1
|
Hickson SE, Brekke E, Schwerk J, Saluhke I, Zaver S, Woodward J, Savan R, Hyde JL. Sequence Diversity in the 3' Untranslated Region of Alphavirus Modulates IFIT2-Dependent Restriction in a Cell Type-Dependent Manner. J Interferon Cytokine Res 2025; 45:133-149. [PMID: 40079162 DOI: 10.1089/jir.2024.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Alphaviruses (family Togaviridae) are a diverse group of positive-sense RNA (+ssRNA) viruses that are transmitted by arthropods and are the causative agent of several significant human and veterinary diseases. Interferon (IFN)-induced proteins with tetratricopeptide repeats (IFITs) are a family of RNA-binding IFN-stimulated genes (ISGs) that are highly upregulated following viral infection and have been identified as potential restrictors of alphaviruses. The mechanism by which IFIT1 restricts RNA viruses is dependent on self and non-self-discrimination of RNA, and alphaviruses evade this recognition via their 5' untranslated region (UTR). However, the role of IFIT2 during alphavirus replication and the mechanism of viral replication inhibition is unclear. In this study, we identify IFIT2 as a restriction factor for Venezuelan equine encephalitis virus (VEEV) and show that IFIT2 binds the 3' 3'UTR of the virus. We investigated the potential role of variability in the 3'UTR of the virus affecting IFIT2 antiviral activity by studying infection with VEEV. Comparison of recombinant VEEV clones containing 3'UTR sequences derived from epizootic and enzootic isolates exhibited differential sensitivity to IFIT2 restriction in vitro infection studies, suggesting that the alphavirus 3'UTR sequence may function in part to evade IFIT2 restriction. In vitro binding assays demonstrate that IFIT2 binds to the VEEV 3'UTR; however, in contrast to previous studies, VEEV restriction did not appear to be dependent on the ability of IFIT2 to inhibit translation of viral RNA, suggesting a novel mechanism of IFIT2 restriction. Our study demonstrates that IFIT2 is a restriction factor for alphaviruses and variability in the 3'UTR of VEEV can modulate viral restriction by IFIT2. Ongoing studies are exploring the biological consequences of IFIT2-VEEV RNA interaction in viral pathogenesis and defining sequence and structural features of RNAs that regulate IFIT2 recognition.
Collapse
Affiliation(s)
- Sarah E Hickson
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Eden Brekke
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Johannes Schwerk
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Indraneel Saluhke
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Shivam Zaver
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Joshua Woodward
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| | - Ram Savan
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jennifer L Hyde
- Department of Microbiology, Seattle School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Boylan BT, Hwang M, Bergmann CC. The Impact of Innate Components on Viral Pathogenesis in the Neurotropic Coronavirus Encephalomyelitis Mouse Model. Viruses 2023; 15:2400. [PMID: 38140641 PMCID: PMC10747027 DOI: 10.3390/v15122400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Recognition of viruses invading the central nervous system (CNS) by pattern recognition receptors (PRRs) is crucial to elicit early innate responses that stem dissemination. These innate responses comprise both type I interferon (IFN-I)-mediated defenses as well as signals recruiting leukocytes to control the infection. Focusing on insights from the neurotropic mouse CoV model, this review discusses how early IFN-I, fibroblast, and myeloid signals can influence protective anti-viral adaptive responses. Emphasis is placed on three main areas: the importance of coordinating the distinct capacities of resident CNS cells to induce and respond to IFN-I, the effects of select IFN-stimulated genes (ISGs) on host immune responses versus viral control, and the contribution of fibroblast activation and myeloid cells in aiding the access of T cells to the parenchyma. By unraveling how the dysregulation of early innate components influences adaptive immunity and viral control, this review illustrates the combined effort of resident CNS cells to achieve viral control.
Collapse
Affiliation(s)
- Brendan T. Boylan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; (B.T.B.); (M.H.)
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mihyun Hwang
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; (B.T.B.); (M.H.)
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Cornelia C. Bergmann
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; (B.T.B.); (M.H.)
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
- Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
- School of Biological Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
3
|
Sharma M, Chakravarty D, Hussain A, Zalavadia A, Burrows A, Rayman P, Sharma N, Kenyon LC, Bergmann C, Sen GC, Das Sarma J. Ifit2 restricts murine coronavirus spread to the spinal cord white matter and its associated myelin pathology. J Virol 2023; 97:e0074923. [PMID: 37504572 PMCID: PMC10506381 DOI: 10.1128/jvi.00749-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/11/2023] [Indexed: 07/29/2023] Open
Abstract
Interferon-induced protein with tetratricopeptide repeats 2, Ifit2, is critical in restricting neurotropic murine-β-coronavirus, RSA59 infection. RSA59 intracranial injection of Ifit2-deficient (-/-) compared to wild-type (WT) mice results in impaired acute microglial activation, reduced CX3CR1 expression, limited migration of peripheral lymphocytes into the brain, and impaired virus control followed by severe morbidity and mortality. While the protective role of Ifit2 is established for acute viral encephalitis, less is known about its influence during the chronic demyelinating phase of RSA59 infection. To understand this, RSA59 infected Ifit2-/- and Ifit2+/+ (WT) were observed for neuropathological outcomes at day 5 (acute phase) and 30 post-infection (chronic phase). Our study demonstrates that Ifit2 deficiency causes extensive RSA59 spread throughout the spinal cord gray and white matter, associated with impaired CD4+ T and CD8+ T cell infiltration. Further, the cervical lymph nodes of RSA59 infected Ifit2-/- mice showed reduced activation of CD4+ T cells and impaired IFNγ expression during acute encephalomyelitis. Interestingly, BBB integrity was better preserved in Ifit2-/- mice, as evidenced by tight junction protein Claudin-5 and adapter protein ZO-1 expression surrounding the meninges and blood vessels and decreased Texas red dye uptake, which may be responsible for reduced leukocyte infiltration. In contrast to sparse myelin loss in WT mice, the chronic disease phase in Ifit2-/- mice was associated with severe demyelination and persistent viral load, even at low inoculation doses. Overall, our study highlights that Ifit2 provides antiviral functions by promoting acute neuroinflammation and thereby aiding virus control and limiting severe chronic demyelination. IMPORTANCE Interferons execute their function by inducing specific genes collectively termed as interferon-stimulated genes (ISGs), among which interferon-induced protein with tetratricopeptide repeats 2, Ifit2, is known for restricting neurotropic viral replication and spread. However, little is known about its role in viral spread to the spinal cord and its associated myelin pathology. Toward this, our study using a neurotropic murine β-coronavirus and Ifit2-deficient mice demonstrates that Ifit2 deficiency causes extensive viral spread throughout the gray and white matter of the spinal cord accompanied by impaired microglial activation and T cell infiltration. Furthermore, infected Ifit2-deficient mice showed impaired activation of T cells in the cervical lymph node and relatively intact blood-brain barrier integrity. Overall, Ifit2 plays a crucial role in mounting host immunity against neurotropic murine coronavirus in the acute phase while preventing mice from developing viral-induced severe chronic neuroinflammatory demyelination, the characteristic feature of human neurological disease multiple sclerosis (MS).
Collapse
Affiliation(s)
- Madhav Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Debanjana Chakravarty
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Afaq Hussain
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Ajay Zalavadia
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Amy Burrows
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Patricia Rayman
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nikhil Sharma
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lawrence C Kenyon
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Ganes C. Sen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| |
Collapse
|
4
|
Sharma KB, Chhabra S, Aggarwal S, Tripathi A, Banerjee A, Yadav AK, Vrati S, Kalia M. Proteomic landscape of Japanese encephalitis virus-infected fibroblasts. J Gen Virol 2021; 102. [PMID: 34546869 DOI: 10.1099/jgv.0.001657] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Advances in proteomics have enabled a comprehensive understanding of host-pathogen interactions. Here we have characterized Japanese encephalitis virus (JEV) infection-driven changes in the mouse embryonic fibroblast (MEF) proteome. Through tandem mass tagging (TMT)-based mass spectrometry, we describe changes in 7.85 % of the identified proteome due to JEV infection. Pathway enrichment analysis showed that proteins involved in innate immune sensing, interferon responses and inflammation were the major upregulated group, along with the immunoproteasome and poly ADP-ribosylation proteins. Functional validation of several upregulated anti-viral innate immune proteins, including an active cGAS-STING axis, was performed. Through siRNA depletion, we describe a crucial role of the DNA sensor cGAS in restricting JEV replication. Further, many interferon-stimulated genes (ISGs) were observed to be induced in infected cells. We also observed activation of TLR2 and inhibition of TLR2 signalling using TLR1/2 inhibitor CU-CPT22-blocked production of inflammatory cytokines IL6 and TNF-α from virus-infected N9 microglial cells. The major proteins that were downregulated by infection were involved in cell adhesion (collagens), transport (solute carrier and ATP-binding cassette transporters), sterol and lipid biosynthesis. Several collagens were found to be transcriptionally downregulated in infected MEFs and mouse brain. Collectively, our data provide a bird's-eye view into how fibroblast protein composition is rewired following JEV infection.
Collapse
Affiliation(s)
- Kiran Bala Sharma
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India.,Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Simran Chhabra
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Suruchi Aggarwal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Aarti Tripathi
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Arup Banerjee
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India.,Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Amit Kumar Yadav
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sudhanshu Vrati
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India.,Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Manjula Kalia
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India.,Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
5
|
Sharma KB, Vrati S, Kalia M. Pathobiology of Japanese encephalitis virus infection. Mol Aspects Med 2021; 81:100994. [PMID: 34274157 DOI: 10.1016/j.mam.2021.100994] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022]
Abstract
Japanese encephalitis virus (JEV) is a flavivirus, spread by the bite of carrier Culex mosquitoes. The subsequent disease caused is Japanese encephalitis (JE), which is the leading global cause of virus-induced encephalitis. The disease is predominant in the entire Asia-Pacific region with the potential of global spread. JEV is highly neuroinvasive with symptoms ranging from mild fever to severe encephalitis and death. One-third of JE infections are fatal, and half of the survivors develop permanent neurological sequelae. Disease prognosis is determined by a series of complex and intertwined signaling events dictated both by the virus and the host. All flaviviruses, including JEV replicate in close association with ER derived membranes by channelizing the protein and lipid components of the ER. This leads to activation of acute stress responses in the infected cell-oxidative stress, ER stress, and autophagy. The host innate immune and inflammatory responses also enter the fray, the components of which are inextricably linked to the cellular stress responses. These are especially crucial in the periphery for dendritic cell maturation and establishment of adaptive immunity. The pathogenesis of JEV is a combination of direct virus induced neuronal cell death and an uncontrolled neuroinflammatory response. Here we provide a comprehensive review of the JEV life cycle and how the cellular stress responses dictate the pathobiology and resulting immune response. We also deliberate on how modulation of these stress pathways could be a potential strategy to develop therapeutic interventions, and define the persisting challenges.
Collapse
Affiliation(s)
- Kiran Bala Sharma
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Sudhanshu Vrati
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India.
| | - Manjula Kalia
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India.
| |
Collapse
|
6
|
Baicalein Suppresses Stem Cell-Like Characteristics in Radio- and Chemoresistant MDA-MB-231 Human Breast Cancer Cells through Up-Regulation of IFIT2. Nutrients 2019; 11:nu11030624. [PMID: 30875792 PMCID: PMC6471144 DOI: 10.3390/nu11030624] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/06/2019] [Accepted: 03/11/2019] [Indexed: 12/22/2022] Open
Abstract
Resistance to both chemotherapy and radiation therapy is frequent in triple-negative breast cancer (TNBC) patients. We established treatment-resistant TNBC MDA-MB-231/IR cells by irradiating the parental MDA-MB-231 cells 25 times with 2 Gy irradiation and investigated the molecular mechanisms of acquired resistance. The resistant MDA-MB-231/IR cells were enhanced in migration, invasion, and stem cell-like characteristics. Pathway analysis by the Database for Annotation, Visualization and Integrated Discovery revealed that the NF-κB pathway, TNF signaling pathway, and Toll-like receptor pathway were enriched in MDA-MB-231/IR cells. Among 77 differentially expressed genes revealed by transcriptome analysis, 12 genes involved in drug and radiation resistance, including interferon-induced protein with tetratricopeptide repeats 2 (IFIT2), were identified. We found that baicalein effectively reversed the expression of IFIT2, which is reported to be associated with metastasis, recurrence, and poor prognosis in TNBC patients. Baicalein sensitized radio- and chemoresistant cells and induced apoptosis, while suppressing stem cell-like characteristics, such as mammosphere formation, side population, expression of Oct3/4 and ABCG2, and CD44highCD24low population in MDA-MB-231/IR cells. These findings improve our understanding of the genes implicated in radio- and chemoresistance in breast cancer, and indicate that baicalein can serve as a sensitizer that overcomes treatment resistance.
Collapse
|
7
|
Blocking TNF-α inhibits angiogenesis and growth of IFIT2-depleted metastatic oral squamous cell carcinoma cells. Cancer Lett 2015; 370:207-15. [PMID: 26515391 DOI: 10.1016/j.canlet.2015.10.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/25/2015] [Accepted: 10/09/2015] [Indexed: 12/16/2022]
Abstract
Our previous study demonstrated that the depletion of interferon-induced protein with tetratricopeptide repeats 2 (IFIT2) promoted metastasis and was associated with a poor prognosis in patients with oral squamous cell carcinoma (OSCC). Our current study explores the major downstream signaling involved in IFIT2 depletion-induced OSCC metastasis. To this end, we used two cell lines (designated sh-control-xeno and sh-IFIT2-xeno) derived from human OSCC xenografts expressing sh-control and sh-IFIT2, respectively, and one metastatic OSCC subline (sh-IFIT2-meta) from an IFIT2-depleted metastatic tumor. We found that the sh-IFIT2-meta cells proliferated more slowly than the sh-control-xeno cells but exhibited higher migration and chemoresistance. Using microarray technology and Ingenuity Pathway Analysis, we found that TNF-α was one of the major downstream targets in IFIT2-depleted OSCC cells. Quantitative real-time PCR, western blotting, and ELISA results confirmed that TNF-α was upregulated in the sh-IFIT2-meta cells. Blocking TNF-α abolished the angiogenic activity induced by the sh-IFIT2-meta cells. Furthermore, the human-specific TNF-α antibody golimumab significantly inhibited in vivo angiogenesis, tumor growth and metastasis of sh-IFIT2-meta cells. These results demonstrate that IFIT2 depletion results in TNF-α upregulation, leading to angiogenesis and metastasis of OSCC cells.
Collapse
|
8
|
Imamura K, Akimitsu N. Long Non-Coding RNAs Involved in Immune Responses. Front Immunol 2014; 5:573. [PMID: 25431574 PMCID: PMC4230175 DOI: 10.3389/fimmu.2014.00573] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/26/2014] [Indexed: 12/26/2022] Open
Abstract
A large number of human RNA transcripts, which do not encode proteins are defined as non-coding RNAs (ncRNAs). These ncRNAs are divided into two classes of different lengths; short and long ncRNAs. MicroRNAs are a major class of short ncRNAs, ~22 nucleotides in length that regulate gene expression at the post-transcriptional level. Long non-coding RNAs (lncRNAs) are more than 200 nucleotides in length and play roles in various biological pathways. In this review, we summarize the functions of lncRNAs which regulate immune responses.
Collapse
|
9
|
Panek J, El Alaoui H, Mone A, Urbach S, Demettre E, Texier C, Brun C, Zanzoni A, Peyretaillade E, Parisot N, Lerat E, Peyret P, Delbac F, Biron DG. Hijacking of host cellular functions by an intracellular parasite, the microsporidian Anncaliia algerae. PLoS One 2014; 9:e100791. [PMID: 24967735 PMCID: PMC4072689 DOI: 10.1371/journal.pone.0100791] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/29/2014] [Indexed: 11/18/2022] Open
Abstract
Intracellular pathogens including bacteria, viruses and protozoa hijack host cell functions to access nutrients and to bypass cellular defenses and immune responses. These strategies have been acquired through selective pressure and allowed pathogens to reach an appropriate cellular niche for their survival and growth. To get new insights on how parasites hijack host cellular functions, we developed a SILAC (Stable Isotope Labeling by Amino Acids in Cell culture) quantitative proteomics workflow. Our study focused on deciphering the cross-talk in a host-parasite association, involving human foreskin fibroblasts (HFF) and the microsporidia Anncaliia algerae, a fungus related parasite with an obligate intracellular lifestyle and a strong host dependency. The host-parasite cross-talk was analyzed at five post-infection times 1, 6, 12 and 24 hours post-infection (hpi) and 8 days post-infection (dpi). A significant up-regulation of four interferon-induced proteins with tetratricopeptide repeats IFIT1, IFIT2, IFIT3 and MX1 was observed at 8 dpi suggesting a type 1 interferon (IFN) host response. Quantitative alteration of host proteins involved in biological functions such as signaling (STAT1, Ras) and reduction of the translation activity (EIF3) confirmed a host type 1 IFN response. Interestingly, the SILAC approach also allowed the detection of 148 A. algerae proteins during the kinetics of infection. Among these proteins many are involved in parasite proliferation, and an over-representation of putative secreted effectors proteins was observed. Finally our survey also suggests that A. algerae could use a transposable element as a lure strategy to escape the host innate immune system.
Collapse
Affiliation(s)
- Johan Panek
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes: Génome et Environnement, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
| | - Hicham El Alaoui
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes: Génome et Environnement, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
- * E-mail: (HEA); (DGB)
| | - Anne Mone
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes: Génome et Environnement, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
| | - Serge Urbach
- Functional Proteomics Platform. UMR CNRS 5203, Montpellier, France
| | - Edith Demettre
- Functional Proteomics Platform. UMS CNRS 3426, Montpellier, France
| | - Catherine Texier
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes: Génome et Environnement, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
| | - Christine Brun
- INSERM, UMR1090 TAGC, Marseille, Marseille, France
- Aix-Marseille Université, UMR1090 TAGC, Marseille, France
- CNRS, Marseille, France
| | - Andreas Zanzoni
- INSERM, UMR1090 TAGC, Marseille, Marseille, France
- Aix-Marseille Université, UMR1090 TAGC, Marseille, France
| | - Eric Peyretaillade
- Clermont Université, Université d'Auvergne, I.U.T., UFR Pharmacie, Clermont-Ferrand, France
- Clermont Université, Université d'Auvergne, EA 4678, Conception, Ingénierie et Développement de l'Aliment et du Médicament, Clermont-Ferrand, France
| | - Nicolas Parisot
- Clermont Université, Université d'Auvergne, I.U.T., UFR Pharmacie, Clermont-Ferrand, France
- Clermont Université, Université d'Auvergne, EA 4678, Conception, Ingénierie et Développement de l'Aliment et du Médicament, Clermont-Ferrand, France
| | - Emmanuelle Lerat
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Pierre Peyret
- Clermont Université, Université d'Auvergne, I.U.T., UFR Pharmacie, Clermont-Ferrand, France
- Clermont Université, Université d'Auvergne, EA 4678, Conception, Ingénierie et Développement de l'Aliment et du Médicament, Clermont-Ferrand, France
| | - Frederic Delbac
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes: Génome et Environnement, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
| | - David G. Biron
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes: Génome et Environnement, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
- * E-mail: (HEA); (DGB)
| |
Collapse
|
10
|
Habjan M, Hubel P, Lacerda L, Benda C, Holze C, Eberl CH, Mann A, Kindler E, Gil-Cruz C, Ziebuhr J, Thiel V, Pichlmair A. Sequestration by IFIT1 impairs translation of 2'O-unmethylated capped RNA. PLoS Pathog 2013; 9:e1003663. [PMID: 24098121 PMCID: PMC3789756 DOI: 10.1371/journal.ppat.1003663] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/12/2013] [Indexed: 12/21/2022] Open
Abstract
Viruses that generate capped RNA lacking 2'O methylation on the first ribose are severely affected by the antiviral activity of Type I interferons. We used proteome-wide affinity purification coupled to mass spectrometry to identify human and mouse proteins specifically binding to capped RNA with different methylation states. This analysis, complemented with functional validation experiments, revealed that IFIT1 is the sole interferon-induced protein displaying higher affinity for unmethylated than for methylated capped RNA. IFIT1 tethers a species-specific protein complex consisting of other IFITs to RNA. Pulsed stable isotope labelling with amino acids in cell culture coupled to mass spectrometry as well as in vitro competition assays indicate that IFIT1 sequesters 2'O-unmethylated capped RNA and thereby impairs binding of eukaryotic translation initiation factors to 2'O-unmethylated RNA template, which results in inhibition of translation. The specificity of IFIT1 for 2'O-unmethylated RNA serves as potent antiviral mechanism against viruses lacking 2'O-methyltransferase activity and at the same time allows unperturbed progression of the antiviral program in infected cells.
Collapse
Affiliation(s)
- Matthias Habjan
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| | - Philipp Hubel
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| | - Livia Lacerda
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| | - Christian Benda
- Department of Structural Cell Biology, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| | - Cathleen Holze
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| | - Christian H. Eberl
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| | - Angelika Mann
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| | - Eveline Kindler
- Institute of Immunobiology, Kantonspital St. Gallen, St. Gallen, Switzerland
| | - Cristina Gil-Cruz
- Institute of Immunobiology, Kantonspital St. Gallen, St. Gallen, Switzerland
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany
| | - Volker Thiel
- Institute of Immunobiology, Kantonspital St. Gallen, St. Gallen, Switzerland
- Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Andreas Pichlmair
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| |
Collapse
|
11
|
Zhou X, Michal JJ, Zhang L, Ding B, Lunney JK, Liu B, Jiang Z. Interferon induced IFIT family genes in host antiviral defense. Int J Biol Sci 2013; 9:200-8. [PMID: 23459883 PMCID: PMC3584916 DOI: 10.7150/ijbs.5613] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/23/2013] [Indexed: 02/06/2023] Open
Abstract
Secretion of interferons (IFNs) from virus-infected cells is a hallmark of host antiviral immunity and in fact, IFNs exert their antiviral activities through the induction of antiviral proteins. The IFN-induced protein with tetratricopeptide repeats (IFITs) family is among hundreds of IFN-stimulated genes. This family contains a cluster of duplicated loci. Most mammals have IFIT1, IFIT2, IFIT3 and IFIT5; however, bird, marsupial, frog and fish have only IFIT5. Regardless of species, IFIT5 is always adjacent to SLC16A12. IFIT family genes are predominantly induced by type I and type III interferons and are regulated by the pattern recognition and the JAK-STAT signaling pathway. IFIT family proteins are involved in many processes in response to viral infection. However, some viruses can escape the antiviral functions of the IFIT family by suppressing IFIT family genes expression or methylation of 5' cap of viral molecules. In addition, the variants of IFIT family genes could significantly influence the outcome of hepatitis C virus (HCV) therapy. We believe that our current review provides a comprehensive picture for the community to understand the structure and function of IFIT family genes in response to pathogens in human, as well as in animals.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-6351, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Depleting IFIT2 mediates atypical PKC signaling to enhance the migration and metastatic activity of oral squamous cell carcinoma cells. Oncogene 2012; 32:3686-97. [PMID: 22986528 DOI: 10.1038/onc.2012.384] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 07/11/2012] [Accepted: 07/16/2012] [Indexed: 01/13/2023]
Abstract
Interferon-induced protein with tetratricopeptide repeats 2 (IFIT2) is one of the most highly responsive interferon-stimulated genes, but its biological functions are poorly understood. In this study, we aimed to explore the underlying mechanisms by which depleting IFIT2 induces the migration of oral squamous cell carcinoma (OSCC) cells. Stable IFIT2-depleted cells underwent epithelial-mesenchymal transition (EMT) and exhibited enhanced cell motility and invasiveness compared with control cells. Furthermore, our results indicated that atypical protein kinase C (aPKC) was activated in IFIT2-depleted cells. Inhibition of aPKC using a specific myristoylated PKCζ pseudosubstrate or aPKC-targeting small interfering RNA (siRNA) abolished IFIT2 depletion-induced EMT, migration and invasion, indicating that the activation of aPKC has an essential role in regulating the cellular responses induced by IFIT2 depletion. Following tail-vein injection, IFIT2-depleted OSCC cells colonized not only the lungs but also the heart, head and neck, retroperitoneal, and peritoneal cavities; whereas control cells predominantly localized in the lungs. IFIT2 mRNA and protein expression was positively associated with E-cadherin expression in OSCC patient specimens. The loss of E-cadherin and IFIT2 expression was observed at the invasive front of OSCC tumors, suggesting that the loss of IFIT2 may induce EMT and lead to the metastasis of OSCCs. OSCC patients possessing reduced IFIT2-expression levels (IFIT2 <50%) exhibited greater rates of distant metastasis and poor prognoses compared with OSCC patients who expressed greater levels of IFIT2 (IFIT2 ≥50%). These results demonstrate that IFIT2 depletion activates the aPKC pathway and consequently induces EMT, cell migration and invasion. Most importantly, depleting IFIT2 may participate in OSCC tumor progression, particularly during metastasis. Taken together, our study demonstrates that IFIT2, a protein responsible for interferon stimulation, may prevent OSCC metastasis and serve as a valuable prognostic marker.
Collapse
|
13
|
Christian SL, Zu D, Licursi M, Komatsu Y, Pongnopparat T, Codner DA, Hirasawa K. Suppression of IFN-induced transcription underlies IFN defects generated by activated Ras/MEK in human cancer cells. PLoS One 2012; 7:e44267. [PMID: 22970192 PMCID: PMC3436881 DOI: 10.1371/journal.pone.0044267] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/31/2012] [Indexed: 12/24/2022] Open
Abstract
Certain oncolytic viruses exploit activated Ras signaling in order to replicate in cancer cells. Constitutive activation of the Ras/MEK pathway is known to suppress the effectiveness of the interferon (IFN) antiviral response, which may contribute to Ras-dependent viral oncolysis. Here, we identified 10 human cancer cell lines (out of 16) with increased sensitivity to the anti-viral effects of IFN-α after treatment with the MEK inhibitor U0126, suggesting that the Ras/MEK pathway underlies their reduced sensitivity to IFN. To determine how Ras/MEK suppresses the IFN response in these cells, we used DNA microarrays to compare IFN-induced transcription in IFN-sensitive SKOV3 cells, moderately resistant HT1080 cells, and HT1080 cells treated with U0126. We found that 267 genes were induced by IFN in SKOV3 cells, while only 98 genes were induced in HT1080 cells at the same time point. Furthermore, the expression of a distinct subset of IFN inducible genes, that included RIGI, GBP2, IFIT2, BTN3A3, MAP2, MMP7 and STAT2, was restored or increased in HT1080 cells when the cells were co-treated with U0126 and IFN. Bioinformatic analysis of the biological processes represented by these genes revealed increased representation of genes involved in the anti-viral response, regulation of apoptosis, cell differentiation and metabolism. Furthermore, introduction of constitutively active Ras into IFN sensitive SKOV3 cells reduced their IFN sensitivity and ability to activate IFN-induced transcription. This work demonstrates for the first time that activated Ras/MEK in human cancer cells induces downregulation of a specific subset of IFN-inducible genes.
Collapse
Affiliation(s)
- Sherri L. Christian
- Division of Biomedical Science, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
- * E-mail: (SLC); (KH)
| | - Dong Zu
- Division of Biomedical Science, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Maria Licursi
- Division of Biomedical Science, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Yumiko Komatsu
- Division of Biomedical Science, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Theerawat Pongnopparat
- Division of Biomedical Science, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Dianne A. Codner
- Division of Biomedical Science, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Kensuke Hirasawa
- Division of Biomedical Science, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
- * E-mail: (SLC); (KH)
| |
Collapse
|
14
|
Abstract
The ISG56/IFIT1 family of genes is clustered on human chromosome 10 and is comprised of 4 members, ISG56/IFIT1, ISG54/IFIT2, ISG60/IFIT3, and ISG58/IFIT5, whose homologs are evolutionarily conserved from mammals to amphibians. While these genes are normally silent in most cell types, their transcription is strongly induced by interferons, virus infection, and molecular patterns such as double-stranded RNA or lipopolysaccharides. The encoded P56 family proteins are characterized by multiple repeats of tetratricopeptide repeat helix-turn-helix motifs mediating a variety of protein-protein interactions, which result in a multitude of effects on cellular and viral functions, such as translation initiation, virus replication, double-stranded RNA signaling, cell migration, and proliferation.
Collapse
Affiliation(s)
- Volker Fensterl
- Department of Molecular Genetics, The Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
15
|
Biswas SM, Kar S, Singh R, Chakraborty D, Vipat V, Raut CG, Mishra AC, Gore MM, Ghosh D. Immunomodulatory cytokines determine the outcome of Japanese encephalitis virus infection in mice. J Med Virol 2010; 82:304-10. [PMID: 20029807 DOI: 10.1002/jmv.21688] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Japanese encephalitis virus (JEV) induces an acute infection of the central nervous system, the pathogenic mechanism of which is not fully understood. To investigate host response to JEV infection, 14-day-old mice were infected via the extraneural route, which resulted in encephalitis and death. Mice that received JEV immune splenocyte transfer were protected from extraneural JEV infection. Pathology and gene expression profiles were then compared in brains of mice that either succumbed to JEV infection or were protected from infection by JEV immune cell transfer. Mice undergoing progressive JEV infection had increased expression of proinflammatory cytokines, chemokines, and signal transducers associated with the interferon (IFN) pathway. In contrast, mice receiving immune cell transfer had increased production of the Th2 cytokine IL-4, and of IL-10, with subdued expression of IFN-gamma. We observed IL-10 to be an important factor in determining clinical outcome in JEV infection. Data obtained by microarray analysis were further confirmed by quantitative RT-PCR. Together, these data suggest that JEV infection causes an unregulated inflammatory response that can be countered by the expression of immunomodulatory cytokines in mice that survive lethal infection.
Collapse
Affiliation(s)
- S M Biswas
- National Institute of Virology, Sus Road Campus, Pashan, Pune, Maharashtra, India
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Serrano-Fernández P, Möller S, Goertsches R, Fiedler H, Koczan D, Thiesen HJ, Zettl UK. Time course transcriptomics of IFNB1b drug therapy in multiple sclerosis. Autoimmunity 2009; 43:172-8. [DOI: 10.3109/08916930903219040] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Lai KC, Chang KW, Liu CJ, Kao SY, Lee TC. IFN-induced protein with tetratricopeptide repeats 2 inhibits migration activity and increases survival of oral squamous cell carcinoma. Mol Cancer Res 2008; 6:1431-9. [PMID: 18819931 DOI: 10.1158/1541-7786.mcr-08-0141] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The function of the IFN-stimulated gene family protein, IFN-induced protein with tetratricopeptide repeats 2 (IFIT2), is poorly understood. Here, we report that IFIT2 colocalizes with cytokeratin 18 in oral squamous cell carcinoma (OSCC) cells. Treatment of OSCC cells with IFN-beta significantly increased the expression of IFIT2 and remarkably inhibited cell migration. To further explore the effect of IFIT2 on cell migration, IFIT2 expression was either silenced with a small interfering RNA or increased by ectopic expression. IFIT2 knockdown in OSCC cells led to a significantly higher level of migration in vitro (P < 0.05) compared with control cells; by contrast, IFIT2 overexpression led to a significantly lower level of migration in vitro (P < 0.05). Immunohistochemically, 71.4% of OSCC tissues had elevated IFIT2 protein levels compared with noncancerous matched tissues. Elevated IFIT2 protein expression was positively associated with tumor differentiation status and inversely associated with nodal stage in OSCC specimens (P < 0.05). Higher IFIT2 protein levels in tumor tissues were also associated with better patient survival (P < 0.01). Our present study shows an inverse correlation between IFIT2 expression and cell migration, suggesting that IFIT2 plays an important role in inhibiting this process and that its expression may be associated with better prognosis in patients with OSCC.
Collapse
Affiliation(s)
- Kuo-Chu Lai
- Institute of Pharmacology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
18
|
Katsoulidis E, Sassano A, Majchrzak-Kita B, Carayol N, Yoon P, Jordan A, Druker BJ, Fish EN, Platanias LC. Suppression of interferon (IFN)-inducible genes and IFN-mediated functional responses in BCR-ABL-expressing cells. J Biol Chem 2008; 283:10793-803. [PMID: 18287094 PMCID: PMC2447623 DOI: 10.1074/jbc.m706816200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 01/31/2008] [Indexed: 01/12/2023] Open
Abstract
The interferons (IFNs) are cytokines that play key roles in host defense against viral infections and immune surveillance against cancer. We report that BCR-ABL transformation of hematopoietic cells results in suppression of IFN-dependent responses, including transcription of IFN-inducible genes and generation of IFN-mediated antiviral effects. BCR-ABL transformation suppresses expression of several IFN-regulated genes containing IFN-sensitive response element (ISRE) or GAS elements in their promoters, including Isg15, Irf1, Irf9, and Ifit2 (interferon-induced protein with tetratricopeptide repeats 2). Suppression of transcription of ISRE-containing genes is also seen in cells expressing various BCR-ABL kinase domain mutants, including T315I, H396P, Y253F, and E255K, but not kinase-defective BCR-ABL. Such effects are associated with impaired IFN-dependent phosphorylation of Stat1 on Tyr(701) and Stat3 on Tyr(705) and defective binding of Stat complexes to ISRE or GAS elements. Beyond suppression of Stat activities, BCR-ABL inhibits IFN-inducible phosphorylation/activation of the p38 MAPK, suggesting a dual mechanism by which this abnormal fusion protein blocks IFN transcriptional responses. The inhibitory activities of BCR-ABL ultimately result in impaired IFNalpha-mediated protection against encephalomyocarditis virus infection and reversal of IFN-dependent growth suppression. Altogether, our data provide evidence for a novel mechanism by which BCR-ABL impairs host defenses and promotes malignant transformation, involving dual suppression of IFN-activated signaling pathways.
Collapse
Affiliation(s)
- Efstratios Katsoulidis
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Lakeside Veterans Affairs Medical Center, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Diniz JAP, dos Santos ZA, Braga MAG, Dias ÁLB, da Silva DEA, Medeiros DBDA, Barros VLRDS, Chiang JO, Zoghbi KEDF, Quaresma JAS, Takiya CM, Moura Neto V, de Souza W, Vasconcelos PFDC, Diniz CWP. Early and late pathogenic events of newborn mice encephalitis experimentally induced by itacaiunas and curionópolis bracorhabdoviruses infection. PLoS One 2008; 3:e1733. [PMID: 18320052 PMCID: PMC2253828 DOI: 10.1371/journal.pone.0001733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 12/30/2007] [Indexed: 11/19/2022] Open
Abstract
In previous reports we proposed a new genus for Rhabdoviridae and described neurotropic preference and gross neuropathology in newborn albino Swiss mice after Curionopolis and Itacaiunas infections. In the present report a time-course study of experimental encephalitis induced by Itacaiunas and Curionopolis virus was conducted both in vivo and in vitro to investigate cellular targets and the sequence of neuroinvasion. We also investigate, after intranasal inoculation, clinical signs, histopathology and apoptosis in correlation with viral immunolabeling at different time points. Curionopolis and Itacaiunas viral antigens were first detected in the parenchyma of olfactory pathways at 2 and 3 days post-inoculation (dpi) and the first clinical signs were observed at 4 and 8 dpi, respectively. After Curionopolis infection, the mortality rate was 100% between 5 and 6 dpi, and 35% between 8 and 15 dpi after Itacaiunas infection. We identified CNS mice cell types both in vivo and in vitro and the temporal sequence of neuroanatomical olfactory areas infected by Itacaiunas and Curionopolis virus. Distinct virulences were reflected in the neuropathological changes including TUNEL immunolabeling and cytopathic effects, more intense and precocious after intracerebral or in vitro inoculations of Curionopolis than after Itacaiunas virus. In vitro studies revealed neuronal but not astrocyte or microglial cytopathic effects at 2 dpi, with monolayer destruction occurring at 5 and 7 dpi with Curionopolis and Itacaiunas virus, respectively. Ultrastructural changes included virus budding associated with interstitial and perivascular edema, endothelial hypertrophy, a reduced and/or collapsed small vessel luminal area, thickening of the capillary basement membrane, and presence of phagocytosed apoptotic bodies. Glial cells with viral budding similar to oligodendrocytes were infected with Itacaiunas virus but not with Curionopolis virus. Thus, Curionopolis and Itacaiunas viruses share many pathological and clinical features present in other rhabdoviruses but distinct virulence and glial targets in newborn albino Swiss mice brain.
Collapse
|
20
|
Saha S, Datta K, Rangarajan P. Characterization of mouse neuronal Ca2+/calmodulin kinase II inhibitor alpha. Brain Res 2007; 1148:38-42. [PMID: 17350603 DOI: 10.1016/j.brainres.2007.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 02/06/2007] [Accepted: 02/12/2007] [Indexed: 11/28/2022]
Abstract
We have overexpressed an 8.5-kDa mouse Ca(2+)/calmodulin kinase II inhibitor alpha protein (mCaMKIINalpha) in Escherichia coli and demonstrate that the recombinant protein is a potent inhibitor of Ca(2+)/calmodulin kinase II (CaMKII) in vitro. However, antibodies raised against recombinant mCaMKIINalpha react with an approximately 37-kDa protein present in mouse brain. The pattern of expression of the approximately 37-kDa protein is similar to that of mCaMKIINalpha mRNA as both are expressed in normal but not Japanese encephalitis virus (JEV)-infected mouse brain. Subcellular localization studies indicate that the approximately 37-kDa protein is present in the post-synaptic density (PSD) where mCaMKIIalpha is known to perform key regulatory functions. We conclude that the approximately 37-kDa protein identified in this study is mCaMKIINalpha and its localization in the PSD indicates a novel role for this protein in the regulation of neuronal CaMKIIalpha.
Collapse
Affiliation(s)
- Sougata Saha
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
21
|
Saha S, Ramanathan A, Rangarajan PN. Regulation of Ca2+/calmodulin kinase II inhibitor α (CaMKIINα) in virus-infected mouse brain. Biochem Biophys Res Commun 2006; 350:444-9. [PMID: 17010311 DOI: 10.1016/j.bbrc.2006.09.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Accepted: 09/14/2006] [Indexed: 10/24/2022]
Abstract
The alpha and beta isoforms of rat Ca(2+)/calmodulin kinase II inhibitor (CaMKIINalpha/beta) expressed in brain or brain and testis, respectively, are potent inhibitors of Ca(2+)/calmodulin kinase II (CaMKII) in vitro. However, the regulation or function of CaMKIINalpha/beta in the central nervous system (CNS) is not known. In this study, we demonstrate that mouse CaMKIINalpha gene encodes a 2.9kb brain-specific transcript whose expression is downregulated in mouse brain during Japanese encephalitis virus (JEV) and rabies virus infection. The downregulation is specific for CaMKIINalpha but not CaMKIINbeta mRNA. In addition to these changes in CaMKIINalpha mRNA, distinct changes are also observed in the phosphorylation as well as subcellular localization of CaMKIIalpha leading to an increase in cytosolic CaMKII activity in JEV-infected mouse brain. The differential regulation of CaMKIIalpha and CaMKIINalpha during JEV infection suggests a possible role for these proteins in viral infection and/or virus-induced neuropathogenesis in the CNS.
Collapse
Affiliation(s)
- Sougata Saha
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|