affiliation(s)
- Hanna L Thim
- Norwegian College of Fisheries Science, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | | | | | |
Collapse
|
20
|
Strandskog G, Villoing S, Iliev DB, Thim HL, Christie KE, Jørgensen JB. Formulations combining CpG containing oliogonucleotides and poly I:C enhance the magnitude of immune responses and protection against pancreas disease in Atlantic salmon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1116-1127. [PMID: 21527278 DOI: 10.1016/j.dci.2011.03.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 03/16/2011] [Indexed: 05/30/2023]
Abstract
Both CpG oligodeoxynucleotides and double-stranded RNA (poly I:C) have documented effects as treatments against several viral diseases in fish. However, as stand-alone treatments their effects have been modest. We have tested here whether CpG and poly I:C, alone or in combination induce protection against Salmonid Alphavirus (SAV), the causative agent of pancreas disease in Atlantic salmon. Our results revealed a significant reduction of viraemia 2 weeks after ip injection of the combined treatment and 1 week after challenge with SAV subtype 3, followed by reduced SAV induced heart pathology 3 weeks later. The SAV titers in blood samples from the combination group were lower as compared to single treatments with either CpG or poly I:C. Surprisingly, reduced SAV levels could also be found in fish as long as 7 weeks after receiving the combination treatment. The expression of IFNγ and to a lesser extent IFNa and Mx was up-regulated in head kidney and spleen 5 days after the fish had been treated with CpG and poly I:C. Furthermore, the complement factor C4 was depleted in serum 8 weeks post treatment, suggesting complement activation leading to C4 consumption. We hypothesize that the CpG/poly I:C-induced protection against SAV3 is mediated by mechanisms involving type I and type II IFN induced antiviral activity and complement mediated protective responses.
Collapse
Affiliation(s)
- Guro Strandskog
- Norwegian College of Fisheries Science, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | | | |
Collapse
|
21
|
Metz SW, Feenstra F, Villoing S, van Hulten MC, van Lent JW, Koumans J, Vlak JM, Pijlman GP. Low temperature-dependent salmonid alphavirus glycoprotein processing and recombinant virus-like particle formation. PLoS One 2011; 6:e25816. [PMID: 21991361 PMCID: PMC3185042 DOI: 10.1371/journal.pone.0025816] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 09/11/2011] [Indexed: 11/18/2022] Open
Abstract
Pancreas disease (PD) and sleeping disease (SD) are important viral scourges in aquaculture of Atlantic salmon and rainbow trout. The etiological agent of PD and SD is salmonid alphavirus (SAV), an unusual member of the Togaviridae (genus Alphavirus). SAV replicates at lower temperatures in fish. Outbreaks of SAV are associated with large economic losses of ∼17 to 50 million $/year. Current control strategies rely on vaccination with inactivated virus formulations that are cumbersome to obtain and have intrinsic safety risks. In this research we were able to obtain non-infectious virus-like particles (VLPs) of SAV via expression of recombinant baculoviruses encoding SAV capsid protein and two major immunodominant viral glycoproteins, E1 and E2 in Spodoptera frugiperda Sf9 insect cells. However, this was only achieved when a temperature shift from 27°C to lower temperatures was applied. At 27°C, precursor E2 (PE2) was misfolded and not processed by host furin into mature E2. Hence, E2 was detected neither on the surface of infected cells nor as VLPs in the culture fluid. However, when temperatures during protein expression were lowered, PE2 was processed into mature E2 in a temperature-dependent manner and VLPs were abundantly produced. So, temperature shift-down during synthesis is a prerequisite for correct SAV glycoprotein processing and recombinant VLP production.
Collapse
Affiliation(s)
- Stefan W. Metz
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Femke Feenstra
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | | | | | - Jan W. van Lent
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | | | - Just M. Vlak
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
22
|
Mérour E, LeBerre M, Lamoureux A, Bernard J, Brémont M, Biacchesi S. Completion of the full-length genome sequence of the infectious salmon anemia virus, an aquatic orthomyxovirus-like, and characterization of mAbs. J Gen Virol 2010; 92:528-33. [PMID: 21123552 DOI: 10.1099/vir.0.027417-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report here the first full-length sequence of the eight ssRNA genome segments of the infectious salmon anemia virus (ISAV, Glesvaer/2/90 isolate), a salmonid orthomyxovirus-like. Comparison of ISAV genome sequence with those of others orthomyxovirus reveals low identity values, and a remarkable feature is the extremely long 5' end UTR of ISAV segments, which all contain an additional conserved motif of unknown function. In addition to the genome nucleotide sequence determination, specific mAbs have been produced through mice immunization with sucrose-purified ISAV. Four mAbs directed against the haemagglutinin-esterase glycoprotein, the nucleoprotein and free or actin-associated forms of the matrix protein have been characterized by (i) indirect fluorescent antibody test; (ii) virus neutralization; (iii) radioimmunoprecipitation and (iv) Western blot assays. These mAbs will potentially be useful for the development of new diagnostic tests, and the nucleotide sequences will help to establish a reverse genetics system for ISAV.
Collapse
Affiliation(s)
- Emilie Mérour
- Unité de Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy en Josas, France
| | | | | | | | | | | |
Collapse
|
23
|
Karlsen M, Villoing S, Ottem KF, Rimstad E, Nylund A. Development of infectious cDNA clones of Salmonid alphavirus subtype 3. BMC Res Notes 2010; 3:241. [PMID: 20858233 PMCID: PMC2949663 DOI: 10.1186/1756-0500-3-241] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 09/21/2010] [Indexed: 01/07/2023] Open
Abstract
Background Salmonid alphavirus (SAV) is a widespread pathogen in European aquaculture of salmonid fish. Distinct viral subtypes have been suggested based on sequence comparisons and some of these have different geographical distributions. In Norway, only SAV subtype 3 have so far been identified. Little is known about viral mechanisms important for pathogenesis and transmission. Tools for detailed exploration of SAV genomes are therefore needed. Results Infectious cDNA clones in which a genome of subtype 3 SAV is under the control of a CMV promoter were constructed. The clones were designed to express proteins that are putatively identical to those previously reported for the SAVH20/03 strain. A polyclonal antiserum was raised against a part of the E2 glycoprotein in order to detect expression of the subgenomic open reading frame (ORF) encoding structural viral proteins. Transfection of the cDNA clone revealed the expression of the E2 protein by IFAT, and in serial passages of the supernatant the presence of infectious recombinant virus was confirmed through RT-PCR, IFAT and the development of a cytopathic effect similar to that seen during infection with wild type SAV. Confirmation that the recovered virus originated from the infectious plasmid was done by sequence identification of an introduced genetic tag. The recombinant virus was infectious also when an additional ORF encoding an EGFP reporter gene under the control of a second subgenomic alphavirus promoter was added. Finally, we used the system to study the effect of selected point mutations on infectivity in Chinook salmon embryo cells. While introduced mutations in nsP2197, nsP3263 and nsP3323 severely reduced infectivity, a serine to proline mutation in E2206 appeared to enhance the virus titer production. Conclusion We have constructed infectious clones for SAV based on a subtype 3 genome. The clones may serve as a platform for further functional studies.
Collapse
Affiliation(s)
- Marius Karlsen
- Department of Biology, University of Bergen, Thor Møhlens gate 55, 5020 Bergen, Norway.
| | | | | | | | | |
Collapse
|
24
|
Abstract
The first alphavirus to be isolated from fish was recorded in 1995 with the isolation of salmon pancreas disease virus from Atlantic salmon, Salmo salar L., in Ireland. Subsequently, the closely related sleeping disease virus was isolated from rainbow trout, Oncorhynchus mykiss (Walbaum), in France. More recently Norwegian salmonid alphavirus (SAV) has been isolated from marine phase production of Atlantic salmon and rainbow trout in Norway. These three viruses are closely related and are now considered to represent three subtypes of SAV, a new member of the genus Alphavirus within the family Togaviridae. SAVs are recognized as serious pathogens of farmed Atlantic salmon and rainbow trout in Europe. This paper aims to draw together both historical and current knowledge of the diseases caused by SAVs, the viruses, their diagnosis and control, and to discuss the differential diagnosis of similar pathologies seen in cardiomyopathy syndrome and heart and skeletal muscle inflammation of Atlantic salmon.
Collapse
Affiliation(s)
- M F McLoughlin
- Aquatic Veterinary Services, 35 Cherryvalley Park, Belfast, Northern Ireland, UK.
| | | |
Collapse
|
25
|
Andersen L, Bratland A, Hodneland K, Nylund A. Tissue tropism of salmonid alphaviruses (subtypes SAV1 and SAV3) in experimentally challenged Atlantic salmon (Salmo salar L.). Arch Virol 2007; 152:1871-83. [PMID: 17578649 DOI: 10.1007/s00705-007-1006-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 05/09/2007] [Indexed: 11/25/2022]
Abstract
Diagnosis of SAV infections has traditionally been based upon clinical observations together with a set of histopathological findings in exocrine pancreas, heart and skeletal muscle, but recently, real-time RT-PCR assays have been developed as a supplement for the detection of SAV. The aim of this study was to determine tissue tropism of SAV1 and SAV3 in Atlantic salmon Salmo salar L. in order to identify the most suitable tissues for real-time RT-PCR diagnostic assays. The results indicated that the pseudobranch and the heart (ventricle) are the most useful tissues for such assays, regardless of disease status. The pyloric caecae with associated pancreatic tissue is unsuitable for diagnosis using this method. The use of real-time RT-PCR enabled viral RNA detection at all stages of the disease, including in surviving fish six months after infection. Considering the short production cycle of farmed salmonids, this suggests that surviving Atlantic salmon may become life-long asymptomatic carriers of SAV after an infection.
Collapse
Affiliation(s)
- L Andersen
- Department of Biology, University of Bergen, Bergen, Norway.
| | | | | | | |
Collapse
|
26
|
Zhou GZ, Li ZQ, Zhang QY. Characterization and Application of Monoclonal Antibodies against Turbot (Scophthalmus maximus) Rhabdovirus. Viral Immunol 2006; 19:637-45. [PMID: 17201659 DOI: 10.1089/vim.2006.19.637] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Five monoclonal antibodies (mAbs), 1G8, 1H9, 2D2, 2D3, and 2F5, against Scophthalmus maximus rhabdovirus (SMRV) were prepared. Characterization of the mAbs included indirect enzyme-linked immunosorbent assay, isotyping, viral inhibition assay, immunofluorescence staining of virus-infected cell cultures, and Western blot analysis. Isotyping revealed that 1G8 and 1H9 were of the IgG2b subclass and that the other three were IgM. 2D2, 2D3, and 2F5 partially inhibited SMRV infection in epithelioma papulosum cyprinid (EPC) cell culture. Western blotting showed that all five mAbs could react with two SMRV proteins with molecular masses of approximately 30 kDa (P) and 26 kDa (M). These two proteins were localized within the cytoplasm of SMRV-infected EPC cells by immunofluorescence assay. Also, progressive foci of viral replication in cell cultures were monitored from 6 to 24 h, using mAb 2D3 as the primary antibody. A flow cytometry procedure was used to detect and quantify SMRV-infected (0.01 PFU/cell) EPC cells with mAb 2D3, and 10.8% of cells could be distinguished as infected 36 h postinfection. Moreover, mAb 2D3 was successfully applied for the detection of viral antigen in cryosections from flounder tissues by immunohistochemistry tests.
Collapse
Affiliation(s)
- Guang-Zhou Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Wuhan, China
| | | | | |
Collapse
|
27
|
Moriette C, Leberre M, Lamoureux A, Lai TL, Brémont M. Recovery of a recombinant salmonid alphavirus fully attenuated and protective for rainbow trout. J Virol 2006; 80:4088-98. [PMID: 16571825 PMCID: PMC1440445 DOI: 10.1128/jvi.80.8.4088-4098.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 02/02/2006] [Indexed: 11/20/2022] Open
Abstract
Sleeping disease virus (SDV) is a member of the new Salmonid alphavirus genus within the Togaviridae family. The single-stranded RNA genome of SDV is 11,894 nucleotides long, excluding the 3' poly(A) tail. A full-length cDNA has been generated; the cDNA was fused to a hammerhead ribozyme sequence at the 5' end and inserted into a transcription plasmid (pcDNA3) backbone, yielding pSDV. By transfection of pSDV into fish cells, recombinant SDV (rSDV) was successfully recovered. Demonstration of the recovery of rSDV was provided by immunofluorescence assay on rSDV-infected cells and by the presence of a genetic tag, a BlpI restriction enzyme site, introduced into the rSDV RNA genome. SDV infectious cDNA was used for two kinds of experiments (i) to evaluate the impact of various targeted mutations in nsP2 on viral replication and (ii) to study the virulence of rSDV in trout. For the latter aspect, when juvenile trout were infected by immersion in a water bath with the wild-type virus-like rSDV, no deaths or signs of disease appeared in fish, although they were readily infected. In contrast, cumulative mortality reached 80% in fish infected with the wild-type SDV (wtSDV). When rSDV-infected fish were challenged with wtSDV 3 and 5 months postinfection, a long-lasting protection was demonstrated. Interestingly, a variant rSDV (rSDV14) adapted to grow at a higher temperature, 14 degrees C instead of 10 degrees C, was shown to become pathogenic for trout. Comparison of the nucleotide sequences of wtSDV, rSDV, and rSDV14 genomes evidenced several amino acid changes, and some changes may be linked to the pathogenicity of SDV in trout.
Collapse
Affiliation(s)
- Coralie Moriette
- Unité de Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy en Josas, France
| | | | | | | | | |
Collapse
|