1
|
Lorkiewicz P, Waszkiewicz N. Viral infections in etiology of mental disorders: a broad analysis of cytokine profile similarities - a narrative review. Front Cell Infect Microbiol 2024; 14:1423739. [PMID: 39206043 PMCID: PMC11349683 DOI: 10.3389/fcimb.2024.1423739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
The recent pandemic caused by the SARS-CoV-2 virus and the associated mental health complications have renewed scholarly interest in the relationship between viral infections and the development of mental illnesses, a topic that was extensively discussed in the previous century in the context of other viruses, such as influenza. The most probable and analyzable mechanism through which viruses influence the onset of mental illnesses is the inflammation they provoke. Both infections and mental illnesses share a common characteristic: an imbalance in inflammatory factors. In this study, we sought to analyze and compare cytokine profiles in individuals infected with viruses and those suffering from mental illnesses. The objective was to determine whether specific viral diseases can increase the risk of specific mental disorders and whether this risk can be predicted based on the cytokine profile of the viral disease. To this end, we reviewed existing literature, constructed cytokine profiles for various mental and viral diseases, and conducted comparative analyses. The collected data indicate that the risk of developing a specific mental illness cannot be determined solely based on cytokine profiles. However, it was observed that the combination of IL-8 and IL-10 is frequently associated with psychotic symptoms. Therefore, to assess the risk of mental disorders in infected patients, it is imperative to consider the type of virus, the mental complications commonly associated with it, the predominant cytokines to evaluate the risk of psychotic symptoms, and additional patient-specific risk factors.
Collapse
Affiliation(s)
- Piotr Lorkiewicz
- Department of Psychiatry, Medical University of Bialystok, Białystok, Poland
| | | |
Collapse
|
2
|
Ahmed W, Feng J, Zhang Y, Chen L. SARS-CoV-2 and Brain Health: New Challenges in the Era of the Pandemic. Microorganisms 2023; 11:2511. [PMID: 37894169 PMCID: PMC10609574 DOI: 10.3390/microorganisms11102511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Respiratory viral infections have been found to have a negative impact on neurological functions, potentially leading to significant neurological impairment. The SARS-CoV-2 virus has precipitated a worldwide pandemic, posing a substantial threat to human lives. Growing evidence suggests that SARS-CoV-2 may severely affect the CNS and respiratory system. The current prevalence of clinical neurological issues associated with SARS-CoV-2 has raised significant concerns. However, there needs to be a more comprehensive understanding of the specific pathways by which SARS-CoV-2 enters the nervous system. Based on the available evidence, this review focuses on the clinical neurological manifestations of SARS-CoV-2 and the possible mechanisms by which SARS-CoV-2 invades the brain.
Collapse
Affiliation(s)
- Waqas Ahmed
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, China
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Jia Feng
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, China
- Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Yifan Zhang
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, China
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, China
| |
Collapse
|
3
|
Martončíková M, Doležal P, Fabianová K, Karhánek M, Gálik J, Raček A, Popovičová A, Račeková E. Remote psychophysical testing of smell in patients with persistent olfactory dysfunction after COVID-19. Sci Rep 2023; 13:14090. [PMID: 37640847 PMCID: PMC10462624 DOI: 10.1038/s41598-023-41395-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/25/2023] [Indexed: 08/31/2023] Open
Abstract
Olfactory dysfunction associated with coronavirus 2 (SARS-CoV-2) infection is in most cases transient, recovering spontaneously within a few days. However, in some patients it persists for a long time, affects their everyday life and endangers their health. Hence, we focused on patients with persistent loss of smell. The aim of this study was to evaluate olfactory dysfunction using a standardized test. Due to the pandemic, olfactory testing was performed online. Smell tests (Odorized Markers Test, OMT) were sent home to the patients. Together with the smell self-testing, participants reported and assessed several parameters (age, sex, subjective assessment of smell and taste, nasal patency, etc.) in an online questionnaire. Based on the questionnaire outcomes, the results were sent to the patients along with a list of participating otolaryngologists who provided them with professional care. From March to June 2021, 1025 patients requested smell testing, of these, 824 met the inclusion criteria of this study. The duration of the olfactory dysfunction at the time of testing ranged from 1 month to 1 year. Using the OMT, impaired smell ability-anosmia or hyposmia-was confirmed in 82.6% of participants. A total of 17.4% of participants were determined to be normosmic however, more than 50% of them complained of parosmia and/or phantosmia. Our study demonstrates the relevance of psychophysical smell testing and its suitability for remote use during the pandemic. This study also revealed several correlations between prolonged olfactory dysfunction and the monitored parameters.
Collapse
Affiliation(s)
- Marcela Martončíková
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01, Košice, Slovakia
| | - Pavel Doležal
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital-St. Michal's Hospital, Slovak Medical University, Bratislava, Slovakia
| | - Kamila Fabianová
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01, Košice, Slovakia
| | - Miloslav Karhánek
- Laboratory of Bioinformatics, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 05, Bratislava, Slovakia
| | - Ján Gálik
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01, Košice, Slovakia
| | - Adam Raček
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01, Košice, Slovakia
| | - Alexandra Popovičová
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01, Košice, Slovakia
| | - Enikő Račeková
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01, Košice, Slovakia.
| |
Collapse
|
4
|
Cardoso Soares P, Moreira de Freitas P, de Paula Eduardo C, Hiramatsu Azevedo L. COVID-19-Related Long-Term Taste Impairment: Symptom Length, Related Taste, Smell Disturbances, and Sample Characteristics. Cureus 2023; 15:e38055. [PMID: 37228557 PMCID: PMC10208161 DOI: 10.7759/cureus.38055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION The COVID-19 infection triggered in some patients a prolonged reduction in the perception of both gustatory and olfactory senses (ageusia and anosmia). These symptoms could be manifested during the first days after the contagion, acting as predictors of COVID-19 infection, and additionally, they could be the only symptoms manifested at all. Clinical resolution of anosmia and ageusia was expected to occur within a few weeks, yet in some cases, patients began to demonstrate COVID-19-related long-term taste impairment (CRLTTI), a condition that can persist for longer than two months, contradicting initial evidence. Objectives: The authors' aimed to describe the characteristics of the sample of 31 participants with COVID-19-related long-term taste impairment, and their capacity to quantify taste and rate their smell perception. Material and Methods: Participants were submitted to a taste evaluation of four hyper-concentrated tastes perceived by the tongue (0-10), self-reported their smell (0-10), and answered a semi-structured questionnaire. Results: Different tastes seemed to be affected differently by COVID-19, despite the lack of statistical relevance observed in this study. Dysgeusia was only expressed in bitter, sweet, and acidic tastes. The mean age observed was 40.2 (SD 12.06) years, with women representing 71% of the sample. Taste impairment persisted for an average period of 10.8 months (SD 5.7). Self-reported smell impairment was reported by the majority of participants with taste impairment. Non-vaccinated people represented 80.6% of the sample. Conclusions: COVID-19 infection could trigger taste and smell disturbances that lasted as long as 24 months. CRLTTI seems not to affect the four main taste perceptions (hyper-concentrated) equally. Women represented the majority of the sample, with an average age of 40 years (SD 12.06). Previous diseases, medication use, and behavioral aspects seem not to be linked to CRLTTI development.
Collapse
Affiliation(s)
- Pedro Cardoso Soares
- Special Laboratory of Lasers in Dentistry, Department of Operative Dentistry, School of Dentistry, Universidade de São Paulo, São Paulo, BRA
| | - Patrícia Moreira de Freitas
- Special Laboratory of Lasers in Dentistry, Department of Operative Dentistry, School of Dentistry, Universidade de São Paulo, São Paulo, BRA
| | - Carlos de Paula Eduardo
- Special Laboratory of Lasers in Dentistry, Department of Operative Dentistry, School of Dentistry, Universidade de São Paulo, São Paulo, BRA
| | - Luciane Hiramatsu Azevedo
- Special Laboratory of Lasers in Dentistry, Department of Operative Dentistry, School of Dentistry, Universidade de São Paulo, São Paulo, BRA
| |
Collapse
|
5
|
Lashch NY, Yunyaev AR, Evsyukova ED. [The alleged mechanisms of olfactory disorders in the new coronavirus infection]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:7-11. [PMID: 36843453 DOI: 10.17116/jnevro20231230217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
In March 2020, the World Health Organization (WHO) announced the beginning of the COVID-19 pandemic, which continues to the present. A change in the sense of smell, up to the complete disappearance of odors, is regarded as one of the early symptoms of the disease. Sometimes anosmia was the only sign of infection of the patient. As is known, a disturbance of the sense of smell indicates a serious pathology of the brain, such as the consequences of traumatic brain injuries, strokes, Alzheimer's disease, Parkinson's disease, autoimmune diseases, a side-effect of drug therapy. The review is dedicated to the pathogenesis of anosmia in COVID-19. For a better understanding of the pathogenesis, the article presents a brief anatomy and physiology of the olfactory organ as well as the probable mechanisms of anosmia: encephalitis, inflammatory edema of the olfactory cleft, olfactory epithelium damage, apoptosis of bipolar neurons, damage of olfactory cell cilia and damage of olfactory bulbs. Because of the rapid accumulation of information on this topic, there is a need to structure, periodic systematization and presentation to a wide range of specialists.
Collapse
Affiliation(s)
- N Y Lashch
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A R Yunyaev
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - E D Evsyukova
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
6
|
Yepes M. Neurological Complications of SARS-CoV-2 Infection and COVID-19 Vaccines: From Molecular Mechanisms to Clinical Manifestations. Curr Drug Targets 2022; 23:1620-1638. [PMID: 36121081 DOI: 10.2174/1389450123666220919123029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 01/25/2023]
Abstract
Coronavirus Disease 2019 (COVID-19) is an infectious disease, caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), that reached pandemic proportions in 2020. Despite the fact that it was initially characterized by pneumonia and acute respiratory distress syndrome, it is now clear that the nervous system is also compromised in one third of these patients. Indeed, a significant proportion of COVID-19 patients suffer nervous system damage via a plethora of mechanisms including hypoxia, coagulopathy, immune response to the virus, and the direct effect of SARS-CoV-2 on endothelial cells, neurons, astrocytes, pericytes and microglia. Additionally, a low number of previously healthy individuals develop a variety of neurological complications after receiving COVID-19 vaccines and a large proportion of COVID-19 survivors experience longlasting neuropsychiatric symptoms. In conclusion, COVID-19 is also a neurological disease, and the direct and indirect effects of the virus on the nervous system have a significant impact on the morbidity and mortality of these patients. Here we will use the concept of the neurovascular unit, assembled by endothelial cells, basement membrane, perivascular astrocytes, neurons and microglia, to review the effects of SARS-CoV-2 in the nervous system. We will then use this information to review data published to this date on the neurological manifestations of COVID-19, the post- COVID syndrome and COVID-19 vaccines.
Collapse
Affiliation(s)
- Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA.,Department of Neurology & Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.,Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA
| |
Collapse
|
7
|
Prediction of Transport, Deposition, and Resultant Immune Response of Nasal Spray Vaccine Droplets using a CFPD-HCD Model in a 6-Year-Old Upper Airway Geometry to Potentially Prevent COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.11.08.515673. [PMID: 36380758 PMCID: PMC9665335 DOI: 10.1101/2022.11.08.515673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study focuses on the transport, deposition, and triggered immune response of intranasal vaccine droplets to the Angiotensin-converting enzyme 2-rich region (i.e., the olfactory region (OR)) in the nasal cavity of a 6-year-old female to possibly prevent COVID-19. To investigate how administration strategy can influence nasal vaccine efficiency, a validated multiscale model (i.e., computational fluid-particle dynamics (CFPD) and host-cell dynamics (HCD) model) was employed. Droplet deposition fraction, size change, residence time, and the area percentage of OR covered by the vaccine droplets and triggered immune system response were predicted with different spray cone angles, initial droplet velocities, and compositions. Numerical results indicate that droplet initial velocity and composition have negligible influences on the vaccine delivery efficiency to OR. In contrast, the spray cone angle can significantly impact the vaccine delivery efficiency. The triggered immunity was not significantly influenced by the administration investigated in this study, due to the low percentage of OR area covered by the droplets. To enhance the effectiveness of the intranasal vaccine to prevent COVID-19 infection, it is necessary to optimize the vaccine formulation and administration strategy so that the vaccine droplets can cover more epithelial cells in OR to minimize the available receptors for SARS-CoV-2.
Collapse
|
8
|
Desai DD, Yu SE, Salvatore B, Goldberg Z, Bowers EMR, Moore JA, Phan B, Lee SE. Olfactory and neurological outcomes of SARS-CoV-2 from acute infection to recovery. FRONTIERS IN ALLERGY 2022; 3:1019274. [DOI: 10.3389/falgy.2022.1019274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022] Open
Abstract
Educational objectiveTo investigate the impact of SARS-CoV-2 on sinonasal quality of life, olfaction, and cognition at different stages of viral infection and evaluate the association between olfaction and cognition in this population cohort.ObjectivesWhile olfactory dysfunction (OD) is a frequently reported symptom of COVID-19 (98% prevalence), neurocognitive symptoms are becoming more apparent as patients recover from infection. This study aims to address how different stages of infection [active infection (positive PCR test, symptomatic) vs. recovered (7 days post-symptoms)] compared to healthy control patients influence sinonasal quality of life, olfactory function, and cognition.Study designProspective, longitudinal, case-control.MethodsParticipants completed the SNOT-22, University of Pennsylvania Smell Identification Test (UPSIT) and validated cognitive examinations to assess degree of smell loss and neurocognitive function at baseline and at 1 and 3 months for the active group and 3 months for the recovered group. Self-reported olfactory function and overall health metrics were also collected.ResultsThe recovered group had the lowest average UPSIT score of 27.6 compared to 32.7 (active) and 32.6 (healthy control). 80% (n = 24) of the recovered patients and 56.3% (n = 9) of the active patients suffered from smell loss. In follow-up, the active group showed improvement in UPSIT scores while the recovered group scores worsened. In terms of neurocognitive performance, recovered patients had lower processing speed despite an improving UPSIT score.ConclusionSARS-CoV-2 infection was found to impact olfactory function in a delayed fashion with significant impact despite recovery from active infection. Although olfactory function improved, decrements in cognitive processing speed were detected in our cohort.
Collapse
|
9
|
Villagomez-Bernabe B, Chan SW, Coulter JA, Roseman AM, Currell FJ. Fast Ion-Beam Inactivation of Viruses, Where Radiation Track Structure Meets RNA Structural Biology. Radiat Res 2022; 198:68-80. [PMID: 35436347 DOI: 10.1667/rade-21-00133.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 03/17/2022] [Indexed: 11/03/2022]
Abstract
Here we show an interplay between the structures present in ionization tracks and nucleocapsid RNA structural biology, using fast ion-beam inactivation of the severe acute respiratory syndrome coronavirus (SARS-CoV) virion as an example. This interplay could be a key factor in predicting dose-inactivation curves for high-energy ion-beam inactivation of virions. We also investigate the adaptation of well-established cross-section data derived from radiation interactions with water to the interactions involving the components of a virion, going beyond the density-scaling approximation developed previously. We conclude that solving one of the grand challenges of structural biology - the determination of RNA tertiary/quaternary structure - is linked to predicting ion-beam inactivation of viruses and that the two problems can be mutually informative. Indeed, our simulations show that fast ion beams have a key role to play in elucidating RNA tertiary/quaternary structure.
Collapse
Affiliation(s)
- B Villagomez-Bernabe
- The Dalton Cumbrian Facility and the Department of Chemistry, The University of Manchester, Westlakes Science & Technology Park, Moor Row, Cumbria, CA24 3HA, United Kingdom
| | - S W Chan
- School of Biological Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PL, United Kingdom
| | - J A Coulter
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL
| | - A M Roseman
- School of Biological Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PL, United Kingdom
| | - F J Currell
- The Dalton Cumbrian Facility and the Department of Chemistry, The University of Manchester, Westlakes Science & Technology Park, Moor Row, Cumbria, CA24 3HA, United Kingdom
| |
Collapse
|
10
|
Chen M, Pekosz A, Villano JS, Shen W, Zhou R, Kulaga H, Li Z, Beck SE, Witwer KW, Mankowski JL, Ramanathan M, Rowan NR, Lane AP. Evolution of nasal and olfactory infection characteristics of SARS-CoV-2 variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.04.12.487379. [PMID: 35441175 PMCID: PMC9016639 DOI: 10.1101/2022.04.12.487379] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SARS-CoV-2 infection of the upper airway and the subsequent immune response are early, critical factors in COVID-19 pathogenesis. By studying infection of human biopsies in vitro and in a hamster model in vivo, we demonstrated a transition in tropism from olfactory to respiratory epithelium as the virus evolved. Analyzing each variants revealed that SARS-CoV-2 WA1 or Delta infects a proportion of olfactory neurons in addition to the primary target sustentacular cells. The Delta variant possesses broader cellular invasion capacity into the submucosa, while Omicron displays longer retention in the sinonasal epithelium. The olfactory neuronal infection by WA1 and the subsequent olfactory bulb transport via axon is more pronounced in younger hosts. In addition, the observed viral clearance delay and phagocytic dysfunction in aged olfactory mucosa is accompanied by a decline of phagocytosis related genes. Furthermore, robust basal stem cell activation contributes to neuroepithelial regeneration and restores ACE2 expression post-infection. Together, our study characterized the nasal tropism of SARS-CoV-2 strains, immune clearance, and regeneration post infection. The shifting characteristics of viral infection at the airway portal provides insight into the variability of COVID-19 clinical features and may suggest differing strategies for early local intervention.
Collapse
Affiliation(s)
- Mengfei Chen
- Department of Otolaryngology-Head and Neck Surgery, Bloomberg School of Public Health, Baltimore, MD
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Baltimore, MD
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jason S. Villano
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Wenjuan Shen
- Department of Otolaryngology-Head and Neck Surgery, Bloomberg School of Public Health, Baltimore, MD
| | - Ruifeng Zhou
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Baltimore, MD
| | - Heather Kulaga
- Department of Otolaryngology-Head and Neck Surgery, Bloomberg School of Public Health, Baltimore, MD
| | - Zhexuan Li
- Department of Otolaryngology-Head and Neck Surgery, Bloomberg School of Public Health, Baltimore, MD
| | - Sarah E. Beck
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kenneth W. Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Joseph L. Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Murugappan Ramanathan
- Department of Otolaryngology-Head and Neck Surgery, Bloomberg School of Public Health, Baltimore, MD
| | - Nicholas R. Rowan
- Department of Otolaryngology-Head and Neck Surgery, Bloomberg School of Public Health, Baltimore, MD
| | - Andrew P. Lane
- Department of Otolaryngology-Head and Neck Surgery, Bloomberg School of Public Health, Baltimore, MD
| |
Collapse
|
11
|
Butowt R, von Bartheld CS. Anosmia in COVID-19: Underlying Mechanisms and Assessment of an Olfactory Route to Brain Infection. Neuroscientist 2021; 27:582-603. [PMID: 32914699 PMCID: PMC7488171 DOI: 10.1177/1073858420956905] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In recent months it has emerged that the novel coronavirus-responsible for the COVID-19 pandemic-causes reduction of smell and taste in a large fraction of patients. The chemosensory deficits are often the earliest, and sometimes the only signs in otherwise asymptomatic carriers of the SARS-CoV-2 virus. The reasons for the surprisingly early and specific chemosensory dysfunction in COVID-19 are now beginning to be elucidated. In this hypothesis review, we discuss implications of the recent finding that the prevalence of smell and taste dysfunction in COVID-19 patients differs between populations, possibly because of differences in the spike protein of different virus strains or because of differences in the host proteins that enable virus entry, thus modifying infectivity. We review recent progress in defining underlying cellular and molecular mechanisms of the virus-induced anosmia, with a focus on the emerging crucial role of sustentacular cells in the olfactory epithelium. We critically examine the current evidence whether and how the SARS-CoV-2 virus can follow a route from the olfactory epithelium in the nose to the brain to achieve brain infection, and we discuss the prospects for using the smell and taste dysfunctions seen in COVID-19 as an early and rapid diagnostic screening tool.
Collapse
Affiliation(s)
- Rafal Butowt
- Department of Molecular Cell Genetics, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
- Department of Anatomy, L. Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Christopher S. von Bartheld
- Center of Biomedical Research Excellence in Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA
- Department of Physiology and Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, USA
| |
Collapse
|
12
|
Porta-Etessam J, Núñez-Gil IJ, González García N, Fernandez-Perez C, Viana-Llamas MC, Eid CM, Romero R, Molina M, Uribarri A, Becerra-Muñoz VM, Aguado MG, Huang J, Rondano E, Cerrato E, Alfonso E, Mejía AFC, Marin F, Roubin SR, Pepe M, Feltes G, Maté P, Cortese B, Buzón L, Mendez JJ, Estrada V. COVID-19 anosmia and gustatory symptoms as a prognosis factor: a subanalysis of the HOPE COVID-19 (Health Outcome Predictive Evaluation for COVID-19) registry. Infection 2021; 49:677-684. [PMID: 33646505 PMCID: PMC7917537 DOI: 10.1007/s15010-021-01587-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
Abstract
Olfactory and gustatory dysfunctions (OGD) are a frequent symptom of coronavirus disease 2019 (COVID-19). It has been proposed that the neuroinvasive potential of the novel SARS-CoV-2 could be due to olfactory bulb invasion, conversely studies suggest it could be a good prognostic factor. The aim of the current study was to investigate the prognosis value of OGD in COVID-19. These symptoms were recorded on admission from a cohort study of 5868 patients with confirmed or highly suspected COVID-19 infection included in the multicenter international HOPE Registry (NCT04334291). There was statistical relation in multivariate analysis for OGD in gender, more frequent in female 12.41% vs 8.67% in male, related to age, more frequent under 65 years, presence of hypertension, dyslipidemia, diabetes, smoke, renal insufficiency, lung, heart, cancer and neurological disease. We did not find statistical differences in pregnant (p = 0.505), patient suffering cognitive (p = 0.484), liver (p = 0.1) or immune disease (p = 0.32). There was inverse relation (protective) between OGD and prone positioning (0.005) and death (< 0.0001), but no with ICU (0.165) or mechanical ventilation (0.292). On univariable logistic regression, OGD was found to be inversely related to death in COVID-19 patients. The odds ratio was 0.26 (0.15-0.44) (p < 0.001) and Z was - 5.05. The presence of anosmia is fundamental in the diagnosis of SARS.CoV-2 infection, but also could be important in classifying patients and in therapeutic decisions. Even more knowing that it is an early symptom of the disease. Knowing that other situations as being Afro-American or Latino-American, hypertension, renal insufficiency, or increase of C-reactive protein (CRP) imply a worse prognosis we can make a clinical score to estimate the vital prognosis of the patient. The exact pathogenesis of SARS-CoV-2 that causes olfactory and gustative disorders remains unknown but seems related to the prognosis. This point is fundamental, insomuch as could be a plausible way to find a treatment.
Collapse
Affiliation(s)
- Jesús Porta-Etessam
- Hospital Clínico San Carlos, Madrid, Spain.
- Universidad Complutense de Madrid, Madrid, Spain.
- Neurology Department. C/Profesor Martín Lagos S/N, 28049, Madrid, Spain.
| | | | - Nuria González García
- Hospital Clínico San Carlos, Madrid, Spain
- Neurology Department. C/Profesor Martín Lagos S/N, 28049, Madrid, Spain
| | | | | | - Charbel Maroun Eid
- Hospital Universitario La Paz. Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | | | - María Molina
- Hospital Universitario Severo Ochoa, Leganés, Spain
| | - Aitor Uribarri
- Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | | | | | - Jia Huang
- The Second Affiliated Hospital of Southern, University of Science and Technology Shenzhen, Shenzhen, China
| | | | - Enrico Cerrato
- San Luigi Gonzaga University Hospital, Orbassano and Rivoli Infermi Hospital, Rivoli, Turin, Italy
| | - Emilio Alfonso
- Institute of Cardiology and Cardiovascular Surgery, Havana, Cuba
| | | | | | | | - Martino Pepe
- Azienda Ospedaliero-Universitaria Consorziale Policlinico Di Bari, Bari, Italy
| | | | - Paloma Maté
- Hospital Universitario Infanta Sofia, San Sebastian de Los Reyes, Madrid, Spain
| | | | - Luis Buzón
- Hospital Universitario de Burgos, Burgos, Spain
| | | | | |
Collapse
|
13
|
Rhoades NS, Pinski A, Monsibais AN, Jankeel A, Doratt BM, Cinco IR, Ibraim I, Messaoudi I. Acute SARS-CoV-2 infection is associated with an expansion of bacteria pathogens in the nose including Pseudomonas Aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34031657 DOI: 10.1101/2021.05.20.445008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Much of the research conducted on SARS-CoV-2 and COVID-19 has focused on the systemic host response, especially that generated by severely ill patients. Very few studies have investigated the impact of acute SARS-CoV-2 within the nasopharynx, the site of initial infection and viral replication. In this study we profiled changes in the nasal microbial communities as well as in host transcriptional profile during acute SARS-CoV-2 infection using 16S amplicon sequencing and RNA sequencing. These analyses were coupled to viral genome sequencing. Our microbiome analysis revealed that the nasal microbiome of COVID patients was unique and was marked by an expansion of bacterial pathogens. Some of these microbes (i.e. Acinetobacter ) were shared with COVID negative health care providers from the same medical center but absent in COVID negative outpatients seeking care at the same institutions suggesting acquisition of nosocomial respiratory pathogens. Specifically, we report a distinct increase in the prevalence and abundance of the pathogen Pseudomonas aeruginosa in COVID patients that correlated with viral RNA load. These data suggest that the inflammatory environment caused by SARS-CoV-2 infection and potentially exposure to the hospital environment leads to an expansion of bacterial pathogens in the nasal cavity that could contribute to increased incidence of secondary bacterial infections. Additionally, we observed a robust host transcriptional response in the nasal epithelia of COVID patients, indicative of an antiviral innate immune repones and neuronal damage. Finally, analysis of viral genomes did not reveal an association between viral loads and viral sequences.
Collapse
|
14
|
DNA methylation architecture of the ACE2 gene in nasal cells of children. Sci Rep 2021; 11:7107. [PMID: 33782449 PMCID: PMC8007733 DOI: 10.1038/s41598-021-86494-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/17/2021] [Indexed: 01/23/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to the global coronavirus disease 2019 (COVID-19) pandemic. SARS-CoV-2 enters cells via angiotensin-Converting Enzyme 2 (ACE2) receptors, highly expressed in nasal epithelium with parallel high infectivity.1,2 The nasal epigenome is in direct contact with the environment and could explain COVID-19 disparities by reflecting social and environmental influences on ACE2 regulation. We collected nasal swabs from anterior nares of 547 children, measured DNA methylation (DNAm), and tested differences at 15 ACE2 CpGs by sex, age, race/ethnicity and epigenetic age. ACE2 CpGs were differentially methylated by sex with 12 sites having lower DNAm (mean = 12.71%) and 3 sites greater DNAm (mean = 1.45%) among females relative to males. We observed differential DNAm at 5 CpGs for Hispanic females (mean absolute difference = 3.22%) and lower DNAm at 8 CpGs for Black males (mean absolute difference = 1.33%), relative to white participants. Longer DNAm telomere length was associated with greater ACE2 DNAm at 11 and 13 CpGs among males (mean absolute difference = 7.86%) and females (mean absolute difference = 8.21%), respectively. Nasal ACE2 DNAm differences could contribute to our understanding COVID-19 severity and disparities reflecting upstream environmental and social influences. Findings need to be confirmed among adults and patients with risk factors for COVID-19 severity.
Collapse
|
15
|
Carossino M, Montanaro P, O'Connell A, Kenney D, Gertje H, Grosz KA, Kurnick SA, Bosmann M, Saeed M, Balasuriya UBR, Douam F, Crossland NA. Fatal neuroinvasion of SARS-CoV-2 in K18-hACE2 mice is partially dependent on hACE2 expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33469581 DOI: 10.1101/2021.01.13.425144] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Animal models recapitulating the distinctive features of severe COVID-19 are critical to enhance our understanding of SARS-CoV-2 pathogenesis. Transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) under the cytokeratin 18 promoter (K18-hACE2) represent a lethal model of SARS-CoV-2 infection. However, the cause(s) and mechanisms of lethality in this mouse model remain unclear. Here, we evaluated the spatiotemporal dynamics of SARS-CoV-2 infection for up to 14 days post-infection. Despite infection and moderate inflammation in the lungs, lethality was invariably associated with viral neuroinvasion and neuronal damage (including spinal motor neurons). Neuroinvasion occurred following virus transport through the olfactory neuroepithelium in a manner that was only partially dependent on hACE2. Interestingly, SARS-CoV-2 tropism was overall neither widespread among nor restricted to only ACE2-expressing cells. Although our work incites caution in the utility of the K18-hACE2 model to study global aspects of SARS-CoV-2 pathogenesis, it underscores this model as a unique platform for exploring the mechanisms of SARS-CoV-2 neuropathogenesis. SUMMARY COVID-19 is a respiratory disease caused by SARS-CoV-2, a betacoronavirus. Here, we show that in a widely used transgenic mouse model of COVID-19, lethality is invariably associated with viral neuroinvasion and the ensuing neuronal disease, while lung inflammation remains moderate.
Collapse
|
16
|
Alon R, Sportiello M, Kozlovski S, Kumar A, Reilly EC, Zarbock A, Garbi N, Topham DJ. Leukocyte trafficking to the lungs and beyond: lessons from influenza for COVID-19. Nat Rev Immunol 2021; 21:49-64. [PMID: 33214719 PMCID: PMC7675406 DOI: 10.1038/s41577-020-00470-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). Understanding of the fundamental processes underlying the versatile clinical manifestations of COVID-19 is incomplete without comprehension of how different immune cells are recruited to various compartments of virus-infected lungs, and how this recruitment differs among individuals with different levels of disease severity. As in other respiratory infections, leukocyte recruitment to the respiratory system in people with COVID-19 is orchestrated by specific leukocyte trafficking molecules, and when uncontrolled and excessive it results in various pathological complications, both in the lungs and in other organs. In the absence of experimental data from physiologically relevant animal models, our knowledge of the trafficking signals displayed by distinct vascular beds and epithelial cell layers in response to infection by SARS-CoV-2 is still incomplete. However, SARS-CoV-2 and influenza virus elicit partially conserved inflammatory responses in the different respiratory epithelial cells encountered early in infection and may trigger partially overlapping combinations of trafficking signals in nearby blood vessels. Here, we review the molecular signals orchestrating leukocyte trafficking to airway and lung compartments during primary pneumotropic influenza virus infections and discuss potential similarities to distinct courses of primary SARS-CoV-2 infections. We also discuss how an imbalance in vascular activation by leukocytes outside the airways and lungs may contribute to extrapulmonary inflammatory complications in subsets of patients with COVID-19. These multiple molecular pathways are potential targets for therapeutic interventions in patients with severe COVID-19.
Collapse
Affiliation(s)
- Ronen Alon
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel.
| | - Mike Sportiello
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Stav Kozlovski
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Ashwin Kumar
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Emma C Reilly
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Alexander Zarbock
- Department of Cellular Immunology, Institute of Experimental Immunology Medical Faculty, University of Bonn, Bonn, Germany
| | - Natalio Garbi
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - David J Topham
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
17
|
Medina-Enríquez MM, Lopez-León S, Carlos-Escalante JA, Aponte-Torres Z, Cuapio A, Wegman-Ostrosky T. ACE2: the molecular doorway to SARS-CoV-2. Cell Biosci 2020; 10:148. [PMID: 33380340 PMCID: PMC7772801 DOI: 10.1186/s13578-020-00519-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/13/2020] [Indexed: 12/18/2022] Open
Abstract
The angiotensin-converting enzyme 2 (ACE2) is the host functional receptor for the new virus SARS-CoV-2 causing Coronavirus Disease 2019. ACE2 is expressed in 72 different cell types. Some factors that can affect the expression of the ACE2 are: sex, environment, comorbidities, medications (e.g. anti-hypertensives) and its interaction with other genes of the renin-angiotensin system and other pathways. Different factors can affect the risk of infection of SARS-CoV-2 and determine the severity of the symptoms. The ACE2 enzyme is a negative regulator of RAS expressed in various organ systems. It is with immunity, inflammation, increased coagulopathy, and cardiovascular disease. In this review, we describe the genetic and molecular functions of the ACE2 receptor and its relation with the physiological and pathological conditions to better understand how this receptor is involved in the pathogenesis of COVID-19. In addition, it reviews the different comorbidities that interact with SARS-CoV-2 in which also ACE2 plays an important role. It also describes the different factors that interact with the virus that have an influence in the expression and functional activities of the receptor. The goal is to provide the reader with an understanding of the complexity and importance of this receptor.
Collapse
Affiliation(s)
| | - Sandra Lopez-León
- Global Drug Development, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA.
| | | | | | - Angelica Cuapio
- Center of Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Talia Wegman-Ostrosky
- Department of Basic Research, Instituto Nacional de Cancerología, 22 San Fernando Avenue, Belisario Domínguez Sección XVI, 14080, Mexico City, Mexico.
| |
Collapse
|
18
|
Nunn AVW, Guy GW, Brysch W, Botchway SW, Frasch W, Calabrese EJ, Bell JD. SARS-CoV-2 and mitochondrial health: implications of lifestyle and ageing. Immun Ageing 2020; 17:33. [PMID: 33292333 PMCID: PMC7649575 DOI: 10.1186/s12979-020-00204-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
Infection with SARs-COV-2 displays increasing fatality with age and underlying co-morbidity, in particular, with markers of the metabolic syndrome and diabetes, which seems to be associated with a "cytokine storm" and an altered immune response. This suggests that a key contributory factor could be immunosenescence that is both age-related and lifestyle-induced. As the immune system itself is heavily reliant on mitochondrial function, then maintaining a healthy mitochondrial system may play a key role in resisting the virus, both directly, and indirectly by ensuring a good vaccine response. Furthermore, as viruses in general, and quite possibly this new virus, have also evolved to modulate immunometabolism and thus mitochondrial function to ensure their replication, this could further stress cellular bioenergetics. Unlike most sedentary modern humans, one of the natural hosts for the virus, the bat, has to "exercise" regularly to find food, which continually provides a powerful adaptive stimulus to maintain functional muscle and mitochondria. In effect the bat is exposed to regular hormetic stimuli, which could provide clues on how to resist this virus. In this paper we review the data that might support the idea that mitochondrial health, induced by a healthy lifestyle, could be a key factor in resisting the virus, and for those people who are perhaps not in optimal health, treatments that could support mitochondrial function might be pivotal to their long-term recovery.
Collapse
Affiliation(s)
- Alistair V W Nunn
- Department of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK.
| | | | | | - Stanley W Botchway
- UKRI, STFC, Central Laser Facility, & Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX110QX, UK
| | - Wayne Frasch
- School of Life Sciences, Arizona State University, Tempe, USA
| | - Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jimmy D Bell
- Department of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK
| |
Collapse
|
19
|
Durbin HJ, Lu D, Yampara-Iquise H, Miller SP, Decker JE. Development of a genetic evaluation for hair shedding in American Angus cattle to improve thermotolerance. Genet Sel Evol 2020; 52:63. [PMID: 33087048 PMCID: PMC7579828 DOI: 10.1186/s12711-020-00584-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Heat stress and fescue toxicosis caused by ingesting tall fescue infected with the endophytic fungus Epichloë coenophiala represent two of the most prevalent stressors to beef cattle in the United States and cost the beef industry millions of dollars each year. The rate at which a beef cow sheds her winter coat early in the summer is an indicator of adaptation to heat and an economically relevant trait in temperate or subtropical parts of the world. Furthermore, research suggests that early-summer hair shedding may reflect tolerance to fescue toxicosis, since vasoconstriction induced by fescue toxicosis limits the ability of an animal to shed its winter coat. Both heat stress and fescue toxicosis reduce profitability partly via indirect maternal effects on calf weaning weight. Here, we developed parameters for routine genetic evaluation of hair shedding score in American Angus cattle, and identified genomic loci associated with variation in hair shedding score via genome-wide association analysis (GWAA). RESULTS Hair shedding score was moderately heritable (h2 = 0.34 to 0.40), with different repeatability estimates between cattle grazing versus not grazing endophyte-infected tall fescue. Our results suggest modestly negative genetic and phenotypic correlations between a dam's hair shedding score (lower score is earlier shedding) and the weaning weight of her calf, which is one metric of performance. Together, these results indicate that economic gains can be made by using hair shedding score breeding values to select for heat-tolerant cattle. GWAA identified 176 variants significant at FDR < 0.05. Functional enrichment analyses using genes that were located within 50 kb of these variants identified pathways involved in keratin formation, prolactin signalling, host-virus interaction, and other biological processes. CONCLUSIONS This work contributes to a continuing trend in the development of genetic evaluations for environmental adaptation. Our results will aid beef cattle producers in selecting more sustainable and climate-adapted cattle, as well as enable the development of similar routine genetic evaluations in other breeds.
Collapse
Affiliation(s)
| | - Duc Lu
- Angus Genetics Inc., St. Joseph, MO 64506 USA
| | | | | | | |
Collapse
|
20
|
Cardenas A, Rifas-Shiman SL, Sordillo JE, DeMeo DL, Baccarelli AA, Hivert MF, Gold DR, Oken E. DNA Methylation Architecture of the ACE2 gene in Nasal Cells. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.08.25.20182105. [PMID: 32995808 PMCID: PMC7523147 DOI: 10.1101/2020.08.25.20182105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to the global coronavirus disease 2019 (COVID-19) pandemic. SARS-CoV-2 enters cells via angiotensin-Converting Enzyme 2 (ACE2) receptors, highly expressed in nasal epithelium with parallel high infectivity.1,2 The nasal epigenome is in direct contact with the environment and could explain COVID-19 disparities by reflecting social and environmental influences on ACE2 regulation. We collected nasal swabs from anterior nares of 547 children, measured DNA methylation (DNAm), and tested differences at 15 ACE2 CpGs by sex, age, race/ethnicity and epigenetic age. ACE2 CpGs were differentially methylated by sex with 12 sites having lower DNAm (mean=12.71%) and 3 sites greater DNAm (mean=1.45%) among females relative to males. We observed differential DNAm at 5 CpGs for Hispanic females (mean absolute difference=3.22%) and lower DNAm at 8 CpGs for Black males (mean absolute difference=1.33%), relative to white participants. Longer DNAm telomere length was associated with greater ACE2 DNAm at 11 and 13 CpGs among males (mean absolute difference=7.86%) and females (mean absolute difference=8.21%), respectively. Nasal ACE2 DNAm differences could contribute to our understanding COVID-19 severity and disparities reflecting upstream environmental and social influences.
Collapse
Affiliation(s)
- Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
- Corresponding Author: Andres Cardenas, PhD, MPH, Division of Environmental Health Sciences, School of Public Health and Center for, Computational Biology, University of California, Berkeley, 2121 Berkeley Way, #5121, Berkeley CA 94720,
| | - Sheryl L. Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Joanne E. Sordillo
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Dawn L. DeMeo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Diane R Gold
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| |
Collapse
|
21
|
Saussez S, Lechien JR, Hopkins C. Anosmia: an evolution of our understanding of its importance in COVID-19 and what questions remain to be answered. Eur Arch Otorhinolaryngol 2020; 278:2187-2191. [PMID: 32909060 PMCID: PMC7480210 DOI: 10.1007/s00405-020-06285-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/10/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND From the start of the pandemic, many European otolaryngologists observed an unprecendented number of anosmic patients. Early reports proposed that anosmia could be the first or even the only symptom of COVID-19 infection, prompting calls for self-isolation in affected patients. METHODS In the present article, we review the COVID-19 anosmia literature and try to answer the following two questions: first, why is COVID-19 infection responsible for such a high incidence of anosmia? Second, in patients with more severe forms is anosmia really less prevalent and why? RESULTS In terms of the etiology of olfactory dysfunction, several hypotheses were proposed at the outset of the pandemic; that olfactory cleft inflammation and obstruction caused a localized conductive loss, that there was injury to the sustentacular supporting cells in the olfactory epithelium or, given the known neurotropic potential of coronavirus, that the virus could invade and damage the olfactory bulb. Olfactory cleft obstruction may contribute to the olfactory dysfunction in some patients, perhaps most likely in those that show very early resolution, it cannot account for the loss in all patients. Moreover, disordered regrowth and a predominance of immature neurons have been shown to be associated with parosmia, which is a common finding amongst patients with Covid-related anosmia. A central mechanism therefore certainly seems to be consistent with the group of patients with more prolonged olfactory deficits. Sustentacular cells showing ACE-2 immunohistochemical expression 200 to 700 times greater than nasal or tracheal epithelia seem to be the main SARS-CoV-2 gateway. As the pathophysiology of COVID-19 anosmia seems to be better understood, the question of why patients with a moderate to severe form of COVID-19 infection have less olfactory involvement remains unresolved. Different potential explanations are discussed in this review. CONCLUSIONS The last 5 months have benefited from great international collaborative research, first highlighting and then proving the value of loss of smell and taste as a symptom of COVID-19. Adoption of loss of smell into the case definition by international public health bodies will facilitate control of disease transmission.
Collapse
Affiliation(s)
- Sven Saussez
- COVID-19 Task Force of the Young-Otolaryngologists of the International Federations of Oto-rhino-laryngological Societies (YO-IFOS), Paris, France. .,Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMons), Mons, Belgium. .,Department of Otorhinolaryngology and Head and Neck Surgery, CHU Saint-Pierre, School of Medicine, CHU de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium.
| | - Jerome R Lechien
- COVID-19 Task Force of the Young-Otolaryngologists of the International Federations of Oto-rhino-laryngological Societies (YO-IFOS), Paris, France.,Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMons), Mons, Belgium.,Department of Otorhinolaryngology and Head and Neck Surgery, CHU Saint-Pierre, School of Medicine, CHU de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium.,Department of Otolaryngology-Head and Neck Surgery, School of Medicine, UFR Simone Veil, Foch Hospital, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), Paris, France
| | - Claire Hopkins
- Guy's and St Thomas NHS Foundation Trust, London, UK.,British Rhinological Society (President), London, UK
| |
Collapse
|
22
|
Vofo G, Brodie R, Gross M. Nasal lavage containing Angiotensin-Converting Enzyme-2 agonist can prevent and reduce viral load in COVID-19. Med Hypotheses 2020; 144:110207. [PMID: 33254514 PMCID: PMC7444481 DOI: 10.1016/j.mehy.2020.110207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/18/2020] [Indexed: 01/05/2023]
Abstract
COVID-19 has been the talk of the year 2020, taking many lives and leaving others in critical conditions. It has clearly and severally been reported that the SARSCoV-2 uses the Angiotensin Converting Enzyme-2 receptors to penetrate and infect cells. Reports have also stated that the nasal and olfactory mucosa are overloaded with these receptors. We emphasize that anosmia in COVID-19 is secondary to the binding of the SARSCoV-2 to Angiotensin Converting Enzyme-2 receptors on the olfactory mucosa. A hypotheses pertaining to the presentation, diagnosis, management and possible prevention of SARS-CoV-2 is proposed. Given the high false negative rates of the polymerase chain reaction (PCR) tests, we suggest that COVID-19 negative patients with anosmia without any other nasal symptom should raise a high index of suspicion and should be further evaluated. We propose the formulation and use of Angiotensin Converting Enzyme-2 receptors agonist or angiotensin receptor blockers (ARBs) as nasal lavage, to reduce the viral load of confirmed positive patients, and as a mode of prevention, especially in high risk patients, until a vaccine is developed. These medications are readily available and testing this theory involves determination of the correct dosage of angiotensin receptor blockers or ACE inhibitors (via dilution in water) that can be used as nasal lavage and performing efficacy trials. Potential side effects to be monitored for include low blood pressure or changes in heart rate. Administration of a medicated nasal lavage may be easier and rapidly disseminated on the nasal mucosa.
Collapse
Affiliation(s)
- Gaelle Vofo
- Department of Otolaryngology-Head and Neck Surgery, Hadassah Hebrew-University Medical Center, Jerusalem Israel.
| | - Ronit Brodie
- Department of General Surgery, Hadassah Hebrew-University Medical Center, Jerusalem Israel.
| | - Menachem Gross
- Department of Otolaryngology-Head and Neck Surgery, Hadassah Hebrew-University Medical Center, Jerusalem Israel.
| |
Collapse
|
23
|
Descamps G, Verset L, Trelcat A, Hopkins C, Lechien JR, Journe F, Saussez S. ACE2 Protein Landscape in the Head and Neck Region: The Conundrum of SARS-CoV-2 Infection. BIOLOGY 2020; 9:235. [PMID: 32824830 PMCID: PMC7465650 DOI: 10.3390/biology9080235] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/14/2020] [Indexed: 01/08/2023]
Abstract
The coronavirus pandemic raging worldwide since December 2019 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which invades human cells via the angiotensin-converting enzyme 2 (ACE2) receptor. Although it has already been identified in many organs, ACE2 expression remains largely unknown in the head and neck (HN) sphere. Thus, this study aims to investigate its protein expression in several sites of the upper aerodigestive tract in order to highlight potential routes of infection. We compared ACE2 immunohistochemical expression between 70 paraffin-embedded specimens with two different antibodies and reported the quantified expression in each histological location. Surprisingly, we obtained different results depending on the antibody, an absence of labeling having been observed with a monoclonal antibody raised against the extracellular domain, whereas the polyclonal, against the cytoplasmic part of the protein, revealed enriched ACE2 expression, particularly in sinuses, vocal cords, salivary glands and oral cavity epithelial cells. The interpretation of these discordant results has brought several exciting lines of reflection. In conclusion, this study provides possible routes of entry for the SARS-CoV-2 in HN region and, above all, has led us to encourage caution when studying the ACE2 expression which is currently at the center of all attention.
Collapse
Affiliation(s)
- Géraldine Descamps
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars 6, 7000 Mons, Belgium; (G.D.); (A.T.); (J.R.L.); (F.J.)
| | - Laurine Verset
- Department of Pathology, Institute Jules Bordet, Université Libre de Bruxelles, Rue Héger-Bordet 1, 1000 Brussels, Belgium;
| | - Anne Trelcat
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars 6, 7000 Mons, Belgium; (G.D.); (A.T.); (J.R.L.); (F.J.)
| | - Claire Hopkins
- Guy’s and St Thomas’ Hospitals, Westminster Bridge Road, London SE1 9RT, UK;
- British Rhinological Society (President), 35-43 Lincoln's Inn Fields, London WC2A 3PE, UK
| | - Jérome R. Lechien
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars 6, 7000 Mons, Belgium; (G.D.); (A.T.); (J.R.L.); (F.J.)
- Department of Otolaryngology-Head & Neck Surgery, Foch Hospital, School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), 40 Rue Worth, Suresnes, 92150 Paris, France
- Department of Otorhinolaryngology and Head and Neck Surgery, CHU de Bruxelles, CHU Saint-Pierre, Université Libre de Bruxelles, Rue aux Laines 105, 1000 Brussels, Belgium
| | - Fabrice Journe
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars 6, 7000 Mons, Belgium; (G.D.); (A.T.); (J.R.L.); (F.J.)
- Department of Oncology and Experimental Surgery, Institute Jules Bordet (IJB), Université Libre de Bruxelles (ULB), Rue Heger-Bordet 1, 1000 Brussels, Belgium
| | - Sven Saussez
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMONS), Avenue du Champ de Mars 6, 7000 Mons, Belgium; (G.D.); (A.T.); (J.R.L.); (F.J.)
- Department of Otorhinolaryngology and Head and Neck Surgery, CHU de Bruxelles, CHU Saint-Pierre, Université Libre de Bruxelles, Rue aux Laines 105, 1000 Brussels, Belgium
| |
Collapse
|
24
|
Brann DH, Tsukahara T, Weinreb C, Lipovsek M, Van den Berge K, Gong B, Chance R, Macaulay IC, Chou HJ, Fletcher RB, Das D, Street K, de Bezieux HR, Choi YG, Risso D, Dudoit S, Purdom E, Mill J, Hachem RA, Matsunami H, Logan DW, Goldstein BJ, Grubb MS, Ngai J, Datta SR. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. SCIENCE ADVANCES 2020; 6:eabc5801. [PMID: 32937591 PMCID: PMC10715684 DOI: 10.1126/sciadv.abc5801] [Citation(s) in RCA: 721] [Impact Index Per Article: 144.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/18/2020] [Indexed: 05/05/2023]
Abstract
Altered olfactory function is a common symptom of COVID-19, but its etiology is unknown. A key question is whether SARS-CoV-2 (CoV-2) - the causal agent in COVID-19 - affects olfaction directly, by infecting olfactory sensory neurons or their targets in the olfactory bulb, or indirectly, through perturbation of supporting cells. Here we identify cell types in the olfactory epithelium and olfactory bulb that express SARS-CoV-2 cell entry molecules. Bulk sequencing demonstrated that mouse, non-human primate and human olfactory mucosa expresses two key genes involved in CoV-2 entry, ACE2 and TMPRSS2. However, single cell sequencing revealed that ACE2 is expressed in support cells, stem cells, and perivascular cells, rather than in neurons. Immunostaining confirmed these results and revealed pervasive expression of ACE2 protein in dorsally-located olfactory epithelial sustentacular cells and olfactory bulb pericytes in the mouse. These findings suggest that CoV-2 infection of non-neuronal cell types leads to anosmia and related disturbances in odor perception in COVID-19 patients.
Collapse
Affiliation(s)
- David H Brann
- Harvard Medical School Department of Neurobiology, Boston MA 02115 USA
| | - Tatsuya Tsukahara
- Harvard Medical School Department of Neurobiology, Boston MA 02115 USA
| | - Caleb Weinreb
- Harvard Medical School Department of Neurobiology, Boston MA 02115 USA
| | - Marcela Lipovsek
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London SE1 1UL, UK
| | - Koen Van den Berge
- Department of Statistics, University of California, Berkeley, CA 94720
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Boying Gong
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA 94720
| | - Rebecca Chance
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Iain C Macaulay
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Hsin-Jung Chou
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Russell B Fletcher
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Present address: Surrozen, Inc., South San Francisco, CA 94080
| | - Diya Das
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Berkeley Institute for Data Science, University of California, Berkeley
- Present address: Genentech, Inc., South San Francisco, CA 94080
| | - Kelly Street
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Hector Roux de Bezieux
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA 94720
- Center for Computational Biology, University of California, Berkeley, CA 94720
| | - Yoon-Gi Choi
- QB3 Functional Genomics Laboratory, University of California, Berkeley, CA 94720
| | - Davide Risso
- Department of Statistical Sciences, University of Padova, Padova, Italy
| | - Sandrine Dudoit
- Department of Statistics, University of California, Berkeley, CA 94720
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA 94720
| | - Elizabeth Purdom
- Department of Statistics, University of California, Berkeley, CA 94720
| | - Jonathan Mill
- University of Exeter Medical School, College of Medicine & Health, University of Exeter, Exeter EX2 5DW, UK
| | - Ralph Abi Hachem
- Duke University School of Medicine Department of Head and Neck Surgery & Communication Sciences, Durham, NC 27717 USA
| | - Hiroaki Matsunami
- Duke University School of Medicine Department of Molecular Genetics and Microbiology, Department of Neurobiology, Duke Institute for Brain Sciences, Durham, NC 27717 US
| | - Darren W Logan
- Waltham Petcare Science Institute, Leicestershire LE14 4RT, UK
| | - Bradley J Goldstein
- Duke University School of Medicine Department of Head and Neck Surgery & Communication Sciences, Durham, NC 27717 USA
| | - Matthew S Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London SE1 1UL, UK
| | - John Ngai
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- QB3 Functional Genomics Laboratory, University of California, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720
- Present address: National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | | |
Collapse
|